
bject-oriented design of a Message Handling System
protocol.

S.Enadey * M.Kadoch ** G.V.BwRmmn*

* Infomatique et de recherche op6rationnelle. **Departement de gh ie ilectrique
&ole de technologie sup6hieure Uwiversit6 de Montreal

MonrrCal, Quebec Montr6a1, Qui5bec
Canada. Canada

ABSTRACT - This paper presents a specification and
objwt-sriented modelling technique for a distributed
a ~ p ~ ~ a ~ o 5 ~ The objectsbiented specification of a

bmtd application provides a natural mapping of the
system components onto objects and supports the
implementation of reusable software components. The
a ~ ~ l ~ c a t ~ o n is the X.400 Message Handling System

im its 1988 version in the context of the Reference
for Open System Interconnection. Tihe BOOCH

objwt-oPiented andysk and design method has been used
to faditate the mastery of the notation and the peocess of
objecet-oriented design by understanding the fundamental
e%ements of the object model such as abstraction,
encapsulation, modularity, hierarchy, typing,
concurrency and persistence.

I. INTRODUCTION

A common goal in developing a distributed application is
how to provide a suitable information model to capture the
essential structure of infomation components SO as to
facilitate the design and implementation process. To reach
this goal, a precise definition of the information components
and their interaction with each other is necessary. To cope
with the complexity inherent to distributed applications.
abstraction, encapsulation, modularity, and hierarchy are the
concepts that prevails.

These are the basis principles of ohjeet-oriented mode!.
Thus the specification of a distributed application can be
modelled as a collection of objects mapped onto 'the
infomation components. These objects interact with each
other following the interface specification of the components.

To master the process and the notation of the object-
oriented design, the BOOCH method [11 has been used.
Indeed his method provides a good framework for the design
of object-oriented applications of different types. Yet the use
of this method for distributed applications had to be
experienced.

The Message Handling System (MHS) j2j is the distributed
application used to show the design process of such
applications using object-orlcnlcd modclling in genera\ and

the BOOCH method specifically. But the technique is
applicable to other distributed applications developed in tke
OS1 environment.

The paper is organized as follows : Section 2 defines the
smcture of the application layer as presented in the OS1
reference .model. Section 3 describes the MHS, its functional
model, protosols and services as presented in the 1988 V N S ~ Q ~

of the X.40 series, Section 4 gives a brief introduction of the
object-oriented model as defined by BOOCH. Section 5
features the abject-oriented realization of the protocol. %he
conciusion gives an evaluation of the experience.

II. T€E APPLICATION LAYER S T R U C X !

In an effort to normalize the growing number of
communication protocols, the IS0 and the ITU-T (formerly
CCI"') joined to define the Basic Reference Model for Open
System Interconnection (OSI) [31. These recommandations are
aimed to regulate the communication between heterogeneous
systems. The communication functions are represented into
seven layers. Each of these layers provides a specific sewiee to
the upper layer and uses the service of the lower layer. Wae
layers one to four provide transport-oriented services and the
layers five to seven provide application-brientsd services.

73% application layer [4] (layer 7) is the interface between
the communication system and the application process (AP)
which is the abstract representation of a program performing
information processing in a distributed environment. Since i t is
the upper layer, there is no application access point and no
application connection. An AP accesses the OS1 services
through application entities (AE). Every AE has access to the
presentation layer through one or more presentation service
access points (PSAP), thus providing them with an address in
the OS1 environment. Each a is assigned to an .4P and c m
therefore exist only if the AP is activated. In order for an XP to
communicate with its remote peer, i t uses one or more AEs
ssociked with AEs in the remote machine. This link is called
application association (AA).

The application layer functions are regrouped into different
application service elements (ASE). The conceptual schema
that defines the use of ASE and their interaction within an AE

CCECUCCGEI '95 0-7803-2766-7-9/95/$4.00 0 1995 IEEE 45-2

is called the application context (AC). The ASE can be
subdivided in two groups : the common ASE, independent
frlom the application, such as ROSE, ACSE, RTSE. ... ; and
thle specific ASE part of a particular OS1 application, such as
the MSSE, MDSE, MASE specific to the MHS application.

