
Protocol Synthesis Using Basic Lotos and Global Variables

A. Khoumsi” G.v Bochmann

Dkpartement d’informatique et de recherche opkrationnelle
Universitk de Montrkal

Montrkal, Qukbec H3C 3J7, Canada

- stop Inaction exit ‘lermination
B1 0 B2 Choice a ; B Action prefix
B1[> B2 Disabling B1 >> B2 Sequence

Abstract
In 6 a method of protocol synthesis, using basic

LOT d 5 J (BL) as a specification language, is proposed.
In the present paper, we generalize this method. For
thot, we propose an extended basic LOTOS (EBL) to
specify the service and the protocol. With EBL , events
are associated to enabling conditions and to transfor-
mation functions that depend on globa,l variables. Next,
we propose a method to synthesize protocols using EBL
CIS Q specification language. This method is inspired by
the concept of Transa.ctions and by the method of [6].
Our method has a n advantage : There are cases where
it generates Q solution while method of [6] is not appli-
cable. This advantage is illustrated in two examples.
Key Words: Protocol synthesis, Shared variable,
Enabling condition, Transformation fiinction,
EBL, Two-phase locking protocol, Partially and fully
completed transaction, Disconnection phase.

1 Introduction
An approach to design of a. distribut,ed system is

to derive the prot,ocol specifica.tion from a. specifica-
tion of the service desired by the user, in such a man-
ner that the protocol is syntactically a.nd semantically
correct ”by construction”. The semantic correctness
means that the protocol provides the desired service.
The syntactic correctness means that the protocol is
deadlock-free (resp. livelock-free) provided that the de-
sired service is deadlock-free (resp. livelock-free) , and
no unspecified reception errors a.re possible. Such an
approach to design is called Synthesis. In [a , 9, 7, 8 , 61,
different versions of a. prot,ocol synthesis inethod a.re
proposed. Since [GI is the most general and its correct-
ness has been proved, we consider only this reference
which uses specifications written in basic LOTOS (BL)
[3]. A limitation of the method in [B] is that three
restrictions must be respected by a specification of a
desired service written i n BL, i n order to ensure the
generation of a correct protocol.

Our first contribution in this paper is the definition
of a language which extends basic LOTOS by the use
of a set of global va.ria.bles. Such language is called
Extended basic LOTOS and noted EBL. In a specifi-
cation written in EBL, every event is associa.ted to an
enabling condition and a. t,ransformation function which

P[G]
B1 /GI B 2

*Supported by a n FCAR-NSERC-BNR grant

Process instantiation
Pa.ralle1 composition with rendezvous

on gates of G

possibly depend on a few global variables. An advan-
tage of EBL is that it allows more ways than BL to
specify a given system. A specification in BL is just a
particular case where no variable is used. EBL being
defined, we propose a synthesis method using specifica-
tions written in EBL. This method is mainly inspired
by the concept of Transactions using shared distributed
variables [l, 101 and by the protocol synthesis method
of [B] . A first advantage of our method is due to the
fact that there are more ways to specify a desired ser-
vice by using EBL than by using BL. Therefore, using
EBL increases the possibility to find a specification of a
desired service which respects the three restrictions of
[B] and then ensures the generation of a correct proto-
col. A second advantage is that one of these restrictions
is not required if a restriction on variables is respected.
All these points are discussed in this paper.

The remainder of the paper is organized m follows.
In Section 2 , we introduce the synthesis method of [6 .
In Section 3, we study two simple examples which i i -
lustrate the limitations of this method. In Section 4,
we present the model EBL. In Section 5, we present
our method of protocol synthesis which uses EBL. In
Section 6 , the examples of Sect. 3 are studied to demon-
strate the efficiency of our method. Finally in Section 7,
we conclude and propose some future works.

2 Protocol synthesis with B L
We assume that the reader is familiar with basic LO-

TOS (BL) [3]. The operations of BL which are consid-
ered in this paper (and in [GI) are the following, where
B , B1, B2 are behaviour expressions, a is an event and
G is a set of gates (observable events) :

Notations 1 .
If G is empty, then operator IC1 is noted 1 1 1 ;
If G contains all the gates, then IC/ is noted 1 1 .
Every site of a distributed system is identified by a num-
ber i and is therefore noted Si te i .
An event may correspond to the occurrence of a :

126
0-8186-7216-1/95 $04.00 0 1995 IEEE

- Service primitive a in Site;;. it is noted a;.
- Internal event i in Sitei; it is noted ii.
- Sending of m by Sitei for Sitej; it is noted s : (m) .
- Reception in Sitej of r n from Sitei; it is noted rj(m,:].
In a;, d (m) and rj.(m), the lower index specifie:; the
site where the event occurs, and m, is a message.
Let A be a specification in BL :
- AP A is the set of sit,es involved i n A ,
- SPIA] (resp. E P (A)) is the set of sites where the

first (sesp. last) event of A may occur.
For example, for the following specification
A = (a1 ; b2 ; exit) 1)) (cg ; d4 ; e l ; e x i t) , we have :

SP(A)={S i t e l , S i t e g } , EP(A)=(Si te l ,Si tez} ,
and AP(A)={Sitel ,Silea,Sileg,Site4}.

Boolean operators AND, OR, NEGATION are respec:-
tively represented by A, VI 7.

