Merging Behavior Specifications ${ }^{*}$

Ferhat Khendek and Gregor v. Bochmann
Département d'informatique et de recherche opérationnelle Université de Montréal
C. P. 6128, Succ. A, Montréal, Que H3C 3J7, Canada

Abstract

This paper describes a method for merging behavior specifications modeled by transition systems. Given two behavior specifications B1 and B2, Merge(B1, B2) defines a new behavior specification that extends B 1 and B 2 . Moreover, provided that a necessary and sufficient condition holds, Merge(B1, B2) is a cyclic extension of B1 and B2. In other words, Merge(B1, B2) extends B1 and B 2 , and any cyclic trace in B 1 or B 2 remains a cyclic in $\operatorname{Merge}(\mathrm{B} 1, \mathrm{~B} 2)$. Therefore, in the case of cyclic traces of B 1 or B 2 , Merge(B1, B2) transforms into Merge(B1, B2), and may exhibit, in a recursive manner, behaviors of B 1 and B 2 . If $\operatorname{Merge}(\mathrm{B} 1, \mathrm{~B} 2)$ is a cyclic extension of B 1 and B 2 , then $\operatorname{Merge}(B 1, B 2)$ represents the least common cyclic extension of $B 1$ and $B 2$. This approach is useful for the extension and integration of system specifications.

1 Introduction

Formal specifications play an important role in the development life cycle of systems. They capture the user requirements. They can be validated against such requirements and used as basis for the design of implementations and test suites. A formal specification represents the reference in each step of the development life cycle of the required system. The design and the verification of the specification of a system is a very complex task. Therefore, methodologies for the design of formal specifications become very important.

Systems may consist of many distinct functions. During the design and the validation of the specification, these functions may be taken into consideration simultaneously. The validation of such specification may be a very complex task. In order to facilitate the design and validation of the

[^0]specification of a multiple-functions system, the divide-and-conquer approach may be very useful. In this case, a specification for each function is designed and analyzed separately. These specifications are then combined to form the required system specification. The combination of these functions specifications should preserve the semantic properties of every single function specification.

From another point of view, system specifications may be enriched by adding new behaviors required by the user, such as adding new functionality to a given system specification. Different system specifications may be integrated. In both cases, the semantic properties of the given system specifications and behaviors should be preserved. Preserving semantic properties may, for instance, mean that the combined specification exhibits at least the behavior of each single specification without introducing additional failures for these behaviors. This is captured by the formal relation between specifications, called extension, introduced in [Brin 86]. Informally, a behavior specification $B 2$ extends a behavior specification $B 1$, if and only if, $B 2$ allows any sequence of actions that B 1 allows, and B 2 can only refuse what B 1 can refuse, after a given sequence of actions allowed by B1.

Given two behavior specifications B 1 and B 2 , we may combine them into a new behavior specification B, such that B extends $B 1$ and B extends $B 2$. By definition of the extension relation, B may exhibits behaviors of B 1 (respectively B 2), without any new failure for these behaviors. However, B may exhibits behaviors of B1 and behaviors of B2, in an exclusive manner. In other words, B may exhibits only behaviors of B1 or only behaviors of B2, once the environment has chosen a behavior of $B 1$ or a behavior of $B 2$, respectively.

A behavior specification B may contain certain sequences of actions that may be repeated recursively. Such sequences of actions start from the initial state of B and reach the initial state of B 1 . They are called cyclic sequences of actions. We assume that the completion of a cyclic sequence of actions in B corresponds to the completion of B. In other words, we assume that the initial state of B represents the "final" state for the sequences of actions (functionalities) in B. We are interested in combining two behavior specifications $B 1$ and $B 2$ into a new specification B, such that, in the case of cyclic sequences of actions of B1 or B2, B may exhibit, without any new failure, behaviors in $B 1$ and behaviors in $B 2$, in a recursive manner. In other words, B extends B1 and B2, and after a cyclic sequence of actions of B 1 or B 2 , B transforms into B^{\prime}, with B^{\prime} extends B 1 and B 2 , and after a cyclic sequence of actions of B 1 or $\mathrm{B} 2, \mathrm{~B}^{\prime}$ transforms into $\mathrm{B}^{\prime \prime}$, with $\mathrm{B}^{\prime \prime}$ extends B 1 and B 2 , and so on. This is possible, if B extends B 1 and B 2 , and any cyclic sequence of actions in B 1 or B 2
remains cyclic in B . Therefore, after a cyclic sequence of actions of B 1 or $\mathrm{B} 2, \mathrm{~B}$ transforms into B , which extends B1 and B2. This new relation between behaviors is called cyclic extension.

In this paper, we describe a formal approach for merging behavior specifications modeled by transition systems. Given two behavior specifications B1 and B2, we define a new specification behavior, called Merge(B1, B2), which extends B1 and B2. Moreover, provided that a necessary and sufficient condition holds, Merge(B1, B2) is the least common cyclic extension of B1 and B2.

We consider two models of transition systems, the Acceptance Graphs (AGs), which are similar to the Acceptance Trees of Hennessy [Henn 85] and the Tgraphs in [Clea 93], and the Labelled Transition Systems (LTSs) [Kell 76]. The merging of behavior specifications is, first, defined in the AGs model, which is more tractable mathematically than the LTSs model. The merging of LTSs is based on the merging of AGs and relies on a correspondence between LTSs and AGs, which is introduced in this paper.

The remainder of this paper is structured as follows. The next section introduces the LTSs model, some related equivalence relations and preorders and the notions of least common extension and least common cyclic extension. Section 3 introduces the AGs model, the related equivalences and preorders, the notions of least common extension and least common cyclic extension for AGs, and the correspondence between AGs and LTSs. The merging of two AGs G1 and G2, Merge(G1, G2), is defined in Section 4. Main properties of Merge are listed and an example of application is also provided in Section 4. In Section 5, the merging of LTSs is defined, as well as its properties and an example of application. In Section 6, our approach is compared to the related ones. In Section 7, we conclude. The proofs of the propositions and the theorem stated in this paper are provided in the Appendix.

2 Labelled Transition Systems

2.1 Model

An LTS is a graph in which nodes represent states, and edges, also called transitions, represent state changes, labelled by actions occurring during the change of state. These actions may be observable or not.

Definition 2.1 [Kell 76]

An LTS S is a quadruple $\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}>\right.$, where

- St is a (countable) non empty set of states.
- L is a (countable) set of observable actions.
- T St x $(\mathrm{L} \quad\{\tau\}) \times$ St is a set of transitions, where a transition from a state s_{i} to state s_{j} by an action $\mu(\mu \in \mathrm{L} \quad\{\tau\})$ is denoted by $\mathrm{s}_{\mathrm{i}}-\mu \rightarrow \mathrm{s}_{\mathrm{j}}$.
τ represents the internal, nonobservable action ($\tau \notin \mathrm{L}$).
$-\mathrm{s}_{\mathrm{O}}$ is the initial state.

An LTS $\mathrm{S}=<\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}>$ represents a process interacting, in a synchronous manner, with the environment by executing the actions in $L \quad\{\tau\}$ following the rules specified by T. More exactly S represents a set of processes. Each state s_{i} of S corresponds to a process P represented by the LTS <St, L, T, $\mathrm{s}_{\mathrm{i}}>$. In the following, we use the terms process and state as synonyms. We also may refer to an LTS by its initial state. All the definitions on the states are extended to LTSs and processes. The term "interaction" refers to an observable action.

A finite LTS (FLTS for short) is an LTS in which St and L are finite. For the graphic representation of the FLTSs, the initial state will be circled. The notations in Table 1 are used for the LTSs.

```
\(\mathrm{P}-\mu_{1} \ldots \mu_{\mathrm{n}} \rightarrow \mathrm{Q} \quad \exists \mathrm{P}_{\mathrm{i}}(0 \leq \mathrm{i} \leq \mathrm{n})\) such that \(\mathrm{P}=\mathrm{P}_{\mathrm{O}}-\mu_{1} \rightarrow \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}-1}-\mu_{\mathrm{n}} \rightarrow \mathrm{P}_{\mathrm{n}}=\mathrm{Q}\)
\(\mathrm{P}-\mu_{1} \ldots \mu_{\mathrm{n}} \rightarrow \quad \exists \mathrm{Q}\) such that \(\mathrm{P}-\mu_{1} \ldots \mu_{\mathrm{n}} \rightarrow \mathrm{Q}\)
\(\mathrm{P}-, / \mu_{1} \ldots \mu_{\mathrm{n}} \rightarrow \quad \operatorname{not}\left(\mathrm{P}-\mu_{1} \ldots \mu_{\mathrm{n}} \rightarrow\right)\)
\(\mathrm{P}=\varepsilon \Rightarrow \mathrm{Q} \quad \mathrm{P}=\mathrm{Q}\) or \(\exists \mathrm{n} \quad 1 \mathrm{P}-\tau^{\mathrm{n}} \rightarrow \mathrm{Q}\)
\(\mathrm{P}=\mathrm{a} \Rightarrow \mathrm{Q} \quad \exists \mathrm{P}_{1}, \mathrm{P}_{2}\) such that \(\mathrm{P}=\varepsilon \Rightarrow \mathrm{P}_{1}-\mathrm{a} \rightarrow \mathrm{P}_{2}=\varepsilon \Rightarrow \mathrm{Q}\)
\(P=a_{1} . a_{2} . . a_{n} \Rightarrow Q \quad \exists P_{i}(0 \leq i \leq n)\) such that \(P=P_{0}=a_{1} \Rightarrow P_{1}=a_{2} \Rightarrow . . a_{n} \Rightarrow P_{n}=Q\)
\(\mathrm{P}=\sigma \Rightarrow \quad \exists \mathrm{Q}\) such that \(\mathrm{P}=\sigma \Rightarrow \mathrm{Q}\)
\(\mathrm{P} \sigma \Rightarrow \quad \operatorname{not}(\mathrm{P}=\sigma \Rightarrow)\)
\(\operatorname{Tr}(\mathrm{P}) \quad\left\{\sigma \in \mathrm{L}^{*} \mid \mathrm{P}=\sigma \Rightarrow\right\}\)
out \((\mathrm{P}) \quad\{\mathrm{a} \in \mathrm{L} \mid \mathrm{P}=\mathrm{a} \Rightarrow\}\)
```

Notations:
$\mu, \mu_{\mathrm{i}} \in \mathrm{L} \quad\{\tau\} ; \mathrm{a}, \mathrm{a}_{\mathrm{i}} \in \mathrm{L} ; \mathrm{P}, \mathrm{Q}, \mathrm{P}_{\mathrm{i}}, \mathrm{Q}_{\mathrm{i}}$ represent states; ε represents the empty trace, $\sigma=\mathrm{a}_{1} . \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}$, where "." denotes the concatenation of events or sequence of events (traces).

Table 1. Notations for LTSs

For a given LTS $S=\left\langle S t, L, T, s_{0}\right\rangle$, a trace from a given state s_{i}, is a sequence of interactions that S can perform starting from state s_{i}. The traces that S can perform from its initial state represent the traces of S . s_{i} after $\sigma\left(=\left\{\mathrm{s}_{\mathrm{j}} \mid \mathrm{s}_{\mathrm{i}}=\sigma \Rightarrow \mathrm{s}_{\mathrm{j}}\right\}\right)$ denotes the set of all states reachable from s_{i} by sequence σ. out $\left(\mathrm{s}_{\mathrm{i}}, \sigma\right)\left(=\mathrm{s}_{\mathrm{j}} \in\left(\mathrm{s}_{\mathrm{i}}\right.\right.$ after $\left.\left.\left.\sigma\right)\right) \operatorname{out}\left(\mathrm{s}_{\mathrm{j}}\right)\right)$ denotes the set of all possible interactions after σ, starting from state s_{i}. A trace of S is cyclic, if and only if the set of states reachable by this trace is equal to the set of states reachable by the empty trace from the initial state. An elementary cyclic trace is a cyclic trace that is not prefixed by a nonempty cyclic trace. Note that, any cyclic trace results from the concatenation of elementary cyclic traces.

Definition 2.2 (Cyclic Trace for LTSs)

Given an LTS $\mathrm{S}=\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}\right\rangle$, a trace σ is a cyclic trace in S , iff $\left(\mathrm{s}_{\mathrm{o}}\right.$ after $\left.\sigma\right)=\left\{\mathrm{s}_{\mathrm{i}} \in\right.$ St such that $\left.\mathrm{s}_{\mathrm{o}}=\varepsilon \Rightarrow \mathrm{s}_{\mathrm{i}}\right\}$.

Definition 2.3 (Elementary Cyclic Trace for LTSs)

Given an LTS $\mathrm{S}=\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}\right\rangle$, a trace σ is an elementary cyclic trace in S , iff
(1) σ is a cyclic trace, and
(2) $\sigma^{\prime}(\varepsilon)$ and $\sigma^{\prime \prime}(\varepsilon)$ such that $\sigma=\sigma^{\prime} . \sigma^{\prime \prime}$ and σ^{\prime} is a cyclic trace in S.

2.2 Equivalences and Preorders

Intuitively, different LTSs may describe the same "observable behavior". Different equivalences have been defined corresponding to different notions of "observable behavior" [DeNi 87]. In the case of trace equivalence, two systems are considered equivalent if the set of all possible sequences (traces) of interactions that they may produce are the same.

Finer equivalences are obtained if the refusal (blocking) properties of the systems, which are in general non-deterministic, are also taken into account. P ref A means that P refuses to perform any interaction in $\mathrm{A}(\mathrm{Pa} \Rightarrow, \forall \mathrm{a} \in \mathrm{A})$. In other words, P deadlocks with any interaction a in $\mathrm{A} . \mathrm{A}$ is called a refusal for P. Note that if A is a refusal for P, then any subset of A is a refusal for P.
$\operatorname{Ref}(\mathrm{P}, \sigma)=\{\mathrm{X} \mid \exists \mathrm{Q} \in(\mathrm{P}$ after $\sigma)$ such that P ref X$\}$ denotes the refusal set of P after σ.
Note that if $\sigma \notin \operatorname{Tr}(\mathrm{P})$, then $\operatorname{Ref}(\mathrm{P}, \sigma)=\emptyset$.

Two systems are testing equivalent, if in addition to trace equivalence, they have the same refusal (blocking) properties [Brin 86].

Definition 2.4 (Testing Equivalence for LTSs)

Let S1 and S2 be two LTSs, S1 and S2 are testing equivalent, S1 te S2, iff
(1) $\operatorname{Tr}(\mathrm{S} 1) \quad \operatorname{Tr}(\mathrm{S} 2)$, and
(2) $\forall \sigma \in L^{*}, \operatorname{Ref}(S 2, \sigma) \quad \operatorname{Ref}(S 1, \sigma)$.

For instance, the LTSs $\mathrm{S} 1, \mathrm{~S} 2$ and S 3 in Figure 1 can perform the same sequences (a, a.b, a.b.c, a.b.d) of interactions ($\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}). They have the same set of traces, they are trace equivalent. Moreover, the LTSs S1 and S2 have the same refusal properties. Because of nondeterminism, S1
and S2 may both refuse interaction \mathbf{c} (respectively \mathbf{d}) after the sequence of interactions a.b. S1 and S 2 are not distinguishable by external experiences. They are testing equivalent. However, S 3 is not testing equivalent to $S 1$ (and $S 2$). $S 3$ always accept interaction \mathbf{c} or \mathbf{d}, after the sequence a.b.

Figure 1. Examples for behavior equivalences.

Instead of considering the sets of interactions that may be refused, we may consider the sets of interactions that may be accepted. The notion of acceptance sets is dual to the notion of refusal sets. If $\operatorname{Ref}(\mathrm{P}, \sigma)$ is a refusal set, then the corresponding acceptance set $\operatorname{Acc}(\mathrm{P}, \sigma)$, is defined as the complement of the refusals in $\operatorname{Ref}(\mathrm{P}, \sigma)$ with respect to $\operatorname{out}(\mathrm{P}, \sigma)$.

$$
\begin{aligned}
\operatorname{Acc}(\mathrm{P}, \sigma) & =\{\operatorname{out}(\mathrm{P}, \sigma)-\mathrm{X} \mid \mathrm{X} \in \operatorname{Ref}(\mathrm{P}, \sigma)\} \\
& =\{\mathrm{X} \mid \exists \mathrm{Q} \in(\mathrm{P} \text { after } \sigma) \text { such that } \operatorname{out}(\mathrm{Q}) \quad \mathrm{X} \quad \operatorname{out}(\mathrm{P}, \sigma)\} .
\end{aligned}
$$

The following properties of $\operatorname{Acc}(\mathrm{P}, \sigma)$ can be derived from its definition:

$$
\begin{aligned}
& -\operatorname{Acc}(\mathrm{P}, \sigma)=\emptyset \text { iff } \sigma \notin \operatorname{Tr}(\mathrm{P}), \\
& -\forall \mathrm{A} 1, \mathrm{~A} 2 \in \operatorname{Acc}(\mathrm{P}, \sigma), \mathrm{A} 1 \quad \mathrm{~A} 2 \in \operatorname{Acc}(\mathrm{P}, \sigma), \\
& -\forall \mathrm{A} 1, \mathrm{~A} 2 \in \operatorname{Acc}(\mathrm{P}, \sigma), \text { if A1 } \quad \mathrm{A} 3 \quad \mathrm{~A} 2, \text { then } \mathrm{A} 3 \in \operatorname{Acc}(\mathrm{P}, \sigma) .
\end{aligned}
$$

Intuitively, a set of interactions X belongs to $\operatorname{Acc}(\mathrm{P}, \sigma)$, if and only if there is a state Q reachable from P by σ and X includes the set of interactions enabled in this state, but X is included in the set of all possible interactions of (P after σ). This definition corresponds to the acceptance sets definition in [Henn 85].

Condition (2) in Definition 2.4 may be stated in terms of acceptance sets as follows: $\forall \sigma \in L^{*}, \operatorname{Acc}(\mathrm{~S} 2, \sigma) \operatorname{Acc}(\mathrm{S} 1, \sigma)$.

Similar testing equivalence relations are defined in [Broo 85, DeNi 84, Henn 88]. They differ from the testing equivalence we consider in this paper, in the way the divergence (possibility of infinite sequence of internal actions) is dealt with.

Finer equivalences, the bisimulation equivalence (strong bisimulation,) [Park 81] and the observation equivalence (weak bisimulation, \approx) [Miln 89], may be defined if the internal states of the two systems are taken into account. These relations are based on the notions of strong bisimulation [Park 81] and weak bisimulation [Miln 89], respectively.

Definition 2.5 (Strong Bisimulation)

A relation $R \quad S t \times S t$ is a strong bisimulation, if $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right) \in \mathrm{R}$ implies that
$\forall \mathrm{a} \in(\mathrm{L} \quad\{\tau\})$, if $\mathrm{s}_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{s}_{\mathrm{k}}$ then $\mathrm{s}_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{s}_{\mathrm{l}}$ and $\left(\mathrm{s}_{\mathrm{k}}, \mathrm{s}_{\mathrm{l}}\right) \in \mathrm{R}$,
if $\mathrm{s}_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{s}_{\mathrm{l}}$ then $\mathrm{s}_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{s}_{\mathrm{k}}$ and $\left(\mathrm{s}_{\mathrm{k}}, \mathrm{s}_{\mathrm{l}}\right) \in \mathrm{R}$

Definition 2.6 (Weak Bisimulation)

A relation $\mathrm{R} \quad \mathrm{St} x \mathrm{St}$ is a weak bisimulation, if $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}\right) \in \mathrm{R}$ implies that $\forall \mathrm{a} \in(\mathrm{L} \quad\{\varepsilon\})$, if $\mathrm{s}_{\mathrm{i}}=\mathrm{a} \Rightarrow \mathrm{s}_{\mathrm{k}}$ then $\mathrm{s}_{\mathrm{j}}=\mathrm{a} \Rightarrow \mathrm{s}_{\mathrm{l}}$ and $\left(\mathrm{s}_{\mathrm{k}}, \mathrm{s}_{\mathrm{l}}\right) \in \mathrm{R}$,
if $\mathrm{s}_{\mathrm{j}}=\mathrm{a} \Rightarrow \mathrm{s}_{\mathrm{l}}$ then $\mathrm{s}_{\mathrm{i}}=\mathrm{a} \Rightarrow \mathrm{s}_{\mathrm{k}}$ and $\left(\mathrm{s}_{\mathrm{k}}, \mathrm{s}_{\mathrm{l}}\right) \in \mathrm{R}$

Two LTSs S 1 and S 2 , with $\mathrm{s} 1_{\mathrm{o}}$ and $\mathrm{s} 2_{\mathrm{o}}$ as initial state, respectively, are (strongly) bisimulation equivalent, $S_{1} \quad S 2$, (respectively observation equivalent, $S 1 \approx S 2$), if and only if there is a strong bisimulation R (respectively weak bisimulation R) with $\left(s 1_{0}, s 2_{0}\right) \in R$. The observation equivalence of Milner is stronger than the testing equivalence, but weaker than the bisimulation equivalence. Two LTSs S 1 and S 2 , with $\mathrm{s} 1_{\mathrm{o}}$ and $\mathrm{s} 2_{\mathrm{o}}$ as initial state, respectively, are isomorphic, if and only if there is a strong bisimulation R, such that $\left(s 1_{o}, s 2_{o}\right) \in R$ and each state of $S 1$ is related to one and only one state of S2 and vice et versa.