Through the delivery port, the MTS delivers a message to th%43
MTS-user, acknowledges the MTS-user of one or more
outcomes of a previous invocation of a Message-submission or
Probe-submission operation. The MTS-user can impose
constraints on the use of delivery port operations by the MTS,

I:n the AE, the coordination between the different ASE is
re,dized by the Single Association Control Function (SACF).
The set of functions and information of a particular
association are regrouped in the Single Association Object
(SAO). The S A 0 always holds an Application Control
Service Elememt (ACSE), a SACF function and other ASEs.
An AE can communicate simultaneously with different
remote =S. This means that an AE has to manage more than
onle association, therefore more than one SAOs. A specific
function called the Multiple Association Controi Function
MACF is used to coordinate the different SAOs. The AP and
AI3 represent a set of resources forming static objects. A
particular execution of these objects is viewed as an
instantiation of the object called, respectively, AP and XE
invocations.

El. THE MESSAGE HANDLING SYSTEM X.400

'Ibe electronic mail is probably the most popular application
of the last ten years. The multiplicaeion of private E-mail
syijtems pushed the ITU-T to standardize it under the X.400
series in 1984. In 1988, with the OS1 environment standard,
the ITU-T and IS0 joined to integrate the X.300 as an OS1
application. This application is known in either names, the
Message Handling System MHS [2] or the Message Oriented
Text Interchange System MOTIS.

The primary function of a mail system is to provide the
means to send and receive messages. Users. that is
originators, access the MHS system by sending their
messages through D user agent (UA). The message is either
submitted to the Message Transfer System (MTS) or stored
in the Message Store (MS) for an ulterior submission. The
MI'S then routes the message through the Message Transfer
AEIents (MTA) and delivers it to one or more recipient UA or
MS. The MTS can return notifications to the originator. From
the UA, the message is delivered to the recipient.

Four protocols exist in the MHS to provide the access to
the: different services and functions. This paper focuses on
onle of them, namely the MTS-access protocol, known as P?.
This protocol provides the UA or MS (MTS-users) with the
operations [SI to access the MTS.

The MTS and its users communicate through ports :
submission, delivery and administration ports. Each of these
ports supports a set of remote operations. Through the

submission), tests the submission and delivery of a message
(Probe-submission) and may suspend the delivery of a
submitted message (Cancel-deferrtld-delivery). The MTS can
impose constraints on the use of the previous operations
(Submission-control).

sulxnission port, the MTS-user submits a message (Mzssage-

Through the administration port, the MTS-user makes long-
term changes to various parameters held by the MTS concerned
with the delivery of messages to itself (Register) and changes
its credentials held by the MTS. The MTS can also change its
credentials held by the MTS-user.

Before the MTS and its user can communicate and call
abstract operations upon each other, they must bind. The MTS-
bind enables the MTS-user to establish an association with the
MTS, or the MTS to establish an association with an MTS-
user. The MTS-unbind enables the release of an established
association by the initiator of the association.

In the P3 protocol[6], an OS1 environment protocol, the MTS
and its user represents application processes (AP) located in
different open systems. As seen above, the communication
between two A p s is materialized between an association of two
application entities (AE) using the presentation service. The
functions of the AI2 are supported by the application service
elements (ASE).

The access to the MTS abstract service is taken under the
charge of three ASE, each one functioning under the
Ciient/Server paradigm between the MTS-user and the MTS.
The Message Submission Service Element (MSSE), the
Message Delivery Service Element (MDSE) and the Message
Administration Service Element (MASE) support respectively
the submission, delivery and administration ports. These
specific ASE are supported by common ASEs such as the
Remote Operations Service Element (ROSE), the Association
Control Service Element (ACSE) and the Reliable Transfer
Service Element (RTSE).

The use of the last ASE depends on the application context
supported in a given association. Indeed the RTSE is needed
when a reliable transfer of the messages% not guaranteed. The
use of RTSE or not and the initiation of the association by the
MTS-user or the MTS create four different application contexts
for the P3 protocol.