The basic idea. of the protocol syntShesis in [GI consists in
projecting the service specifica.tion into ea.ch site. The
projections are augmented by adding all the messages
that must be exclnnged between t,he sites such that the
temporal order of events in the different sites ensures
the order of service primitives implied by the service
specification. The rules of the prot,ocol syiit31iesis are
presented in [GI. In the present Section, we only give
three examples which illustrate their use. We note tha,t
operator ” [GI ” does not generate niessa.ges. In t h? fol-
lowing examples, two s iks Sitel and Site2 are involved,
Serv is a specificadion of a desired service, P ~ o t i is the
the specification of the protocol i n Sitei generated by
the method of [GI, for i = 1 , 2 .
Example 2.1 Protocol synthesis for a. service specifii-
cation conta,ining operator >> :

Serv = (w1 ; exit) >> (62 ; ezit)
P r ~ t l = a1 ; sq(n7.) ; ezit
Pi-ota = ri(nz) ; ez%t >> 62 ; e z i l

Intuitively, operator >> in Sew requires t1ia.t ba must
be executed after (11 ~ Therefore after the occurrence of
a l l Sitel must send a message to Sitea.

Exaiiiple 2.2 Protocoi synt,liesis for a service specifii-
cation containing operat,or [] :

Serv = (a1 ; bz ; e x i t) 0 (c1 ; e x i t)
Protl = (a1 ; s q (m 1) ; e z i t) 0 (cl ; exit >> s:(?n2) ; exit)
Protz = (r i (m1) ; exit >> 62 ; e x i t) [] (rf(m,2) ; e . c i t)

Intuitively, when an alternative is selected then a 111e:j-
sage is sent to all the sites which do not participate in
the alternative. Therefore, if the second alterna.tive is
selected then Site, sends ?)a2 to Sifea. R/lessa.ge m1 is
used to execute b2 after Q I .
In order to ensure a proper genera.tioii of prot,ocol en-
tities, two restrictions must be respected for the choice
expressions of the form A [] B [6] :
R1 : SP(A) = S P (B) a.nd are singIet,ons.
R2 : E P (A) = E P (R)

Example 2.3 Protocol synthesis for a service specifi-
cation conta,ining operator [> :

(Not respectled here).

Serv = (al ; b2 ; ex i t) [> (d2 ; e z i t)
Protl = (a, ; sH(n.1) ; esdt >> rf(n22) ; ez i i)

[> (r7(m3) ; ezi t)

[> (ds ; Si(1773) ; e x i t)
Protz = (4(7n1.) ; exit >> ba ; exit >> s i (m 2) ; exit)

Intuitively in A [> B, if a first event of B occurs then
a message (m3 in the example) is sent to all places
involved in process A. Besides, a11 places involved in
process A must be informed if A terminates without
being interrupted (message m2). Message ml is used
for ensuring that a1 is executed before 6 2 .
As for the choice expressions (Example 2.2), two restric-
tions must be irespected for the disabling expressions of - -
the form A > B [6] :
R2 : EP(Aj = E P (B) and R3 : E P (A) _> S P (B) .

3 Two practical examples

unable to generate a correct solution.
3.1 First Example

A connection oriented service provided by the trans-
port layer is studied in [GI. It is a simplified version
of the OS1 Tra,nsport Service [SI, it involves two users
in Sitel and S i t e z , and contains the three following
consecutive phases : the connection establishment, the
da.ta. t-rmsfer, and the disconnectmion. We consider here
the disconnection phase (DP), which may be initiated
while da.ta are exchanged between the two sites. Dur-
ing DP, two service primitives are used :

- T-DISCONN ECT-request, noted dsreqi;
- T-DISCONN ECT-in,dication, noted dsindi;
Index i identifies the site where a primitive occurs.
Informally, DP may be specified as follows :

Here are two exa.mples where the method of [GI is

c The user of Site; may initiate a disconnection by
executing a dsreq; (for i = 1 , 2) .

0 If user of Sir‘ei executes a dsreq;, then the user of
Sitej receives a ds ind j (for i,j = 1 , 2 and i # j).

e Sitei disconnects itself if its user executes a dsreqi
or receives a dsindi (for i = 1 , 2) .

I n [GI , the above requirements are formalized in BL by
the following specifica.tion, which is equivalent to the
finite sta.te aut,omaton of Figure 1 :

SPEC
A (i , j) = dsreqi ; ((d s i n d j ; exit) [I (dsreqj ; C))
C = ((ds ind l ; ex i t) 1 1 1 (ds indz ; ez i t))

Restrictmion R1 (Example 2.2) is not respected in DISC,
and a.uthors of [GI assert tha.t this example is an ex-
ception where RI. is not mandatory for applying their
protocol synthesis method. But the following protocol
specifica.tions ,DISC; (in S i t e ;) , for i = 1 , 2 , generated
by the method of [6] from the service D I S C , contain a
dea.dlock. In fact, for i , j = 1 , 2 and i # j :

DISC = A(1,2) l A (2 , l) WHERE

SPEC DISCi ,= Ai 0 Ri WHERE
Ai = (dsreq, ; s:(mi) ; e x i t)

B; = 4 (mj) ; exit >> ((d s i n d i ; exit >> ss (p j) ; e x i t)

C; = dsind; ; ezat

>> ((r ! (p i) ; e x i t) fi ((< (q i) ; e x i t) . >> G))

U (dsreqi i (s { (q j) ; e x i t) >> ~ i))

The dea.dilock occurs when users of bot,h sites initiate
siniulta.neously a disconnection :
- In Sitel Process A1 executes dsregl , sends message

- In Site2 : Process A2 executes dsreqa, sends message
7721, and then waits for the reception of p l or q l .

m 2 , and then waits for the reception of p 2 or q2.