In addition to the equivalences, many preorders (reflexive and transitive relations) have been defined in the literature [DeNi 87, Henn 85, Brin 86]. The extension preorder defined in [Brin 86] is most appropriate for extending specification behaviors. Informally, S2 extends S1, S2 ext S1, if and only if $S 2$ may perform any sequence of interactions that $S 1$ may perform, and $S 2$ can not refuse what $S 1$ can not refuse after a given sequence of interactions allowed by $S 1$ [Brin 86]. The extension preorder induces the testing equivalence [Brin 86]. In other words, two specifications are testing equivalent if and only if each is the extension of the other. In the following, for a given set $\mathrm{X}, P(\mathrm{X})$ denotes the power set of X, i.e. the set of subsets of X.

Definition 2.7

Let A, B $\quad P(\mathrm{~L}), \mathrm{A} \quad \mathrm{B}$, iff $\forall \mathrm{A} 1 \in \mathrm{~A}, \exists \mathrm{~B} 1 \in \mathrm{~B}$ such that $\mathrm{B} 1 \quad \mathrm{~A} 1$.

The following definition of the extension introduced in [Ledu 90] is equivalent to the original one:

Definition 2.8 (Extension for LTSs)

Let S1 and S2 be two LTSs, S2 ext S1, iff
(1) $\operatorname{Tr}(\mathrm{S} 1) \quad \operatorname{Tr}(\mathrm{S} 2)$, and
(2) $\forall \sigma \in \operatorname{Tr}(\mathrm{S} 1), \operatorname{Acc}(\mathrm{S} 2, \sigma) \quad \operatorname{Acc}(\mathrm{S} 1, \sigma)$.

For instance, the LTSs S6 and S7 in Figure 2 extend both of the LTSs S4 and S5. S6 (and S7) may perform any sequence of interactions that S 4 (respectively S 5) may perform and S 6 can not refuse what S 4 (respectively S 5) may not refuse after a sequence of interactions allowed by S 4 (respectively S5). However, S8 does neither extend S3 nor S4. Indeed, S8 may perform any sequence of interactions that S 4 (respectively S 5) may perform, but S 8 may, for instance, refuse interaction \mathbf{b} (respectively \mathbf{c}) after sequence \mathbf{a}, whereas S 4 (respectively S 5) never refuses to interaction \mathbf{b} (respectively c) after sequence \mathbf{a}.

Figure 2. Extension of behaviors.

Among the common extensions of S 4 and S 5 , S 6 is the least one. In other words, any common extension of S4 and S5 is an extension of S6. For instance, S7 extends S6. The least common extension is unique up to testing equivalence.

Definition 2.9 (Least Common Extension for LTSs)

Given three LTSs S1, S2 and S3, such that S3 ext S1 and S3 ext S2,
S 3 is the least common extension of S 1 and S 2 , iff
any common extension of S 1 and S 2 is also an extension of S 3 .

As introduced previously, in this paper we assume that the completion of a cyclic sequence of interactions in a given specification S corresponds to the completion of S. For instance, after performing a.b, S4 has completed its functionality and may repeat it in a recursive manner. The LTS S6, in Figure 2, extends both S4 and S5. However, S6 may exhibit only behavior a.b of S4 in a recursive manner or only behavior a.c of S 5 in a recursive manner. S6 does not exhibit behaviors of S4 and behaviors of S5, in a recursive manner, contrarily to the LTS S9 in Figure 3. Indeed S9 extends both S 4 and S 5 and after performing a cyclic sequence of interactions in S 4 (respectively S 5) S9 transforms into S9 and offers again behaviors of S4 and S5. S9 may exhibit the behaviors a.b.a.b...., a.c.a.c...., a.b.a.c.a.b.a.c, ... etc. A condition for S 9 to transform into S 9 after any cyclic trace of S4 or S5, is that any cyclic trace in S4 (respectively S5) is a cyclic trace in S9. In this case, S 9 is called a cyclic extension of S 4 (respectively S 5).

S9
S10

Figure 3. Cyclic extension of behaviors.

Definition 2.10 (Cyclic Extension for LTSs)

Let $S 1$ and $S 2$ be two LTSs. $S 2$ is a cyclic extension of $S 1$, S2 extc S 1 , iff
(1) S2 ext S1, and
(2) any cyclic trace in S 1 is a cyclic trace in S 2 .

Since any cyclic trace results from the concatenation of elementary cyclic traces, any cyclic trace in $S 1$ is a cyclic trace in $S 2$, if and only if any elementary cyclic trace in $S 1$ is a cyclic trace in $S 2$. Among the common cyclic extensions of S 4 and S 5 shown in Figure 2, S 9 shown in Figure 3 is the least one. In other words, any common cyclic extension of S4 and S5 is a cyclic extension of S9. For instance, S10, a cyclic extension of S4 and S5, is also a cyclic extension of S9. Note that the least common cyclic extension of S4 and S5, S9, extends the least common extension of S4 and S5, S6.

Definition 2.11 (Least Common Cyclic Extension for LTSs)

Given three LTSs S1, S2 and S3, such that S3 extc S1 and S3 extc S2,
S 3 is the least common cyclic extension of S 1 and S 2 , iff
any common cyclic extension of S1 and S2 is also a cyclic extension of S3.

The testing equivalence is refined into the cyclic testing equivalence, if the preservation of the cyclic traces is taken into account. Note that the cyclic extension is a preorder and it induces the cyclic testing equivalence.

Definition 2.12 (Cyclic Testing Equivalence for LTSs)

Let S1 and S2 be two LTSs. S2 and S1 are cyclic testing equivalent, S1 tec S2, iff
(1) S1 te S2, and
(2) any cyclic trace in S 1 is a cyclic trace in S 2 and reciprocally.

S1 and S2 have the same set of cyclic traces, as stated by condition (2) in Definition 2.12, if and only if S1 and S2 have the same set of elementary cyclic traces, since the concatenation of elementary cyclic traces leads a cyclic trace. Similarly to the testing equivalence, the strong bisimulation and the observation equivalence are also refined into the cyclic strong bisimulation (c) and the cyclic observation equivalence $(\approx \mathrm{c})$, respectively, when the preservation of the cyclic traces is taken into consideration.

3 Acceptance Graphs

3.1 Model

An AG is a bilabelled graph-structure. An AG is a graph in which nodes represent states, and transitions represent interactions occurring during state changes. Instead of modeling the nondeterminism by the labels of the transitions, the AGs model allows to keep such information in the labels of the states. Each state is labelled by a set of sets of interactions, called acceptance set, that the system may accept (perform) at this state. The outgoing transitions, from a given state, have distinct labels.

Definition 3.1 (Acceptance Graph)

An AG G is 5-tuple $\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}\right.$ >, where

- Sg is a (countable) non empty set of states.
- L is a (countable) set of interactions.
- Ac: $\mathrm{Sg} \rightarrow P(P(\mathrm{~L}))$ is a mapping from Sg to a set of subsets of L .
$\operatorname{Ac}\left(\mathrm{g}_{\mathrm{i}}\right)$ is called the acceptance set of state g_{i}.
- $\mathrm{Tg}: \mathrm{Sg} \times \mathrm{L} \rightarrow \mathrm{Sg}$ is a transition function, where a transition from state g_{i} to state g_{j} by an interaction a $(\mathrm{a} \in \mathrm{L})$ is denoted by $\mathrm{g}_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{g}_{\mathrm{j}}$.
- g_{0} is the initial state.

The AGs used in this paper are similar to the Acceptance Trees of Hennessy [Henn 85] and Agraphs in [Clea 93]. However, in our case, we do not distinguish between "closed" and "open" states, since divergence is not considered explicitly as in [Henn 85] or [Clea 93]. In this paper, any state g_{i} is labelled by an acceptance set, $\operatorname{Ac}\left(\mathrm{g}_{\mathrm{i}}\right)$, which may be infinite or contain some infinite elements in the case where g_{i} is infinitely branching $\left(\left\{g_{j} \mid g_{i}-a \rightarrow g_{j}\right.\right.$ for some $\left.a \in L\right\}$ is infinite). The mapping Ac and the transition function Tg should satisfy the following consistency constraints, which are similar to the consistency constraints defined for the "closed" states in [Henn 85]:

Co: $\forall \mathrm{g}_{\mathrm{i}} \in \operatorname{Sg}, \operatorname{Ac}\left(\mathrm{g}_{\mathrm{i}}\right) \quad \emptyset$.
$\mathrm{C} 1: \forall \mathrm{g}_{\mathrm{i}} \in \operatorname{Sg}, \mathrm{A} \in \operatorname{Ac}\left(\mathrm{g}_{\mathrm{i}}\right)$ and $\mathrm{a} \in A$, there is one and only one $\mathrm{g}_{\mathrm{j}} \in \operatorname{Sg}$ such that $\mathrm{g}_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{g}_{\mathrm{j}}$.
C2: $\forall g_{i} \in S g$, if $\exists g_{j} \in S g$, such that $g_{i}-a \rightarrow g_{j}$, then $\exists A \in \operatorname{Ac}\left(g_{i}\right)$ with $a \in A$.
$\mathrm{C} 3: \forall \mathrm{g}_{\mathrm{i}} \in \mathrm{Sg}$, if $\mathrm{A} 1, \mathrm{~A} 2 \in \operatorname{Ac}\left(\mathrm{~g}_{\mathrm{i}}\right)$, then $\mathrm{A} 1 \quad \mathrm{~A} 2 \in \operatorname{Ac}\left(\mathrm{~g}_{\mathrm{i}}\right)$.
$\mathrm{C} 4: \forall \mathrm{g}_{\mathrm{i}} \in \mathrm{Sg}$, if $\mathrm{A} 1, \mathrm{~A} 2 \in \operatorname{Ac}\left(\mathrm{~g}_{\mathrm{i}}\right)$ and $\mathrm{A} 1 \quad \mathrm{~A} 3 \quad \mathrm{~A} 2$, then $\mathrm{A} 3 \in \operatorname{Ac}\left(\mathrm{~g}_{\mathrm{i}}\right)$.

A finite AG (FAG for short) is an AG in which Sg and L are finite. As for the LTSs, the initial state will be circled for the graphic representation of an FAG. The notations introduced in Table 1 will be used for the AGs with the same meaning as for the LTSs, since leaving the mapping Ac out of account, an AG can be seen as an LTS. In the case of AGs, the notation " g_{i} after σ " will denote the state g_{j} such that $g_{i}=\sigma \Rightarrow g_{j}$, instead of set of states in the case of LTSs. The notion of cyclic trace for AGs corresponds to the well known notion of cyclic path in the graph theory. A cyclic trace is a trace, of the initial state, that reaches the initial state. Similarly to the LTSs, an elementary cyclic trace, is a cyclic trace, which does not results from the concatenation of cyclic subtraces. Any cyclic trace results from the concatenation of elementary cyclic traces.

Definition 3.2 (Cyclic Trace for AGs)

Given an $\mathrm{AGG}=\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}>\right.$, a trace σ is a cyclic trace in G iff $\mathrm{g}_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g}_{\mathrm{o}}$.

Definition 3.3 (Elementary Cyclic Trace for AGs)

Given an $\mathrm{AGG}=\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}>\right.$, a trace σ is an elementary cyclic trace in G , iff
(1) σ is a cyclic trace, and
(2) $\sigma^{\prime}(\varepsilon)$ and $\sigma^{\prime \prime}(\varepsilon)$ such that $\sigma=\sigma^{\prime} . \sigma^{\prime \prime}$ and σ^{\prime} is cyclic trace in G.

An AG G may contain certain states that are not reachable (A state g_{i} is reachable iff $\exists \sigma \in \operatorname{Tr}(\mathrm{G})$ such that $\mathrm{g}_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g}_{\mathrm{i}}$.). The graph defined by the set of reachable states, their acceptance sets and their transitions as defined in G, denoted by reachable(G), is an AG. It is obvious that reachable(G) satisfies all the consistency requirements listed above.

Definition 3.4 (Reachable Part of an AG)

Given an $\mathrm{AG} \mathrm{G}=<\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}>$, the reachable part of G , reachable(G), is an $A G \mathrm{G}^{\prime}=\left\langle\mathrm{Sg}^{\prime}, \mathrm{L}, \mathrm{Ac}^{\prime}, \mathrm{Tg}^{\prime}\right.$, $\mathrm{g}_{\mathrm{o}}>$, where
$-\mathrm{Sg}^{\prime}=\left\{\mathrm{g}_{\mathrm{i}} \in \operatorname{Sg} \mid \exists \sigma \in \operatorname{Tr}(\mathrm{G})\right.$ such $\left.\mathrm{g}_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g}_{\mathrm{i}}\right\}$
$-\forall \mathrm{g}_{\mathrm{i}} \in \mathrm{Sg}^{\prime}, \operatorname{Ac}^{\prime}\left(\mathrm{g}_{\mathrm{i}}\right)=\operatorname{Ac}\left(\mathrm{g}_{\mathrm{i}}\right)$,
$-\forall g_{i}, g_{j} \in S g^{\prime}, \quad g_{i}-a \rightarrow g_{j} \in T g^{\prime}$ iff $\quad g_{i}-a \rightarrow g_{j} \in T g$.

3.2 Equivalences and preorders

Similarly to the LTSs, in the case of trace equivalence, two AGs G1 and G2 are considered equivalent, if and only if $\operatorname{Tr}(\mathrm{G} 1)=\operatorname{Tr}(\mathrm{G} 2)$. However, in the case of AGs, the testing equivalence and the observation equivalence coincide with the bisimulation equivalence. The LTS's structure is finer than the AG's structure. In this paper, we define the bisimulation for AGs as an instantiation of the Π-bisimulation introduced in [Clea 93].

Definition 3.5 (Bisimulation)

A relation $R \quad S g \times S g$ is a bisimulation, if $\left(g_{i}, g_{j}\right) \in R$ implies that
$\operatorname{Ac}\left(\mathrm{g}_{\mathrm{i}}\right)=\operatorname{Ac}\left(\mathrm{g}_{\mathrm{j}}\right)$, and $\forall \mathrm{a} \in \mathrm{L}$,
if $\mathrm{g}_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{g}_{\mathrm{k}}$ then $\mathrm{g}_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g}_{1}$ and $\left(\mathrm{g}_{\mathrm{k}}, \mathrm{g}_{\mathrm{l}}\right) \in \mathrm{R}$,
if $\mathrm{g}_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g}_{1}$ then $\mathrm{g}_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{g}_{\mathrm{k}}$ and $\left(\mathrm{g}_{\mathrm{k}}, \mathrm{g}_{1}\right) \in \mathrm{R}$

Definition 3.6

Two AGs $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}>\right.$ and $\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}>\right.$ are bisimulation equivalent, $G 1 \quad \mathrm{~g}$ G2, if and only if there is a bisimulation R such that $\left(g 1_{0}, g 2_{0}\right) \in R$.

An alternative definition of the bisimulation equivalence for AGs is given by Proposition 3.1.

Proposition 3.1

Given two AGs Gi $=\left\langle\mathrm{Sgi}, \mathrm{Li}, \mathrm{Aci}, \mathrm{Tgi}, \mathrm{gi}_{\mathrm{o}}\right\rangle, \mathrm{i}=1,2 ; \mathrm{G}_{\mathrm{g}} \mathrm{g}$ G2 iff
$\operatorname{Tr}(\mathrm{G} 1)=\operatorname{Tr}(\mathrm{G} 2)$ and $\left(\forall \sigma \in \operatorname{Tr}(\mathrm{G} 1), \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{o}}\right.\right.$ after $\left.\sigma\right)=\operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{o}}\right.$ after $\left.\left.\sigma\right)\right)$.

Two AGs G1 and G2, with $\mathrm{g} 1_{\mathrm{o}}$ and $\mathrm{g} 2_{\mathrm{o}}$ as initial state, respectively, are isomorphic, $\mathrm{G} 1=\mathrm{g} 2$, if and only if there is a bisimulation R, such that $\left(g 1_{0}, g 2_{0}\right) \in R$ and each state of $G 1$ is related to one and only one state of G 2 and vice et versa.

Similarly to the LTSs, the extension relation is defined as follows:

Definition 3.7 (Extension for AGs)

Let G1 and G2 be two AGs,
G2 extends G1, G2 ext ${ }_{\mathrm{g}} \mathrm{G} 1$, iff
(1) $\operatorname{Tr}(\mathrm{G} 1) \quad \operatorname{Tr}(\mathrm{G} 2)$, and
(2) $\forall \sigma \in \operatorname{Tr}(\mathrm{G} 1), \operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{o}}\right.$ after $\left.\sigma\right) \quad \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{o}}\right.$ after $\left.\sigma\right)$.

In the case of AGs, the extension is a preorder that induces the bisimulation equivalence. From Proposition 3.1 and Definition 3.6, it is obvious that if $\mathrm{G} 2 \operatorname{ext}_{\mathrm{g}} \mathrm{G} 1$ and $\mathrm{G} 1 \mathrm{ext}_{\mathrm{g}} \mathrm{G} 2$, then $\mathrm{G} 1{ }_{\mathrm{g}} \mathrm{G} 2$. If we take into consideration the preservation of the cyclic traces, the extension and the bisimulation equivalence are refined into the cyclic extension and the cyclic bisimulation equivalence. Note that the cyclic extension preorder induces the cyclic bisimulation equivalence. Similarly to the LTSs, the cyclic traces of a given AG are preserved, if and only if its elementary cyclic traces are preserved, at least, as cyclic traces. Two AGs have the same set of cyclic traces, if and only if they have the same set of elementary cyclic traces.

Definition 3.8 (Cyclic Extension for AGs)

Let G1 and G2 be two AGs,
G 2 is a cyclic extension of G 1 , written G 2 extc $_{\mathrm{g}} \mathrm{G} 1$, iff
(1) G2 extg G1, and
(2) any cyclic trace in G1 is a cyclic trace in G2.

Definition 3.9 (Cyclic Bisimulation for AGs)

Let G 1 and G 2 be two AGs,
G 2 and G 1 are cyclic bisimulation equivalent, written $\mathrm{G} 1 \quad \mathrm{c}_{\mathrm{g}} \mathrm{G} 2$, iff
(1) G1 g G2, and
(2) any cyclic trace in G 1 is a cyclic trace in G 2 and reciprocally.

The notions of least common extension and least common cyclic extension for AGs are defined in a similar way as for LTSs.

Definition 3.10 (Least Common Extension)

Given three AGs G1, G2 and G3, such that G3 ext ${ }_{\mathrm{g}} \mathrm{G} 1$ and G 3 ext $_{\mathrm{g}} \mathrm{G} 2$, G 3 is the least common extension of G1 and G2, iff any common extension of G1 and G2 is also an extension of G3.

Definition 3.11 (Least Common Cyclic Extension)

Given three AGs G1, G2 and G3, such that G3 extcg G 1 and G 3 extc $_{\mathrm{g}} \mathrm{G} 2$, G 3 is the least common cyclic extension of G1 and G2, iff any common cyclic extension of G 1 and G 2 is also a cyclic extension of G 3 .

3.3 Correspondence and transformations between AGs and LTSs

This section aims to define a correspondence between the LTSs and the AGs as well as the constructions for generating AGs from arbitrary LTSs and vice et versa. The correspondence between LTSs and AGs is based on the preservation of the traces, the acceptance sets and the cyclic traces.

Definition 3.12 (Correspondence between LTSs and AGs)

Given an LTS $\mathrm{S}=\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}>\right.$ and an $\mathrm{AGG}=\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}>\right.$, we say that G is the $A G$ corresponding to $S, G=a g(S)$, iff
(1) $\operatorname{Tr}(\mathrm{S})=\operatorname{Tr}(\mathrm{G})$,
(2) $\forall \sigma \in \operatorname{Tr}(\mathrm{G}), \operatorname{Ac}\left(\mathrm{g}_{\mathrm{o}}\right.$ after $\left.\sigma\right)=\operatorname{Acc}\left(\mathrm{s}_{\mathrm{o}}, \sigma\right)$,
(3) any cyclic trace in S is a cyclic trace in G, and
(4) any cyclic trace in G is a cyclic trace in S.

Note that, for a given LTS, the corresponding AG is unique up to the cyclic bisimulation equivalence. However, An AG may correspond to more than one LTS. These LTSs are cyclic testing equivalent. The following proposition is straightforward.

Proposition 3.2

Given two LTSs S1, S2, and two AGs G1, G2, such that $\mathrm{G} 1=\mathrm{ag}(\mathrm{S} 1)$ and $\mathrm{G} 2=\mathrm{ag}(\mathrm{S} 2)$, the following holds:
(1) S2 ext S1 iff G2 extg G1.
(2) any cyclic trace in S 1 is a cyclic trace in S 2 iff any cyclic trace in G 1 is a cyclic trace in G 2 .

Lemma 3.1 follows from Proposition 3.2, since the extension (respectively, the cyclic extension) induces the testing equivalence (respectively, the cyclic testing equivalence) in the case of LTSs and the bisimulation equivalence (respectively, the cyclic bisimulation equivalence) in the case of AGs.

Lemma 3.1

Given two LTSs S1, S2, and two AGs G1, G2, such that $\mathrm{G} 1=\mathrm{ag}(\mathrm{S} 1)$ and $\mathrm{G} 2=\mathrm{ag}(\mathrm{S} 2)$, the following holds:
(1) S1 te S2 iff G1 ${ }_{\mathrm{g}} \mathrm{G} 2$,
(2) S 1 tec S 2 iff G1 $\mathrm{c}_{\mathrm{g}} \mathrm{G} 2$.

Lemma 3.2 follows from Proposition 3.2 and the definitions of least common extension and least common cyclic extension for LTS and AGs, respectively.

