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Abstract

This paper describes a method for merging behavior specifications modeled by transition systems.

Given two behavior specifications B1 and B2, Merge(B1, B2) defines a new behavior specification

that extends B1 and B2. Moreover, provided that a necessary and sufficient condition holds,

Merge(B1, B2) is a cyclic extension of B1 and B2.  In other words, Merge(B1, B2) extends B1 and

B2, and any cyclic trace in B1 or B2 remains a cyclic in Merge(B1, B2). Therefore, in the case of

cyclic traces of B1 or B2,  Merge(B1, B2) transforms into Merge(B1, B2), and may exhibit, in a

recursive manner, behaviors of B1 and B2. If Merge(B1, B2) is a cyclic extension of B1 and B2,

then Merge(B1, B2) represents the least common cyclic extension of B1 and B2. This approach is

useful for the extension and integration of system specifications.

1 Introduction

Formal specifications play an important role in the development life cycle of systems. They capture

the user requirements. They can be validated against such requirements and used as basis for the

design of implementations and test suites. A formal specification represents the reference in each

step of the development life cycle of the required system. The design and the verification of the

specification of a system is a very complex task. Therefore, methodologies for the design of formal

specifications become very important.

Systems may consist of many distinct functions. During the design and the validation of the

specification, these functions may be taken into consideration simultaneously. The validation of

such specification may be a very complex task. In order to facilitate the design and validation of the
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specification of a multiple-functions system, the divide-and-conquer approach may be very useful.

In this case, a specification for each function is designed and analyzed separately. These

specifications are then combined to form the required system specification. The combination of

these functions specifications should preserve the semantic properties of every single function

specification.

From another point of view, system specifications may be enriched by adding new behaviors

required by the user, such as adding new functionality to a given system specification. Different

system specifications may be integrated. In both cases,  the semantic properties of the given system

specifications and behaviors should be preserved. Preserving semantic properties may, for instance,

mean that the combined specification exhibits at least the behavior of each single specification

without introducing additional failures for these behaviors. This is captured by the formal relation

between specifications, called extension, introduced in [Brin 86]. Informally, a behavior

specification B2 extends a behavior specification B1, if and only if, B2 allows any sequence of

actions that B1 allows, and B2 can only refuse what B1 can refuse, after a given sequence of actions

allowed by B1.

Given two behavior specifications B1 and B2, we may combine them into a new behavior

specification B,  such that B extends B1 and B extends B2.   By definition of the extension relation,

B may exhibits behaviors of B1 (respectively B2), without any new failure for these behaviors.

However, B may exhibits behaviors of B1 and behaviors of B2, in an exclusive manner. In other

words, B may exhibits only behaviors of B1 or only behaviors of B2, once the environment has

chosen a behavior of B1 or a behavior of B2, respectively.

A behavior specification B may contain certain sequences of actions that may be repeated

recursively. Such sequences of actions start from the initial state of B and reach the initial state of

B1. They are called cyclic sequences of actions. We assume that the completion of a cyclic sequence

of actions in B corresponds to the completion of B. In other words, we assume that the initial state

of B represents the "final" state for the sequences of actions (functionalities) in B. We are interested

in combining two behavior specifications B1 and B2 into a new specification B, such that, in the

case of cyclic sequences of actions of B1 or B2, B may exhibit, without any new failure, behaviors

in B1 and behaviors in B2, in a recursive manner. In other words, B extends B1 and B2, and after a

cyclic sequence of actions of B1 or B2, B transforms into B', with B' extends B1 and B2, and after

a cyclic sequence of actions of B1 or B2, B' transforms into B", with B" extends B1 and B2, and so

on.  This is possible, if B extends B1 and B2, and any cyclic sequence of actions in B1 or B2
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remains cyclic in B. Therefore, after a cyclic sequence of actions of B1 or B2, B transforms into B,

which extends B1 and B2. This new relation between behaviors is called cyclic extension.

In this paper, we describe a formal approach for merging behavior specifications modeled by

transition systems. Given two behavior specifications B1 and B2,  we define a new specification

behavior, called Merge(B1, B2), which extends B1 and B2.  Moreover, provided that a necessary

and sufficient condition holds, Merge(B1, B2) is the least common cyclic extension of B1 and B2.

We consider two models of transition systems, the Acceptance Graphs (AGs), which are similar to

the Acceptance Trees of Hennessy [Henn 85] and the Tgraphs in [Clea 93], and the Labelled

Transition Systems (LTSs) [Kell 76]. The merging of behavior specifications is, first, defined in

the AGs model, which is more tractable mathematically than the LTSs model. The merging of LTSs

is based on the merging of AGs and relies on a correspondence between LTSs and AGs, which is

introduced in this paper.

The remainder of this paper is structured as follows. The next section introduces the LTSs model,

some related equivalence relations and preorders and the notions of least common extension and least

common cyclic extension. Section 3 introduces the AGs model, the related equivalences and

preorders, the notions of least common extension and least common cyclic extension for AGs, and

the correspondence between AGs and LTSs. The merging of two AGs G1 and G2, Merge(G1, G2),

is defined in Section 4. Main properties of Merge are listed and an example of application is also

provided in Section 4. In Section 5, the merging of LTSs is defined, as well as its properties and an

example of application. In Section 6, our approach is compared to the related ones. In Section 7, we

conclude. The proofs of the propositions and the theorem stated in this paper are provided in the

Appendix.

2 Labelled Transition Systems

2.1 Model

An LTS is a graph in which nodes represent states, and edges, also called transitions, represent state

changes, labelled by actions occurring during the change of state. These actions may be observable

or not.

Definition 2.1 [Kell  76]

An LTS S is a quadruple <St, L, T, so>, where
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- St is a (countable) non empty set of states.

- L is a (countable) set of observable actions.

- T  ⁄ St x (L " {τ}) x St  is a set of transitions, where a transition from a

state si to state sj by an action µ (µ ∈ L " {τ}) is denoted by si−µ→sj.  
τ represents the internal, nonobservable action (τ ∉ L).

- so is the initial state.

An LTS S =  <St, L, T, so> represents a process interacting, in a synchronous manner, with the

environment by executing the actions in L " {τ} following the rules specified by T. More exactly S

represents a set of processes. Each state si of S corresponds to a process P represented by the LTS

<St, L, T, si>.  In the following, we use the terms process and state as synonyms. We also may

refer to an LTS by its initial state. All the definitions on the states are extended to LTSs and

processes. The term "interaction" refers to an observable action.

A finite LTS (FLTS for short) is an LTS in which St and L are finite. For the graphic representation

of the FLTSs, the initial state will be circled. The notations in Table 1 are used for the LTSs.

P−µ1...µn→Q ∃  Pi ( 0 ≤ i ≤ n) such that P = Po−µ1→P1...Pn-1−µn→Pn = Q
P−µ1...µn→ ∃  Q such that  P−µ1...µn→Q
P−,/µ1...µn→  not  (P−µ1...µn→)

P=ε⇒ Q P = Q or ∃ n  1 P−τn →Q 
P=a⇒ Q ∃ P1, P2 such that P=ε⇒ P1−a→ P2=ε⇒ Q
P=a1.a2.. an⇒ Q ∃  Pi  (0 ≤ i ≤ n) such that P = Po=a1⇒ P1=a2⇒ ..an⇒ Pn = Q
P=σ⇒ ∃ Q such that  P=σ⇒ Q
P σ⇒ not (P=σ⇒ )
Tr(P) {σ∈ L* |P=σ⇒ }
out(P) {a ∈ L | P=a⇒ }

Notations:
µ,  µi ∈ L " {τ}; a, ai ∈ L; P, Q, Pi, Qi represent states; ε represents the empty trace,
σ = a1.a2... an, where "." denotes the concatenation of events or sequence of events (traces).

Table 1. Notations for LTSs

For a given  LTS S = <St, L, T, so>, a trace from a given state si, is a sequence of interactions that

S can perform starting from state si. The traces that S can perform from its initial state represent the

traces of S. si after σ (= {sj | si=σ⇒ sj}) denotes the set of all states reachable from si by sequence

σ. out(si, σ)  (= "sj∈ (si after σ))  out(sj)) denotes the set of all possible interactions after σ, starting

from state si. A trace of S is cyclic, if and only if the set of states reachable by this trace is equal to

the set of states reachable by the empty trace from the initial state.  An elementary cyclic trace is a

cyclic trace that is not prefixed by a nonempty cyclic trace. Note that, any cyclic trace results from

the concatenation of elementary cyclic traces.
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Definition 2.2 (Cyclic Trace for LTSs)
Given an LTS S = <St, L, T, so>,  a trace σ is a cyclic trace in S, iff

(so after σ) = {si ∈ St such that so=ε⇒ si}.

Definition 2.3 (Elementary Cyclic Trace for LTSs)
Given an LTS  S = <St, L, T, so>,  a trace σ is an elementary cyclic trace in S, iff

(1)  σ is a cyclic trace, and

(2) ™ σ' ( ε) and σ" ( ε) such that σ = σ'.σ" and σ' is a cyclic trace in S.

2.2 Equivalences and Preorders

Intuitively, different LTSs may describe the same "observable behavior". Different equivalences

have been defined corresponding to different notions of "observable behavior" [DeNi 87]. In the

case of trace equivalence, two systems are considered equivalent if the set of all possible sequences

(traces) of interactions that they may produce are the same.