127

In this case, every site is waiting for a. message which
will never be sent. This dea.dlock is due to the fact that
restriction R1 is not respected, i.e., a choice is not cen-
tralized in one site. To avoid t,liis dea.dlock, processes
A1 and A2 must be executed i n a mutua.1 exclusion. In
Sect. 6.1, we show how a correct solution is generated.
3.2 Second Example

Here is a simple example of a non terminating ser-
vice, noted S , where the method in [GI is unable to
give a solution, beca.iise restrictions R1 and R2 are not
respected (Example 2.2). Inforinally, S is specified as
follows, for i , j = 1 , 2 , a.nd i # j:

0 From the initial state, a.i ma.y be executed.
0 Site; may decide to execut,e b, instead of U ; . But

0 Si tes may execute c3 if both a1 and a2 have been

0 After the execution of either bl or 62 or c3, the

The above requirement,s a.re formalized by the finite
state automaton of Figure 2, and also i n ba.sic LOTOS
by the following recursive specification :

S = (((fl ; exit) I / / (Q ; e x f t)) >> (e3 ; e x i t))
(a1 ; b2 ; e&) (0,. ; bl ; e x i t)) >> S

bi cannot be execut,ed before 0 . j .

executed.

initial state is reached.

In Sect. 6.2, we show how a solrit~ion is obta.ined

4 Extended basic LOTOS (EBL)
In the present Section, we propose a iiiodel which ex-

tends BL, and is therefore noted EBL (extended BL).
A specification written in EBL uses a set of variables
which may be sha.red by different sites, and to every
event are associated a n ena.bling condit8ion (EC) a i d a,
transformation function (TF) which may depend on a
few variables. Informally, an event. may occur only if
its enabling condition 1ia.s the va.lue True, and when
it occurs then a few varia.bles a.re possibly modified by
applying the t r a nsfor rn a t,ion f u nc t,i on.
Let then w1 , v 2 , . . . , vn be 72 va.ria.bles respectively de-
fined in the sets V1, V 2 , . . . , V " .
The n-tuplet (U', v 2 , . . , , zrn) is noted w and its value
is called variable s ta te .
The set of va.riables is noted V , and the set of possible
variable states is iiot,ed V .
An enabling condition 0, w.r.t. V , is any boolean func-
tion : V I-+ {Tr7i.e, Fa l se} . It, is synta.ct~ica.lly repre-
sented by a, boo1ea.n expression formed from :
- Canonical expressions v i - k , where k E V i and

- Boolean operators AND(A), OR.(V) and NOT(7) on

An enabling condition which is al7uays equa.1 to True
(resp. False) is noted True (resp. False) .
The set of enabling conditions, m7.r.t. V , is noted EC".
A transformation function, w.r.t, . V , is any function
V +-+ V syntactically represent.ed by a. series of canoni-
cal expressions w i t q5i(u) sepa.ra.t3ecl by the sign), where
4: is a function v C) vi. SemanticaIIy, every expression
v 2 t &(U) mems that t,he t,ransformat,ion funct,ion set,s
variable vi to the new value q 5 i (~) which depends on
the current variable stat,e v. For the sake of simplicity,

-E {=, 5, <, 2 , >}, a.nd

canonica.1 expressions.

di (U) is noted Qi.
A transformation function which never changes any
variable is noted I d (for Identity).
The set of expressions defining the transformation func-
tions, w . r . t . V , is noted T F v .
Henceforth, all definitions, notations and computations
are w.r.t. V , ECV a,nd T F v . Terms "enabling con-
dition" and " transformation function" are respectively
abbreviated by EC and TF .

Exaiiiple 4.1 An enabling condition and a transfor-
mation function.
We consider three integer variables U ' , for i = 1 ,2 ,3 .
The EC (w' 5 3) V (v3 > 0) is equal to T r u e if and only
i f v l 5 3 or w3 > 0.
The TF defined by (U' t u 1 +2) 1 (v z t o) adds 2 to the
value of ZJ' and sets the value of v 2 to 0. The value of
v3 is not cha.nged.
A specification written in EBL is obtained from a spec-
ification in BL if we replace every event a by a trans-
act,ion, defined a.s follows. A Transaction is obtained if
we associate every event cr with an enabling condition
B and a transformation function 4. Such a transaction
is noted (o,@, 4) a i d is called :
- eligible if event (i is currently possible according

- enabled if i t is eligible and 6 = T r u e ; and disabled if

The semantics of a transaction (a , 8,4) is :
- The transaction may be executed only if it is enabled;
- The execution of the transaction consists of the oc-
currence of o followed by the execution of the T F 4.
The execution of the transaction is considered com-
plet8ed only aft8er t,he execution of 4 .
Exaiiiple 4.2 Let the specification written in EBL
(ul, T w e , u1 t 0) ; ((b 2 , T r u e , v1 t 1) 1 1 1 (ca , w1 = 1, I d)) .
Transaction ((11, True, v1 t 0) is initially enabled. Its
execution consists of the occurrence of a1 and the set-
ting of U' to zero. After its execution, transactions
(b ? , T r w , u1 t I) and (c2, v1 = 1, I d)) become eligible,
but only the first one is enabled. (c2 , v1 = 1, I d)) be-
collies enabled after the execution of (b 2 , T r u e , v1 t l).
Informa.lly, the variables contain a history of the system
wliicli is necessary for taking some decisions about the
future occurreiices of some events.
No ta t ions 2 (AT(P) , S T (P) , E T (P))
Let P be a specification in EBL :
A T (P) is the set of transactions involved in P .
S T (P) is the set of starting transactions of P , i.e., the
first transa.ctions to be eligible.
E T (P) is the set of ending transactions of P . In other
words, T r E E T (P) mea.ns that T r may be the last
transaction of P to be executed, accordin to the oper-
ators of BL. We note that S T (P) , ET(P7 and A T (P)
do not depend on a.ny variable.

Example 4.3 (AT(P), ST(P) , ET(P))
We consider the following specification P =
(T r l ; Tr2 ; e x i t) 1 1 1 (T r 3 ; T r 4 ; Tr5 ; e z i t) , where ev-
ery T r i represents a transaction. Clearly :
A T (P) = { T r l , T r 2 , T r 3 , T r 4 , T r 5 } ,
S T (P) = { T r l , T r 3 } , and E T (P) = (T r 2 , T r 5) .

to the BL behaviour expression being executed;

it is not enabled.