Lemma 3.2

Given three LTSs S1, S2, S3 and three AGs G1, G2, G3, such that G1 $=\mathrm{ag}(\mathrm{S} 1), \mathrm{G} 2=\mathrm{ag}(\mathrm{S} 2)$ and $\mathrm{G} 3=\mathrm{ag}(\mathrm{S} 3)$, the following holds:
(1) S 3 is the least common extension of S 1 and S 2 , iff

G3 is the least common extension of G1 and G2.
(2) S 3 is the least common cyclic extension of S 1 and S 2 , iff

G 3 is the least common cyclic extension of G1 and G2.

In the following proposition we define for an arbitrary LTS the corresponding AG. The definition of the corresponding AG for an arbitrary LTS is similar to the construction of a Tgraph from an arbitrary LTS in [Clea 93].

Definition 3.13 (ε-closure of a set of states) [Clea 93]
Given an LTS $\mathrm{S}=\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}\right\rangle$, the ε-closure of a set of states $\mathrm{Qt} \in P(\mathrm{St})$, written $\mathrm{Qt}^{\varepsilon}$, is defined as follows: $\mathrm{Q}^{\varepsilon}=\left\{\mathrm{s}_{\mathrm{j}} \in \mathrm{St} \mid \exists \mathrm{s}_{\mathrm{i}} \in \mathrm{Qt}\right.$ such that $\left.\mathrm{s}_{\mathrm{i}}=\varepsilon \Rightarrow \mathrm{s}_{\mathrm{j}}\right\}$.

Proposition 3.3 (Definition of the AG corresponding to an arbitrary LTS)

Given an LTS $\mathrm{S}=\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}>\right.$, the following AG G is such that $\mathrm{G}=\mathrm{ag}(\mathrm{S})$:
$\mathrm{G}=\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}\right\rangle$, where
(1) $\mathrm{Sg}=\left\{\mathrm{g}_{\mathrm{i}} \in P(\mathrm{St}) \mid \mathrm{g}_{\mathrm{i}}=\mathrm{g}_{\mathrm{i}}{ }^{\varepsilon}\right\}$,
(2) $\mathrm{g}_{\mathrm{o}}=\left\{\mathrm{s}_{\mathrm{i}} \in \mathrm{St} \mid \mathrm{s}_{\mathrm{o}}=\varepsilon \Rightarrow \mathrm{s}_{\mathrm{i}}\right\}\left(=\left\{\mathrm{s}_{\mathrm{i}} \in \mathrm{St} \mid \mathrm{s}_{\mathrm{o}}=\varepsilon \Rightarrow \mathrm{s}_{\mathrm{i}}\right\}^{\varepsilon}\right) \in \mathrm{Sg}$,
(3) $\forall \mathrm{g}_{\mathrm{i}} \in \operatorname{Sg}, \operatorname{Ac}\left(\mathrm{g}_{\mathrm{i}}\right)=\left\{\mathrm{X} \mid \exists \mathrm{s}_{\mathrm{j}} \in \mathrm{g}_{\mathrm{i}}\right.$ such that out $\left(\mathrm{s}_{\mathrm{j}}\right) \quad \mathrm{X} \quad$ sk $\left.\in \operatorname{gi} \operatorname{out}\left(\mathrm{s}_{\mathrm{k}}\right)\right\}$,
(4) $\forall \mathrm{g}_{\mathrm{i}} \in \mathrm{Sg}$, we have $\mathrm{g}_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{g}_{\mathrm{j}}$, iff

$$
a \in A, A \in A c\left(g_{i}\right) \text { and } g_{j}=\left\{\mathrm{s}_{\mathrm{k}} \in S t \text { such that } \exists \mathrm{s}_{\mathrm{j}} \in \mathrm{~g}_{\mathrm{i}} \text { with } \mathrm{s}_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{~s}_{\mathrm{k}}\right\}^{\varepsilon} .
$$

An arbitrary AG G corresponds to a class of cyclic testing equivalent LTSs. However, by Proposition 3.4, for an arbitrary AG G, we define a special LTS S, written lts(G), corresponding to G. For that, each state of G is split into a set of S states as shown in Figure 4. For each non redundant set of interactions A_{ij} in the acceptance set of a state g_{i} in G corresponds a state $\mathrm{s}_{\mathrm{Aij}}$ in St . By a non redundant set of interactions, we denote a set that is neither a union of two other sets of interactions in the acceptance set, nor it includes a set in the acceptance set and is included in another one. The corresponding S states, for a given G state, are defined as follows:

Definition 3.13 (LTS states corresponding to an AG state)

Given an $\mathrm{AGG}=<\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}>$ and a state g_{i} in G , the states corresponding to g_{i} in an LTS corresponding to G are defined as follows:

$$
\left.\begin{array}{rl}
f\left(g_{i}\right)= & \left\{s_{A i j} \mid A_{i j} \in A c\left(g_{i}\right), \text { and } \quad A i k(A i j),\right. \\
& \text { such that } A i j=A i k \quad A i l \text { or } A i k \quad A i j \quad A c\left(g_{i}\right), \\
A i l
\end{array}\right\}
$$

Proposition 3.4 (Definition of $\operatorname{lts}(G)$ for an arbitrary AG G)

Given an $\mathrm{AGG}=\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}\right\rangle$, the following LTS S, written lts(G), is such that $G=\operatorname{ag}(S)$:
$\mathrm{S}=\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}>\right.$, where
(1) $\operatorname{St}=\quad g_{i} \in \operatorname{Sg}\left(f\left(g_{i}\right) \quad\left\{s_{i}\right\}\right)$,
(2) $\mathrm{s}_{\mathrm{i}}-\tau \rightarrow \mathrm{s}_{\mathrm{Aij}_{\mathrm{ij}}}$, for each $\mathrm{s}_{\mathrm{Aij}} \in \mathrm{f}\left(\mathrm{g}_{\mathrm{i}}\right)$, for each s_{i} in St (see Figure 4),
(3) For each transition $\mathrm{g}_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{g}_{\mathrm{k}}$ in G , for each $\mathrm{s}_{\mathrm{Aij}} \in \mathrm{f}\left(\mathrm{g}_{\mathrm{i}}\right)$, with $\mathrm{a} \in \mathrm{A}_{\mathrm{ij}}$, there is a transition $\mathrm{s}_{\mathrm{Aij}}-\mathrm{a} \rightarrow \mathrm{s}_{\mathrm{k}}$ in S (see Figure 4).

Figure 4. Transformation of the AG G into lts(G).

By definition, for an arbitrary AG G, lts(G) is unique. Due to the special form of LTSs defined by Proposition 3.4, two AGs G1 and G2 are (cyclic) bisimulation equivalent, if and only if lts(G1) and lts(G2) are (cyclic) strong bisimulation equivalent. Moreover, due to the correspondence between states of an G1 (respectively G2) and states of $1 \mathrm{lts}(\mathrm{G} 1)$ (respectively lts(G2), G1 and G2 are isomorphic, if and only if lts(G1) and lts(G2) are isomorphic.

Proposition 3.5

Given two AGs G1, G2, and two LTSs S1, S2,
such that $\mathrm{S} 1=\operatorname{lts}(\mathrm{G} 1)$ and $\mathrm{S} 2=1 \mathrm{lts}(\mathrm{G} 2)$, the following holds:
(1) $\mathrm{S} 1 \quad \mathrm{~S} 2$ iff G1 g G2,
(2) $\mathrm{S} 1 \quad \mathrm{c}$ S2 iff G1 $\mathrm{c}_{\mathrm{g}} \mathrm{G} 2$,
(3) $\operatorname{lts}(\mathrm{G} 1)=\operatorname{lts}(\mathrm{G} 2)$ iff G1 g G2.

For this special form of LTSs, defined in Proposition 3.4, the (cyclic) testing, (cyclic) observation and (cyclic) bisimulation equivalences coincide. Lemma 3.3 follows directly from the facts that G1 $=\operatorname{ag}(\operatorname{lts}(\mathrm{G} 1)), \mathrm{G} 2=\mathrm{ag}(\operatorname{lts}(\mathrm{G} 2))$, Lemma 3.1 and Proposition 3.5.

Lemma 3.3

Given two AGs, G1 and G2,
(1) the following statements are equivalent:
lts(G1) te $\operatorname{lts}(\mathrm{G} 2), \operatorname{lts}(\mathrm{G} 1) \approx \operatorname{lts}(\mathrm{G} 2), \operatorname{lts}(\mathrm{G} 1) \quad \operatorname{lts}(\mathrm{G} 2), \mathrm{G} 1 \quad \mathrm{~g} \mathrm{G} 2$.
(2) the following statements are equivalent:
$\operatorname{lts}(\mathrm{G} 1)$ tec $\operatorname{lts}(\mathrm{G} 2), \operatorname{lts}(\mathrm{G} 1) \approx \mathrm{c} \operatorname{lts}(\mathrm{G} 2), \operatorname{lts}(\mathrm{G} 1) \quad \mathrm{c} \operatorname{lts}(\mathrm{G} 2), \mathrm{G} 1 \quad \mathrm{c}_{\mathrm{g}} \mathrm{G} 2$.

Note that similar correspondence between LTSs and Tgraphs is used in [Clea 93] in order to verify the testing equivalence relation between LTSs as defined in [Henn 88] by verifying the bisimulation equivalence between the corresponding Tgraphs. Drira has used similar correspondence between LTS and Refusal Graphs for the same purpose as in [Clea 93]. He also defined a special form of LTSs, called normal form, and proved that the testing, observation and bisimulation equivalences coincide for these LTSs, as we have done in the first part of Lemma 3.3. The form of the LTSs defined by Proposition 3.4 is similar to the normal form defined in [Drir 92], except that in our case each state has, in an exclusive manner, transitions labelled by the silent action or transitions labelled by interactions, whereas in [Drir 92] a state may have both kind of transitions.

4 Merging Acceptance Graphs

In this section, we define the merging of AGs. The AGs are more tractable mathematically than the LTSs, because the outgoing transitions, from a given state, have distinct labels. Given two AGs G1 and G2, we define an operation Merge, such that $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ extends G1 and G2. Moreover, provided that a necessary and sufficient condition holds, $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is the least common cyclic extension of G1 and G2. The main properties of this Merge operation are described and an algorithm for the construction of $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ in the case of FAGs as well as an example of application are given.

4.1 Definition and Properties of the Merge operation

Informally, given two AGs G1 $=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}\right\rangle$ and $\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2{ }_{\mathrm{o}}\right\rangle$, we define $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ to be the reachable part of a graph in which a state g_{i} is either a pair $\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right\rangle$ consisting of a state $\mathrm{g} 1_{\mathrm{i}}$ from Sg 1 and a state $\mathrm{g} 2_{\mathrm{j}}$ from Sg 2 (for instance, the initial state $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$), or a simple state $g 1_{i}$ from Sg 1 , or a simple state g_{j} from Sg 2 .

The definition of the transitions from a state $\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}>\right.$ in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ depends on the transitions from $g 1_{i}$ in $G 1$ and from $g 2_{j}$ in $G 2$. For instance, the transition $\left\langle g 1_{i}, g 2_{j}\right\rangle-a \rightarrow\left\langle g 1_{k}, g 2_{m}\right\rangle$ is defined
in $\operatorname{Merge}(G 1, G 2)$, if and only if there is a transition $g 1_{i}-a \rightarrow g 1_{k}$ in $G 1$ and a transition $g 2_{j}-a \rightarrow g 2_{m}$ in G2. A transition $\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right\rangle-\mathrm{a} \rightarrow \mathrm{g} 1_{\mathrm{k}}$ is defined in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, if and only if there exist a transition $\mathrm{g} 1_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{g} 1_{\mathrm{k}}$ in G 1 , but there is no transition labeled by \mathbf{a} from $\mathrm{g} 2_{\mathrm{j}}$ in G 2 . The transitions from a simple state in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, such as $\mathrm{g} 1_{\mathrm{k}}$ for instance, remain the same as defined in G 1 or G 2 , except for the transitions that reach the initial states of G1 or G2, which are replaced by corresponding transitions that reach the initial state $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$ of $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$. A complete definition is as follows:

Definition 4.1 (Merge)

Given two AGs, G1 = <Sg1, L1, Ac1, Tg1, g1 $>$ and
$\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}\right\rangle$,
$\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)=\operatorname{reachable}\left(\left\langle\operatorname{Sg} 3, \mathrm{~L} 1 \quad \mathrm{~L} 2, \operatorname{Ac} 3, \operatorname{Tg} 3,\left\langle\mathrm{~g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle>\right)\right.$, where
(1) $\operatorname{Sg} 3=\left\{\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle \mid \mathrm{g} 1_{\mathrm{i}} \in \operatorname{Sg} 1\right.$ and $\left.\mathrm{g} 2_{\mathrm{k}} \in \mathrm{Sg} 2\right\} \quad \mathrm{Sg} 1 \quad \mathrm{Sg} 2$.
(2) The mapping Ac3 is defined as follows: For each state g_{i} in Sg 3 , if $\mathrm{g}_{\mathrm{i}}=\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2 \mathrm{j}_{\mathrm{j}}\right.$, then $\operatorname{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)=\left\{\mathrm{X} 1 \quad \mathrm{X} 2 \mid \mathrm{X} 1 \in \operatorname{Ac} 1\left(\mathrm{~g}_{\mathrm{i}}\right)\right.$ and $\left.\mathrm{X} 2 \in \operatorname{Ac} 2(\mathrm{~g} 2 \mathrm{j})\right\}$, if $g_{i} \in \operatorname{Sgx}$, then $\operatorname{Ac} 3\left(g_{i}\right)=\operatorname{Acx}\left(g_{i}\right)$, where $x=1,2$.
(3) For each state $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle$ in Sg 3 ,

3-1. $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle-\mathrm{a} \rightarrow\left\langle\mathrm{g} 1_{1}, \mathrm{~g} 2_{\mathrm{m}}\right\rangle \in \mathrm{Tg} 3$ iff $\mathrm{g} 1_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g} 1_{1} \in \operatorname{Tg} 1$ and $\mathrm{g} 2_{\mathrm{k}}-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{m}} \in \mathrm{Tg} 2$.
3-2. $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle-\mathrm{a} \rightarrow\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle \in \operatorname{Tg} 3$ iff $\left(\mathrm{g} 1_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g} 1_{\mathrm{o}} \in \operatorname{Tg} 1\right.$ and $\left.\mathrm{g} 2_{\mathrm{k}}-, / \mathrm{a} \rightarrow \mathrm{in} \operatorname{Tg} 2\right)$

$$
\text { or }\left(\mathrm{g}_{1}-, / \mathrm{a} \rightarrow \text { in } \mathrm{Tg} 1 \text { and } \mathrm{g}_{2}-\mathrm{a} \rightarrow \mathrm{~g} 2_{\mathrm{o}} \in \mathrm{Tg} 2\right)
$$

3-3. $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle-\mathrm{a} \rightarrow \mathrm{g} 1_{1} \in \mathrm{Tg} 3$ iff $\mathrm{g} 1_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g} 1_{1} \in \mathrm{Tg} 1, \mathrm{~g} 1_{1} \mathrm{~g} 1_{\mathrm{o}}$, and $\mathrm{g} 2_{\mathrm{k}}-, / \mathrm{a} \rightarrow$ in $\operatorname{Tg} 2$.
3-4. $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{m}} \in \operatorname{Tg} 3$ iff $\mathrm{g} 2_{\mathrm{k}}-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{m}} \in \operatorname{Tg} 2, \mathrm{~g} 2_{\mathrm{m}} \mathrm{g} 2_{\mathrm{o}}$, and $\mathrm{g} 1_{\mathrm{j}}-, / \mathrm{a} \rightarrow \mathrm{in} \operatorname{Tg} 1$.
(4) For each state $g_{x_{j}}$ in $\operatorname{Sg} 3$, where $\mathrm{x}=1,2$,

4-1. $\mathrm{gxj}_{\mathrm{j}}-\mathrm{a} \rightarrow\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\in \operatorname{Tg} 3\right.$ iff $\mathrm{gx}_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g}_{\mathrm{x}} \in$ Tgx.
4-2. $g_{x_{j}}-a \rightarrow g_{x_{1}} \in \operatorname{Tg} 3$ iff $g_{x_{j}}-a \rightarrow g_{x_{1}} \in \operatorname{Tg} x^{\prime}, g_{x_{1}} g_{x_{0}}$.

If we consider, for instance, the AGs G1 and G2 shown in Figure 5, Merge(G1, G2) is described by the reachable part (in bold) of G.

Figure 5. Example of Merge.

Merge(G1, G2) defines an AG. The consistency constraints defined in Section 3.1 are satisfied by Merge(G1, G2) as stated by Proposition 4.1 below. Stated otherwise, given two AGs G1 and G2, Merge(G1, G2), always exists.

Proposition 4.1

Given two AGs, G1 and G2, Merge(G1, G2) is an AG.

The operation Merge is commutative and associative. Therefore, AGs may be combined in an incremental way and in any order.

Proposition 4.2

Given three AGs, G1, G2 and G3, the following holds:
(a) $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)=\mathrm{g} \operatorname{Merge}(\mathrm{G} 2, \mathrm{G} 1)$,
(b) $\operatorname{Merge}(\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2), \mathrm{G} 3)={ }_{\mathrm{g}} \operatorname{Merge}(\mathrm{G} 1, \operatorname{Merge}(\mathrm{G} 2, \mathrm{G} 3))$

In the remainder of this paper, in order to avoid redundancy whenever G1 and G2 play symmetrical roles, we state and prove properties of Merge(G1, G1) relatively to G1 only. Same properties hold with respect to G 2 , since operation Merge is commutative.

Merge(G1, G2) always extends G1.

Proposition 4.3

Given two AGs, G1 and G2, $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2) \operatorname{ext}_{\mathrm{g}} \mathrm{G} 1$.

In order to be a cyclic extension of G1, Merge(G1, G2) should preserve the cyclic traces of G1. Merge(G1, G2) preserves the cyclic traces of G1, if and only if it preserves, at least as cyclic traces, the elementary cyclic traces of G1. However, there is some situation where an elementary cyclic trace in G1 is a noncyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$. Indeed, this is the case when a certain elementary cyclic trace σ in $\mathrm{G} 1\left(\mathrm{~g} 1_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g} 1_{\mathrm{o}}\right)$ is a noncyclic trace in $\mathrm{G} 2\left(\mathrm{~g} 2_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g} 2_{\mathrm{k}}\right.$ with $\left.\mathrm{g} 2_{\mathrm{k}} \mathrm{g} 2_{\mathrm{o}}\right)$. By definition of Merge, after performing σ, $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ reaches a state $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{k}}>\right.$ different from its initial $\left\langle\mathrm{g} 1_{\mathrm{o}}\right.$, $\mathrm{g} 2_{\mathrm{o}}>$, since $\mathrm{g} 2_{\mathrm{k}} \mathrm{g} 2_{\mathrm{o}}$. Therefore, σ is a noncyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$. The example in Figure 6 illustrates such situations. For instance, \mathbf{a} is an elementary cyclic trace in $\mathrm{G} 1\left(\mathrm{~g} 1_{0}=\sigma \Rightarrow \mathrm{g} 1_{0}\right)$, but \mathbf{a} is a non cyclic trace in $\mathrm{G} 2\left(\mathrm{~g} 2_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g} 2_{1}\right.$ with $\left.\mathrm{g} 2_{1} \mathrm{~g} 2_{\mathrm{o}}\right)$. Therefore, \mathbf{a} is a non cyclic trace in Merge $(\mathrm{G} 1$, $\mathrm{G} 2)\left(\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>=\sigma \Rightarrow\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{1}>\right.\right.\right.$ with $\left.\mathrm{g} 2_{1} \mathrm{~g} 2_{\mathrm{o}}\right)$. In Proposition 4.4, we state a necessary and sufficient condition for an elementary cyclic trace in G1 to remain a cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$.

Figure 6. Preservation of the cyclic traces by Merge.

Proposition 4.4

Given two AGs, G1 and G2, an elementary cyclic trace σ in G 1 is a cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, iff (σ is a cyclic trace in G 2 or $\sigma \quad \operatorname{Tr}(\mathrm{G} 2)$).

From Proposition 4.4, it follows that $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ preserves the cyclic traces of G 1 , if and only if any elementary cyclic trace σ in G1 is a cyclic trace in G 2 or $\sigma \quad \operatorname{Tr}(\mathrm{G} 2)$, which is equivalent to any cyclic trace σ in G 1 is a cyclic trace in G 2 or $\sigma \quad \operatorname{Tr}(\mathrm{G} 2)$ as stated in the following proposition.

Proposition 4.5

Given two AGs, G1 and G 2 , the following statements are equivalent:
(a) $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ preserves the cyclic traces of G 1 ,
(b) any elementary cyclic trace σ in G 1 is a cyclic trace in G 2 or $\sigma \operatorname{Tr}(\mathrm{G} 2)$.
(c) any cyclic trace σ in G1 is a cyclic trace in G 2 or $\sigma \quad \operatorname{Tr}(\mathrm{G} 2)$.

The conditions (b) (and (c)) in Proposition 4.5 can be stated in terms of states as follows: for any state $<\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}>$ in $\operatorname{Merge}(\mathrm{G} 1, G 2)$, if $\mathrm{g} 1_{\mathrm{i}}=\mathrm{g} 1_{\mathrm{o}}$ then $\mathrm{g} 2_{\mathrm{j}}=\mathrm{g} 2_{\mathrm{o}}$. This condition is very easy to verify in the case of FAGs.