Finer equivalences are obtained if the refusal (blocking) properties of the systems, which are in

general non-deterministic, are also taken into account.  P ref A means that P refuses to perform any

interaction in A (P a⇒,  ∀ a ∈ A). In other words, P deadlocks with any interaction a in A. A is

called a refusal for P. Note that if A is a refusal for P, then any subset of A is a refusal for P.

Ref(P, σ) = {X | ∃ Q ∈ (P after σ) such that P ref X} denotes the refusal set of P after σ.

Note that if σ ∉ Tr(P),  then Ref(P, σ) = ø.

Two systems are testing equivalent, if in addition to trace equivalence, they have the same refusal

(blocking) properties [Brin 86].

Definition 2.4 (Testing Equivalence for LTSs)

Let S1 and S2 be two LTSs,  S1 and S2 are testing equivalent, S1 te S2, iff

(1)  Tr(S1) = Tr(S2), and

(2)  ∀ σ ∈  L*,  Ref(S2, σ) = Ref(S1, σ).

For instance,  the  LTSs S1, S2 and S3 in Figure 1 can perform the same sequences (a, a.b, a.b.c,

a.b.d) of interactions (a, b,  c and d). They have the same set of traces, they are trace equivalent.

Moreover, the LTSs S1 and S2  have the same refusal properties.  Because of nondeterminism, S1
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and S2 may both refuse interaction c (respectively d) after the sequence of interactions a.b.  S1 and

S2 are not distinguishable by external experiences.  They are testing equivalent.  However, S3 is not

testing equivalent to S1 (and S2).  S3 always accept interaction c or d, after the sequence a.b.

a
a a a

b b
b b b

c c cd d d

S1 S2 S3

Figure 1.  Examples for behavior equivalences.

Instead of considering the sets of interactions that may be refused, we may consider the sets of

interactions that may be accepted. The notion of acceptance sets is dual to the notion of refusal sets.

If Ref(P, σ) is a refusal set, then the corresponding acceptance set Acc(P, σ), is defined as the

complement of the refusals in Ref(P, σ) with respect to out(P, σ).

Acc(P, σ) = {out(P, σ) - X | X ∈ Ref(P, σ)}

= {X | ∃ Q ∈ (P after σ) such that out(Q) ⁄ X ⁄ out(P, σ)}.

The following properties of Acc(P, σ) can be derived from its definition:

- Acc(P, σ) =  ø iff σ ∉ Tr(P),

- ∀ A1, A2 ∈ Acc(P, σ),  A1 " A2 ∈ Acc(P, σ),

- ∀ A1, A2 ∈ Acc(P, σ), if A1 ⁄ A3 ⁄ A2, then A3 ∈ Acc(P, σ) .

Intuitively, a set of interactions X belongs to Acc(P, σ), if and only if there is a state Q reachable

from P by σ and X includes the set of interactions enabled in this state, but X is included in the set of

all possible interactions of (P after σ). This definition corresponds to the acceptance sets definition in

[Henn 85].

Condition (2) in Definition 2.4 may be stated in terms of acceptance sets as follows:

∀ σ ∈  L*,  Acc(S2, σ) = Acc(S1, σ).
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Similar testing equivalence relations are defined in [Broo 85, DeNi 84, Henn 88]. They differ from

the testing equivalence we consider in this paper,  in the way the divergence (possibility of infinite

sequence of internal actions) is dealt with.

Finer equivalences, the bisimulation equivalence (strong bisimulation, ~) [Park 81] and the

observation equivalence (weak bisimulation, ≈) [Miln 89], may be defined if the internal states of

the two systems are taken into account.  These relations are based on the notions of strong

bisimulation [Park 81] and weak bisimulation [Miln 89], respectively.

Definition 2.5 (Strong Bisimulation)
A relation R ⁄ St x St is a strong bisimulation, if (si, sj) ∈ R implies that

∀  a ∈  (L " {τ}), if si−a→sk then sj−a→sl and (sk, sl) ∈ R,

if sj−a→sl  then si−a→sk and (sk, sl) ∈ R

Definition 2.6 (Weak Bisimulation)
A relation R ⁄ St x St is a weak bisimulation, if (si, sj) ∈ R implies that

∀  a ∈   (L " {ε}), if si=a⇒ sk then sj=a⇒ sl and (sk, sl) ∈ R,

if sj=a⇒ sl  then si=a⇒ sk and (sk, sl) ∈ R

Two LTSs S1 and S2, with s1o and s2o as initial state, respectively, are (strongly) bisimulation

equivalent, S1 ~ S2, (respectively observation equivalent, S1 ≈ S2), if and only if there is a strong

bisimulation R (respectively weak bisimulation R) with (s1o, s2o) ∈ R. The observation equivalence

of Milner is stronger than the testing equivalence, but weaker than the bisimulation equivalence.

Two LTSs S1 and S2, with s1o and s2o as initial state, respectively, are isomorphic, if and only if

there is a strong bisimulation R, such that (s1o, s2o) ∈ R and each state of S1 is related to one and

only one state of S2 and vice et versa.

In addition to the equivalences, many preorders (reflexive and transitive relations) have been defined

in the literature [DeNi 87, Henn 85, Brin 86]. The extension preorder defined in [Brin 86] is most

appropriate for extending specification behaviors. Informally, S2 extends S1, S2 ext S1, if and only

if S2 may perform any sequence of interactions that S1 may perform, and S2 can not refuse what S1

can not refuse after a given sequence of interactions allowed by S1 [Brin 86]. The extension preorder

induces the testing equivalence [Brin 86]. In other words, two specifications are testing equivalent if

and only if each is the extension of the other.  In the following, for a given set X, P(X) denotes the

power set of X, i.e. the set of subsets of X.
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Definition 2.7
Let A, B ⁄ P(L),  A 11  B, iff ∀ A1 ∈  A, ∃ B1 ∈ B such that  B1 ⁄ A1.

The following definition of the extension introduced in [Ledu 90] is equivalent to the original one:

Definition 2.8 (Extension for LTSs)

Let S1 and S2 be two LTSs, S2 ext S1, iff

(1)  Tr(S1) ⁄ Tr(S2), and

(2)  ∀ σ ∈  Tr(S1),  Acc(S2, σ) 11 Acc(S1, σ).

For instance, the LTSs S6 and S7 in Figure 2 extend both of the LTSs S4 and S5. S6 (and S7) may

perform any sequence of interactions that S4 (respectively S5) may perform and S6 can not refuse

what S4 (respectively S5) may not refuse after a sequence of interactions allowed by S4

(respectively S5). However, S8 does neither extend S3 nor S4. Indeed, S8 may perform any

sequence of interactions that S4 (respectively S5) may perform, but  S8 may, for instance, refuse

interaction b (respectively c) after sequence a, whereas S4 (respectively S5) never refuses to

interaction b (respectively c) after sequence a.

a
a

b c

S4 S5 S6

ac

S8

ab a c

S7

d
a

b c

ab a c

a a

ba c a

Figure 2.  Extension of behaviors.

Among the common extensions of S4 and S5, S6 is the least one. In other words, any common

extension of S4 and S5 is an extension of S6. For instance, S7 extends S6. The least common

extension is unique up to testing equivalence.

Definition 2.9 (Least Common Extension for LTSs)
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Given three LTSs S1, S2 and S3,  such that S3 ext S1 and S3 ext S2,

S3 is the least common extension of S1 and S2,  iff

any common extension of S1 and S2 is also an extension of S3.

As introduced previously, in this paper we assume that the completion of a cyclic sequence of

interactions in a given specification S corresponds to the completion of S. For instance, after

performing a.b, S4 has completed its functionality and may repeat it in a recursive manner. The LTS

S6, in Figure 2, extends both S4 and S5. However, S6 may exhibit only behavior a.b of S4 in a

recursive manner or only behavior a.c of S5 in a recursive manner. S6 does not exhibit behaviors of

S4 and behaviors of S5, in a recursive manner, contrarily to the LTS S9 in Figure 3. Indeed S9

extends both S4 and S5 and after performing a cyclic sequence of interactions in S4 (respectively S5)

S9 transforms into S9 and offers again behaviors of S4 and S5. S9 may exhibit the behaviors

a.b.a.b...., a.c.a.c...., a.b.a.c.a.b.a.c, ... etc. A condition for S9 to transform into S9 after

any cyclic trace of S4 or S5, is that any cyclic trace in S4 (respectively S5) is a cyclic trace in S9. In

this case, S9 is called a cyclic extension of S4 (respectively S5).

S9

ab c

S10

a, b, c

Figure 3. Cyclic extension of behaviors.

Definition 2.10 (Cyclic Extension for LTSs)

Let S1 and S2 be two LTSs. S2 is a cyclic extension of S1, S2 extc S1, iff

(1) S2 ext S1, and

(2) any  cyclic trace in S1 is a cyclic trace in S2.

Since any cyclic trace results from the concatenation of elementary cyclic traces, any cyclic trace in

S1 is a cyclic trace in S2, if and only if any elementary cyclic trace in S1 is a cyclic trace in S2.

Among the common cyclic extensions of S4 and S5 shown in Figure 2, S9 shown in Figure 3 is the

least one. In other words, any common cyclic extension of S4 and S5 is a cyclic extension of S9. For

instance, S10, a cyclic extension of S4 and S5, is also a cyclic extension of S9. Note that the least

common cyclic extension of S4 and S5, S9, extends the least common extension of S4 and S5, S6.
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Definition 2.11 (Least Common Cyclic Extension for LTSs)

Given three LTSs S1, S2 and S3,  such that S3 extc S1 and S3 extc S2,

S3 is the least common cyclic extension of S1 and S2,  iff

any common cyclic extension of S1 and S2 is also a cyclic extension of S3.