128

5 Protocol synthesis with EBL
5.1 Basic idea

Let V be a set of va.riables, and Serwv be a spec-
ification in EBL (w.r.t. V) of a desired service. Our
method of protocol synthesis consists of :

Step 1. Every transaction of Serwl, is designed in such
a way tha.t its execut,ion is concept,ua.lly equivalent
to an insta.nt,aneous execution, and t1ia.t the con-
sist,ency of Lhe va.riables is ensured. This ju:t,ifies
the term "transa.ction" . This problem 1ia.s been ad-
dressed by several researchers, and [lo] contains a
survey of the proposed solutions. Our approach is
inspired from one of these solutions [4, 12, 111.

Step 2. We do as if the execution of every transaction
consists only of the occurrence of its corresportding
event. This a.pproa.ch is correct , because in Step 1
every transaction of ,Serw\, is designed in such a
way that its execution is e q u i d e n t to a.n instan-
taneous execution. The method of [GI is therefore
used to synthesize a. specifica.tion Psi in ea.ch S i t e i .
This is a.chieved by projecting Serwli i n ea.ch Silei
and by adding all the necessa.ry messages t11a.t must
be exchanged between tjhe sites to ensure the or-
der of the tra,nsa.ctions implied by t,he opera.t,ors of
basic LOTOS in the specifica.tion Serziv .

An advantage of our a.pproach is that, two different
problems are sepa.ra,ted in an elegant way. The first
problem is about ensuring tlie at,oniicity of the tra.ns-
actions and the consistency of the variables [lo], while
the second one is a.bout ensuring t,he order of tlie t,rans-
actions implied by the operators of BL i n Servv 1.61.
5.2 Step 1

Let us study how t,he first St,ep is realized. The
aim is to design how the traiisact,ions cont,ained i n t,li.e
specification Sew" of t,he desired service are executed.
Let us imagine that the system specified by Ser,li\/ is
evolving from itrs initaid s h t e , by execnt,ing it,s eligible
transa.ct,ions. To exectitme a. currentsly eligible t,ransact,ioii
T r = (a, 8, d), t,he system must execute tlie following
procedure, not,ed P (T r) , i n aa atomic way :
begin
- Read the variables on which t,he EC 0 depends. and

- If 6'= False then the transa.ction is not executed,
- Else the execution of t,lie transaction is allowed,
- Its execution consists of the occurrelice of cr followed

end
Tr is considered completed only a.fter t,he execution of
d. We note t1ia.t P (T r) may be executed several h n e s
without executing transact,ion T r . This r1ia.y happen if
T r remains eligible but, disabled for a. "long while" : a.
periodic execution of P (T r) is then necesmry to (:heck
if T r has become enabled. We also note tha,t (B=?'rue)
is necessary but 1iia.y be not so/ficient for the execlition
of Tr . This is the case if two t.ransa.ct,ions with the same
event a are synchronized (by opera.tor I[r]i) and o ~ d y
one transaction is enal~letl.

To ensure the atomicity of P (T r) a.nd the ccwsis-
teiicy of tlie variables, tlie following conditions mus t be
respected during t,lie esecut,ion of P (T r) :
C1. Variables on which depends 0 a.re not, written by

then compute 8 ,

by the execution of wliich sets cert,ain variables.

another tra.rtsaction;

written by mother transaction.
C2. Variables written by 4 are neither read nor

In order to respect C1 and C2, we propose the two-
phase locking protocol the correctness of which has been
proved [4, 121. It requires that every transaction :
(1) lock the variables it reads or writes before it

(2) not obta.in a new lock after it has released a lock.
Two operations are therefore defined :

l o c k (X , 172) : where m = write or m = read and X is
the variable to be locked. A transaction executes
l ock (X , read) (resp. lock(X, wri te)) to require a
lock on X , before it reads (resp. writes) X . If an
operation loclC(X, m) succeeds, X is said locked or
more precisely m-locked.

release(X)i) : A trmsaction executes re lease(X) to re-
move the lock it 1ia.s previously executed on x.

The following rules a.re respected :

R d e 1. A varia.ble which is not locked can be locked,

Rille 2. A variable can be read-locked several times if

a.c t ua 11 y a.ccesses them, and

it is not write-locked,

Rule 3. A write-locked variable cannot be locked.

With this approa.ch, for any transaction T r = (a, 0, c$),
the corresponding procedure P (T r) begins to execute
a. lock(A',read) for every X to be only read, and a
l o c k (X , w r i t e) for every X to be written (possibly af-
ter being read). Therefore, variables which are to be
written by the TF 4 are write-locked, and variables on
which 0 depends and which are not to be written by
4 are rea.d-locked. If all the locks succeed, then P(Tr)
may esecut,e it,s main body which has been already pre-
sented (rea.d variables, computes 0, ..., write variables).
At the end, all variables wliich have been successfully
locked are re1ea.sed.

There are severa.1 a.pproa.ches to implement a vari-
able X used by different sites. We propose the one
that consists in using a copy of X in each site which
uses this varia.ble. Executing a lock(X, wri te) consists
in sending a write-lock request to all copies of X, and
wa.iting a reply froin all these copies. A copy replies
to a. write-lock request if it is not already locked. Ex-
ecuting a l o c k (X , read) consists in sending a read-lock
only to the 1oca.l copy, and waiting a reply from it. A
copy replies to a. rea.d-lock request if it is not already
write-locked. A site writes X by sending the new value
of X t,o all sit" containing a copy of X . And each copy
is a.utoiiiatically relea.sed as soon as it is updated. Since
a.11 tlie copies are identical, then reading a variable ne-
cessitates to rea.d only its local copy.