The application contexts. the abstract operations and the
Application Protocol Data Units APDU exchanged are defined
using the Abstract Syntax Notation One (ASN.1) [7]. This
notation specifies also the transfer syntax of data.

IV. THE BOOCH OBJECT-ORIENTED METHOD

The BOOCH method is a11 0bjecr:Oriented Analysis and
Design OOAD method defined by Grady Booch. It
encompasses both a process and a notation. The process
represents the steps by which a developer passes to reach a
good design in conformance with the system requirements. In
the Booch method, this is viewed as two processes interacting
with each other : the macro-process and the micro-process.

844
The macro-process is inspked from the standard Top-Down

model of development (Cascade). It includes the following
phases : system requirements, analysis. design.
implementation and the maintenance. In the field of
communication protocols, the live cycle of a protocol is as
follows : system requirements, analysis (informal
specification), formal specification, validation.
implementation, testing and conformance testing.

The second process known as the micro-process is inspired
by the Boehm spiral model. The micro-process includes the
following activities : - Identification of classes and objects.
- Identification of the semantics of classes and objects
(behaviour of cliasses).
~ Identification of relations between classes and objects.
~ Implementation of the classes and objects.

The specification or the implementation phase of a
communication protocol using the BOOCH method, can be
viewed as the application of the mho-process during each of
the two phases.

-
To design a system, we need a notation describing every

detail and views of the designed system. The BOOCH
notation [SI [9] is subdivided in four models : a logical
model, a physical model, a static model and a dynamic
model.

The logical model describes the existence and signification
of key abstractions and mechanisms that constitutes the
problem domain or the system architecture. To illustrate this
view, the ciass diagram and object diagram are used. The
class diagram shows the existence of classes and their
relationships. The object diagram, known also as the scenario
diagram, shows the existence of objects and their
relationships. It also shows how the scenarios work on the
objects and their relationships (exchanging messages).

The physical model shows the concrete software and
material composition of the system and its implementation.
"Ke module and the process diagrams illustrate this model.
The module diagram shows the distribution of cIasses and
objects into modules. Whereas, the process diagram shows
the attribution of processes to the processors.

In object-oriented design, we express the dynamic semantics
of the architecture and irs implementation with two d i a p m s .
First. the state transition diagram shows the state space of an
instance of a given class, the events that triggers the passage
from a state to another and the actions that result. Second. the
interaction diagram shows the execution of a scenario in the
context of an object diagram.

V. OBJECT-ORIENTED SPECIFICATION OF THE P3
PROTOCOL

In the section 111, we explained how the P3 protocol, being
an OS1 application protocol, is swctured and uses the
application service elements (ASE) and the presentation

service. The MTS and the MI'S-user are application processes
(AP). instances of this AE' called Mi represents the execution
of a particular function of the MTS or MTS-user. The MTS
and the MTS-user represent a class abstraction called the AP
class (Fig. 1). The MI are considered objects of the AP class.
The MTS and MTS-user communicate h o u g h three ports
(submission, delivery and administration). The three ports
constitutes three different classes. The r e l a t h between the AP
class and the port classes are a 'has' relationship. The AP uses
the OS1 communication services through application entities
(-1.

The AP may need more than one AE. Indeed each AE
instance will be supporting a particular application context
(AC). The AE represents a class abstraction. The relationship
between the AP class and the AE class is a I-to-n 'use'
relationship. For each of the S associated with a remote AE,
there is a single association object. The S A 8 abstraction is
represented in a class. The relationship between the A..E and the
SA8 is a 1-to-n 'has' relationship. The SA0 holds several ASE.
Each ASE is represented by a class.

Fig. I MHS Class D i a p m .

In the AC supported by our specification, the following ASE
are present : ACSE, ROSE, MSSE, MDSE. MASE. The
relationship between the SA0 and the different ASE are a I-to-
1 'has' relationship. Every AE has access to the presentation
layer through one or more presentation service access point
(PSAP). The PSAP is represented by a class. The relationship
between the AE and the PSAP is a 1-to-n 'use' relationship.