The testing equivalence is refined into the cyclic testing equivalence, if the preservation of the cyclic

traces is taken into account. Note that the cyclic extension is a preorder and it induces the cyclic

testing equivalence.

Definition 2.12 (Cyclic Testing Equivalence for LTSs)

Let S1 and S2 be two LTSs. S2 and S1 are cyclic testing equivalent, S1 tec S2, iff

(1) S1 te S2, and

(2) any cyclic trace in S1 is a  cyclic trace in S2 and reciprocally.

S1 and S2 have the same set of cyclic traces, as stated by condition (2) in Definition 2.12, if and only

if S1 and S2 have the same set of elementary cyclic traces, since the concatenation of elementary

cyclic traces leads a cyclic trace. Similarly to the testing equivalence, the strong bisimulation and the

observation equivalence are also refined into the cyclic strong bisimulation (~c) and the cyclic

observation equivalence (≈c), respectively, when the preservation of the cyclic traces is taken into

consideration.

3 Acceptance Graphs

3.1 Model

An AG is a bilabelled graph-structure. An AG is a graph in which nodes represent states, and

transitions represent interactions occurring during state changes. Instead of modeling the

nondeterminism by the labels of the transitions, the AGs model allows to keep such information in

the labels of the states.  Each state is labelled by a set of sets of interactions, called acceptance set,

that the system may accept (perform) at this state. The outgoing transitions, from a given state, have

distinct labels.

Definition 3.1 (Acceptance Graph)

An AG G is 5-tuple <Sg, L, Ac, Tg, go>, where

- Sg is a (countable) non empty set of states.

- L is a (countable) set of interactions.
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- Ac: Sg → P(P(L)) is a mapping from Sg to a set of subsets of L.

Ac(gi) is called the acceptance set of state gi.

- Tg: Sg x L→Sg is a transition function, where a transition from state 

gi to state gj by an interaction a (a ∈ L) is denoted by gi−a→gj.

- go is the initial state.

The AGs used in this paper are similar to the Acceptance Trees of Hennessy [Henn 85] and Agraphs

in [Clea 93]. However, in our case, we do not distinguish between "closed" and "open" states, since

divergence is not considered explicitly as in [Henn 85] or [Clea 93]. In this paper, any state gi is

labelled by an acceptance set, Ac(gi), which may be infinite or contain some infinite elements in the

case where gi is infinitely branching ({gj | gi−a→gj for some a ∈ L} is infinite). The mapping Ac

and the transition function Tg should satisfy the following consistency constraints, which are similar

to the consistency constraints defined for the "closed" states in [Henn 85]:

Co: ∀ gi ∈ Sg, Ac(gi)  ø.

C1: ∀ gi ∈ Sg, A ∈ Ac(gi) and a ∈ A, there is one and only one gj ∈  Sg such that gi−a→gj.

C2: ∀ gi ∈ Sg,  if ∃ gj  ∈ Sg, such that gi−a→gj, then ∃ A ∈ Ac(gi) with a ∈ A.

C3: ∀ gi ∈ Sg, if A1, A2∈ Ac(gi), then A1 " A2 ∈ Ac(gi).

C4: ∀ gi ∈ Sg, if A1, A2 ∈ Ac(gi) and A1 ⁄ A3 ⁄ A2, then A3 ∈ Ac(gi).

A finite AG (FAG for short) is an AG in which Sg and L are finite.  As for the LTSs, the initial state

will be circled for the graphic representation of an FAG. The notations introduced in Table 1 will be

used for the AGs with the same meaning as for the LTSs, since leaving the mapping Ac out of

account, an AG can be seen as an LTS. In the case of AGs, the notation "gi after σ" will denote the

state gj such that gi=σ⇒ gj, instead of set of states in the case of LTSs. The notion of cyclic trace for

AGs corresponds to the well known notion of cyclic path in the graph theory. A cyclic trace is a

trace, of the initial state, that reaches the initial state. Similarly to the LTSs, an elementary cyclic

trace, is a cyclic trace, which does not results from the concatenation of cyclic subtraces. Any cyclic

trace results from the concatenation of elementary  cyclic traces.

Definition 3.2 (Cyclic Trace for AGs)
Given an AG G = <Sg, L, Ac, Tg, go>,  a trace σ is a cyclic trace in G iff go=σ⇒ go.

Definition 3.3 (Elementary Cyclic Trace for AGs)
Given an AG G = <Sg, L, Ac, Tg, go>,  a trace σ is an elementary cyclic trace in G, iff

(1) σ is a cyclic trace, and

(2) ™ σ'(  ε) and σ" (  ε) such that σ = σ'.σ" and σ' is cyclic trace in G.
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An AG G may contain certain states that are not reachable (A state gi is reachable iff ∃  σ ∈ Tr(G)

such that go=σ⇒ gi.). The graph defined by the set of reachable states, their acceptance sets and their

transitions as defined in G, denoted by reachable(G), is an AG. It is obvious that reachable(G)

satisfies all the consistency requirements listed above.

Definition 3.4 (Reachable Part of an AG)

Given an AG G = <Sg, L, Ac, Tg, go>, the reachable part of G, reachable(G),

is an AG G' = <Sg', L, Ac', Tg', go>, where

- Sg'  = {gi ∈ Sg | ∃ σ ∈ Tr(G) such go=σ⇒ gi}

- ∀ gi ∈ Sg', Ac'(gi) = Ac(gi),

- ∀ gi , gj ∈ Sg',  gi−a→gj ∈ Tg'  iff   gi−a→gj ∈ Tg.

3.2 Equivalences and preorders

Similarly to the LTSs, in the case of trace equivalence, two AGs G1 and G2 are considered

equivalent, if and only if Tr(G1) = Tr(G2). However, in the case of AGs, the testing equivalence and

the observation equivalence coincide with the bisimulation equivalence.  The LTS's structure is finer

than the AG's structure. In this paper, we define the bisimulation for AGs as an instantiation of the

Π-bisimulation introduced in [Clea 93].

Definition 3.5 (Bisimulation)
A relation R ⁄ Sg x Sg is a bisimulation, if (gi, gj) ∈ R implies that

Ac(gi) = Ac(gj), and ∀  a ∈  L,

if gi−a→gk then  gj−a→gl and (gk, gl) ∈ R,

if gj−a→gl  then  gi−a→gk and (gk, gl) ∈ R

Definition 3.6

Two AGs G1 = <Sg1, L1, Ac1, Tg1, g1o> and G2 = <Sg2, L2, Ac2, Tg2, g2o> are bisimulation

equivalent, G1 ~g G2, if and only if there is a bisimulation R such that  (g1o, g2o) ∈ R.

An alternative definition of the bisimulation equivalence for AGs is given by Proposition 3.1.

Proposition 3.1

Given two AGs Gi = <Sgi, Li, Aci, Tgi, gio>, i = 1, 2;   G1 ~g G2    iff

Tr(G1) = Tr(G2)  and (∀ σ ∈ Tr(G1), Ac1(g1o after σ) = Ac2(g2o after σ)).
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Two AGs G1 and G2, with g1o and g2o as initial state, respectively, are isomorphic, G1 =g G2, if

and only if there is a bisimulation R, such that (g1o, g2o) ∈ R and each state of G1 is related to one

and only one state of G2 and vice et versa.

Similarly to the LTSs, the extension relation is defined as follows:

Definition 3.7 (Extension for AGs)

Let G1 and G2 be two AGs,

G2 extends G1, G2 extg G1, iff

(1)  Tr(G1) ⁄ Tr(G2), and

(2)  ∀ σ ∈  Tr(G1), Ac2(g2o after σ) 11 Ac1(g1o after σ).

In the case of AGs, the extension is a preorder that induces the bisimulation equivalence. From

Proposition 3.1 and Definition 3.6, it is obvious that if G2 extg G1 and G1 extg G2, then G1 ~g G2.

If we take into consideration the preservation of the cyclic traces, the extension and the bisimulation

equivalence are refined into the cyclic extension and the cyclic bisimulation equivalence. Note that

the cyclic extension preorder induces the cyclic bisimulation equivalence. Similarly to the LTSs, the

cyclic traces of a given AG are preserved, if and only if its elementary cyclic traces are preserved, at

least, as cyclic traces. Two AGs have the same set of cyclic traces, if and only if they have the same

set of elementary cyclic traces.

Definition 3.8 (Cyclic Extension for AGs)

Let G1 and G2 be two AGs,

G2 is a cyclic extension of G1, written G2 extcg G1, iff

(1)  G2 extg G1,  and

(2)  any cyclic trace in G1 is a cyclic trace in G2.

Definition 3.9 (Cyclic Bisimulation for AGs)

Let G1 and G2 be two AGs,

G2 and G1 are cyclic bisimulation equivalent, written G1 ~cg G2, iff

(1) G1 ~g G2, and

(2)  any cyclic trace in G1 is a cyclic trace in G2 and reciprocally.

The notions of least common extension and least common cyclic extension for AGs are defined in a

similar way as for LTSs.
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Definition 3.10 (Least Common Extension)

Given three AGs G1, G2 and G3,  such that G3 extg G1 and G3 extg G2,

G3 is the least common extension of G1 and G2, iff

any common extension of G1 and G2 is also an extension of G3.