In Proposition 4.4, we have stated a sufficient and necessary condition for which an elementary cyclic trace σ in G 1 remains a cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$. Moreover, in this case σ is an elementary cyclic trace in $\operatorname{Merge}\left(\mathrm{G} 1, \mathrm{G} 2\right.$). Indeed, if $\sigma=\mathrm{a} 1 . \mathrm{a} 2 \ldots$ an and $\mathrm{g} 1_{\mathrm{o}}-\mathrm{a} 1 \rightarrow \mathrm{~g} 1_{\mathrm{i}}, \mathrm{g} 1_{\mathrm{i}}-\mathrm{a} 2 \rightarrow \mathrm{~g} 1_{\mathrm{i}+1}$ $\ldots, g 1_{i+n-2}-$ an $\rightarrow \mathrm{g} 1_{\mathrm{o}}$ with $\mathrm{g} 1_{i+j} \mathrm{~g} 1_{\mathrm{o}}$, for $\mathrm{j}=0, \ldots$, $\mathrm{n}-2$, and σ is a cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, then by definition of Merge, $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>-\mathrm{a} 1 \rightarrow \mathrm{~g}_{\mathrm{i}}, \mathrm{g} 1_{\mathrm{i}}-\mathrm{a} 2 \rightarrow \mathrm{~g}_{\mathrm{i}+1} \ldots, \mathrm{~g}_{\mathrm{i}+\mathrm{n}-2-\mathrm{an}} \rightarrow\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.\right.$ with $\mathrm{g}_{\mathrm{i}+\mathrm{j}}=$ $\mathrm{g} 1_{i+j}$ or $\left\langle\mathrm{g} 1_{i+j}, \mathrm{~g} 2_{\mathrm{kj}}\right\rangle$ for some state $\mathrm{g} 2_{\mathrm{kj}}$ in G 2 and $\mathrm{g}_{\mathrm{i}+\mathrm{j}}\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$, since $\mathrm{g} 1_{i+j} \quad \mathrm{~g} 1_{\mathrm{o}}$, for $\mathrm{j}=0, \ldots$, $\mathrm{n}-2$. However, an elementary cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is not always an elementary cyclic trace in G1 or G2. As shown by the example in Figure 6, a.a is neither an elementary cyclic trace in G1 nor in G2. a.a is a cyclic trace in G1. As stated by Proposition 4.6, any elementary cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is a cyclic trace in G1 or G2.

Proposition 4.6

Given two AGs, G1 and G2, any elementary cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is a cyclic trace in G 1 or G 2 .

Any trace in Merge(G1, G2) results from the recursive concatenation of cyclic traces of G1 or G2, and a certain trace of G1 or G2. In other words, Merge(G1, G2) may only perform what G1 or G2 may perform, in a recursive manner.

Proposition 4.7

Given two AGs, G1 and G2,
any trace σ of $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ may be written as $\sigma=\sigma 1 . \sigma 2 \ldots . . \sigma_{\mathrm{n}} . \sigma_{\mathrm{n}+1}$, with
σ as a cyclic trace in G 1 or G 2 , for $\mathrm{i}=1, \ldots, \mathrm{n}$, and $(\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 1)$ or $\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 2))$.

In the case where the cyclic traces of G 1 and the cyclic traces of G 2 remain as cyclic traces in Merge(G1, G2), Merge(G1, G2) represents the least common cyclic extension of G1 and G2. The following theorem follows partly from Proposition 4.3 and Proposition 4.5.

Theorem 4.1

Given two AGs, G1, G2,
$\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is the least common cyclic extension of G1 and G2, iff any cyclic trace σ in G 1 is a cyclic trace in G 2 or $\sigma \quad \mathrm{Tr}(\mathrm{G} 2)$, and reciprocally.

Due to the constraint for the preservation of the cyclic traces of G1 and G2 in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, bisimulation equivalence is not substitutive under the Merge combinator. In other words, the fact that X is bisimulation equivalent to Y does not ensure that $\operatorname{Merge}(\mathrm{X}, \mathrm{Z})$ is bisimulation equivalent to Merge(Y, Z). The example in Figure 7, for instance, illustrates such situation. We have G1 g G3 but $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ and $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$ are not bisimulation equivalent. As shown by this example, this is due to the fact that \mathbf{a} is a cyclic trace in G1 but not in G3. The cyclic bisimulation equivalence is substitutive under the Merge combinator. As stated by Theorem 4.2, if X is cyclic bisimulation equivalent to Y then $\operatorname{Merge}(X, Z)$ is cyclic bisimulation equivalent to $\operatorname{Merge}(Y, Z)$, for any $A G Z$. Therefore, $\operatorname{Merge}(\mathrm{X}, \mathrm{Z})$ is bisimulation equivalent to $\operatorname{Merge}(\mathrm{Y}, \mathrm{Z})$.

Figure 7. Substitution property of the bisimulation equivalence under Merge.

Theorem 4.2

Given three AGs, G1, G2, and G3, such that G1 c_{g} G3, the following holds: $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2) \quad \mathrm{c}_{\mathrm{g}} \operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$

4.2 Merging FAGs and Application

In the previous section the Merge combinator has been defined for arbitrary AGs. In the following, we describe an algorithm, also called Merge, for the construction of Merge(G1, G2), in the case of FAGs, and we apply it for the combination of two versions of the so-called Daemon Game [ISO 8807]. Notice that, in the case of an FAG G, for any state g_{i} of $G, \operatorname{Ac}\left(g_{i}\right)$ and any element in $\operatorname{Ac}\left(g_{i}\right)$ are finite, since $\mathrm{Ac}\left(\mathrm{g}_{\mathrm{i}}\right) \quad P(L)$.

Algorithm Merge

Given two AGs, $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}\right\rangle$ and $\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}\right\rangle$,
$\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)=\left\langle\mathrm{Sg} 3\right.$, L1 $\mathrm{L} 2, \mathrm{Ac} 3, \mathrm{Tg} 3,\left\langle\mathrm{~g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle>$, where $\mathrm{Sg} 3, \mathrm{Ac} 3$ and Tg 3 are built, recursively, as follows:

Initial step:

$\operatorname{Sg} 3=\left\{\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle\right\}$ and $\operatorname{Ac} 3\left(\left\langle\mathrm{~g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle\right)=\left\{\mathrm{X} 1 \quad \mathrm{X} 2 \mid \mathrm{X} 1 \in \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{o}}\right)\right.$ and $\left.\mathrm{X} 2 \in \operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{o}}\right)\right\}$.

Loop:

For each state g_{i} entered into Sg 3 (first for the initial state $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{0}>\right.$) repeat the following: if $g_{i}=\left\langle g 1_{j}, g_{2}\right\rangle$, then for each $A \in \operatorname{Ac} 3\left(\left\langle g 1_{j}, g_{2}\right\rangle\right)$ and $a \in A$,
if $\mathrm{g}_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g} 1_{1} \in \mathrm{Tg} 1$ and $\mathrm{g}_{2}-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{m}} \in \mathrm{Tg} 2$, then

$$
\begin{aligned}
& \operatorname{Sg} 3=\operatorname{Sg} 3 \quad\left\{\left\langle\mathrm{~g} 1_{1}, \mathrm{~g} 2_{\mathrm{m}}>\right\},\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{~g} 2_{\mathrm{k}}>-\mathrm{a} \rightarrow\left\langle\mathrm{~g} 1_{1}, \mathrm{~g} 2_{\mathrm{m}}>\in \operatorname{Tg} 3\right. \text { and }\right.\right. \\
& \operatorname{Ac} 3\left(\left\langle\mathrm{~g} 1_{1}, \mathrm{~g} 2_{\mathrm{m}}>\right)=\left\{\begin{array}{ll}
\mathrm{X} 1 \quad \mathrm{X} 2 \mid \mathrm{X} 1 \in \operatorname{Ac} 1\left(\mathrm{~g} 1_{1}\right) \text { and } \mathrm{X} 2 \in \operatorname{Ac} 2\left(\mathrm{~g}_{2}\right)
\end{array}\right\} .\right.
\end{aligned}
$$

if $\mathrm{g} 1_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g} 1_{\mathrm{o}} \in \mathrm{Tg} 1$ and $\mathrm{g} 2_{\mathrm{k}}-, / \mathrm{a} \rightarrow$ in Tg 2 , then $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle-\mathrm{a} \rightarrow\left\langle\mathrm{g} 1_{0}, \mathrm{~g} 2_{\mathrm{o}}\right\rangle \in \mathrm{Tg} 3$.
if $\mathrm{g}_{\mathrm{j}}-, / \mathrm{a} \rightarrow$ in $\operatorname{Tg} 1$ and $\mathrm{g} 2_{\mathrm{k}}-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{o}} \in \mathrm{Tg} 1$, then $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle-\mathrm{a} \rightarrow\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle \in \mathrm{Tg} 3$.
if $g 1_{j}-\mathrm{a} \rightarrow \mathrm{g} 1_{1} \in \mathrm{Tg} 1$, with $\mathrm{g} 1_{1} \mathrm{~g} 1_{\mathrm{o}}$ and $\mathrm{g} 2_{\mathrm{k}}-, / \mathrm{a} \rightarrow$ in Tg 2 , then

$$
\operatorname{Sg} 3=\operatorname{Sg} 3 \quad\left\{\mathrm{~g} 1_{1}\right\}, \operatorname{Ac} 3\left(\mathrm{~g} 1_{1}\right)=\operatorname{Ac} 1\left(\mathrm{~g} 1_{1}\right) \text { and }\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{~g} 2_{\mathrm{k}}>-\mathrm{a} \rightarrow \mathrm{~g} 1_{1} \in \mathrm{Tg} 3 .\right.
$$

if $\mathrm{g} 1_{\mathrm{j}}-, / \mathrm{a} \rightarrow$ in Tg 1 and $\mathrm{g} 2_{\mathrm{k}}-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{m}} \in \mathrm{Tg} 2$, with $\mathrm{g} 2_{\mathrm{m}} \mathrm{g} 2_{2}$, then

$$
\operatorname{Sg} 3=\operatorname{Sg} 3 \quad\left\{\mathrm{~g} 2_{\mathrm{m}}\right\}, \operatorname{Ac} 3\left(\mathrm{~g} 2_{\mathrm{m}}\right)=\operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{m}}\right) \text { and }\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{~g} 2_{\mathrm{k}}>-\mathrm{a} \rightarrow \mathrm{~g} 2_{\mathrm{m}} \in \mathrm{Tg} 3 .\right.
$$

if $g_{i}=g_{x_{j}}$, with $x=1,2$, then for each $A \in \operatorname{Ac} 3\left(g_{x_{j}}\right)$ and $a \in A$,
if $g_{x_{j}}-a \rightarrow \mathrm{~g}_{\mathrm{o}} \in \operatorname{Tg} \mathrm{x}$, then $\mathrm{gx}_{\mathrm{j}}-\mathrm{a} \rightarrow\left\langle\mathrm{g} 1_{0}, \mathrm{~g}_{2_{0}}\right\rangle \in \mathrm{Tg} 3$.
if $\mathrm{gxj}_{j}-\mathrm{a} \rightarrow \mathrm{gx}_{1} \in \operatorname{Tgx}$, with $\mathrm{gx}_{1} \mathrm{gx}_{\mathrm{x}_{0}}$, then

$$
\operatorname{Sg} 3=\operatorname{Sg} 3 \quad\left\{g_{x_{1}}\right\}, \operatorname{Ac} 3\left(g_{x_{1}}\right)=\operatorname{Acx}\left(g_{x_{1}}\right), \text { and } \mathrm{gx}_{\mathrm{j}}-\mathrm{a} \rightarrow \operatorname{gax}_{1} \in \operatorname{Tg} 3 .
$$

Application

As application, we consider two versions of the Daemon game [ISO 8807]. The first game is called Simple Daemon Game. The player may insert a coin, probe the system, then he randomly loses or wins and collects. The behavior of this game is modeled by the FAG G1 in Figure 8 (a). The second game is called Jackpot Daemon Game. The behavior of this second game is as follows: the player has to insert a coin before starting the game. Once the coin has been inserted, the player can probe, then he randomly loses or wins. If he wins, the game continues. He can probe again, then he randomly loses or get the "Jackpot" and collect it. The behavior of Jackpot Daemon Game is modeled by the FAG G2 in Figure 8 (b).

Assume that we want to combine these two games, in order to describe a new system, called Combined Game, where the player can, alternatively, play the Simple Daemon Game and the Jackpot Daemon Game, without any interference between these two games. Merge(G1, G2), as shown in Figure 9, defines such a combination of the Simple Daemon Game and the Jackpot

Daemon Game. We have Merge(G1, G2) extends G1 and G2. Moreover, any cyclic trace of G1 remains as cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, since there is no state $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{j}}\right\rangle$ in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ with $\mathrm{g} 2 \mathrm{j} \quad \mathrm{g} 2_{\mathrm{o}}$. Any cyclic trace of G 2 remains as cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, since there is no state $\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{0}\right\rangle$ in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ with $\mathrm{g} 1_{\mathrm{i}} \mathrm{g} 1_{\mathrm{o}}$. $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is the least common cyclic extension of G1 and G2. Merge(G1, G2) is able to behave, alternatively, in a recursive manner, as G1 and G2.

Figure 8. (a) Simple Daemon Game (b) Jackpot Game Descriptions.

Figure 9. Combined Game Description.

4.3 Discussion

The operation Merge defined in Section 4.1 is such that, for given AGs, G1 and G2, in the case of the cyclic traces of G 1 or G 2 , $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2$) may exhibit the behaviors of G 1 and the behaviors of G2, in a recursive manner, without any new failure for these behaviors. Consider, for instance, the example in Section 4.2, the Combined Game may exhibit the behaviors of the Simple Daemon Game and the behaviors of the Jackpot Daemon Game, in a recursive manner. Each time the Combined Game exhibits a behavior of the Simple Daemon Game or a behavior of the Jackpot Daemon Game, the Combined Game does not block where the Simple Daemon Game or the Jackpot Daemon Game may not block, respectively.

Merge(G1, G2) always extends G1 and G2. Provided that certain necessary and sufficient condition (Theorem 4.1) is satisfied, $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2$) is the least common cyclic extension of G1 and G2. In general, $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is not the least common extension of G1 and G2. The least common extension of G 1 and G 2 is defined by the combinator , which is very similar to Merge operation, except for the rules defining the transitions, which are replaced by the following rules:
(3) For each state $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle$ in Sg 3 ,

3-1. $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}>-\mathrm{a} \rightarrow\left\langle\mathrm{g} 1_{1}, \mathrm{~g} 2_{\mathrm{m}}\right\rangle \in \mathrm{Tg} 3\right.$ iff $\mathrm{g} 1_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g} 1_{1} \in \operatorname{Tg} 1$ and $\mathrm{g} 2_{\mathrm{k}}-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{m}} \in \operatorname{Tg} 2$.
3-2. $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle-\mathrm{a} \rightarrow \mathrm{g} 1_{1} \in \mathrm{Tg} 3$ iff $\mathrm{g} 1_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{g} 1_{1} \in \mathrm{Tg} 1$ and $\mathrm{g} 2_{\mathrm{k}}-, / \mathrm{a} \rightarrow$ in Tg 2 .
3-3. $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}>-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{m}} \in \mathrm{Tg} 3\right.$ iff $\mathrm{g} 2_{\mathrm{k}}-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{m}} \in \mathrm{Tg} 2$ and $\mathrm{g} 1_{\mathrm{j}}-, / \mathrm{a} \rightarrow$ in $\operatorname{Tg} 1$.
(4) For each state $g_{x_{j}}$ in $S g 3$, where $x=1,2, g_{x_{j}}-a \rightarrow g_{x_{1}} \in T g 3$ iff $g x_{j}-a \rightarrow g_{x_{1}} \in \operatorname{Tg} x$.

Contrarily to Merge(G1, G2), in G1 G2, the transitions, from a simple state $\mathrm{g} 1_{\mathrm{i}}$ of G 1 (respectively $\mathrm{g} 2_{j}$ of G 2), that reach the initial state $\mathrm{g} 1_{\mathrm{o}}$ of G 1 (respectively $\mathrm{g} 2_{\mathrm{o}}$ of G 2) are preserved without any change. For a state $\left\langle g 1_{j}, g 2_{k}\right\rangle$, if there is a transition $g 1_{j}-a \rightarrow g 1_{o}$ in G_{1}, but no transition from $g 2_{k}$ labelled by a in G 2 , then the transition $\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle-\mathrm{a} \rightarrow \mathrm{g} 1_{\mathrm{o}}$ is defined in $\mathrm{G} 1 \quad \mathrm{G} 2$ instead of $\left\langle\mathrm{g} 1_{\mathrm{j}}\right.$, $\mathrm{g} 2_{\mathrm{k}}>-\mathrm{a} \rightarrow\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\operatorname{in} \operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)\right.$, and reciprocally. Once the initial state $\mathrm{g} 1_{\mathrm{o}}$ of G 1 (respectively $\mathrm{g} 2_{0}$ of G 2) is reached, $\mathrm{G} 1 \quad \mathrm{G} 2$ behaves as G 1 (respectively G 2).

The combinator defines an AG. is commutative and associative. G1 G2 always extends G1 and G2. Moreover, G1 G2 is always the least common extension of G1 and G2. By definition, G 1 G 2 does not preserve the cyclic traces of G 1 (respectively G 2), except the cyclic traces common to G 1 and G 2 . We have $\operatorname{Tr}(\mathrm{G} 1 \quad \mathrm{G} 2)=\operatorname{Tr}(\mathrm{G} 1) \quad \operatorname{Tr}(\mathrm{G} 2)$. G1 G 2 may exhibit only behaviors of G1 or only behaviors G2 as shown by the example in Figure 10, which describes the least common extension of the Simple Daemon Game and the Jackpot Daemon Game. In this figure, G1 G2 describes a system, which may behave only as the Simple Daemon Game or only as the Jackpot Daemon Game.

The operation preserves the bisimulation equivalence. In other words, if G1 g G3, then G1 G2 g G3 G2. Moreover, preserves the cyclic bisimulation equivalence, since only the common cyclic traces of G 1 (respectively G 3) and G 2 are preserved in G1 G 2 (respectively G 3 G 2).

Figure 10. Application of the operation

5 Merging Labelled Transition Systems

The definition of Merge for LTSs is based on the definition of Merge for AGs and the correspondence between LTSs and AGs.

5.1 Definition and Properties of Merge

Definition 5.1 (Merge for LTSs)

Given two LTSs S1 and S2, Merge(S1, S2) = lts(Merge(ag(S1), ag(S2))).

Since for any LTS S, there is one and only one AG G such that $G=a g(S)$, for any AG G there is one and only one LTS such $S=\operatorname{lts}(G)$, and for given AGs G1 and G2, Merge(G1, G2), always exists and uniquely defined, then for given LTSs S1 and S2, Merge(S1, S2), always, exists and is uniquely defined.

All the propositions, lemmas and Theorem 4.1 stated for Merge in the case of AGs holds for Merge in the case of LTSs. For instance, Merge(S1, S2) always extends S1 and S2. Merge(S1, S2) is commutative and associative. Merge(S1,S2) is the least common cyclic extension of S1 and S2, if and only if any cyclic trace σ in S 1 is a cyclic trace in S 2 or $\sigma \operatorname{Tr}(\mathrm{S} 2)$ and reciprocally.

By correspondence to the AGs and Theorem 4.2, the testing, observation, strong bisimulation equivalences are not substitutive under the LTSs Merge combinator. However, the cyclic (testing, observation, strong bisimulation) equivalences are substitutive under the LTSs Merge combinator. The fact that X and Y are, at least, cyclic testing equivalent ensures that $\operatorname{Merge}(X, Z)$ is cyclic bisimulation equivalent to $\operatorname{Merge}(\mathrm{Y}, \mathrm{Z})$. Indeed, if X and Y are, at least, cyclic testing equivalent, their corresponding $\operatorname{AGs} \operatorname{ag}(X)$ and $\operatorname{ag}(Y)$ are cyclic bisimulation equivalent (Lemma 3.1 in Section 3), $\operatorname{Merge}(\operatorname{ag}(X), \operatorname{ag}(Z))$ is cyclic bisimulation equivalent to $\operatorname{Merge}(\operatorname{ag}(Y), \operatorname{ag}(Z))$ (Theorem 4.2 in Section 4), and lts(Merge($\operatorname{ag}(X), \operatorname{ag}(Z)))$ and lts(Merge $(\operatorname{ag}(Y), \operatorname{ag}(Z)))$ are cyclic bisimulation equivalent (Proposition 3.5 in Section 3).

Similarly to Merge, S1 $\mathrm{S} 2=\operatorname{lts}(\operatorname{ag}(\mathrm{S} 1) \quad \operatorname{ag}(\mathrm{S} 2))$. By correspondence to the AGs, $\mathrm{S}_{1} \quad \mathrm{~S} 2$ is the least common extension of $S 1$ and $S 2$ and the properties of \quad in the case of AGs hold for in the case of LTSs.

5.2 Merging FLTSs and Application

In the previous section, we defined $\operatorname{Merge}(\mathrm{S} 1, \mathrm{~S} 2)$ for arbitrary LTSs. In this section, we describe an algorithm for the construction of $\operatorname{Merge}(S 1, S 2)$, for the case where S 1 and S2 are FLTSs. This algorithm consists of three steps. In the first step, S1 and S2 are transformed into FAGs G1 and G2, such that $\mathrm{G} 1=\operatorname{ag}(\mathrm{S} 1)$ and $\mathrm{G} 2=\mathrm{ag}(\mathrm{S} 2)$. In the second step, $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is constructed
following algorithm Merge described in Section 4.2. In the last step, Merge(G1, G2) is translated into lts(Merge(G1, G2)).