The specification of a class holds different items such as :
Class name : ACSE
Documentation : Association control service element,
establishes, releases and aborts application associations.
Export Control : Public
Cardinality : I
Hierarchy :

Superclasses : none
Public uses : PSAP Pres-connect
Public Interface :
Operations :
AASC.req, ARLS.req, AASCconf. AASC.resp, AASC.ind,
ARES.ind, ARLS.resp, ARLS.conf

St~ite machine : Yes
Concurrency : Active
Peipsistence 1 Transient

141: operations of ACSE are the primitives that accesses the
service according to the standard. Export Public specifies if
the class is imported from another class diagram and private
specifies if it is exported to another class diagram.
Cardinality specifies the number of instances of this class that
could be created. Hierarchy indicates if the current class is
inherited from a superclass. A 'use' relationship exists
between ACSE and PSAP. The relation- is called
'Bi:s-connect'. Concurrency indicates if the instances of this
class are concurrently active. Persistence shows if the
existence of the class is time independent.

I I

Fig. 2 ACSE slate diagram

hs indicated in the specification. the ACSE class has a state
machine. The best way to document the dynamic behaviour
of certain classes is to use the state machine diagram. This is
specially true for OS1 protocol specifications since it is
currently used as a formalism in many of its standards. The
diagram shows the state space of a class, the events that cause
a transition from one state to another and the actions that
re.sult. For the ACSE state diagram (Fig. 2), The state 0
represents the state idle, state 2 the state associated in the
ACSE protocol. The incoming events and the outgoing events
represents calls to the ACSE operations.

CONNECnON FROM MTSUSER TO MTS I

Fig. 3 BIND scenario diagram '

We use object diagram (scenario) to show the behaviour of
the system in different cases. The diagram shows objects.
relationships and exchange of messages using numbers to
notify the order of the operations. For example, the creation

845 of a bind between the MTS-user and the MTS. This scenario
d i a g " (Fig. 3) shows how the MTS-bind operation is
initiated by the AP. The AE notifies the SA0 which in mm
activates the ACSE object calling the AASC.req operation. The
ACSE translates that into a PCONxeq call to the PSAP.

VI. CONCLUSXON

In the OS1 environment, the application-oriented layers present
a great deal of complexity in terms of information components.
The MWS is no exception to that. The use of object-oriented
technology is easily justified by the fact that supported
concepts like abstraction, encapsulation, modularity and
hierarchy help deal with this complexity. In addition. the
capability of the BOOCM method to master a notation and a
process, both important aspects of object-oriented analysis and
design, makes the whole process a lot easier. Further, the
Rational ROSE tool supporting the BQOCH method offers ;a

partial code generation function that helps in the
implementation process. Nevertheless, there is a great need for
a verification tool that could verify the semantics of the model
and help eliminate certain types of errors in the earlier stages
of the analysis and the design.

VII. ACKNOWLEDGEMENT

This work has been partially funded by the Synergie project
IGLQQ.

VIII. REFERENCES

[l] G. Booch, Object-oriented analysis and design with
applications, BenjamidCummings. 199 1.

[2] ITU-T, X.300, CCITT recommandation, Message Handling
System : System and service overview, ITU-T, 1988.

[3] ITU-T, X.200, CCITT recommandation, Open Systems
Interconnection Reference Model, ITU-T, 1988.

[4] ITU-T, X.207, CCI'TT recommandatbn, Application layer
structure, ITU-T. 1988.

[5] ITU-T, X.411, CCITPT recommandation, Message Transfer
System : Definition of abstract services and procedures, ITU-T,
1988.

[6] ITU-T, X.4 19, CCITT recommandation, Protocol
specification, I'I%T, 1988.

[7] ITU-T, X.208, CCITT recommandation, Abstract Syntax
notation One specification, ITU-T, 1988.

[8] G. Booch, The Booch method : notation part I. Computer
language, pages 47-70, September 1992.

(91 G. Booch, The Booch method : notation parr 11, Computer
language, pages 37-55, October 1992.