Definition 3.11 (Least Common Cyclic Extension)

Given three AGs G1, G2 and G3,  such that G3 extcg G1 and G3 extcg G2,

G3 is the least common cyclic extension of G1 and G2, iff

any common cyclic extension of G1 and G2 is also a cyclic extension of G3.

3.3 Correspondence and transformations between AGs and LTSs

This section aims to define a correspondence between the LTSs and the AGs as well as the

constructions for generating AGs from arbitrary LTSs and vice et versa. The correspondence

between LTSs and AGs is based on the preservation of the traces, the acceptance sets and the cyclic

traces.

Definition 3.12 (Correspondence between LTSs and AGs)

Given an LTS S = <St, L, T, so> and an AG G = <Sg, L, Ac, Tg, go>,

we say that G is the AG corresponding to S, G = ag(S), iff

(1) Tr(S) = Tr(G),

(2) ∀ σ ∈  Tr(G),  Ac(go after σ) = Acc(so, σ),

(3) any cyclic trace in S is a cyclic trace in G, and

(4) any cyclic trace in G is a cyclic trace in S.

Note that, for a given LTS, the corresponding AG is unique up to the cyclic bisimulation

equivalence. However, An AG may correspond to more than one LTS. These LTSs are cyclic

testing equivalent.  The following proposition is straightforward.

Proposition 3.2

Given two LTSs S1, S2, and two AGs G1, G2,

such that  G1 = ag(S1) and G2 = ag(S2), the following holds:

(1) S2 ext S1 iff G2 extg G1.

(2) any cyclic trace in S1 is a cyclic trace in S2  iff

any cyclic trace in G1 is a cyclic trace in G2.
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Lemma 3.1 follows from Proposition 3.2, since the extension (respectively, the cyclic extension)

induces the testing equivalence (respectively, the cyclic testing equivalence) in the case of LTSs and

the bisimulation equivalence (respectively, the cyclic bisimulation equivalence) in the case of AGs.

Lemma 3.1

Given two LTSs S1, S2, and two AGs G1, G2,

such that  G1 = ag(S1) and  G2 = ag(S2),  the following holds:

(1) S1 te S2  iff  G1 ~g G2,

(2) S1 tec S2  iff  G1 ~cg G2.

Lemma 3.2 follows from Proposition 3.2 and the definitions of least common extension and least

common cyclic extension for LTS and AGs, respectively.

Lemma 3.2

Given three LTSs S1, S2, S3 and three AGs G1, G2, G3, such that  G1 = ag(S1),  G2 = ag(S2) and

G3 = ag(S3), the following holds:

(1) S3 is the least common extension of S1 and S2,  iff

G3 is the least common extension of G1 and G2.

(2) S3 is the least common cyclic extension of S1 and S2,  iff

 G3 is the least common cyclic extension of G1 and G2.

In the following proposition we define for an arbitrary LTS the corresponding AG. The definition of

the corresponding AG for an arbitrary LTS is similar to the construction of a Tgraph from an

arbitrary LTS in [Clea 93].

Definition 3.13 (ε-closure of a set of states) [Clea 93]

Given an LTS S = <St, L, T, so>, the ε-closure of a set of states Qt ∈ P(St), written Qtε,

is defined as follows:  Qtε = {sj ∈ St | ∃ si ∈ Qt such that si=ε⇒ sj}.

Proposition 3.3 (Definition of the AG corresponding to an arbitrary LTS)

Given an LTS S = <St, L, T, so>,  the following AG G is such that G = ag(S):

G = <Sg, L, Ac, Tg, go>, where

(1) Sg = {gi ∈ P(St) | gi = giε},

(2) go = {si ∈ St | so=ε⇒ si}( = {si ∈ St | so=ε⇒ si}ε) ∈ Sg,

(3) ∀  gi ∈  Sg, Ac(gi) = {X | ∃ sj ∈ gi  such that out(sj) ⁄ X ⁄ "sk ∈  gi out(sk)},
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(4) ∀  gi ∈  Sg,  we have gi−a→gj, iff

a ∈  A,  A ∈ Ac(gi)  and gj = {sk ∈ St such that ∃ sj ∈ gi with sj−a→sk}ε.

An arbitrary AG G corresponds to a class of cyclic testing equivalent LTSs. However, by

Proposition 3.4, for an arbitrary AG G, we define a special LTS S,  written lts(G), corresponding to

G. For that, each state of G is split into a set of S states as shown in Figure 4. For each non

redundant set of interactions Aij in the acceptance set of a state gi in G corresponds a state sAij in St.

By a non redundant set of interactions, we denote a set that is neither a union of two other sets of

interactions in the acceptance set, nor it includes a set in the acceptance set and is included in another

one. The corresponding S states, for a given G state, are defined as follows:

Definition 3.13 (LTS states corresponding to an AG state)

Given an AG G = <Sg, L, Ac, Tg, go> and a state gi in G, the states corresponding to gi in an LTS

corresponding to G are defined as follows:

f(gi) = {sAij | Aij ∈ Ac(gi), and ™ Aik ( Aij), Ail ( Aij) ∈ Ac(gi),

such that  Aij = Aik " Ail  or  Aik 1 Aij 1 Ail}

Proposition 3.4 (Definition of lts(G) for an arbitrary AG G)

Given an AG G = <Sg, L, Ac, Tg, go>,

the following LTS S, written lts(G),  is such that G = ag(S):

S = <St, L, T, so>, where

(1) St = "gi ∈  Sg (f(gi) " {si}),

(2) si−τ→sAij, for each sAij ∈ f(gi), for each si in St  (see Figure 4),

(3) For each transition gi−a→gk in G,  for each sAij ∈ f(gi), with a ∈ Aij,

there is a transition sAij−a→sk in S  (see Figure 4).
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gi

gk

Figure 4. Transformation of the AG G into lts(G).

By definition, for an arbitrary AG G, lts(G) is unique. Due to the special form of LTSs defined by

Proposition 3.4, two AGs G1 and G2 are (cyclic) bisimulation equivalent, if and only if lts(G1) and

lts(G2) are (cyclic) strong bisimulation equivalent. Moreover, due to the correspondence between

states of an G1 (respectively G2) and states of lts(G1) (respectively lts(G2), G1 and G2 are

isomorphic, if and only if lts(G1) and lts(G2) are isomorphic.

Proposition 3.5

Given two AGs G1, G2, and two LTSs S1, S2,

such that S1 = lts(G1) and S2 = lts(G2), the following holds:

(1) S1 ~  S2  iff  G1 ~g  G2,

(2) S1 ~c  S2  iff  G1 ~cg  G2,

(3) lts(G1) = lts(G2)  iff  G1 =g  G2.

For this special form of LTSs, defined in Proposition 3.4,  the (cyclic) testing, (cyclic) observation

and (cyclic) bisimulation equivalences coincide.  Lemma 3.3 follows directly from the facts that G1

= ag(lts(G1)), G2 = ag(lts(G2)), Lemma 3.1 and Proposition 3.5.

Lemma 3.3

Given two AGs, G1 and G2,
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(1) the following statements are equivalent:

lts(G1) te lts(G2),  lts(G1) ≈ lts(G2),  lts(G1) ~ lts(G2),  G1 ~g  G2.

(2) the following statements are equivalent:

lts(G1) tec lts(G2),  lts(G1) ≈c lts(G2),  lts(G1) ~c lts(G2) ,  G1 ~cg  G2.

Note that similar correspondence between LTSs and Tgraphs is used in [Clea 93] in order to verify

the testing equivalence relation between LTSs as defined in [Henn 88] by verifying the bisimulation

equivalence between the corresponding Tgraphs.  Drira has used similar correspondence between

LTS and Refusal Graphs for the same purpose as in [Clea 93]. He also defined a special form of

LTSs, called normal form, and proved that the testing, observation and bisimulation equivalences

coincide for these LTSs, as we have done in the first part of Lemma 3.3. The form of the LTSs

defined by Proposition 3.4 is similar to the normal form defined in [Drir 92], except that in our case

each state has, in an exclusive manner, transitions labelled by the silent action or transitions labelled

by interactions, whereas in [Drir 92] a state may have both kind of transitions.

4 Merging Acceptance Graphs

In this section, we define the merging of AGs. The AGs are more tractable mathematically than the

LTSs, because the outgoing transitions, from a given state, have distinct labels. Given two AGs G1

and G2, we define an operation Merge, such that Merge(G1, G2) extends G1 and G2. Moreover,

provided that a necessary and sufficient condition holds, Merge(G1, G2) is the least common cyclic

extension of G1 and G2. The main properties of this Merge operation are described and an algorithm

for the construction of Merge(G1, G2) in the case of FAGs as well as an example of application are

given.

4.1 Definition and Properties of the Merge operation

Informally, given two AGs G1 = <Sg1, L1, Ac1, Tg1, g1o> and G2 = <Sg2, L2, Ac2, Tg2, g2o>, we

define Merge(G1, G2) to be the reachable part of a graph in which a state gi is either a pair <g1i, g2j>

consisting of a state g1i from Sg1 and a state g2j from Sg2 (for instance, the initial state <g1o, g2o>), or

a simple state g1i from Sg1, or a simple state g2j from Sg2.