The two-phase locking ensures that if a transaction
is completed then its execution is correct, but it does
not ensure that a. transa.ction will be completed. In
fact, a deadlock may occur if two transactions attempt
simultaneously t,o lock the vxiable. A solution to
this problem consists in using a. timestampsystem [11] :
all lock requests are timestamped and the total order
on timesta.nips defines the priorities. The transaction
having the less priority will abort.

129

5.3 Step 2
The basic idea of the second Step is introduced in

Sect. 2. For a specification Sew" written in EBL, the
method ignores the sema.ntics of a.ll ECs and TFs, but
it respects the syntax of EBL. In other words, an ex-
pression (ni, Old) in Servv is processed as if it were
simply the name of an event executed in Sitei . There-
fore, such expression will be coiita.ined in the synthe-
sized specifica.tion Psi . Besides, since the syntax of
EBL must be respected, every s{(na) (resp. 7 < (m)) ,

generated by rules of [G] (Not. 1) is replaced in our case
by (.$(m),True, I d) (resp. (4(77~) ,True , I d)) .
Henceforth, messa.ges generated in the first Step and
in the second Step are respectively called transaction
messages and synchroniza.tion messages.

Theorem 1 The protocol synthesized is semantically
and syntactica.lly correct (Sect. 1) if the desired service
is syntactically correct.

P r o o f (informal) : We consider the two steps.
Step 1. Every transaction is designed in such a way
that its execution is conccpt,ually equivalent to an in-
stantaneous event,. This s k p is inspired froin met.liods
of [12, 111 whose correctness has been proven.
Step 2. Since every tra.nsaction is conceptually equiva-
lent to an insta.ntaneous event, the method of [6] may
be used. Its correctness is proven in [6].

5.4 Particular cases
Mere are two particular cases which help to simplify

the design of the transactions. The simplification con-
sists in generating only the useful messages.

5.4.1 Fi r s t pa r t i cu la r case

For a variable X used in a service specification Sew\; ~

let the following condition :

C1 : X is upda.t,ed by only one tra.nsaction T r , and T r

If C1 i s respected, let '7-1. be tlie set, of traiisa.ctions of
Servv different than T r a.nd whose eiiahliiig coiiditioiis
depend on X , and let the following condition :

C2 : The tra.nsactions of 7 7 are disabled ~ l i i l e ,Y has

If C l and C2 a.re respected, t,he two-phase locking proto-
col may be replaced by a less costly protocol a.s follows :
- X is initially write-locked,
- T r may write X wit,liout locking it., because X is

alrea.dy locked.
- X is a~toinat~ically released after its update by 7'1..
- After it has been released, X inay be read by any

transaction of 7 r without beiiig locked, because it
will no more be witt,en.

is executed only once in Servr,.

not been upda.ted.

This first pa,rticular ca.se is considered in Sect. 6.1.

5.4.2 Second pa r t i cu la r case

Firstly, we remind t1ia.t a t,ra.nsaction TT is assumed
completed a.s soon a.s itss TF is executed, i.e., as sooii
a.s the new value of every variable t,o be updat,ed by T7-
is seni to the sites containing a copy of the variable.

Therefore, the completion of T r only means that the
update of all variables to be updated has been initi-
ated, but not necessarily terminated. Henceforth, T r
is said fully completed when the update of the vari-
ables is terminated. A transaction being executed is
said partially completed while it is not fully completed.

I n the present Section, we consider a desired service
specified by a finite sequence of processes separated by
operator >> , i .e., Servv = A1 >> A2 >> . . . >> An.
To simplify, ea.ch of the successive processes in this se-
quence is called "process of Servv". Our aim is there-
fore to propose a.n approach of protocol synthesis which
ensures the following condition :

Condl. Let two any consecutive processes P and Q
of Servv, i.e., Servv = . . . P >> Q
thesized protocol must ensure that, as soon as any
transaction of ST(Q) is eligible then no transaction
of A T (P) is partially completed.

The respect, of Condl allows to design the transactions
of each process of Servv as if the process were exe-
cuted alone. Respecting Condl is therefore interesting
because the t,wo-phase locking protocol may be replaced
by a simpler protocol. If, for instance, a variable X of
P does riot need to be locked when P is executed alone,
then X will not need to be locked during the execution
of the whole system, provided that Condl is repected.

For an expression P >> Q in Servv, the method of
[GI (Step 2) ensures that the termination of P and the
beginning of Q a.re separated by an exchange of synchro-
nization messages from all sites of E P (P) to all sites of
S P (Q) . A sufficient condition which ensures Condl is
therefore that no transaction of P is partially completed
after tlie sending of the synchronization messages. The
solution consists simply in forcing all sites of E P (P)
to wait, a delay "sufficiently long" before sending their
synchronization messages to the sites of SP(Q) . This
delay is estimated as follows.

\Ye assume that the transit delay of a mes-
sage between t,wo sites is bounded by a finite value
Truns-dela y. This delay comprises the transmission
delay in the network, and also the time passed in the
t,wo sit,es (especially waitsing in queues). We also as-
sume that tlie delay during which a memory storing a
copy of a variable is accessed, in order to update this
copy, is bounded by a finite value Upd-delay.

During the execution of a transaction, the update
of a distant copy of a variable necessitates to send the
new value to t,he corresponding site, and then to ac-
cess the st,orage of this copy, in order to update it.
Therefore, tlie delay to update a copy of a variable is
hounded by Tyans-delay + Upd-delay. To set a vari-
able ,Y to a new value necessitates to update its differ-
ent copies. If we assume that all the copies are updated
in parallel, then X is updated in a delay bounded by
T o t a l - d e l a y = Trans-delay + Upd-delay. Therefore,
Condl is respected if , after the termination of P , all
sites of E P (P) wa.it a de1a.y grea.ter than or equal to
Tota l -de lay before sending their synchronization mes-
sages to the sites of S P (Q) .