5.2.1 From an FLTS to an FAG

Given an FLTS $\mathrm{S}=\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}>\right.$, the following algorithm derives a corresponding FAG $\mathrm{G}=$ $<\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}>$. It is based on the "subset construction" algorithm defined in [Hopc 79].

Step 1: Apply the "subset construction" algorithm [Hopc 79], which transforms a nondeterministic finite state automata to a deterministic one (in our case G). To each state in G corresponds a set of states in S . To the state g_{o}, for instance, corresponds the set of states $\left\{\mathrm{s}_{\mathrm{i}} \in \mathrm{St} \mid \mathrm{s}_{\mathrm{o}}=\varepsilon \Rightarrow \mathrm{s}_{\mathrm{i}}\right\}$.

Step 2: For each state g_{i} in $G, \operatorname{Ac}\left(g_{i}\right)=\left\{X \mid \operatorname{out}\left(s_{j}\right) \quad X \quad k=m, k=1 \operatorname{out}\left(s_{k}\right)\right.$, for $j=1, \ldots$,
$m\}$, if $\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ corresponds to g_{i}.

5.2.2 From an FAG to an FLTS

Given an $\mathrm{FAGG}=\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}>\right.$, the following algorithm allows to derive the FLTS $S=<S t, L, T, s_{0}>=1 t s(G)$.

Step 1: (Reduction of the acceptance sets):

$$
\begin{aligned}
\forall \mathrm{g}_{\mathrm{i}} \in \mathrm{Sg}, \operatorname{Ac}^{\prime}\left(\mathrm{g}_{\mathrm{i}}\right)= & \left\{\mathrm{X} \mid \mathrm{X} \in \operatorname{Ac}\left(\mathrm{~g}_{\mathrm{i}}\right) \text {, such that } \quad \mathrm{Y}(\mathrm{X}), \mathrm{Z}(\mathrm{X}) \in \operatorname{Ac}\left(\mathrm{g}_{\mathrm{i}}\right),\right. \\
& \text { and } \mathrm{X}=\mathrm{Y} \quad \mathrm{Z} \text { or } \mathrm{Y} \quad \mathrm{X} \quad \mathrm{Z}\}
\end{aligned}
$$

Step 2: Each state g_{i} is decomposed into $\mathrm{k}+1$ LTS states $\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i} 1}, \mathrm{~s}_{\mathrm{i} 2}, \ldots, \mathrm{~s}_{\mathrm{ik}}$, where $\mathrm{k}=\operatorname{cardinal}\left(\mathrm{Ac}^{\prime}\left(\mathrm{g}_{\mathrm{i}}\right)\right)$. s_{o} represents the initial state of S . Each state s_{ij} corresponds to an element A_{ij} of $\mathrm{Ac}^{\prime}\left(\mathrm{g}_{\mathrm{i}}\right)$.
The transitions $s_{i}-\tau \rightarrow s_{i j}$ are defined in S, for $j=1, \ldots$, k, for each state s_{i} in S.

Step 3: For each state $s_{i j}$ in $S t$, for each $a \in A_{i j}$, if $g_{i}-a \rightarrow g_{m} \in T g$, then $s_{i j}-a \rightarrow s_{m} \in T$.

5.2.3 Application

We consider the same example as in Section 4. The behaviors of the "Simple Daemon Game" and the "Jackpot Daemon Game" are modeled by FLTSs S1 and S2 in Figure 11, respectively. Merging S1
and S 2 yields the FLTS S 3 shown in Figure 11. S3 extends S 1 and S 2 . Moreover, any cyclic trace of $S 1$ or $S 2$ remains a cyclic trace in $S 3$. S 3 is the least common cyclic extension of S 1 and S 2 . S 3 may behave, alternatively, in a recursive manner, as $S 1$ and $S 2$. Note that $S 3$ may be reduced with respect to the (cyclic) observation equivalence by removing some internal transitions τ.

Figure 11. (a) Simple Daemon Game (b) Jackpot Game (c) Combined Game Descriptions.

6 Related work

In [Ichi 90], the problem of incremental specification in the LOTOS specification language is approached. They introduced a new LOTOS operator and defined the corresponding inference rules, called specification merging operator. This approach is restricted to behavior specifications without the internal action τ. B1 B2 defines a behavior, which is supposed to be an extension of

B 1 and B 2 . Unfortunately, it is not always the case as shown by the counter-example of Figure 12. For instance, B1 never refuses interaction \mathbf{c} after trace $\mathbf{a} . \mathbf{b}$, whereas $\mathrm{B} 1 \quad \mathrm{~B} 2$ may refuse interaction c after trace a.b. Moreover, B1 $\quad \mathrm{B} 2$ is not able to behave, alternatively, as B1 and B2. B1 \quad B2 may behave only as $B 1$ or only as $B 2$, once the environment has chosen $B 1$ or $B 2$, respectively. In the case of deterministic LTSs, this combinator leads the same LTS as the combinator (merging without taking into account the preservation of cyclic traces) introduced in this paper.

Figure 12. Counter-example for Ichikawa et al. merging operator.

Mayr has considered the choice operator of the LOTOS language for the extension of behavior specifications [Mayr 88]. The extension of a behavior t by a behavior m is denoted by the behavior t [] m . However, strong restrictions are imposed on the behavior m , in order to ensure that s extends t . For instance, the initial interactions of m should be distinct from initial interactions of t .

In [Rudk 91] the notion of inheritance is defined for LOTOS. It is seen as an incremental modification technique. A corresponding operator is introduced and denoted by " ". This operator is defined such that if $\mathrm{s}=\mathrm{t} \quad \mathrm{m}$, then s extends t and any recursive call in t or m is redirected to s . However, strong restrictions are imposed on t and m , such that m should be stable (no internal transition as first event), the initial events of m should be unique and distinct from initial events of t, and so on. The specifications B1 and B2 in Figure 14, for instance, do not satisfy such requirements. In order to define a recursive choice between t and m, Rudkin extended the LOTOS language by a new primitive process "self". There is no requirement such that s should also extend
m , and no considerations to the structure of t or how this modification m is propagated to the processes in t .

Lin has developed an approach for merging alternative protocol functions [Lin 91]. The approach is based on the model of communicating finite state machines. It consists of designing a component protocol for each individual function and then combine them into a single alternating-function protocol. The combination algorithm resolves problems of competition and synchronization between the component protocols, in order to preserve the safety properties (absence deadlock and unspecified receptions) of the component protocols. However, this approach does not take into account the service realized by each protocol component and how this service is preserved in the alternating-function protocol.

7 Conclusion

In this paper, we described an approach for merging behavior specifications. These behaviors are modeled by acceptance graphs or labelled transition systems. Given two behavior specifications B1 and B2, we defined the merging of B1 and B2, written Merge(B1, B2). We proved certain properties of Merge; for instance, Merge(B1, B2) extends B1 and B2. Provided that a necessary and sufficient condition holds, the cyclic traces in B 1 (respectively B 2) remain cyclic traces in $\operatorname{Merge}(\mathrm{B} 1, \mathrm{~B} 2$). Therefore, Merge(B1, B2) is a cyclic extension of B1 and B2. Moreover, in this case, Merge(B1, B2) is the least common cyclic extension of B 1 and B 2 . We defined a second combinator, , which is very similar to Merge, but differs on the treatment of the cyclic traces of B1 and B2. The operation always leads the least common extension of B1 and B2.

The proposed approach for merging behavior specifications is useful for the construction of multiple-function specifications. Instead of handling all the functions simultaneously, the designer may design and verify one function at a time. The merging approach will then derive the required combined specification. From another point of view, it allows the designer to enrich existing specifications with new behaviors required by the user and to integrate existing system specifications.

The approach introduced in this paper has been extended to structured specifications, i.e. specifications which are modeled as parallel composition of subsystem specifications [Khen 93]. As future development, the application of the extended approach to real case system specifications, such as the telephone system specification, is expected.

The labelled transition systems model used in this paper is the underlying semantic model for many specification languages, such as LOTOS [ISO 8807] and CCS [Miln 89]. The full examination of the algebraic properties of the merging operators Merge and as well as the congruence property of the newly introduced (cyclic) equivalences in the context of these languages is left for future development.

References

[Brin 86] E. Brinksma, G. Scollo and S. Steenbergen, LOTOS specifications, their implementations and their tests, Protocol Specification, testing, and verification, Montréal, Canada, June 1986, Sarikaya and Bochmann (eds.).
[Broo 85] S. D. Brookes et A. W. Roscoe, An Improved Failure Model for Communicating Sequential Processes, Proceedings of the NSF-SERC Seminar on Concurrency, Springer-Verlag LNCS 197, 1985.
[DeNi 84] R. De Nicola et M. Hennessy, Testing equivalences for processes, Theo. Comp. Sci. 34, 1984, pp. 83133.
[Deni 87] R. De Nicola, Extensional Equivalences for Transition Systems, Acta Informatica, 24, 1987, pp. 211-237.
[Clea 93] R. Cleaveland and M. Hennessy, Testing Equivalence as Bisimulation Equivalence, Formal Aspects of Computing, 5, pp. 1-20, 1993.
[Drira 92] K. Drira, Tranformation et composition de graphes de refus: analyse de la testabilité, Doctorat Thesis, Université de Toulouse, 1992.
[Henn 85] M. Hennessy, Acceptances Trees, J. of ACM, Vol.32, No. 4, Oct. 85, pp. 896-928.
[Henn 88] M. Hennessy, Algebraic Theory for Processes, MIT Press, Cambridge, 1988.
[Hopc 79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979, 418p.
[Ichi 90] H. Ichikawa, K. Yamanaka and J. Kato, Incremental Specification in LOTOS, Symposium on Protocol Specification, Testing and Verification X (1990), Ottawa, Canada, Logrippo, Probert and Ural (eds.).
[ISO 8807] ISO -Information Processing Systems - Open Systems Interconnection, LOTOS - A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour, DIS 8807, 1987.
[Khen 93] F. Khendek and G.v. Bochmann, Incremental Construction Approach for Distributed System Specifications, Proceedings of the Int. Symp. on Formal Description Techniques, Boston, Mas., 26-29 Oct., 1993.
[Ledu 90] G. Leduc, On the role of Implementation Relations in the Design of Distributed systems using LOTOS, Doctoral Dissertation, Liège, Belgium.
[Kell 76] R. Keller, Formal verification of parallel programs, Comm. of the ACM 19, July 1976, pp. 371-384.
[Lin 91] H. A. Lin, Constructing Protocols with Alternative Functions, IEEE Transactions on Computer, Vol. 40, No. 4, April 1991.
[Mayr 88] T. Mayr, Specification of object-oriented systems in LOTOS, FORTE, Stirling, 1988.
[Miln 89] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[Park 81] D. Park, Concurrency and Automata in Infinite Strings, Lecture Notes in Computer Science 104, Springer-Verlag, Berlin, 1981, pp. 167-183.
[Rudk 91] S. Rudkin, Inheritance in LOTOS, Formal description technique - FORTE, Sydney, Australia, 1991, pp. 415-430.

Appendix

Proposition 3.1

Consider two AGs, $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}\right\rangle$ and $\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}\right\rangle$.

1 - Assume that $\operatorname{Tr}(\mathrm{G} 1)=\operatorname{Tr}(\mathrm{G} 2)$ and $\left(\forall \sigma \in \operatorname{Tr}(\mathrm{G} 1), \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{O}}\right.\right.$ after $\left.\sigma\right)=\operatorname{Ac} 2\left(\mathrm{~g}_{\mathrm{o}}\right.$ after $\left.\left.\sigma\right)\right)$.
To prove that G 1 g G 2 , we have to prove that the relation $\left\{\left(\left(\mathrm{g} 1_{\mathrm{o}}\right.\right.\right.$ after $\left.\sigma\right),\left(\mathrm{g} 2_{\mathrm{o}}\right.$ after $\left.\left.\left.\sigma\right)\right): \sigma \in \operatorname{Tr}(\mathrm{G} 1)\right\}$ is a bisimulation. By hypothesis, $\operatorname{Ac1}\left(\mathrm{g} 1_{\mathrm{O}}\right.$ after $\left.\sigma\right)=\operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{o}}\right.$ after $\left.\sigma\right), \forall \sigma \in \operatorname{Tr}(\mathrm{G} 1)$.
Consider ($\mathrm{g} 1_{\mathrm{O}}$ after $\sigma, \mathrm{g} 2_{\mathrm{o}}$ after σ) $\in \mathrm{R}$, for some $\sigma \in \operatorname{Tr}(\mathrm{G} 1)$, $\left(\mathrm{g} 1_{\mathrm{O}}\right.$ after $\left.\sigma\right)-\mathrm{a} \rightarrow \mathrm{g} 1_{\mathrm{i}}$, if and only if $\left(\mathrm{g} 2_{\mathrm{o}}\right.$ after $\sigma)-\mathrm{a} \rightarrow \mathrm{g} 2_{\mathrm{j}}$, since $\operatorname{Tr}(\mathrm{G} 1)=\operatorname{Tr}(\mathrm{G} 2)$. We have $\mathrm{g} 1_{\mathrm{i}}=\mathrm{g} 1_{\mathrm{O}}$ after σ.a and $\mathrm{g} 2_{\mathrm{j}}=\mathrm{g} 2_{\mathrm{o}}$ after σ.a, since the transition relation is a function in the case of AGs. Therefore, $\left(\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right) \in\left\{\left(\mathrm{g} 1_{\mathrm{o}}\right.\right.$ after $\sigma, \mathrm{g} 2_{\mathrm{o}}$ after $\left.\sigma\right)$: $\left.\sigma \in \operatorname{Tr}(\mathrm{G} 1)\right\}$, and the relation $\left\{\left(\left(\mathrm{g} 1_{\mathrm{O}}\right.\right.\right.$ after $\left.\sigma\right)$, $\left(\mathrm{g} 2_{\mathrm{o}}\right.$ after $\left.\left.\left.\sigma\right)\right): \sigma \in \operatorname{Tr}(\mathrm{G} 1)\right\}$ is a bisimulation.

2-G1 g G2, there is a bisimulation R such that $\left(\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right) \in \mathrm{R}$, and $\forall\left(\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right) \in \mathrm{R}, \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{i}}\right)=\operatorname{Ac} 2(\mathrm{~g} 2 \mathrm{j})$. Consider σ, an arbitrary sequence of actions. First case $\sigma=\varepsilon$, it is obvious that $\varepsilon \in \operatorname{Tr}(\mathrm{G} 1)$ and $\varepsilon \in$ $\operatorname{Tr}(\mathrm{G} 2)$. By definition of $\mathrm{AGs}, \mathrm{g} 1_{\mathrm{O}}$ after $\varepsilon=\mathrm{g} 1_{\mathrm{O}}$ and $\mathrm{g} 2_{\mathrm{o}}$ after $\varepsilon=\mathrm{g} 2_{\mathrm{o}}$. By hypothesis, $\left(\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right) \in \mathrm{R}$ and $\operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{O}}\right.$ after $\left.\varepsilon\right)=\operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{O}}\right.$ after $\left.\varepsilon\right)$. Second case $\sigma=\mathrm{a} 1 . \mathrm{a} 2 \ldots$ an, $\sigma \in \operatorname{Tr}(\mathrm{G} 1)$ if and only if $\mathrm{g} 1_{\mathrm{o}}-\mathrm{a} 1 \rightarrow \mathrm{~g} 1_{\mathrm{i}}-$ $\mathrm{a} 2 \rightarrow \mathrm{~g} 1_{i+1} \ldots \mathrm{~g} 1_{i+n-2}-\mathrm{an} \rightarrow \mathrm{g} 1_{\mathrm{i}+\mathrm{n}-1}$. The transition relations Tg 1 and Tg 2 are functions and $\left(\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right) \in \mathrm{R}$.
 $2^{-a n \rightarrow g} 2_{j+n-1}$ with $\left(g 1_{i}, g 2_{j}\right) \in R,\left(g 1_{i+1}, g 2_{j+1}\right) \in R$, ... and $\left(g 1_{i+n-1}, g 2_{j+n-1}\right) \in R$. Consequently, $\sigma \in$ $\operatorname{Tr}(\mathrm{G} 1)$ if and only if $\sigma \in \operatorname{Tr}(\mathrm{G} 2)(\operatorname{Tr}(\mathrm{G} 1)=\operatorname{Tr}(\mathrm{G} 2))$ and $\mathrm{Ac} 1\left(\mathrm{~g} 1_{\mathrm{o}}\right.$ after $\left.\sigma\right)=\mathrm{Ac} 2\left(\mathrm{~g} 2_{\mathrm{o}}\right.$ after $\left.\sigma\right)$.

Proposition 3.2

Consider the AGs, G1, G2 and the LTSs S1, S2 with $\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}, \mathrm{s} 1_{\mathrm{o}}, \mathrm{s} 2_{\mathrm{o}}$, as initial state respectively.
1- First, we have to prove that S2 ext S1 iff G2 extg G1:
1-1 - Prove that S 2 ext $\mathrm{S} 1 \Rightarrow \mathrm{G} 2$ extg $_{\mathrm{G}} \mathrm{G}$:
1-1-a-Prove that $\operatorname{Tr}(\mathrm{G} 1) \quad \operatorname{Tr}(\mathrm{G} 2): \mathrm{G} 1=\mathrm{ag}(\mathrm{S} 1)$ implies that $\operatorname{Tr}(\mathrm{S} 1)=\operatorname{Tr}(\mathrm{G} 1) . \mathrm{G} 2=\mathrm{ag}(\mathrm{S} 2)$ implies that $\operatorname{Tr}(\mathrm{S} 2)=\operatorname{Tr}(\mathrm{G} 2)$. S2 ext S 1 implies that $\operatorname{Tr}(\mathrm{S} 1) \quad \operatorname{Tr}(\mathrm{S} 2)$. Therefore, $\operatorname{Tr}(\mathrm{G} 1) \quad \operatorname{Tr}(\mathrm{G} 2)$.
1-1-b- $\forall \sigma \in \operatorname{Tr}(\mathrm{G} 1), \operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{o}}\right.$ after $\left.\sigma\right) \quad \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{O}}\right.$ after $\left.\sigma\right): \mathrm{G} 1=\mathrm{ag}(\mathrm{S} 1)$ implies that $\operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{o}}\right.$ after $\left.\sigma\right)=$ $\operatorname{Acc}\left(\mathrm{s} 1_{\mathrm{o}}, \sigma\right) . \mathrm{G} 2=\mathrm{ag}(\mathrm{S} 2)$ implies that $\operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{o}}\right.$ after $\left.\sigma\right)=\operatorname{Acc}\left(\mathrm{s} 2_{\mathrm{o}}, \sigma\right) . \forall \sigma \in \operatorname{Tr}(\mathrm{S} 1), \operatorname{Acc}\left(\mathrm{s} 2_{0}, \sigma\right) \quad \operatorname{Acc}\left(\mathrm{s} 1_{0}\right.$, σ), because S 2 ext S 1 . It follows that, $\forall \sigma \in \operatorname{Tr}(\mathrm{G} 1), \operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{O}}\right.$ after $\left.\sigma\right) \quad \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{O}}\right.$ after $\left.\sigma\right)$. Consequently, S 2 ext $\mathrm{S} 1 \Rightarrow \mathrm{G} 2$ extg G1.
1-2-The proof for G2 extg G1 $\Rightarrow \mathrm{S} 2$ ext S 1 is very similar.

2 - Any cyclic trace in S 1 is a cyclic trace in S 2 , iff any cyclic trace in G 1 is a cyclic trace in G 2 :
2-1 - Any cyclic trace in S 1 is a cyclic trace in $\mathrm{S} 2 \Rightarrow$ any cyclic trace in G 1 is a cyclic trace in G 2 :
$\mathrm{G} 1=\mathrm{ag}(\mathrm{S} 1)$, it follows that any cyclic trace in S 1 is a cyclic trace in G 1 , and reciprocally.
$\mathrm{G} 2=\mathrm{ag}(\mathrm{S} 2)$, it follows that any cyclic trace in S2 is a cyclic trace in G2, and reciprocally. Now, assume that any cyclic trace in S1 is a cyclic trace in S2. It follows that any cyclic trace in G1 is a cyclic trace in S2. We deduce that any cyclic trace in G1 is a cyclic trace in G2, which concludes the
first part of the proof. The proof for any cyclic trace in G1 is a cyclic trace in $\mathrm{G} 2 \Rightarrow$ any cyclic trace in S 1 is a cyclic trace in S 2 is similar.