The definition of the transitions from a state <g1i, g2j> in Merge(G1, G2) depends on the transitions

from g1i in G1 and from g2j in G2. For instance, the transition  <g1i, g2j>−a→<g1k, g2m> is defined
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in Merge(G1, G2), if and only if there is a transition g1i−a→g1k in G1 and a transition g2j−a→g2m in

G2. A transition <g1i, g2j>−a→g1k  is defined in Merge(G1, G2),  if and only if there exist a transition

g1i−a→g1k in G1, but there is no transition labeled by a from g2j in G2. The transitions from a simple

state in Merge(G1, G2), such as g1k for instance, remain the same as defined in G1 or G2, except for

the transitions that reach the initial states of G1 or G2, which are replaced by corresponding transitions

that reach the initial state <g1o, g2o> of Merge(G1, G2).  A complete definition is as follows:

Definition 4.1 (Merge)

Given two AGs, G1 = <Sg1, L1, Ac1, Tg1, g1o> and

G2 = <Sg2, L2, Ac2, Tg2, g2o>,

Merge(G1, G2) = reachable(<Sg3, L1 " L2, Ac3, Tg3, <g1o, g2o>>),  where

(1) Sg3 = {<g1i, g2k> | g1i ∈ Sg1 and g2k ∈ Sg2}  " Sg1 "   Sg2.

(2) The mapping Ac3 is defined as follows:  For each state gi in Sg3,

if  gi = <g1i, g2j>, then Ac3(gi) = {X1 " X2 | X1 ∈ Ac1(g1i) and X2 ∈ Ac2(g2j)},

if  gi ∈ Sgx, then Ac3(gi) = Acx(gi),  where x = 1, 2.

(3) For each state <g1j, g2k> in Sg3,

3-1. <g1j, g2k>−a→<g1l, g2m> ∈ Tg3 iff g1j−a→g1l ∈ Tg1 and g2k−a→g2m ∈ Tg2.

3-2. <g1j, g2k>−a→<g1o, g2o> ∈ Tg3 iff (g1j−a→g1o ∈ Tg1 and g2k−,/a→ in Tg2)

or  (g1j−,/a→ in Tg1 and g2k−a→g2o ∈ Tg2).

3-3. <g1j, g2k>−a→g1l ∈ Tg3 iff g1j−a→g1l ∈ Tg1, g1l  g1o, and g2k−,/a→ in Tg2.

3-4. <g1j, g2k>−a→g2m ∈ Tg3 iff g2k−a→g2m ∈ Tg2, g2m  g2o, and g1j−,/a→ in Tg1.

(4) For each state gxj in Sg3, where x = 1, 2,

4-1. gxj−a→<g1o, g2o> ∈ Tg3 iff gxj−a→gxo∈ Tgx.

4-2. gxj−a→gxl ∈ Tg3 iff gxj−a→gxl ∈ Tgx, gxl  gxo.

If we consider, for instance,  the AGs G1 and G2 shown in Figure 5, Merge(G1, G2) is described by

the reachable part (in bold) of G.
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Figure 5. Example of Merge.

Merge(G1, G2) defines an AG. The consistency constraints defined in Section 3.1 are satisfied by

Merge(G1, G2) as stated by Proposition 4.1 below. Stated otherwise, given two AGs G1 and G2,

Merge(G1, G2), always exists.

Proposition 4.1

Given two AGs, G1 and G2,   Merge(G1, G2) is an AG.

The operation Merge is commutative and associative. Therefore, AGs may be combined in an

incremental way and in any order.

Proposition 4.2

Given three AGs, G1, G2 and G3,  the following holds:

(a) Merge(G1, G2)  =g Merge(G2, G1),

(b) Merge(Merge(G1, G2), G3) =g Merge(G1, Merge(G2, G3))

In the remainder of this paper, in order to avoid redundancy whenever G1 and G2 play symmetrical

roles, we state and prove properties of Merge(G1, G1) relatively to G1 only. Same properties hold

with respect to G2, since operation Merge is commutative.

Merge(G1, G2) always extends G1.

Proposition 4.3

Given two AGs, G1 and G2,  Merge(G1, G2) extg G1.
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In order to be a cyclic extension of G1,  Merge(G1, G2) should preserve the cyclic traces of G1.

Merge(G1, G2) preserves the cyclic traces of G1, if and only if it preserves, at least as cyclic traces,

the elementary cyclic traces of G1. However, there is some situation where an elementary cyclic trace

in G1 is a noncyclic trace in Merge(G1, G2). Indeed, this is the case when a certain elementary cyclic

trace σ in G1 (g1o=σ⇒ g1o) is a noncyclic trace in G2 (g2o=σ⇒ g2k with g2k  g2o). By definition of

Merge, after performing σ,  Merge(G1, G2) reaches a state <g1o, g2k> different from its initial <g1o,

g2o>, since g2k  g2o. Therefore, σ is a noncyclic trace in Merge(G1, G2). The example in Figure 6

illustrates such situations. For instance, a is an elementary cyclic trace in G1 (g1o=σ⇒ g1o), but a is a

non cyclic trace in G2 (g2o=σ⇒ g21 with g21  g2o). Therefore, a is a non cyclic trace in Merge(G1,

G2) (<g1o, g2o>=σ⇒ <g1o, g21> with g21  g2o). In Proposition 4.4, we state a necessary and sufficient

condition for an elementary cyclic trace in G1 to remain a cyclic trace in Merge(G1, G2).

G1 G2 Merge (G1, G2)

a

{{a}}

{{b}}

Sg2o

Sg21

a
ab

{{a, b}}

<Sg1o, Sg2o>

b
a

a

{{a}} {{a}}Sg1o

<Sg1o, Sg21>

Figure 6. Preservation of the cyclic traces by Merge.

Proposition 4.4

Given two AGs, G1 and G2,

an elementary cyclic trace σ in G1 is a cyclic trace in Merge(G1, G2), iff

(σ is a cyclic trace in G2 or σ { Tr(G2)).

From Proposition 4.4, it follows that Merge(G1, G2) preserves the cyclic traces of G1, if and only if

any elementary cyclic trace σ in G1 is a cyclic trace in G2 or σ { Tr(G2), which is equivalent to any

cyclic trace σ in G1 is a cyclic trace in G2 or  σ { Tr(G2) as stated in the following proposition.

Proposition 4.5

Given two AGs, G1 and G2, the following statements are equivalent:

(a) Merge(G1, G2) preserves the cyclic traces of G1,

(b) any elementary cyclic trace σ in G1 is a cyclic trace in G2 or  σ { Tr(G2).
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(c) any cyclic trace σ in G1 is a cyclic trace in G2 or  σ { Tr(G2).

The conditions (b) (and (c)) in Proposition 4.5 can be stated in terms of states as follows: for any state

<g1i, g2j> in Merge(G1, G2), if g1i = g1o then g2j = g2o. This condition is very easy to verify in the

case of FAGs.

In Proposition 4.4, we have stated a sufficient and necessary condition for which an elementary

cyclic trace σ in G1 remains a cyclic trace in Merge(G1, G2). Moreover, in this case σ is an

elementary cyclic trace in Merge(G1, G2). Indeed, if σ = a1.a2...an and g1o−a1→g1i, g1i−a2→g1i+1

..., g1i+n-2−an→g1o with g1i+j  g1o, for j = 0, ..., n-2, and σ is a cyclic trace in Merge(G1, G2), then

by definition of Merge, <g1o, g2o>−a1→gi, g1i−a2→gi+1 ..., gi+n-2−an→<g1o, g2o> with gi+j =

g1i+j or <g1i+j, g2kj> for some state  g2kj in G2 and gi+j  <g1o, g2o>, since g1i+j  g1o, for j = 0, ...,

n-2. However, an elementary cyclic trace in Merge(G1, G2) is not always an elementary cyclic trace

in G1 or G2. As shown by the example in Figure 6, a.a is neither an elementary cyclic trace in G1

nor in G2. a.a is a cyclic trace in G1. As stated by Proposition 4.6, any elementary cyclic trace in

Merge(G1, G2) is a cyclic trace in G1 or G2.

Proposition 4.6

Given two AGs, G1 and G2,

any elementary cyclic trace in Merge(G1, G2) is a cyclic trace in G1 or G2.

Any trace in Merge(G1, G2) results from the recursive concatenation of cyclic traces of G1 or G2,

and a certain trace of G1 or G2.  In other words,  Merge(G1, G2) may only perform what G1 or G2

may perform, in a recursive manner.

Proposition 4.7

Given two AGs, G1 and G2,

any trace σ of Merge(G1, G2) may be written as σ = σ1.σ2...σn.σn+1, with

σi as a cyclic trace in G1 or G2, for i =1, ..., n, and (σn+1 ∈ Tr(G1) or σn+1 ∈ Tr(G2)).

In the case where the cyclic traces of G1 and the cyclic traces of G2 remain as cyclic traces in

Merge(G1, G2), Merge(G1, G2) represents the least common cyclic extension of G1 and G2. The

following theorem follows partly from Proposition 4.3 and Proposition 4.5.

Theorem 4.1

Given two AGs, G1, G2,
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Merge(G1, G2) is the least common cyclic extension of G1 and G2,  iff

any cyclic trace σ in G1 is a cyclic trace in G2 or  σ { Tr(G2), and reciprocally.