This ca.se is considered in Sect. 6.2. It is interesting
bemuse i t helps to simplify the design of the trans-
actions by removing, as much as possible, the useless
lockings.

130

5.5 How to specify the desired service
The variables used in a given specification in EBlL

of a desired service are just a mea.ns for express-
ing the desired c0nstra.int.s. The user does not
require that these va.ria.bles must be used in the
designed protocol. For instance, the ~pecificat~ioin
(a l , T r u e , v l c 0) ; ((62,Tru.e, v1 t 1) 1 1 1 (c 2 , d = 1, I d))
can be replaced by a1 ; 62 ; c2. In fa.ct, variable v1 is
just a means to specify that c2 may occur only after 62.
Since there are many ways to specify a same service in
EBL, two importa.nt questions arise.
F i r s t question : What are the rest,rictions on a spec-
ification in EBL of a desired service which ensure a
proper generation of protocol entities ?
Second ques t ion : When is it, possible to specify a
desired service in EBL in such a. wa.y that all messages
are generated in the first Step ? The aim of this ques-
tion is to know under which conditions our method of
synthesis becomes independent on the method of !GI.
5.5.1 Answer ing ques t ion 1

Since every transa.ction is conceptua.lly equiva.lent to an
instantaneous execution, then respecting R l and R2 for
operator 0, and R2 and R3 for operator [> , ensures
the generation of a correct, prot,ocol. In this ca.se, no
condition on the varia.bles is necessa.ry. Let us study in
which cases, restrictions R1, R2 or R3 a.re not required.
Restriction R1 in an expression A 0 B allows t80 cen-
tralize the choice, in order to ”disable” instantly the
not chosen alterna.t,ive. This a.im is also achieved if the
variables ensure the mutual exclusion between A and
B , i.e., if the following restriction E1 is respected :
721. In an expression A 0 B , transa.ctions of S T (A) re-

main dimbled during all the execution of B. And
vice versa.. (See Not. 2 for ST(A)) .

Therefore R1 n1a.y be ” avoided”, because any expres-
sion A fl B which respects neither R l nor R1 ca.n he
replaced by an expression A‘ 0 B’ which respects RI..
A’ fl B‘ is obtained if we a.dd to A [I B the specificatioin
of a consistent a.lgorithm of choice, by the use of new
variables.
Example : We consider the expression
S = (a l , T r u e , I d) 0 (6 2 , Tru.e , I d) . If during suc-
cessive executions of S , a1 is the first went
to be executed, a.nd u.1 a.nd 6 2 must be se-
lected alternately, then S may be replaced by
(a l , v ’ = T r u e , v ’ t F a l s e) fl(62,~’ = F u l s e , v 1 t ? ’ r u e) ,
where v1 is initially equa.1 t<o T r u e .

Restriction R 2 may be necessa.ry in expressions A fl B
and A [> B , only if these expressions are followed by
operator >> [9, G I . Therefore R2 may be ”avoided”,
because any expression P >> Q may be repla.ced by
an expression P’ 111 Q’ such that Q’ cannot be executed
while P’ is not t,erminat;ed.

Informally, P and Q a.re respectively equiva,lent to
(i.e., may execute the sequences of events) P and $,
and the order between the two processes is ensured by
the use of new va.ria.bles, instea.d of opera.tor >> .
Example : P = (a l ,Tru . e , I d) and Q = (b2,True. I d) .
P ; Q ma.y be replaced by P‘ 1 1 1 Q’, where P‘ ==

(a l , T r u e , v1 +-True) , Q’ = (b 2 , v1 = T r u e , I d) , and v1
is initially equal to False. Therefore, variable v1 en-
sures that &‘ is disabled while P’ is not terminated.
Restriction R3 is necessary in an expression A [> B. In
the present study, we do not still know how the operator
[> may be avoided, by the use of new variables.

Therefore for this first question, we deduce that any
desired service may be specified in EBL in such a way
that restrictions R1 and R2 are not necessary.

5.5.2 Answer ing question 2

For a desired service specified in EBL by S e r v v , let us
propose sufficient conditions which ensure that Servv
may be transformed into an equivalent Serv;, such
that no message is generated a t the second Step when
our method of protocol synthesis is applied to Serv;.

Messages generated a t the second Step are due to
the use of opera.tors ” ;”, ” >>”, ” 0’’ and ” [>”. For
opera.tors ” ;” and ” >>”, we have seen in Sect. 5.5.1
that they may be avoided by the use of new variables.
For opera.t,or ” 0 ” in an expression A 0 B , the method of
[GI (our second Step) generates no message if AP(A) =
A P (B) (See Not. 1 for AP(*)). Therefore, the respect
of the two following conditions ensures that Servv may
be tmnsformed in such a. manner tha.t all messages are
genera.ted a.t the first Step.
Cond i t ion1 : For any expression A 0 B in S e r v v , we
have AP(A) = .4P(B).
Cond i t ion2 : Servv does not use operator [> .
6 Two examples of protocol synthesis

Our method of protocol synthesis is applied to the
two examples presented in Section 3.
6.1 Example of the disconnection phase

The desired service, specified in Sect. 3.1 by the au-
toma,ton of Fig. 1, contains useless sequences. Its spec-
ification may he simplified by removing states 7 , 8 and
9 of the automaton of Fig. 1. This means that, after he
has executed a.. disconnect request, a user is automati-
cally disconnected a.nd then cannot receive a disconnect
indication. The simplified service is defined in BL as
follows, where restrictions R1 and R2 are not respected :

SPEC DISC = A(1,2) OA(2,l WHERE
A(i, j) = dsreq; ; ((dsindj ; ex i t) b (dsreqj ; e x i t))

This service is defined in EBL by the following specifica-
tion which respects R1 and R2. Two boolean variables
v1 and v 2 are wed, and their initial value is False.