Proposition 3.3

Consider an LTS $\mathrm{S}=\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}>\right.$ and the graph $\mathrm{G}=\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}\right\rangle$ defined by Proposition 3.3. We first have to prove that G is an AG. The constraints Co, C3, C4 are satisfied by definition of $\mathrm{Ac}\left(\mathrm{g}_{\mathrm{i}}\right)$, for each state g_{i} in Sg . Constraint C 2 is satisfied by definition of the transitions in G . We have to prove that G satisfies constraint $C 1$: Given a state g_{i}, we have to prove that $\forall \mathrm{a} \in \mathrm{A}, \mathrm{A} \in \mathrm{Ac}\left(\mathrm{g}_{\mathrm{i}}\right)$, there is one and only one g_{j} such that $g_{i}-a \rightarrow g_{j}$: by definition of $G, \forall a \in A$, and $A \in A c\left(g_{i}\right), g_{i}-a \rightarrow g_{j}$ iff $\mathrm{g}_{\mathrm{j}}=\left\{\mathrm{s}_{\mathrm{j}} \in \mathrm{St} \mid \exists \mathrm{s}_{\mathrm{m}} \in \mathrm{g}_{\mathrm{i}} \text { such that } \mathrm{s}_{\mathrm{m}}-\mathrm{a} \rightarrow \mathrm{s}_{\mathrm{j}}\right\}^{\varepsilon} . \forall \mathrm{a} \in \mathrm{A}$, and $\mathrm{A} \in \mathrm{Ac}\left(\mathrm{g}_{\mathrm{i}}\right), \mathrm{g}_{\mathrm{j}}$ always exists, since $\forall \mathrm{a} \in \mathrm{L}, \mathrm{a} \in$ A, and $A \in \operatorname{Ac}\left(\mathrm{~g}_{\mathrm{i}}\right)$, if and only if there exists at least one state s_{k} in g_{i} such that $\mathrm{s}_{\mathrm{k}}=\mathrm{a} \Rightarrow$ (or a state s_{m} such that $\left.\mathrm{s}_{\mathrm{m}}-\mathrm{a} \rightarrow\right) . \mathrm{g}_{\mathrm{j}}=\left\{\mathrm{s}_{\mathrm{j}} \in \mathrm{St} \mid \exists \mathrm{s}_{\mathrm{m}} \in \mathrm{g}_{\mathrm{i}} \text { such that } \mathrm{s}_{\mathrm{m}}-\mathrm{a} \rightarrow \mathrm{s}_{\mathrm{j}}\right\}^{\varepsilon}$ is unique, because the set $\left\{\mathrm{s}_{\mathrm{j}} \in \mathrm{St} \mid \exists \mathrm{s}_{\mathrm{m}} \in\right.$ g_{i} such that $\left.\mathrm{s}_{\mathrm{m}}-\mathrm{a} \rightarrow \mathrm{s}_{\mathrm{j}}\right\}$ is unique.
The proof of $G=a g(S)$ follows directly from the definition of G, it is clear that $g_{o}=\sigma \Rightarrow g_{i}$, iff $g_{i}=\left(s_{o}\right.$ after σ). It follows that $\operatorname{Tr}\left(\mathrm{g}_{\mathrm{o}}\right)=\operatorname{Tr}\left(\mathrm{s}_{\mathrm{o}}\right)$ and from the definition of Ac for each state in $\mathrm{Sg}, \forall \sigma \in \operatorname{Tr}\left(\mathrm{g}_{\mathrm{o}}\right)$, with $\mathrm{g}_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g}_{\mathrm{i}}, \operatorname{Ac}(\mathrm{gi})=\operatorname{Acc}\left(\mathrm{s}_{\mathrm{o}}, \sigma\right)$. For the cyclic traces, from the definition of G we have, $\forall \sigma \in$ $\operatorname{Tr}\left(\mathrm{g}_{\mathrm{o}}\right), \mathrm{g}_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g}_{\mathrm{o}}$ iff $\left(\mathrm{s}_{\mathrm{o}}\right.$ after $\left.\sigma\right)=\mathrm{g}_{\mathrm{o}}=\left\{\mathrm{s}_{\mathrm{i}} \in\right.$ St such that $\left.\mathrm{s}_{\mathrm{o}}=\varepsilon \Rightarrow \mathrm{s}_{\mathrm{i}}\right\}$, it follows that a trace σ is a cyclic trace in G, iff σ is a cyclic trace in S.

Proposition 3.4

Consider an $\mathrm{AGG}=\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{g}_{\mathrm{o}}\right\rangle$ and the LTS $\mathrm{S}=\left\langle\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{s}_{\mathrm{o}}\right\rangle=\operatorname{lts}(\mathrm{G})$ as defined by Prop. 3.4. A trace $\sigma \in \operatorname{Tr}\left(s_{o}\right)$ iff there is a state s_{i} such that $s_{0}=\sigma \Rightarrow s_{i}$. From the definition of S, the state s_{i} exists iff there is a state g_{i} in G such that $\mathrm{g}_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g}_{\mathrm{i}}$. It follows that $\operatorname{Tr}(\mathrm{G})=\operatorname{Tr}(\mathrm{S})$.
By definition of $\mathrm{S},\left(\mathrm{s}_{\mathrm{o}}\right.$ after $\left.\sigma\right)=\left\{\mathrm{s}_{\mathrm{i}}\right\} \quad \mathrm{f}\left(\mathrm{g}_{\mathrm{i}}\right)$, iff $\mathrm{g}_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g}_{\mathrm{i}}$. It follows that $\operatorname{Acc}\left(\mathrm{s}_{\mathrm{o}}, \sigma\right)=\operatorname{Ac}\left(\mathrm{g}_{\mathrm{i}}\right)$.
From the definition of the transitions in $\mathrm{S}, \mathrm{s} A k l^{-\mathrm{a} \rightarrow \mathrm{s}_{\mathrm{o}}}$ iff $\mathrm{g}_{\mathrm{k}}-\mathrm{a} \rightarrow \mathrm{g}_{\mathrm{o}}$. Moreover, in this case, there is no transition $s_{A k l}-a \rightarrow s_{i}\left(s_{i} s_{o}\right)$ in S. It follows that $\left(s_{O}\right.$ after $\left.\sigma\right)=\left\{s_{i} \mid s_{0}=\varepsilon \Rightarrow s_{i}\right\}$ iff $g_{o}=\sigma \Rightarrow g_{o}$.

Proposition 3.5

Consider the AGs $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}>, \mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}\right\rangle\right.$, and the LTSs $\mathrm{S} 1=\left\langle\mathrm{S} 1, \mathrm{~L} 1, \mathrm{~T} 1, \mathrm{~s} 1_{\mathrm{o}}\right\rangle, \mathrm{S} 2=\left\langle\mathrm{S} 2, \mathrm{~L} 2, \mathrm{~T} 2, \mathrm{~s} 2_{\mathrm{o}}\right\rangle$, such that $\mathrm{S} 1=\operatorname{lts}(\mathrm{G} 1)$ and $\mathrm{S} 2=\operatorname{lts}(\mathrm{G} 2)$.
1-a - S1 S2 implies that S1 te S2. By Lemma 3.1 it follows that G1 g G2, since $\mathrm{G} 1=\mathrm{ag}(\mathrm{S} 1)$ and $\mathrm{G} 2=\mathrm{ag}(\mathrm{S} 2)$,.

1-b-G1 g G2: by definition, we have $\mathrm{Gi}=\operatorname{ag}(\operatorname{lts}(\mathrm{Si})), \mathrm{i}=1,2$. It follows that $\operatorname{Tr}(\mathrm{Si})=\operatorname{Tr}(\mathrm{Gi}), \mathrm{i}=1,2$. By hypothesis, G1 g G2, therefore $\operatorname{Tr}(\mathrm{S} 1)=\operatorname{Tr}(\mathrm{S} 2)=\operatorname{Tr}(\mathrm{G} 1)=\operatorname{Tr}(\mathrm{G} 2)$. We have to prove that the following relation $R=\left\{\left(\mathrm{s} 1_{\mathrm{i}}, \mathrm{s} 2 \mathrm{j}\right): \mathrm{s} 1_{\mathrm{O}}=\sigma \Rightarrow \mathrm{s} 1_{\mathrm{i}}-\tau \rightarrow, \mathrm{s} 2_{\mathrm{O}}=\sigma \Rightarrow \mathrm{s} 2 \mathrm{j}-\tau \rightarrow, \sigma \in \operatorname{Tr}(\mathrm{S} 1)\right\}(=\mathrm{R} 1) \quad\left\{\left(\mathrm{s} 1_{\mathrm{Aik}}\right.\right.$, $\left.\mathrm{s} 2 \mathrm{~A}_{\mathrm{j} 1}\right): \mathrm{s} 1_{\mathrm{Aik}} \in \mathrm{f}\left(\mathrm{g} 1_{\mathrm{O}}\right.$ after $\left.\sigma\right), \mathrm{s} 2 \mathrm{~A}_{\mathrm{j} 1} \in \mathrm{f}\left(\mathrm{g} 2_{\mathrm{o}}\right.$ after $\left.\sigma\right)$, $\mathrm{Aik}=\mathrm{Ajl}$, and $\left.\sigma \in \operatorname{Tr}(\mathrm{S} 1)\right\}(=\mathrm{R} 2)$ is a strong bisimulation. Note that $\left(\mathrm{s} 1_{\mathrm{o}}, \mathrm{s} 2_{\mathrm{o}}\right) \in \mathrm{R} 1$.

- Consider an element $\left(s 1_{i}, s 2_{j}\right) \in R 1$. By definition of $R 1$, for some $\sigma \in \operatorname{Tr}(\mathrm{S} 1), \mathrm{s} 1_{\mathrm{O}}=\sigma \Rightarrow \mathrm{s} 1_{i}-\tau \rightarrow$, $\mathrm{s} 2_{\mathrm{O}}=\sigma \Rightarrow \mathrm{s} 2_{j}-\tau \rightarrow$. Assume that $\mathrm{s} 1_{\mathrm{i}}-\tau \rightarrow \mathrm{s} 1_{\text {Aik }}, \quad(-\tau \rightarrow$ is the only kind of transition we have for such states by definition of $1 \mathrm{lts}(\mathrm{G})$ in Proposition 3.4). From Proposition 3.4, we have s1 $\mathrm{Aik} \in$ $\mathrm{f}\left(\mathrm{g} 1_{\mathrm{O}}\right.$ after $\left.\sigma\right)$. By hypothesis, G1 g G 2 , therefore, $\forall \sigma \in \operatorname{Tr}(\mathrm{G} 1)$, $\operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{O}}\right.$ after $\left.\sigma\right)=\operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{O}}\right.$ after σ). It follows that there is a state $\mathrm{s} 2 \mathrm{~A}_{\mathrm{j} 1} \in \mathrm{f}\left(\mathrm{g} 2_{\mathrm{O}}\right.$ after $\left.\sigma\right)$, such that $\mathrm{Aik}=\mathrm{Ajl}$, and by definition of $\operatorname{lts}(\mathrm{G})$ in Proposition $3.4, \mathrm{~s} 2 \mathrm{j}-\tau \rightarrow \mathrm{s} 2 \mathrm{Ajl}$. Therefore, $\left(\mathrm{s} 1_{\mathrm{Aik}}, \mathrm{s} 2 \mathrm{Ajl}\right) \in \mathrm{R} 2$. The second part of the proof (assume that $\mathrm{s} 2 \mathrm{j}-\tau \rightarrow \mathrm{s} 2 \mathrm{Ajl}^{\ldots}$) is symmetrical.
- Consider an element (s1Aik, $\left.s 2_{A j l}\right) \in R 2$. It follows that $s 1_{A i k} \in f\left(g 1_{o}\right.$ after $\left.\sigma\right), s 2 A_{j 1} \in f\left(g 2_{o}\right.$ after σ, for some $\sigma \in \operatorname{Tr}(\mathrm{S} 1)$, and $\mathrm{Aik}=\mathrm{Ajl}$. Now assume that $\mathrm{s} 1_{\mathrm{Aik}}-\mathrm{a} \rightarrow \mathrm{s} 1_{1}, \quad(-\mathrm{a} \rightarrow$ is the only kind of transition we have for such states by definition of $1 \mathrm{lts}(\mathrm{G})$ in Proposition 3.4). By definition of $\operatorname{lts}(\mathrm{G})$, this is possible if and only if $\mathrm{g} 1_{\mathrm{i}-\mathrm{a}}^{\mathrm{a}} \mathrm{g} \mathrm{g}_{1}$ in G1. Since G1 g G2, then we also have $\mathrm{g} 2 \mathrm{j}^{-}$ $\mathrm{a} \rightarrow \mathrm{g} 2 \mathrm{~m}$ in G2. Since Aik $=A j 1$ and $\mathrm{a} \in$ Aik, it follows that $\mathrm{a} \in$ Ajl. By definition of $1 \mathrm{tts}(\mathrm{G})$, we have $\mathrm{s} 2 \mathrm{Ajl} \mathrm{l}^{-\mathrm{a}} \rightarrow \mathrm{s} 2_{\mathrm{m}}$. We have $\mathrm{s} 1_{\mathrm{o}}=\sigma . \mathrm{a} \Rightarrow \mathrm{s} 1_{1}-\tau \rightarrow, \mathrm{s} 2_{\mathrm{o}}=\sigma . \mathrm{a} \Rightarrow \mathrm{s} 2_{\mathrm{m}}-\tau \rightarrow$, for some $\sigma . \mathrm{a} \in \operatorname{Tr}(\mathrm{S} 1)$. Therefore, $\left(s 1_{1}, s 2_{m}\right) \in R 1$. The second part of the proof (assume that $s 2_{A j 1}-a \rightarrow s 2_{m} \ldots$) is identical. We have proved that R is a bisimulation. Therefore, if G1 g G2, then lts(G1) lts(G2). Consequently, G1 g G2 iff lts(G1) lts(G2).

2 - From Proposition 3.2 and Lemma 3.1, S1 and S2 have the same set of cyclic traces, if and only if G1 and G2 have the set of cyclic traces. From (1), G1 g G2 iff lts(G1) lts(G2). Therefore, G1 c_{g} G2 iff lts(G1) c lts(G2).

3 - From (1), we know that G1 g G2 iff lts(G1) lts(G2). Due to the correspondence between states of an G1 (respectively G2) and states of 1 ts(G1) (respectively lts(G2), it is obvious that there is a bisimulation between G1 and G2 where each state of G1 is related to one and only state of G2, if and only if there is a bisimulation between $\operatorname{lts}(\mathrm{G} 1)$ and $\operatorname{lts}(\mathrm{G} 2)$ where each state of lts(G1) is related to one and only state of $\operatorname{lts}(\mathrm{G} 2)$.

Proposition 4.1

Consider the AGs G1 $=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}\right\rangle, \mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}\right\rangle$.
We have to prove that $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ satisfies the consistency constraints $\mathrm{Co}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$, and C 4 .

For that, we have to prove that $\left\langle\mathrm{Sg} 3, \mathrm{~L} 1 \quad \mathrm{~L} 2, \mathrm{Ac} 3, \mathrm{Tg} 3,\left\langle\mathrm{~g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}} \gg\right.\right.$ as defined in Definition 4.1 satisfies these requirements:

- Co: By definition of the acceptance sets of the states in $\operatorname{Sg} 3$, we have $\forall \mathrm{g}_{\mathrm{i}} \in \operatorname{Sg} 3, \operatorname{Ac3}\left(\mathrm{~g}_{\mathrm{i}}\right) \varnothing$, because G1 and G2 are AGs, $\forall \mathrm{g} 1_{\mathrm{j}} \in \operatorname{Sg} 1, \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{j}}\right) \quad \varnothing$ and $\forall \mathrm{g} 2_{\mathrm{k}} \in \operatorname{Sg} 2, \operatorname{Ac} 2(\mathrm{~g} 2 \mathrm{k}) \varnothing$.
-C 1 and C2: The constraints C 1 and C 2 are satisfied by definition of the transition function Tg 3 and the fact that G1 and G2 are AGs. For each state g_{i} in Sg 3 , set A in Ac3 $\left(\mathrm{g}_{\mathrm{i}}\right)$ and interaction a in A, there is one and only transition labelled by a from this state. For each state in $\mathrm{g}_{\mathrm{i}} \mathrm{in} \mathrm{Sg} 3$, there is a transition from gi_{i} labelled by interaction a only if $\exists \mathrm{A} \in \mathrm{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)$ such that $\mathrm{a} \in \mathrm{A}$.
- C3 (closure under union): $\forall \mathrm{g}_{\mathrm{i}} \in \mathrm{Sg} 3$, if $\mathrm{g}_{\mathrm{i}}=\left\langle\mathrm{g} 1_{\mathrm{j}}, \mathrm{g} 2{ }_{\mathrm{k}}\right\rangle$, then $\mathrm{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)=\mathrm{Ac} 1\left(\mathrm{~g} 1_{\mathrm{j}}\right) \times \mathrm{Ac} 2\left(\mathrm{~g} 2_{\mathrm{k}}\right)$, if $\mathrm{A} 1, \mathrm{~A} 2 \in \mathrm{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)$, then $\mathrm{A} 1=\mathrm{A} 1_{\mathrm{j} 1} \quad \mathrm{~A} 2_{\mathrm{k} 1}$ and $\mathrm{A} 2=\mathrm{A} 1_{\mathrm{j} 2} \quad \mathrm{~A} 2_{\mathrm{k} 2}$, where $\mathrm{A} 1_{\mathrm{j} 1}, \mathrm{~A} 1_{\mathrm{j} 2} \in \mathrm{Ac} 1\left(\mathrm{~g} 1_{\mathrm{j}}\right)$ and $\mathrm{A} 2_{\mathrm{k} 1}, \mathrm{~A} 2_{\mathrm{k} 2} \in \mathrm{Ac} 2\left(\mathrm{~g} 2_{\mathrm{k}}\right)$ by definition of Ac3. Since Ac1 and Ac2 satisfy C3, we have ($\left.A_{1} 1{ }_{j 1} \quad A 1_{j 2}\right) \in A c 1\left(\mathrm{~g}_{\mathrm{j}}\right)$ and
 cases where $\mathrm{g}_{\mathrm{i}}=\mathrm{g} 1_{\mathrm{j}}$, or $\mathrm{g}_{\mathrm{i}}=\mathrm{g} 2_{\mathrm{k}}$, the proof is obvious since Ac1 and Ac2 satisfy C3 by hypothesis. The proof of satisfaction of C 4 is similar to the proof for C 3 .
$<\mathrm{Sg} 3$, L1 L2, Ac3, Tg3, $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}} \gg\right.$ is an AG. Consequently, $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)=$ reachable($\langle\mathrm{Sg} 3$, L1 L2, Ac3, $\mathrm{Tg} 3,\left\langle\mathrm{~g} 1_{0}, \mathrm{~g} 2_{\mathrm{o}} \gg\right)$ is an AG.

Proposition 4.2

Let $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}>, \mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}>\right.\right.$ and $\mathrm{G} 3=\left\langle\mathrm{Sg} 3, \mathrm{~L} 3, \mathrm{Ac} 3, \mathrm{Tg} 3, \mathrm{~g} 3_{\mathrm{o}}>\right.$.
(a) $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)=\mathrm{g} \operatorname{Merge}(\mathrm{G} 2, \mathrm{G} 1):$
let Sg 4 and Sg 5 be the set of states of $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ and $\operatorname{Merge}(\mathrm{G} 2, \mathrm{G} 1)$, respectively. The relation $\left\{\left(\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right\rangle,\left\langle\mathrm{g} 2_{\mathrm{j}}, \mathrm{g} 1_{\mathrm{i}}>\right): \mathrm{g} 1_{\mathrm{i}} \in \mathrm{Sg} 1, \mathrm{~g} 2_{\mathrm{j}} \in \mathrm{Sg} 2,\left\langle\mathrm{~g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right\rangle \in \operatorname{Sg} 4\right.\right.$ and $\left.\left\langle\mathrm{g} 2_{\mathrm{j}}, \mathrm{g} 1_{\mathrm{i}}\right\rangle \in \operatorname{Sg} 5\right\}$ $\left\{\left(\mathrm{gi}_{\mathrm{i}}, \mathrm{gi}_{\mathrm{i}}\right)^{\prime}: \mathrm{g}_{\mathrm{i}} \in \mathrm{Sg} 4, \mathrm{gi}^{\prime} \in \mathrm{Sg} 5\right.$, and $\left.\mathrm{g}_{\mathrm{i}}=\mathrm{gi}_{\mathrm{i}}\right\}$ is a bisimulation containing the pair $\left(\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle,\left\langle\mathrm{g} 2_{\mathrm{o}}, \mathrm{g} 1_{\mathrm{o}}\right\rangle\right)$ and each state of $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is related to one and only state of $\operatorname{Merge}(\mathrm{G} 2, \mathrm{G} 1)$ and vice et versa. The AGs G1 and G2 have symmetrical roles in the definition of Merge(G1, G2).
(b) $\operatorname{Merge}(\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2), \mathrm{G} 3)=\mathrm{g} \operatorname{Merge}(\mathrm{G} 1, \operatorname{Merge}(\mathrm{G} 2, \mathrm{G} 3))$:
let Sg 4 and Sg 5 be the set of states of $\operatorname{Merge}(\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2), \mathrm{G} 3)$ and $\operatorname{Merge}(\mathrm{G} 1, \operatorname{Merge}(\mathrm{G} 2, \mathrm{G} 3)$), respectively. The relation $\left\{\left(\left\langle\left\langle g 1_{1}, g 2_{j}\right\rangle, g 3_{k}\right\rangle,\left\langle g 1_{i},\left\langle g 2_{j}, g 3_{k} \gg\right)\right.\right.\right.$: $g 1_{i} \in S g 1, g 2_{j} \in S g 2, g 3_{k} \in S g 3$, $\left\langle<\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right\rangle, \mathrm{g} 3_{\mathrm{k}}\right\rangle \in \mathrm{Sg} 4$ and $\left\langle\mathrm{g} 1_{\mathrm{i}},\left\langle\mathrm{g} 2_{\mathrm{j}}, \mathrm{g} 3_{\mathrm{k}} \gg \in \operatorname{Sg} 5\right\} \quad\left\{\left(\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{i}}{ }^{\prime}\right): \mathrm{gi}_{\mathrm{i}} \in \mathrm{Sg} 4, \mathrm{gi}^{\prime} \in \operatorname{Sg} 5\right.\right.$, and $\left.\mathrm{g}_{\mathrm{i}}=\mathrm{g}_{\mathrm{i}} \mathrm{i}^{\prime}\right\}$ is a bisimulation containing the pair ($\left\langle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle, \mathrm{g} 3_{\mathrm{o}}\right\rangle,\left\langle\mathrm{g} 1_{\mathrm{o}},\left\langle\mathrm{g} 2_{0}, \mathrm{~g} 3_{\mathrm{o}}\right\rangle>\right)$ and each state in Sg 4 is related to one and only state of Sg 5 and vice et versa.