Due to the constraint for the preservation of the cyclic traces of G1 and G2 in Merge(G1, G2),

bisimulation equivalence is not substitutive under the Merge combinator. In other words, the fact that

X is bisimulation equivalent to Y does not ensure that Merge(X, Z) is bisimulation equivalent to

Merge(Y, Z). The example in Figure 7, for instance, illustrates such situation. We have G1 ~g G3

but Merge(G1, G2) and Merge(G3, G2) are not bisimulation equivalent. As shown by this example,

this is due to the fact that a is a cyclic trace in G1 but not in G3. The cyclic bisimulation equivalence

is substitutive under the Merge combinator. As stated by Theorem 4.2, if X is cyclic bisimulation

equivalent to Y then Merge(X, Z) is cyclic bisimulation equivalent to Merge(Y, Z), for any AG Z.

Therefore, Merge(X, Z) is bisimulation equivalent to Merge(Y, Z).

G1 G2 Merge(G1, G2)

a

{{a}}

{{c}}

g2o

g21

b
c

{{c}}

<g1o, g2o>

g21

c
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b

{{b}}
{{a, b}}

g1o

G3

{{a}}

g3o

g31

a
a

{{a}}

a

Merge(G3, G2)

b
c

{{c}}

<g3o, g2o>

g21

{{a, b}}

{{a}} g31

a
a

Figure 7.  Substitution property of the bisimulation equivalence under Merge.

Theorem 4.2

Given three AGs, G1,  G2, and G3,  such that   G1 ~cg  G3,

the following holds:   Merge(G1, G2) ~cg  Merge(G3, G2)

4.2 Merging FAGs and Application

In the previous section the Merge combinator has been defined for arbitrary AGs. In the following,

we describe an algorithm, also called Merge, for the construction of Merge(G1, G2), in the case of

FAGs, and we apply it for the combination of two versions of the so-called Daemon Game [ISO

8807]. Notice that, in the case of an FAG G, for any state gi of G, Ac(gi) and any element in Ac(gi)

are finite, since Ac(gi) ⁄ P(L) .

Algorithm Merge
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Given two AGs, G1 = <Sg1, L1, Ac1, Tg1, g1o> and G2 = <Sg2, L2, Ac2, Tg2, g2o>,

Merge(G1, G2) = <Sg3, L1 " L2, Ac3, Tg3, <g1o, g2o>>, where Sg3, Ac3 and Tg3 are built,

recursively, as follows:

Initial step:

Sg3 = {<g1o, g2o>} and Ac3(<g1o, g2o>) = {X1" X2 |X1 ∈ Ac1(g1o) and X2 ∈ Ac2(g2o)}.

Loop:

For each state gi entered into Sg3 (first for the initial state <g1o, g2o>) repeat the following:

if gi = <g1j, g2k>, then for each A ∈ Ac3(<g1j, g2k>) and a ∈ A,
if g1j−a→g1l ∈ Tg1 and g2k−a→g2m ∈ Tg2, then

Sg3 =  Sg3 " {<g1l, g2m>}, <g1j, g2k>−a→<g1l, g2m> ∈ Tg3 and

Ac3(<g1l, g2m>) =  { X1 " X2 | X1 ∈ Ac1(g1l) and X2 ∈ Ac2(g2m)}.

if g1j−a→g1o ∈ Tg1 and g2k−,/a→ in Tg2, then <g1j, g2k>−a→<g1o,g2o> ∈ Tg3.

if g1j−,/a→ in Tg1  and g2k−a→g2o ∈ Tg1 , then  <g1j, g2k>−a→<g1o, g2o> ∈ Tg3.

if g1j−a→g1l ∈ Tg1, with  g1l  g1o and g2k−,/a→ in Tg2, then

Sg3 = Sg3 " {g1l}, Ac3(g1l) = Ac1(g1l) and <g1j, g2k>−a→g1l ∈ Tg3.

if g1j−,/a→ in Tg1 and g2k−a→g2m ∈ Tg2, with  g2m  g2o, then

Sg3 = Sg3 " {g2m}, Ac3(g2m) = Ac2(g2m) and <g1j, g2k>−a→g2m∈ Tg3.

if gi = gxj, with x = 1, 2, then for each A ∈ Ac3(gxj) and a ∈ A,
if gxj−a→gxo ∈ Tgx, then  gxj−a→<g1o,g2o> ∈ Tg3.

if gxj−a→gxl ∈ Tgx, with  gxl  gxo, then

Sg3 = Sg3 " {gxl},  Ac3(gxl) = Acx(gxl), and gxj−a→gxl ∈ Tg3.

Application

As application, we consider two versions of the Daemon game [ISO 8807]. The first game is called

Simple Daemon Game. The player may insert a coin,  probe the system, then he randomly loses or

wins and collects.  The behavior of this game is modeled by the FAG G1 in Figure 8 (a). The

second game is called Jackpot Daemon Game. The behavior of this second game is as follows: the

player has to insert a coin before starting the game. Once the coin has been inserted, the player can

probe, then he randomly loses or wins. If he wins, the game continues. He can probe again, then he

randomly loses or get the "Jackpot" and collect it.  The behavior of Jackpot Daemon Game is

modeled by the FAG G2 in Figure 8 (b).

Assume that we want to combine these two games, in order to describe a new system, called

Combined Game, where the player can, alternatively,  play the Simple Daemon Game and the

Jackpot Daemon Game, without any interference between these two games. Merge(G1, G2), as

shown in Figure 9, defines such a combination of the Simple Daemon Game and the Jackpot
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Daemon Game. We have Merge(G1, G2) extends G1 and G2. Moreover, any cyclic trace of G1

remains as cyclic trace in Merge(G1, G2), since there is no state <g1o, g2j>  in Merge(G1, G2) with

g2j  g2o. Any cyclic trace of G2 remains as cyclic trace in Merge(G1, G2), since there is no state

<g1i, g2o>  in Merge(G1, G2) with  g1i  g1o.  Merge(G1, G2) is the least common cyclic extension

of G1 and G2. Merge(G1, G2) is able to behave, alternatively, in a recursive manner, as G1 and G2.

G1 G2

collect

lose

collect

(a)

(b)

{{coin}}

{{probe}}

{{collect}}

{{lose}, {win}, 
{lose, win}}

{{coin}}

{{probe}}

{{probe}}

{{lose}, {win}, 
{lose, win}}

{{lose}, {jackpot}, 
{lose, jackpot}}

{{collect}}

lose

coin

g11

g12

g13

g1o

probe

g2o

g21

g22

g23

g24

g25

win

coin

probe

win

probe

jackpot

Figure 8. (a) Simple Daemon Game (b) Jackpot Game Descriptions.
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lose

{{coin}}

{{probe}}

{{probe, collect}}

{{lose}, {win}, 

{lose, win}}

{{lose}, {jackpot}, 
{lose, jackpot}}

{{collect}}

collect

g25

g24

<g13, g23>

<g12, g22>

<g11, g21>

<g1o, g2o>

Merge(G1, G2)

coin

probe

win

probe

jackpot

Figure 9. Combined Game Description.

4.3  Discussion

The operation Merge defined in Section 4.1 is such that, for given AGs, G1 and G2, in the case of

the cyclic traces of G1 or G2, Merge(G1, G2) may exhibit the behaviors of G1 and the behaviors of

G2, in a recursive manner, without any new failure for these behaviors. Consider, for instance, the

example in Section 4.2, the Combined Game may exhibit the behaviors of the Simple Daemon Game

and the behaviors of the Jackpot Daemon Game, in a recursive manner.  Each time the Combined

Game exhibits a behavior of the Simple Daemon Game or a behavior of the Jackpot Daemon Game,

the Combined Game does not block where the Simple Daemon Game or the Jackpot Daemon Game

may not block, respectively.

Merge(G1, G2) always extends G1 and G2. Provided that certain necessary and sufficient condition

(Theorem 4.1) is satisfied, Merge(G1, G2) is the least common cyclic extension of G1 and G2. In

general, Merge(G1, G2) is not the least common extension of G1 and G2. The least common

extension of G1 and G2 is defined by the combinator &, which is very similar to Merge operation,

except for the rules defining the transitions, which are replaced by the following rules:
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(3) For each state <g1j, g2k> in Sg3,

3-1. <g1j, g2k>−a→<g1l, g2m> ∈ Tg3  iff  g1j−a→g1l ∈ Tg1 and g2k−a→g2m ∈ Tg2.

3-2. <g1j, g2k>−a→g1l ∈ Tg3  iff  g1j−a→g1l ∈ Tg1 and g2k−,/a→ in Tg2.

3-3. <g1j, g2k>−a→g2m ∈ Tg3  iff  g2k−a→g2m ∈ Tg2 and g1j−,/a→ in Tg1.

(4) For each state gxj in Sg3, where x = 1, 2,  gxj−a→gxl ∈ Tg3 iff gxj−a→gxl ∈ Tgx.

Contrarily to Merge(G1, G2), in G1&G2, the transitions, from a simple state g1i of G1 (respectively

g2j of G2), that reach the initial state g1o of G1 (respectively g2o of G2) are preserved without any

change. For a state <g1j, g2k>, if there is a transition g1j−a→g1o in G1, but no transition from g2k

labelled by a in G2, then the transition <g1j,g2k>−a→g1o is defined in G1&G2 instead of <g1j,

g2k>−a→<g1o, g2o> in Merge(G1, G2), and reciprocally. Once the initial state g1o of G1

(respectively g2o of G2) is reached, G1&G2 behaves as G1 (respectively G2).