SPEC
A (i , j) = ((d s r e q i , T r u e , v i t T r u e) ; ex i t)

LIISC = A(1,2) 1 1 1 A(2 , l) WHERE

1 ((ds ind i , vj = T r u e , I d) ; e x i t)

Infornmlly : (for i, j = 1 , 2 and i # j)
- User of Site* nmy execute a dsreqi or receive a dsindi .
- User of §dei may receive a dsindi only if user of Sitej

Restrictions R1 and k 2 are respected by processes
A(l , 2) and A(2 , l) . The synthesized protocol can be
specified as follows , for i, j = 1 , 2 and i # j :

Proti = ((dsreqi, T r u e , vi +True) ; ex i t)
fl ((dsindi, vj = T r u e , I d) ; ex i t)

has executed a dsreq. (d = T r u e) .

13 1

v1 and v2, which a.re initially False, do not need to
be locked because we are i n the particular ca.se of Sec-
tion. 5.4.1. In fa.ct, for i , j = 1 , 2 and i # j :
- Each v' is written only once, by transaction

- Transaction (d s i n d j , vz = T r u e , I d) is disabled while

Therefore, the transactions a.re designed as follows, for
i,j = 1 , 2 and i # j :

(dsreqi, vi = False , wi t T r u . e) , and

U* has not been written.

0 v1 and v2 are initially write-locked
0 Transaction (dsreqi, Tru.e , vi t True) :

- Executes dsreqi,
- Sets to T r u z and release the copy of vi in Sitei ,
- Sends a message from Sitei to the other Sitej in

order to set to Tme and to release the local copy
of vi in S i t e j .

e Transaction (ds ind ; , vj = T r u e , I d) :
If the local copy of v j in Sitei is released, then :
Rea,ds it a.nd, if it is True then executes ds ind i .

The service is therefore provided by using a t most two
messa.ges. The aim of each one is to inform a. site t1ia.t
a dsreq has been executed in the other site, by setting
a variable to Tru,e and by releasing it. Therefore, the
number of messages is two only if users of both sites
execute simultaneously a dsreqi.
6.2 Example 2

Example of Section 3.2 (Fig. 2) may be specified in
EBL, by the use of two boolean va.ria.bles v1 and w2,
as follows, where ?,!I' = (U' = T v u e) , for i = 1 , 2 , and
B = ($' A$')). The service does not depend on the
initial values of v1 a.nd w2 :

SPEC SS = -4 >> B >> C >> SS 1VHER.E
A = A (1) Ill 4 2)
B = B (1 , 2) I l l B (2 , 1)
A(i) = ((i ; , True , vi +False) ; e x i t)
B (i , j) = ((a i , T r u e , d +True) ; exit)

[((b i , @ , I d) ; e x i t)
C = ((e3, 8 , I d) ; ex i t) [I ((i3, 4, I d) ; e x i t)

0 Process A set varia.bles w1 a.nd v2 to Fadse when
the initia.1 st,a.te is reached (Fig. 2).

0 v1 (resp. w 2) is set to T r u e if the user of Site1
(resp. Site2) executes a1 (resp. a 2) .

0 The user of Sitei may (for i , j = 1 , 2 and i # j) :

Informally :

Either execute a i ;
Or execut,e b ; , but only if wj is equal to True.

0 The user of S i t e s may eseciite e3 if both v1 a.nd u2

We can easily check that restrictions R1 a.nd R 2 are
respected by processes B (i , j) and C , which contain the
operator 0 . In t.he oht,ained prot,ocol specifications, we
use the two following notations :

a.re equa.1 to T r u e .

rcv! (m) = (1 < (7 n) , T r ~ ~ , e , I d) ; exit a.nd
snd i (m) = (s J (m) , T r u e , I d) ; ex i t .

The protocol specifica.tions Prof i , for i = 1 , 2 , a n d P o t 3
can then be specified a.s follows (j = 1 , 2 a.nd j # i):

Ai = (i i , T r u e , wi t False) ; exi t
Bi = ((a ; , T r u e , vi t True) ; ex i t)

Mi = snd! (mi) >> rev! (mj)
M,! = sndg(pi) >> rcvS(m3)

443 = (rcv i (p1) I l l rcv i (p2))

M i = sn.di(m3) 1 1 1 snd3m3)

[I ((hi, w-l = T r u e , I d) ; exit)

SPEC R o t 3 = M3 >> C3 >> M; >> WHERE

C3 = ((c g , 8 , I d) ; ex i t) 0 ((i 3 , - & , I d) ; ex i t)

ENDSPEC
In this example, we are in the particular case of
Sect. 5.4.2. In fact, the desired service is specified by
SS = A >> B >> C >> SS, where A = A (l) IIIA(2)
and B = B(1 , 2) 1 1 1 B (2 , l . According to the approach

After the execution of Ai, Site; waits a time equal
to Total-delay before sending m i .
After the execution of Bi, Sitei waits a time equal
to Total-de1a.y before sending pi.
After the execution of C3, Si tes waits a time equal
to Tota l -de lay before sending m3.

With this approach, the transactions are designed as if
ea.cli process A , B or C were executed alone.
P rocess A : Each variable is written only once and is

never read. Therefore, its locking is not necessary.
P rocess B : It is similar to the disconnection phase

(Sect. 6.1) which respects the particular case of
Sect. 5.4.1. The variables are initially False be-
muse process B follows process A . According to
the solution proposed in Sect. 5.4.1, the two vari-
ables must be initially write-locked. Therefore, A
must write-lock them before the beginning of B.
The variables will be released after being set to
True. They ma.y be read only after being released.