Proposition 4.3

Given the AGs G1 $=\left\langle\operatorname{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}\right\rangle, \mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}\right\rangle$,
we have to prove that $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ extg G 1 :
a - Consider an arbitrary trace $\sigma \mathrm{G} 1$ with $\mathrm{g} 1_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g} 1_{\mathrm{i}}$. From definition of $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2), \exists \mathrm{g}_{\mathrm{i}} \in \mathrm{Sg} 3$ such that $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle=\sigma \Rightarrow \mathrm{g}_{\mathrm{i}}$, where $\mathrm{g}_{\mathrm{i}}=\mathrm{g} 1_{\mathrm{i}}$ or $\mathrm{g}_{\mathrm{i}}=\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right\rangle$, for some state $\mathrm{g} 2_{\mathrm{j}} \in \mathrm{Sg} 2$. Consequently, $\operatorname{Tr}(\mathrm{G} 1) \quad \operatorname{Tr}(\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2))$.
b - From (a) above, if $g 1_{0}=\sigma \Rightarrow g 1_{i}$, then $\exists g_{i} \in \operatorname{Sg} 3$ such that $\left\langle g 1_{0}, \mathrm{~g}_{\mathrm{o}}\right\rangle=\sigma \Rightarrow \mathrm{g}_{\mathrm{i}}$, where $\mathrm{g}_{\mathrm{i}}=\mathrm{g} 1_{\mathrm{i}}$ or $g_{i}=\left\langle g 1_{i}, g 2_{j}\right\rangle$, for some state $g 2_{j} \in \operatorname{Sg} 2$. If $g_{i}=g 1_{i}$, by definition of Merge we have $\operatorname{Ac} 3\left(g_{i}\right) \quad \operatorname{Ac} 1\left(g 1_{i}\right)$, it follows that $\operatorname{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right) \quad \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{i}}\right)$. If $\mathrm{g}_{\mathrm{i}}=\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right\rangle$ for some $\mathrm{g} 2_{\mathrm{j}} \in \operatorname{Sg} 2$, by definition of Merge, we have $\operatorname{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)=\left\{\mathrm{X} 1 \quad \mathrm{X} 2 \mid \mathrm{X} 1 \in \operatorname{Ac} 1\left(\mathrm{~g}_{\mathrm{i}}\right)\right.$ and $\left.\mathrm{X} 2 \in \operatorname{Ac} 2\left(\mathrm{~g}_{\mathrm{j}}\right)\right\}$. It follows that $\mathrm{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right) \quad \mathrm{Ac} 1\left(\mathrm{~g} 1_{\mathrm{i}}\right)$, since for any $X \in \operatorname{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)$, there is an $\mathrm{X} 1 \in \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{i}}\right)$ such that $\mathrm{X} 1 \quad \mathrm{X}$. Consequently, Merge(G1, G2) extg G 1 .

Proposition 4.4

Let $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}>\right.$ and $\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{0}>\right.$.
Consider an elementary cyclic trace $\sigma=a 1 . a 2 \ldots$ an in G1. It follows that $\exists \mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 1_{\mathrm{i}+1}, \ldots, \mathrm{~g} 1_{\mathrm{i}+\mathrm{n}-2}$ in g 1 , such that $\mathrm{g} 1_{\mathrm{o}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 1_{\mathrm{i}}, \mathrm{g} 1_{\mathrm{i}}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 1_{\mathrm{i}+1}, \ldots, \mathrm{~g} 1_{\mathrm{i}+\mathrm{n}-2}=a n \Rightarrow \mathrm{~g} 1_{\mathrm{o}}$, with $\mathrm{g} 1_{\mathrm{j}} \mathrm{g} 1_{\mathrm{o}}$, for $\mathrm{j}=\mathrm{i}, \ldots, \mathrm{i}+\mathrm{n}-2$.

Sufficient condition:

$\sigma \quad \operatorname{Tr}(\mathrm{G} 2)$, it follows that $\sigma=\sigma^{\prime} \cdot \mathrm{aj} . \sigma^{\prime \prime}$ and $\mathrm{g} 2_{\mathrm{o}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 2_{\mathrm{k}}, \mathrm{g} 2_{\mathrm{k}}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 2_{\mathrm{k}+1}, \ldots, \mathrm{~g} 2_{\mathrm{k}+\mathrm{j}-3}=\mathrm{aj}-1 \Rightarrow \mathrm{~g} 2_{\mathrm{k}+\mathrm{j}-2}$, and $\mathrm{g} 2_{\mathrm{k}+\mathrm{j}-2} \mathrm{aj} \Rightarrow$ for some 1 j n . From the definition of $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, we have $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle=\mathrm{a} 1 \Rightarrow\left\langle\mathrm{~g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle$, $\left\langle\mathrm{g} 1_{\mathrm{i}}^{\mathrm{i}} \mathrm{g} 2_{\mathrm{k}}>=\mathrm{a} 2 \Rightarrow\left\langle\mathrm{~g} 1_{\mathrm{i}+1}, \mathrm{~g} 2_{\mathrm{k}+1}>, .,,<\mathrm{g} 1_{\mathrm{i}+\mathrm{j}-3}, \mathrm{~g} 2_{\mathrm{k}+\mathrm{j}-3}>=\mathrm{aj}-1 \Rightarrow\left\langle\mathrm{~g} 1_{\mathrm{i}+\mathrm{j}-2, \mathrm{~g}} 2_{\mathrm{k}+\mathrm{j}-2}>,\left\langle\mathrm{g} 1_{\mathrm{i}+\mathrm{j}-2}, \mathrm{~g} 2_{\mathrm{k}+\mathrm{j}-2}>=\mathrm{aj} \Rightarrow \mathrm{g} 1_{\mathrm{i}+\mathrm{j}-1}\right.\right.\right.\right.$, $\ldots, \mathrm{g} 1_{i+n-2}=a n \Rightarrow\left\langle\mathrm{~g} 1_{0}, \mathrm{~g} 2_{0}\right\rangle$ in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, which means that σ is a cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$.
σ is a cyclic trace in G2, it follows $\exists \mathrm{g} 2_{\mathrm{k}}, \mathrm{g} 2_{\mathrm{k}+1}, \ldots, \mathrm{~g} 2_{\mathrm{k}+\mathrm{n}-2}$ in Sg 2 such that $\mathrm{g} 2_{\mathrm{o}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 2_{\mathrm{k}}$, $\mathrm{g} 2_{\mathrm{k}}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 2_{\mathrm{k}+1}, \ldots, \mathrm{~g} 2_{\mathrm{k}+\mathrm{n}-2}=\mathrm{an} \Rightarrow \mathrm{g} 2_{\mathrm{o}}$. From the definition of $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, we have $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>=\mathrm{a} 1 \Rightarrow\left\langle\mathrm{~g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle,\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{k}}\right\rangle=\mathrm{a} 2 \Rightarrow\left\langle\mathrm{~g} 1_{\mathrm{i}+1}, \mathrm{~g} 2_{\mathrm{k}+1}>, \ldots\right.\right.$, and $\left\langle\mathrm{g} 1_{\mathrm{i}+\mathrm{n}-2}, \mathrm{~g} 2_{\mathrm{k}+\mathrm{n}-2}\right\rangle=\mathrm{an}-2 \Rightarrow\left\langle\mathrm{~g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$ in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, which means that σ is a cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$.

Necessary Condition:

Assume that $\sigma \in \operatorname{Tr}(\mathrm{G} 2)$ and σ is not a cyclic trace in G2. It follows that $\exists \mathrm{g} 2_{\mathrm{k}}$, such that $\mathrm{g} 2_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g} 2_{\mathrm{k}}$, with $\mathrm{g} 2_{\mathrm{k}} \mathrm{g} 2_{\mathrm{o}}$. By definition of $\operatorname{Merge}\left(\mathrm{G} 1, \mathrm{G} 2\right.$), we have $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>=\sigma \Rightarrow\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{k}}>\right.\right.$, with $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{k}}>\right.$ $<\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>$. Consequently, σ is not a cyclic in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, which ends the proof that $(\sigma \operatorname{Tr}(\mathrm{G} 2)$ or σ is a cyclic trace in G2) is a necessary condition.

Proposition 4.5

Let $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{0}\right\rangle$ and $\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}\right\rangle$
1 - Equivalence between (a) and (b): we know that Merge(G1, G2) preserves the cyclic traces of G1, iff any elementary cyclic trace in G1 is preserved, as cyclic trace, in Merge(G1, G2). From Proposition 4.4, we know that any elementary cyclic trace σ in G1 is a cyclic trace in Merge(G1, G2), iff σ is a
cyclic trace in G2 or $\sigma \quad \operatorname{Tr}(\mathrm{G} 2)$. It follows that Merge(G1, G2) preserves the cyclic traces of G1 iff any elementary cyclic trace σ in G1 is a cyclic trace in G2 or $\sigma \operatorname{Tr}(\mathrm{G} 2)$.

2 - Equivalence between (b) and (c):
2-1-(c) implies (b): obvious since any elementary cyclic trace is a cyclic trace.
2-2-(b) implies (c): assume that any elementary cyclic trace σ in G1 is a cyclic trace in G2 or σ
$\operatorname{Tr}(\mathrm{G} 2)$ and consider an arbitrary cyclic trace σ in G1. Any cyclic trace results from the concatenation of elementary cyclic traces, therefore $\sigma=\sigma 1 . \sigma 2 \ldots . . \sigma$, with σ i as elementary cyclic trace in G 1 , for $\mathrm{i}=1, \ldots, \mathrm{n}$. $\sigma \mathrm{i}$ is an elementary cyclic in G1, by hypothesis, it follows that σ i is a cyclic trace in G 2 or $\sigma \mathrm{i} \quad \operatorname{Tr}(\mathrm{G} 2)$, for $\mathrm{i}=1, \ldots, \mathrm{n}$. Assume that $\sigma \mathrm{i}$ is a cyclic trace in G 2 , for $\mathrm{i}=1$, \ldots, n, it follows that $\sigma=\sigma 1 . \sigma 2 \ldots . \sigma$ is a cyclic trace in G 2 (concatenation of cyclic traces is a cyclic trace). Now assume that $\sigma \mathrm{i}$, for $\mathrm{i}=1, \ldots \mathrm{j}-1$, are cyclic traces in G 2 and $\sigma \mathrm{j} \operatorname{Tr}(\mathrm{G} 2)$ with 1 j n . It follows that $\sigma 1 . \sigma 2 \ldots \sigma \mathrm{j}-1$ is a cyclic trace in G 2 , but $\sigma 1 . \sigma 2 \ldots \sigma \mathrm{j}-1 . \sigma \mathrm{j} \quad \operatorname{Tr}(\mathrm{G} 2)$, which means that $\sigma \operatorname{Tr}(\mathrm{G} 2)$. Therefore, (b) implies (c).

Consequently, the statements (a), (b) and (c) in Proposition 4.5 are equivalent.

Proposition 4.6

Let $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{0}>\right.$ and $\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}>\right.$.
Consider $\sigma=\mathrm{a} 1 . \mathrm{a} 2 \ldots$...an, an arbitrary elementary cyclic trace in Merge(G1, G2). By definition of the elementary cyclic trace, we have $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle=\mathrm{a} 1 \Rightarrow \mathrm{~g}_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g}_{\mathrm{i} 2} \ldots \mathrm{~g}_{\mathrm{in}-1}=\mathrm{an} \Rightarrow\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$ with $\mathrm{g}_{\mathrm{ij}}\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$, for $\mathrm{j}=1, \ldots, \mathrm{n}-1$. From the Definition of Merge, we have the following three cases:
(a) $\mathrm{g}_{\mathrm{ij}}=\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle$, with $\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$ for $\mathrm{j}=1, \ldots, \mathrm{n}-1$, which implies that $\mathrm{g} 1_{\mathrm{o}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 1_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 1_{\mathrm{i} 2} \ldots \mathrm{~g} 1_{\text {in }-1}=\mathrm{an} \Rightarrow \mathrm{g} 1_{\mathrm{o}}$ and $\mathrm{g} 2_{\mathrm{o}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 2_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 2_{\mathrm{i} 2} \ldots \mathrm{~g} 2_{\mathrm{in}-1}=\mathrm{an} \Rightarrow \mathrm{g} 2_{\mathrm{o}}$. Therefore, σ is a cyclic trace in G1 and G2.
(b) $\mathrm{g}_{\mathrm{ij}}=\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle$ with $\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$, for $\mathrm{j}=1, \ldots, \mathrm{k}$, (for a certain k) and $\mathrm{g}_{\mathrm{ij}}=\mathrm{g} 1_{\mathrm{ij}}($ $\mathrm{g} 1_{\mathrm{o}}$), for $\mathrm{j}=\mathrm{k}+1, \ldots, \mathrm{n}-1$, which means that $\mathrm{g} 1_{\mathrm{o}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 1_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 1_{\mathrm{i} 2} \ldots \mathrm{~g} 1_{\mathrm{in}-1}=\mathrm{an} \Rightarrow \mathrm{g} 1_{\mathrm{o}}$. Therefore, σ is a cyclic trace in G1.
(c) $\mathrm{g}_{\mathrm{ij}}=\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle$ with $\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$, for $\mathrm{j}=1, \ldots, \mathrm{k}$, (for a certain k) and $\mathrm{g}_{\mathrm{ij}}=\mathrm{g} 2_{\mathrm{ij}}($ $\mathrm{g} 2_{\mathrm{o}}$), for $\mathrm{j}=\mathrm{k}+1, \ldots, \mathrm{n}-1$, which means that $\mathrm{g} 2_{\mathrm{o}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 2_{i 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 2_{\mathrm{i} 2} \ldots \mathrm{~g} 2_{\mathrm{in}-1}=a n \Rightarrow \mathrm{~g} 2_{\mathrm{o}}$. Therefore σ is a cyclic trace in G2.

Consequently, σ is a cyclic trace in G1 or G2.

Proposition 4.7

Let $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}>\right.$ and $\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}>\right.$.
(a) σ is a cyclic in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2): \sigma=\sigma 1 . \sigma 2 \ldots \sigma n . \sigma \mathrm{n}+1$, with σ i as elementary cyclic trace in Merge(G1, G2), for $\mathrm{i}=1, \ldots, \mathrm{n}+1$, for a certain integer n . From Proposition 4.6, σ i as a cyclic trace in G1 or G2, for $\mathrm{i}=1, \ldots, \mathrm{n}+1$. Therefore, σ i is a cyclic trace in G 1 or G 2 , for $\mathrm{i}=1, \ldots, \mathrm{n}$, and $(\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 1)$ or $\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 2))$. (b) σ is a noncyclic in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2): \sigma=\sigma^{\prime} . \mathrm{a} 1 . \mathrm{a} 2 \ldots \mathrm{am}$ with $\left\langle\mathrm{g} 1_{\mathrm{O}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle=\sigma^{\prime} \Rightarrow \mathrm{g} 1_{\mathrm{O}}, \mathrm{g} 2_{\mathrm{o}}>=\mathrm{a} 1 \Rightarrow \mathrm{~g}_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g}_{\mathrm{i} 2} \ldots$ $g_{i m-1}=a n \Rightarrow g_{i m}$ with $g_{i j}\left\langle g 1_{o}, g 2_{o}>\right.$, for $\mathrm{j}=1, \ldots, m$. σ^{\prime} is a cyclic trace in Merge(G1, G2). Therefore, $\sigma^{\prime}=$ $\sigma^{\prime} 1 . \sigma^{\prime} 2 \ldots \sigma^{\prime} \mathrm{n}$, with $\sigma^{\prime} \mathrm{i}$ as elementary cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, for $\mathrm{i}=1, \ldots, \mathrm{n}$, for a certain integer n . From Proposition 4.6, σ^{\prime} i as a cyclic trace in G 1 or G 2 , for $\mathrm{i}=1, \ldots, \mathrm{n}$.
We have $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>=\mathrm{a} 1 \Rightarrow \mathrm{~g}_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g}_{\mathrm{i} 2} \ldots \mathrm{~g}_{\mathrm{im}-1}=\mathrm{an} \Rightarrow \mathrm{g}_{\mathrm{im}}\right.$ with $\mathrm{g}_{\mathrm{ij}}\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$, for $\mathrm{j}=1, \ldots$, m . From the definition of Merge, we have the following three cases:
(a) $\mathrm{g}_{\mathrm{ij}}=\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle$, with $\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$ for $\mathrm{j}=1, \ldots, \mathrm{~m}$, which means that $\mathrm{g} 1_{\mathrm{O}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 1_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 1_{\mathrm{i} 2} \ldots \mathrm{~g} 1_{\mathrm{im}-1}=\mathrm{am} \Rightarrow \mathrm{g} 1_{\mathrm{m}}$ and $\mathrm{g} 2_{\mathrm{O}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 2_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 2_{\mathrm{i} 2} \ldots \mathrm{~g} 2_{\mathrm{im}-1}=\mathrm{am} \Rightarrow \mathrm{g} 2_{\mathrm{m}}$. Therefore, a1.a2...am $\in \operatorname{Tr}(\mathrm{G} 1)$ and a1.a2 $\ldots \mathrm{am} \in \operatorname{Tr}(\mathrm{G} 2)$.
(b) $\mathrm{g}_{\mathrm{ij}}=\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle$ with $\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{O}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$, for $\mathrm{j}=1, \ldots$, k , (for a certain k) and $\mathrm{g}_{\mathrm{ij}}=\mathrm{g} 1_{\mathrm{ij}}$ $\left(\mathrm{g} 1_{\mathrm{o}}\right)$, for $\mathrm{j}=\mathrm{k}+1, \ldots, \mathrm{n}-1$, which means that $\mathrm{g} 1_{\mathrm{o}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 1_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 1_{\mathrm{i} 2} \ldots \mathrm{~g} 1_{\mathrm{im}-1}=a m \Rightarrow \mathrm{~g} 1_{\mathrm{m}}$. Therefore, a1.a2...am $\in \operatorname{Tr}(\mathrm{G} 1)$.
(c) $\mathrm{g}_{\mathrm{ij}}=\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}>\right.$ with $\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$, for $\mathrm{j}=1, \ldots, \mathrm{k}$, (for a certain k) and $\mathrm{g}_{\mathrm{ij}}=\mathrm{g} 2_{\mathrm{ij}}$ $\left(\mathrm{g} 2_{\mathrm{o}}\right)$, for $\mathrm{j}=\mathrm{k}+1, \ldots, \mathrm{n}-1$, which means that $\mathrm{g} 2_{\mathrm{o}}=\mathrm{a} 1 \Rightarrow \mathrm{~g} 2_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 2_{\mathrm{i} 2} \ldots \mathrm{~g} 2_{\mathrm{im}-1}=a m \Rightarrow \mathrm{~g} 2_{\mathrm{m}}$. Therefore, a1.a2...am $\in \operatorname{Tr}(\mathrm{G} 2)$.

Consequently, any trace σ of $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ may be written as $\sigma=\sigma 1 . \sigma 2 \ldots \sigma \mathrm{n} . \sigma \mathrm{n}+1$, with σ i as a cyclic trace in G 1 or G 2 , for $\mathrm{i}=1, \ldots, \mathrm{n}$, and $(\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 1)$ or $\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 2)$).

Theorem 4.1

Let $\mathrm{G} 1=\left\langle\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{~g} 1_{\mathrm{o}}>\right.$ and $\mathrm{G} 2=\left\langle\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{~g} 2_{\mathrm{o}}>\right.$.
From Proposition 4.3, we have $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2) \operatorname{ext}_{\mathrm{g}} \mathrm{Gi}, \mathrm{i}=1,2$.
From Proposition 4.5, Merge(G1, G2) preserves the cyclic traces of G1 iff any cyclic trace σ in G1 is a cyclic trace in G2 or $\sigma \operatorname{Tr}(\mathrm{G} 2)$.
It follows that Merge(G1, G2) is a cyclic extension of G1 and G2, iff any cyclic trace σ in G 1 is a cyclic trace in G 2 or $\sigma \operatorname{Tr}(\mathrm{G} 2)$, and reciprocally.

Now, we have to prove that $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is the least common cyclic extension of G1 and G2. For that, we consider an arbitrary $\mathrm{AGG} \mathrm{G} 4=<\mathrm{Sg} 4, \mathrm{~L} 4, \mathrm{Ac} 4, \mathrm{Tg} 4, \mathrm{~g} 4_{\mathrm{O}}>$ such that G 4 extcg $\mathrm{G} 1, \mathrm{G} 4$ extcg G 2 and we will prove that $G 4$ extcg $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$.

First, we have to prove that any cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ is a cyclic trace in G4. Consider a cyclic trace σ in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2) . \sigma=\sigma 1 . \sigma 2 \ldots \sigma$ with $\sigma 1, \sigma 2, \ldots, \sigma n$ as elementary cyclic traces in Merge(G1, G2).