The combinator & defines an AG. &  is commutative and associative. G1&G2 always extends G1

and G2. Moreover, G1&G 2 is always the least common extension of G1 and G2. By

definition, G1&G2 does not preserve the cyclic traces of G1 (respectively G2), except the cyclic

traces common to G1 and G2. We have Tr(G1&G2) = Tr(G1) " Tr(G2). G1&G2 may exhibit only

behaviors of G1 or only behaviors G2 as shown by the example in Figure 10, which describes the

least common extension of the Simple Daemon Game and the Jackpot Daemon Game.  In this figure,

G1&G2 describes a system, which may behave only as the Simple Daemon Game or only as the

Jackpot Daemon Game.

The operation & preserves the bisimulation equivalence. In other words, if G1 ~g G3, then G1&G2

~g G3&G2.  Moreover, & preserves the cyclic bisimulation equivalence, since only the common

cyclic traces of G1 (respectively G3) and G2 are preserved in G1&G2 (respectively G3&G2).
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collect

lose

collect

{{coin}}

{{probe}}

{{collect}}

{{lose}, {win}, 
{lose, win}}

{{coin}}

{{probe}}

{{probe}}

{{lose}, {win}, 
{lose, win}}

{{lose}, {jackpot}, 
{lose, jackpot}}

{{collect}}

lose
g11

g12

g13

g1o
g2o

g21

g22

g23

g24

g25

lose

{{coin}}

{{probe}}

{{probe, collect}}<g13, g23>

<g12, g22>

<g11, g21>

<g1o, g2o>

G1 & G2

{{lose}, {win}, 
{lose, win}}

probe

coin

probe

win

collect

coin

probe

win

coin

probe

win

probe

jackpot

Figure 10. Application of the operation &.

5 Merging Labelled Transition Systems

The definition of Merge for LTSs is based on the definition of Merge for AGs and the

correspondence between LTSs and AGs.

5.1 Definition and Properties of Merge
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Definition 5.1 (Merge for LTSs)

Given two LTSs S1 and S2,  Merge(S1, S2) = lts(Merge(ag(S1), ag(S2))).

Since for any LTS S, there is one and only one AG G such that G = ag(S), for any AG G there is

one and only one LTS such S = lts(G), and for given AGs G1 and G2, Merge(G1, G2), always

exists and uniquely defined, then for given LTSs S1 and S2, Merge(S1, S2), always, exists and is

uniquely defined.

All the propositions, lemmas and Theorem 4.1 stated for Merge in the case of AGs holds for Merge

in the case of LTSs.  For instance, Merge(S1, S2) always extends S1 and S2. Merge(S1, S2) is

commutative and associative. Merge(S1, S2) is the least common cyclic extension of S1 and S2, if

and only if any cyclic trace σ in S1 is a cyclic trace in S2 or σ { Tr(S2) and reciprocally.

By correspondence to the AGs and Theorem 4.2, the testing, observation, strong bisimulation

equivalences are not substitutive under the LTSs Merge combinator. However, the cyclic (testing,

observation, strong bisimulation) equivalences are substitutive under the LTSs Merge combinator.

The fact that X and Y are, at least, cyclic testing equivalent ensures that Merge(X, Z) is cyclic

bisimulation equivalent to Merge(Y, Z). Indeed, if X and Y are, at least, cyclic testing equivalent,

their corresponding AGs ag(X) and ag(Y) are cyclic bisimulation equivalent (Lemma 3.1 in Section

3), Merge(ag(X), ag(Z)) is cyclic bisimulation equivalent to Merge(ag(Y), ag(Z)) (Theorem 4.2 in

Section 4), and lts(Merge(ag(X), ag(Z))) and lts(Merge(ag(Y), ag(Z))) are cyclic bisimulation

equivalent (Proposition 3.5 in Section 3).

Similarly to Merge, S1&S2 = lts(ag(S1) & ag(S2)). By correspondence to the AGs, S1&S2 is the

least common extension of S1 and S2 and the properties of & in the case of AGs hold for & in the

case of LTSs.

5.2 Merging FLTSs and Application

In the previous section, we defined Merge(S1, S2) for arbitrary LTSs. In this section, we describe

an algorithm for the construction of Merge(S1, S2),  for the case where S1 and S2 are FLTSs.  This

algorithm consists of three steps. In the first step, S1 and S2 are transformed into FAGs G1 and G2,

such that  G1 = ag(S1)  and G2 = ag(S2).  In the second step,   Merge(G1, G2) is constructed
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following algorithm Merge described in Section 4.2.  In the last step, Merge(G1, G2) is translated

into lts(Merge(G1, G2)).

5.2.1 From an FLTS to an FAG

Given an  FLTS S = <St, L, T, so>, the following algorithm derives a corresponding FAG G =

<Sg, L, Ac, Tg, go>. It is based on the "subset construction" algorithm defined in [Hopc 79].

Step 1: Apply the "subset construction" algorithm [Hopc 79], which transforms a 

nondeterministic finite state automata  to a deterministic one (in our case G). To 

each state in G corresponds a set of states in S. To the state go, for instance, 

corresponds the set of states {si ∈ St | so=ε⇒ si}.

Step 2: For each state gi in G, Ac(gi) ={X | out(sj) ⁄ X ⁄"k=m,k=1 out(sk), for j = 1,...,

m}, if {s1, s2, ..., sm} corresponds to gi.

5.2.2 From an FAG to an FLTS

Given an FAG G = <Sg, L, Ac, Tg, go>, the following algorithm allows to derive the

FLTS S = <St, L, T, so> = lts(G).

Step 1: (Reduction of the acceptance sets):

∀ gi ∈ Sg, Ac'(gi) = {X | X ∈ Ac(gi), such that ™ Y ( X), Z ( X) ∈ Ac(gi),

and X = Y " Z  or  Y 1 X 1 Z}

Step 2: Each state gi is decomposed into k+1 LTS states si, si1, si2, ..., sik,

where k = cardinal(Ac'(gi)). so represents the initial state of S. Each state sij

corresponds to an element Aij of Ac'(gi).

The transitions si−τ→sij  are defined in S,  for j =1, ..., k, for each state si in S.

Step 3: For each state sij in St, for each a∈ Aij, if gi−a→gm ∈ Tg, then sij−a→sm ∈ T.

5.2.3 Application

We consider the same example as in Section 4. The behaviors of the "Simple Daemon Game" and the

"Jackpot Daemon Game" are modeled by FLTSs S1 and S2 in Figure 11, respectively.  Merging S1
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and S2 yields the FLTS S3 shown in Figure 11. S3 extends S1 and S2. Moreover, any cyclic trace of

S1 or S2 remains a cyclic trace in S3. S3 is the least common cyclic extension of S1 and S2. S3 may

behave, alternatively, in a recursive manner, as S1 and S2. Note that S3 may be reduced with respect

to the (cyclic) observation equivalence by removing some internal transitions τ.

S1

collect

lose

collect

lose

(a)

(b)

S2

collect

coin

τ

τ

probe

τ τ

win

τ

probe

τ τ

lose

jackpot

τ

win

ττ

coin

probe

coin

probe

τ
τ

win

probe

τ τ

jackpot

S3

(c)

Figure 11. (a) Simple Daemon Game (b) Jackpot Game  (c) Combined Game Descriptions.

6 Related work

In [Ichi 90], the problem of incremental specification in the LOTOS specification language is

approached. They introduced a new LOTOS operator & and defined the corresponding inference

rules, called specification merging operator. This approach is restricted to behavior specifications

without the internal action τ. B1 & B2 defines a behavior, which is supposed to be an extension of
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B1 and B2. Unfortunately, it is not always the case as shown by the counter-example of Figure 12.

For instance, B1 never refuses interaction c after trace a.b, whereas B1 & B2 may refuse interaction

c after trace a.b. Moreover, B1 & B2 is not able to behave, alternatively, as B1 and B2. B1 & B2

may behave only as B1 or only as B2, once the environment has chosen B1 or B2, respectively. In

the case of deterministic LTSs, this combinator leads the same LTS as the combinator & (merging

without taking into account the preservation of cyclic traces) introduced in this paper.

B1

c

e

B2 B1⊕ B2

a

b

a

d

b

a a a

b

c

e
a

b

a

e

d

c

e
a

b

a

d
b

a

d

b

c

Figure 12. Counter-example for Ichikawa et al. merging operator.

Mayr has considered the choice operator of the LOTOS language for the extension of behavior

specifications [Mayr 88]. The extension of a behavior t by a behavior m is denoted by the behavior t

[] m. However, strong restrictions are imposed on the behavior m,  in order to ensure that s extends

t. For instance, the initial interactions of m should be distinct from initial interactions of t.

In [Rudk 91] the notion of inheritance is defined for LOTOS. It is seen as an incremental

modification technique. A corresponding operator is introduced and denoted by "&".  This operator

is defined such that if s = t & m , then s extends t  and any recursive call in t or m is redirected to s.

However, strong restrictions are imposed on t and m, such that m should be stable (no internal

transition as first event), the initial events of m should be unique and distinct from initial events of t,

and so on.  The specifications B1 and B2 in Figure 14, for instance, do not satisfy such

requirements. In order to define a recursive choice between t and m, Rudkin extended the LOTOS

language by a new primitive process "self".  There is no requirement such that s should also extend
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m, and no considerations to the structure of t or how this modification m is propagated to the

processes in t.