P rocess C : Each va.riable is only read and is never

Therefore, the transactions may be designed as follows,
where i , j = 1 , 2 and i # j :

Transaction (i i , Tru,e , wi t False) (in process A) :
- Executes the internal action ii
- Sets to False the local copy of U' in Sitei

(without locking i t) ,
- Sends a message from Site; to Sitej in order to

set to True and to write-lock the copy of vi in
Site. Therefore in process B , the local copy
will be initia.lly write-locked.

- Sends a message from Sitei to Sites in order to
set to T r u e the copy of vi in Sites.

0 Transaction (U;, T r u e , v i + T r u e) (in process B) :
- Executes a i ,
- Sets to T r u e and release the copy of vi Site, ,
- Sends a. messa.ge from Sitei to S i t e j , in order to

set, tro T r u e and to release the copy of vi in S i t e j .
- Sends a. message from Site; to Sites, in order to

set to True the local copy of vi in Sites.

proposed in Sect. 5.4.2 , 2 or i=1,2 :

written. Therefore, its locking is useless.

132

0 Transaction (b i , vJ = T r u e , I d) (in process B) :
If the local copy of d in Sitei is released, then :
Reads i t and, if it is T r u e then executes b i ,

- Reads copies of v1 and v 2 in Site3, computes 8.
- If 6 = T r u e then executes c3.

- Reads copies of d a.nd u2 in Sites , computes 6'.
- If 8 = False then executes i3 .

0 Transaction (~ 3 ~ 8 , I d) (in process C) :

0 Transaction (i3 , -8, I d) (in process C) :

The messages excha.nged during one cycle can then be
separated in two groups :

Six synchronization messages (Step 2) (i , j =I 1 , 2
and i # j) :
- One message nai from Sitei to Si te j ;
- One messa.ge 7713 from Sites to Sitei .
- One message p i from Sitei to Sites;

- Two messages by each transaction
(i; , T r u e , v i t False) , (i= 1 , 2) ;

- Two messages by each tra,nsaction
(a i , T r u e , vi +-True) if it is executed, (i = 1 ,2) ;

Six or Eight transaction messages (Step 1) :

It is interesting to note t,liat more than half niesmges
(eight) are due to tlie fa.ct t1ia.t the service is cyclic.
These messages are m l , n22, m 3 , and those generated
by transactions (i i ,True,wi+Fa.lse) , (i = l 1 2) .

7 Conclusion
In this pa.per, we develop a. formalism called EBL

which extends ba.sic LOTOS by the use of global va.ri-
ables. Then, we propose a. method of protocol synthesks
which extends the method of [GI , by using specifica.tions
written in EBL. An advantage of our method is thatt
there are cases where it genera.t,es a correct solution
while method in [GI is not applica.ble. T w o examples
illustrate this a.dvantage. We recognize that inany as-
pects remain to be studied. Some of them are :

1. To define severd service structures which allow to
simplify the design of transactions. Two cases a.re
proposed in Sect. 5.4 and are illudrated in Emin-
ples of Sect. G .

2. To extend ERL with timiiig requirements.
3. To work on more complex examples.

A ck n ow 1 edge 111 en t s

ful comments on a first version of the paper.

References

We thank Anindya. Das and Benoit Caillaud for help-

[l] P.A. Bernstein, V. Ihdzilagos, and N. Goodnmn.
Concurrency Control a n d Recovery in Database
Systems. Addison-Wesley, 1987.

[a] G.v. Bochmann a.nd R. Gotzhein. Deriving pro-
tocols specifica.tions from service specifica.tions. In
Proceedings of the A CM SIGCOMM Synipo:;iuin,
USA, 1986.

Introduction to
the is0 specifica.tion language lot,os. Goiiipccter Nel-
works and ISDN Systems, l4(1):25-59, 1987.

[3] T . Rolognesi and E. Brinskma..

[4] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L.
Traiger. The notions of consistency and predicate
locks in a database system. Comm. of the ACM,
19(11), November 1976.

Injormatzon Processzng System-Open Sys-
tems Interconnectzon-Transport Seruzce Definz-
tzon, 1985. IS 8072.

[GI C. Kant, T. Higashino, and G.v. Bochmann. De-
riving protocol specifications from service specifi-
cations written in lotos+. Technical Report 805,
UniversitC de MontrCal. DCpartement IRO, Mon-
trGal, Quebec, Canada, January 1992.

[7] M. Kapua-Kolar. New results on deriving protocol
specifications from service specifications. In Pro-
ceedzngs of MELECON, pages 1093-1096, Ljubl-
jana, Yugoslavia, 1991.

[8] M. ICapus-Kolar, J. Rugelj, and M. Bonae. De-
riving protocol specifications from service specifi-
cations. In Proceedzngs of IASTED INT. SYMP.
APPLIED INFORMATICS, pages 375-378, Inns-
bruck, 1991.

[9] F. Khendek, G.v. Bochmann, and C. Kant. New
results on deriving protocol specifications from ser-
vices specifications. In Proceedzngs of the ACM
SIGCOMM Symposzuin, pages 136-145, 1989.

[lo] AI. Raynal. Gestzon des donnkes rkpartzes : prob-
k 7 1 l e S et protocoles. Eyrolles, 1992.

[11] A l . Raynal. Synchronzsatzon et ktat global duns les
systimes rkpartzs. Eyrolles, Collection EDF, 1992.

[la] I.L. Traiger, J . Gray, C.A. Galtieri, and B.G. Lind-
say. Transactions and consistency in distributed
database systems. AGM TODS, 7(3):323-342,
1982.

[5] ISO.

I

Figure 1: Disconnection pha,se : Service specification.

W

Figure 2: Specifica.tion of a non terminating service.

133