By Proposition 4.6, it follows that σ i is a cyclic trace in G1 or G 2 , for $\mathrm{i}=1, \ldots, \mathrm{n}$. We have $\sigma \mathrm{i}$ as a cyclic trace in G 1 or G 2 , for $\mathrm{i}=1, \ldots, \mathrm{n}$. It follows that σ_{i} is a cyclic trace in G 4 , for $\mathrm{i}=1, \ldots, \mathrm{n}$, since G 4 is a cyclic extension of G1 and G2. Consequently, σ is a cyclic trace in G4 (concatenation of cyclic traces is a cyclic trace)

Secondly, we have to prove that G4 extg $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$:
(1) Consider an arbitrary trace σ in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$. The trace σ can be written as $\sigma=\sigma 1 . \sigma 2 \ldots . . \sigma \mathrm{n}-1 . \sigma \mathrm{n}$ with oi as cyclic trace in G 1 or G 2 , for $\mathrm{i}=1, \ldots, \mathrm{n}-1$, and $\sigma \mathrm{n} \in \operatorname{Tr}(\mathrm{G} 1)$ or $\sigma \mathrm{n} \in \operatorname{Tr}(\mathrm{G} 2)$. G 4 extcg G 1 and G4 extcg G2, it follows that any trace of G1 (respectively G2) is a trace of G4, and any cyclic trace in G1 (respectively G2) is a cyclic trace in G4, it follows that σ_{i} is a cyclic trace in G4, for $i=1, \ldots$, $\mathrm{n}-1$, and $\sigma \mathrm{n} \in \operatorname{Tr}(\mathrm{G} 4)$. We deduce that $\sigma=\sigma 1 . \sigma 2 \ldots . . \sigma \mathrm{n}-1 . \sigma \mathrm{n} \in \operatorname{Tr}(\mathrm{G} 4)$.
(2) Consider an arbitrary trace σ in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$: as previously, the trace σ can be written as $\sigma=$ $\sigma 1 . \sigma 2 \ldots \sigma \mathrm{n}-1 . \sigma \mathrm{n}$ with σ i as cyclic trace in G 1 or G 2 , for $\mathrm{i}=1, \ldots, \mathrm{n}-1$, and $\sigma \mathrm{n} \in \operatorname{Tr}(\mathrm{G} 1)$ or $\sigma \mathrm{n} \in \operatorname{Tr}(\mathrm{G} 2)$. We have deduced that σi is a cyclic trace in G 4 , for $\mathrm{i}=1, \ldots, \mathrm{n}-1$, and $\sigma n \in \operatorname{Tr}(\mathrm{G} 4)$. $\sigma \in \operatorname{Tr}(\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$), it follows that $\exists \mathrm{g}_{\mathrm{i}}$ in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ such that $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle=\sigma \Rightarrow \mathrm{g}_{\mathrm{i}}$. Since $\sigma=\sigma 1 . \sigma 2 \ldots . \ldots \mathrm{n}$, and $\sigma 1$, $\sigma 2, \ldots, \sigma n-1$ are (elementary) cyclic traces in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$, it follows that $\left\langle\mathrm{g} 1_{0}, \mathrm{~g} 2_{0}\right\rangle=\sigma n \Rightarrow \mathrm{~g}_{\mathrm{i}}$. Same reasoning for $\mathrm{G} 4, \exists \mathrm{~g} 4_{\mathrm{j}}$ in G 4 such that $\mathrm{g} 4_{\mathrm{o}}=\sigma \Rightarrow \mathrm{g} 4_{\mathrm{j}}$ and $\mathrm{g} 4_{\mathrm{o}}=\sigma n \Rightarrow \mathrm{~g} 4_{\mathrm{j}}$. If $\sigma \mathrm{n} \in \operatorname{Tr}(\mathrm{G} 1)$ and σ n $\operatorname{Tr}(\mathrm{G} 2)$, we deduce that $\exists \mathrm{g} 1_{\mathrm{i}}$ in G 1 such that $\mathrm{g} 1_{\mathrm{o}}=\sigma \mathrm{n} \Rightarrow \mathrm{g} 1_{\mathrm{i}}$, and by definition of Merge, $\mathrm{g}_{\mathrm{i}}=\mathrm{g} 1_{\mathrm{i}}$ and $\mathrm{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)=$ $\operatorname{Ac} 1\left(\mathrm{~g}_{\mathrm{i}}\right)$. We have G 4 extg G 1 , it follows that $\operatorname{Ac} 4\left(\mathrm{~g}_{\mathrm{j}}\right) \quad \operatorname{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)=\operatorname{Ac1}\left(\mathrm{g}_{\mathrm{i}}\right)$. Reciprocally, if $\sigma \mathrm{n} \in$ $\operatorname{Tr}(\mathrm{G} 2)$ and $\sigma \mathrm{n} \quad \operatorname{Tr}(\mathrm{G} 1)$. If $\sigma \mathrm{n} \in \operatorname{Tr}(\mathrm{G} 1)$ and $\sigma \mathrm{n} \in \operatorname{Tr}(\mathrm{G} 2), \exists \mathrm{g} 1_{\mathrm{i}}$ in G 1 and $\exists \mathrm{g} 2_{\mathrm{j}}$ in G 2 such that $\mathrm{g} 1_{\mathrm{o}}=\sigma \mathrm{n} \Rightarrow \mathrm{g} 1_{\mathrm{i}}$, and $\mathrm{g} 2_{\mathrm{o}}=\sigma \mathrm{n} \Rightarrow \mathrm{g} 2_{\mathrm{j}}$, and by definition of Merge, $\mathrm{g}_{\mathrm{i}}=\left\langle\mathrm{g} 1_{\mathrm{i}}, \mathrm{g} 2_{\mathrm{j}}\right\rangle$ and $\operatorname{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)=\{\mathrm{X} 1$ $\mathrm{X} 1 \in \operatorname{Ac} 1\left(\mathrm{~g}_{1}\right)$ and $\left.\mathrm{X} 2 \in \operatorname{Ac} 2(\mathrm{~g} 2 \mathrm{j})\right\}$. We have G 4 extg G 1 , and G 4 extg G 2 , it follows that $\mathrm{Ac} 4\left(\mathrm{~g}_{4} \mathrm{j}_{\mathrm{j}}\right)$ $\operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{i}}\right)$ and $\operatorname{Ac} 4\left(\mathrm{~g}_{\mathrm{j}}\right) \quad \operatorname{Ac} 2\left(\mathrm{~g}_{\mathrm{j}}\right)$. It follows that $\operatorname{Ac} 4\left(\mathrm{~g}_{\mathrm{j}}\right) \quad \operatorname{Ac} 3\left(\mathrm{~g}_{\mathrm{i}}\right)$, which ends the second part of the proof G4 extg $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$.

Consequently, G4 extcg $\operatorname{Merge}(G 1, G 2)$ and Merge(an arbitrary elementary cyclic trace in Merge(G1, G 2
). $\mathbf{B y}$
tion of an elementary cyclic trace, we have <g1o,
 1, ..., n-1. From the Defi ition of Merge, we have the lowing three cases:

$\mathrm{ij}, \mathrm{g} 2 \mathrm{ij}\rangle\langle\mathrm{g} 1 \mathrm{o}, \mathrm{g} 2 \mathrm{o}\rangle$, for $\mathrm{j}=1, \ldots, \mathrm{n}-1$, it follows that $\langle\mathrm{g} 3 \mathrm{o}$, g20>=a1fig3i1, g2i1>=a2fig3i2, g2i2>..<g3in-1, g2in-1>=anfi<g3o, g2o> in $\operatorname{Merge(G3,~G2)~with~<g3ij,~g2ij>~}$ <g1o, g2o>for $\mathrm{j}=1, \ldots, \mathrm{n}-1$, since an arbitrary elementary cyclic trace in Merge(G1, G2). By definition of an elementary cyclic trace, we have $\left\langle\mathrm{g} 1_{0}, \mathrm{~g} 2_{0}\right\rangle=\mathrm{a} 1 \Rightarrow \mathrm{~g} 4_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 4_{\mathrm{i} 2} \ldots \mathrm{~g} 4_{\mathrm{in}-1}=\mathrm{an} \Rightarrow\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$ with $\mathrm{g} 4_{\mathrm{ij}}$ $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$, for $\mathrm{j}=1, \ldots, \mathrm{n}-1$. From the Definition of Merge, we have the following three cases:
(a) $\mathrm{g} 4_{\mathrm{ij}}=\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle$, with $\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$, for $\mathrm{j}=1, \ldots, \mathrm{n}-1$, it follows that $\left\langle\mathrm{g} 3_{\mathrm{o}}\right.$, $\mathrm{g} 2_{\mathrm{o}}>=\mathrm{a} 1 \Rightarrow \mathrm{~g} 3_{\mathrm{i} 1}, \mathrm{~g} 2_{\mathrm{i} 1}>=\mathrm{a} 2 \Rightarrow \mathrm{~g} 3_{\mathrm{i} 2}, \mathrm{~g} 2_{\mathrm{i} 2}>. .<\mathrm{g} 3_{\mathrm{in}-1}, \mathrm{~g} 2_{\mathrm{in}-1}>=\mathrm{an} \Rightarrow\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$ in $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$ with $\left\langle\mathrm{g} 3_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$ for $\mathrm{j}=1, \ldots, \mathrm{n}-1$, since $\mathrm{g} 3_{\mathrm{ij}}=\mathrm{g} 3_{\mathrm{o}}$ iff $\mathrm{g} 1_{\mathrm{ij}}=\mathrm{g} 1_{\mathrm{o}}$, for $\mathrm{j}=1, \ldots, \mathrm{n}-1$ (G1 and G3 have the same cyclic traces). Therefore, σ is an elementary cyclic in Merge(G3, G2).
(b) $\mathrm{g} 4_{\mathrm{ij}}=\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle$ with $\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$, for $\mathrm{j}=1, \ldots, \mathrm{k}$, (for a certain k) and $\mathrm{g} 4_{\mathrm{ij}}=\mathrm{g} 1_{\mathrm{ij}}($ $\mathrm{g} 1_{\mathrm{o}}$), for $\mathrm{j}=\mathrm{k}+1, \ldots, \mathrm{n}-1$, it follows that $\left.\left.\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle=\mathrm{a} 1 \Rightarrow\left\langle\mathrm{~g} 3_{\mathrm{i}} 1, \mathrm{~g} 2_{\mathrm{i}}\right\rangle\right\rangle \ldots<\mathrm{g} 3_{\mathrm{ik}}-1, \mathrm{~g} 2_{\mathrm{ik}}-1\right\rangle=\mathrm{ak} \Rightarrow$ $\left\langle\mathrm{g} 3_{\mathrm{ik}}, \mathrm{g} 2_{\mathrm{ik}}>=\mathrm{ak}+1 \Rightarrow \mathrm{~g} 3_{\mathrm{ik}+1 \ldots \mathrm{~g}} 3_{\mathrm{in}-1}=\mathrm{an} \Rightarrow\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.\right.$ in $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$ with $\left\langle\mathrm{g} 3_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$ for $\mathrm{j}=1, \ldots$, k , and $\mathrm{g} 3_{\mathrm{ij}} \mathrm{g} 3_{\mathrm{o}}$, for $\mathrm{j}=\mathrm{k}+1, \ldots$, $\mathrm{n}-1$, since $\mathrm{g} 3_{\mathrm{ij}}=\mathrm{g} 3_{\mathrm{o}}$ iff $\mathrm{g} 1_{i j}=\mathrm{g} 1_{\mathrm{o}}$, for $\mathrm{j}=1, \ldots, \mathrm{n}-1$ ((G1 and G3 have the same cyclic traces)). Therefore, $\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle=\mathrm{a} 1 \Rightarrow \mathrm{~g} 5_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 5 \mathrm{i} 2 \ldots$ $\mathrm{g} 5_{\mathrm{in}-1}=\mathrm{an} \Rightarrow\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$ with $\mathrm{g} 5_{\mathrm{ij}}\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$, for $\mathrm{j}=1, \ldots, \mathrm{n}-1$, which means that σ is an elementary cyclic in $\operatorname{Merge}(G 3, G 2)$.
(c) $\mathrm{g} 4_{\mathrm{ij}}=\left\langle\mathrm{g} 1_{\mathrm{ij}}\right.$, $\left.\mathrm{g} 2_{\mathrm{ij}}\right\rangle$ with $\left\langle\mathrm{g} 1_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$, for $\mathrm{j}=1, \ldots, \mathrm{k}$, (for a certain k) and $\mathrm{g} 4_{\mathrm{ij}}=\mathrm{g} 2_{\mathrm{ij}}($ $\mathrm{g} 2_{\mathrm{o}}$), for $\mathrm{j}=\mathrm{k}+1, \ldots, \mathrm{n}-1$, it follows that $\left.\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle=a 1 \Rightarrow\left\langle\mathrm{~g} 3_{\mathrm{i}} 1, \mathrm{~g} 2_{\mathrm{i} 1}\right\rangle \ldots . \mathrm{g} 3_{\mathrm{ik}-1}, \mathrm{~g} 2_{\mathrm{ik}}-1\right\rangle=a k \Rightarrow$ $\left\langle\mathrm{g} 3_{\mathrm{ik}}, \mathrm{g} 2_{\mathrm{ik}}\right\rangle=\mathrm{ak}+1 \Rightarrow \mathrm{~g} 2_{\mathrm{ik}+1 \ldots \mathrm{~g}} 2_{\mathrm{in}-1}=\mathrm{an} \Rightarrow\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$ in $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$ with $\left\langle\mathrm{g} 3_{\mathrm{ij}}, \mathrm{g} 2_{\mathrm{ij}}\right\rangle\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$ for $\mathrm{j}=1, \ldots, \mathrm{k}$, since $\mathrm{g} 3_{\mathrm{ij}}=\mathrm{g} 3_{\mathrm{o}}$ iff $\mathrm{g} 1_{\mathrm{ij}}=\mathrm{g} 1_{\mathrm{o}}$ for $\mathrm{j}=1, \ldots, \mathrm{k}((\mathrm{G} 1$ and G 3 have the same cyclic traces)) and $\mathrm{g} 2_{\mathrm{ij}} \mathrm{g} 2_{\mathrm{o}}$, for $\mathrm{j}=\mathrm{k}+1, \ldots, \mathrm{n}-1$. Therefore, $\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle=\mathrm{a} 1 \Rightarrow \mathrm{~g} 5_{\mathrm{i} 1}=\mathrm{a} 2 \Rightarrow \mathrm{~g} 5_{\mathrm{i} 2} \ldots$ $\mathrm{g} 5_{\mathrm{in}-1}=\mathrm{an} \Rightarrow\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$ with $\mathrm{g} 5_{\mathrm{ij}}\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$, for $\mathrm{j}=1, \ldots, \mathrm{n}-1$, which means that σ is an elementary cyclic in $\operatorname{Merge}(G 3, G 2)$.

The proof for any elementary cyclic trace in $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$ is an elementary cyclic trace in Merge(G1, G2) is symmetrical. Consequently, $\operatorname{Merge}(G 1, G 2)$ and $\operatorname{Merge}(G 3, G 2)$ have the same set of (elementary) cyclic traces.

2 - Merge(G1, G2) $\quad \mathrm{g} \operatorname{Merge(G3,~G2):~}$

2-1- $\operatorname{Tr}(\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2))=\operatorname{Tr}(\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)):$
Consider a trace $\sigma \in \operatorname{Tr}(\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)) . \sigma=\sigma 1 . \sigma 2 \ldots \sigma n . \sigma n+1$, with $\sigma \mathrm{i}$ as elementary cyclic trace in Merge(G1, G2), for $\mathrm{i}=1, \ldots, \mathrm{n}$, and ($\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 1)$ or $\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 2)$). It follows, from (1) above, that σ_{i} is an elementary cyclic trace in $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$, for $\mathrm{i}=1, \ldots$, n . $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2) \operatorname{extg} \mathrm{G} 3$ and G2 and G1 $\mathrm{cg}_{\mathrm{g}} \mathrm{G} 3$, we deduce that $(\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 3)$ or $\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 2)$). Therefore, $\sigma=\sigma 1 . \sigma 2 \ldots . . \sigma \mathrm{n} . \sigma \mathrm{n}+1 \in$
$\operatorname{Tr}(\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$. The proof for any trace σ of $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$ is a trace of Merge(G3, G2) is symmetrical.

2-2- $\forall \sigma \in \operatorname{Tr}(\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)), \operatorname{Ac} 4\left(\left\langle\mathrm{~g} 1_{\mathrm{O}}, \mathrm{g} 2_{\mathrm{O}}\right\rangle\right.$ after $\left.\sigma\right)=\operatorname{Ac5}\left(\left\langle\mathrm{g} 3_{\mathrm{O}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle\right.$ after $\left.\sigma\right)$:
Consider a trace $\sigma \in \operatorname{Tr}(\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)) . \sigma=\sigma 1 . \sigma 2 \ldots . . \sigma \mathrm{n} . \sigma \mathrm{n}+1$, with σ i as elementary cyclic trace in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ and $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$, for $\mathrm{i}=1, \ldots, \mathrm{n}$, and ($\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 1)$ (and $\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 3)$) or $\sigma \mathrm{n}+1 \in$ $\operatorname{Tr}(\mathrm{G} 2)$). Therefore, $\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.$ after $\sigma=\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$ after $\sigma \mathrm{n}+1$ and $\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$ after $\sigma=\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle$ after $\sigma \mathrm{n}+1$. $\operatorname{Ac4}\left(\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle\right.$ after $\left.\sigma\right)=\operatorname{Ac5}\left(\left\langle\mathrm{g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle\right.$ after $\left.\sigma\right)$, iff $\mathrm{Ac} 4\left(\left\langle\mathrm{~g} 1_{\mathrm{o}}, \mathrm{g} 2_{0}\right\rangle\right.$ after $\left.\sigma \mathrm{n}+1\right)=$ $\operatorname{Ac5}\left(<\mathrm{g} 3_{0}, \mathrm{~g} 2_{0}>\right.$ after $\left.\sigma \mathrm{n}+1\right)$. We have three cases:
$-\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 1)(\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 3)): \operatorname{Ac} 4\left(\left\langle\mathrm{~g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}>\right.\right.$ after $\left.\sigma \mathrm{n}+1\right)=\operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{o}}\right.$ after $\left.\sigma \mathrm{n}+1\right)=\operatorname{Ac} 3\left(\mathrm{~g} 3_{\mathrm{o}}\right.$ after $\sigma \mathrm{n}+1)=\operatorname{Ac5}\left(<\mathrm{g} 3_{0}, \mathrm{~g} 2_{\mathrm{o}}>\right.$ after $\left.\sigma \mathrm{n}+1\right)$, since G1 $\quad \mathrm{c}_{\mathrm{g}} \mathrm{G} 3$.
$-\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 2): \operatorname{Ac4}\left(\left\langle\mathrm{g} 1_{0}, \mathrm{~g} 2_{0}>\right.\right.$ after $\left.\sigma \mathrm{n}+1\right)=\operatorname{Ac2}\left(\mathrm{g} 2_{\mathrm{o}}\right.$ after $\left.\sigma \mathrm{n}+1\right)=\operatorname{Ac5}\left(\left\langle\mathrm{g} 3_{0}, \mathrm{~g} 2_{0}\right\rangle\right.$ after $\left.\sigma \mathrm{n}+1\right)$.
$-\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 1)(\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 3))$ and $\sigma \mathrm{n}+1 \in \operatorname{Tr}(\mathrm{G} 2): \mathrm{Ac} 4\left(\left\langle\mathrm{~g} 1_{\mathrm{O}}, \mathrm{g} 2_{\mathrm{o}}>\right.\right.$ after $\left.\sigma \mathrm{n}+1\right)=\{\mathrm{X} 1 \quad \mathrm{X} 2 \mid \mathrm{X} 1 \in$ $\operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{o}}\right.$ after $\left.\sigma \mathrm{n}+1\right)$ and $\mathrm{X} 2 \in \operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{o}}\right.$ after $\left.\left.\sigma \mathrm{n}+1\right)\right\}$ and $\mathrm{Ac} 5\left(\left\langle\mathrm{~g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle\right.$ after $\left.\sigma \mathrm{n}+1\right)=\{\mathrm{X} 3 \quad \mathrm{X} 2 \mid \mathrm{X} 3$ $\in \operatorname{Ac} 3\left(\mathrm{~g} 3_{\mathrm{O}}\right.$ after $\left.\sigma \mathrm{n}+1\right)$ and $\mathrm{X} 2 \in \operatorname{Ac} 2\left(\mathrm{~g} 2_{\mathrm{o}}\right.$ after $\left.\left.\sigma \mathrm{n}+1\right)\right\}$. Since G1 $\mathrm{cg} \mathrm{G} 3, \operatorname{Ac} 1\left(\mathrm{~g} 1_{\mathrm{o}}\right.$ after $\left.\sigma \mathrm{n}+1\right)=$ $\operatorname{Ac3}\left(\mathrm{g} 3_{\mathrm{o}}\right.$ after $\left.\sigma \mathrm{n}+1\right)$. It follows that $\mathrm{Ac} 4\left(\left\langle\mathrm{~g} 1_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle\right.$ after $\left.\sigma \mathrm{n}+1\right)=\operatorname{Ac5}\left(\left\langle\mathrm{g} 3_{\mathrm{o}}, \mathrm{g} 2_{\mathrm{o}}\right\rangle\right.$ after $\left.\sigma \mathrm{n}+1\right)$.
$\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2) \quad \mathrm{g} \operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$ and a trace σ is cyclic in $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2)$ iff σ is cyclic in $\operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$. Consequently, $\operatorname{Merge}(\mathrm{G} 1, \mathrm{G} 2) \quad \mathrm{cg}_{\mathrm{g}} \operatorname{Merge}(\mathrm{G} 3, \mathrm{G} 2)$.

[^0]: * This research was supported by a grant from the Canadian Institute for Telecommunications Research under the NCE program of the Government of Canada and by an IBM research fellowship.