Lin has developed an approach for merging alternative protocol functions [Lin 91]. The approach is

based on the model of communicating finite state machines. It consists of designing a component

protocol for each individual function and then combine them into a single alternating-function

protocol. The combination algorithm resolves problems of competition and synchronization between

the component protocols, in order to preserve the safety properties (absence deadlock and

unspecified receptions) of the component protocols.  However, this approach does not take into

account the service realized by each protocol component and how this service is preserved in the

alternating-function protocol.

7 Conclusion

In this paper, we described an approach for merging behavior specifications. These behaviors are

modeled by acceptance graphs or labelled transition systems. Given two behavior specifications B1

and B2, we defined the merging of B1 and B2, written Merge(B1, B2). We proved certain properties

of Merge; for instance, Merge(B1, B2) extends B1 and B2. Provided that a necessary and sufficient

condition holds, the cyclic traces in B1 (respectively B2) remain cyclic traces in Merge(B1, B2).

Therefore, Merge(B1, B2) is a cyclic extension of B1 and B2. Moreover, in this case, Merge(B1, B2)

is the least common cyclic extension of B1 and B2.  We defined a second combinator, &, which is

very similar to Merge, but differs on the treatment of the cyclic traces of B1 and B2. The operation &

always leads the least common extension of B1 and B2.

The proposed approach for merging behavior specifications is useful for the construction of

multiple-function  specifications. Instead of handling all the functions simultaneously, the designer

may design and verify one function at a time. The merging approach will then derive the required

combined specification. From another point of view, it allows the designer to enrich existing

specifications with new behaviors required by the user and to integrate existing system

specifications.

The approach introduced in this paper has been extended to structured specifications, i.e.

specifications which are modeled as parallel composition of subsystem specifications [Khen 93].  As

future development, the application of the extended approach to real case system specifications, such

as the telephone system specification, is expected.
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The labelled transition systems model used in this paper is the underlying semantic model for many

specification languages, such as LOTOS [ISO 8807] and CCS [Miln 89]. The full examination of the

algebraic properties of the merging operators Merge and & as well as the congruence property of the

newly introduced (cyclic) equivalences in the context of these languages is left for future

development.
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Appendix

Proposition 3.1

Consider two AGs,  G1 = <Sg1, L1, Ac1, Tg1, g1o> and G2 = <Sg2, L2, Ac2, Tg2, g2o>.



3 6

1 -  Assume that Tr(G1) = Tr(G2)  and (∀ σ ∈ Tr(G1), Ac1(g1o after σ) = Ac2(g2o after σ)).

To prove that G1 ~g G2, we have to prove that the relation {((g1o after σ), (g2o after σ)): σ ∈ Tr(G1)} is a

bisimulation. By hypothesis, Ac1(g1o after σ) = Ac2(g2o after σ), ∀ σ ∈ Tr(G1).

Consider (g1o after σ, g2o after σ) ∈  R, for some σ ∈  Tr(G1), (g1o after σ)−a→g1i, if and only if (g2o after

σ)−a→g2j, since Tr(G1) = Tr(G2). We have g1i = g1o after σ.a and g2j = g2o after σ.a, since the transition

relation is a function in the case of AGs. Therefore, (g1i, g2j) ∈ {(g1o after σ, g2o after σ): σ ∈ Tr(G1)},

and the relation {((g1o after σ), (g2o after σ)): σ ∈ Tr(G1)} is a bisimulation.

2 - G1 ~g G2, there is a bisimulation R such that (g1o, g2o) ∈ R, and ∀ (g1i, g2j) ∈ R, Ac1(g1i) = Ac2(g2j).

Consider σ, an arbitrary sequence of actions. First case σ = ε, it is obvious that ε ∈ Tr(G1) and ε ∈

Tr(G2). By definition of AGs, g1o after ε = g1o and g2o after ε = g2o. By hypothesis, (g1o, g2o) ∈ R and

Ac1(g1o after ε) = Ac2(g2o after ε). Second case σ = a1.a2...an, σ ∈ Tr(G1) if and only if g1o−a1→g1i−

a2→g1i+1...g1i+n-2−an→g1i+n-1. The transition relations Tg1 and Tg2 are functions and (g1o, g2o) ∈ R.

It follows that g1o−a1→g1i−a2→g1i+1...g1i+n-2−an→g1i+n-1 if and only if g2o−a1→g2j−a2→g2j+1...g2j+n-

2−an→g2j+n-1 with (g1i, g2j) ∈ R, (g1i+1, g2j+1) ∈ R, ... and (g1i+n-1, g2j+n-1) ∈ R.  Consequently, σ ∈

Tr(G1) if and only if σ ∈ Tr(G2) (Tr(G1) =Tr(G2)) and Ac1(g1o after σ) = Ac2(g2o after σ).

Proposition 3.2

Consider the AGs, G1, G2 and the LTSs S1, S2 with g1o, g2o, s1o, s2o, as initial state respectively.

1- First, we have to prove that S2 ext S1 iff G2 extg G1:

1 - 1 -  Prove that S2 ext S1 ⇒  G2  extg G1:

1 - 1 - a -  Prove that Tr(G1) ⁄ Tr(G2): G1 = ag(S1) implies that Tr(S1) = Tr(G1). G2 = ag(S2) implies that

Tr(S2) =Tr(G2). S2 ext S1 implies that  Tr(S1) ⁄ Tr(S2). Therefore, Tr(G1) ⁄ Tr(G2).

1 - 1 - b - ∀ σ ∈  Tr(G1), Ac2(g2o after σ) 11 Ac1(g1o after σ): G1 = ag(S1) implies that Ac1(g1o after σ) =

Acc(s1o, σ). G2 = ag(S2) implies that  Ac2(g2o after σ) = Acc(s2o, σ). ∀ σ ∈  Tr(S1),  Acc(s2o, σ) 11 Acc(s1o,

σ), because S2 ext S1. It follows that, ∀ σ ∈  Tr(G1), Ac2(g2o after σ) 11 Ac1(g1o after σ). Consequently,

S2 ext S1 ⇒  G2  extg G1.

1 - 2 - The proof for G2 extg G1 ⇒  S2 ext  S1 is very similar.

2 - Any cyclic trace in S1 is a cyclic trace in S2,  iff any cyclic trace in G1 is a cyclic trace in G2 :

2 - 1 - Any cyclic trace in S1 is a cyclic trace in S2 ⇒  any cyclic trace in G1 is a cyclic trace in G2 :

G1 = ag(S1), it follows that any cyclic trace in S1 is a cyclic trace in G1, and reciprocally.

G2 = ag(S2), it follows that any cyclic trace in S2 is a cyclic trace in G2, and reciprocally.

Now, assume that any cyclic trace in S1 is a cyclic trace in S2. It follows that any cyclic trace in G1 is

a cyclic trace in S2. We deduce that any cyclic trace in G1 is a cyclic trace in G2, which concludes the
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first part of the proof. The proof for any cyclic trace in G1 is a cyclic trace in G2  ⇒  any cyclic trace

in S1 is a cyclic trace in S2 is similar.

Proposition 3.3

Consider an LTS  S = <St, L, T, so> and the graph G = <Sg, L, Ac, Tg, go> defined by Proposition 3.3.

We first have to prove that G is an AG. The constraints Co, C3, C4 are satisfied by definition of Ac(gi),

for each state gi in Sg. Constraint C2 is satisfied by definition of the transitions in G. We have to

prove that G satisfies constraint C1:  Given a state gi, we have to prove that ∀  a ∈  A,  A ∈ Ac(gi), there

is one and only one gj such that  gi−a→gj: by definition of G, ∀  a ∈  A, and  A ∈ Ac(gi), gi−a→gj  iff

gj = {sj ∈ St | ∃ sm ∈ gi such that sm−a→sj}ε.  ∀  a ∈  A, and  A ∈ Ac(gi), gj always exists, since ∀  a ∈  L, a ∈

A, and  A ∈ Ac(gi), if and only if there exists at least one state sk in gi such that sk=a⇒ ( or a state sm

such that sm−a→). gj = {sj ∈ St | ∃ sm ∈ gi such that sm−a→sj}ε is unique, because the set {sj ∈ St | ∃ sm ∈

gi such that sm−a→sj} is unique.

The proof of G = ag(S) follows directly from the definition of G, it is clear that go=σ⇒ gi, iff gi = (so

after σ). It follows that Tr(go) = Tr(so) and from the definition of Ac for each state in Sg, ∀  σ ∈ Tr(go),

with go=σ⇒ gi, Ac(gi) = Acc(so, σ). For the cyclic traces, from the definition of G we have, ∀  σ ∈

Tr(go), go=σ⇒ go iff (so after σ) = go = {si ∈ St such that so=ε⇒ si},  it follows that a trace σ is a  cyclic

trace in G, iff σ is a cyclic trace in S.

Proposition 3.4

Consider an AG G = <Sg, L, Ac, Tg, go> and the LTS S = <St, L, T, so> = lts(G) as defined by Prop. 3.4.

A trace σ ∈ Tr(so) iff there is a state si such that so=σ⇒ si. From the definition of S, the state si exists

iff there is a state gi in G such that go=σ⇒ gi.  It follows that Tr(G) = Tr(S).

By definition of S, (so after σ) = {si} "  f(gi), iff go=σ⇒ gi. It follows that Acc(so, σ) = Ac(gi).

From the definition of the transitions in S, sAkl−a→so iff gk−a→go. Moreover, in this case, there is no

transition sAkl −a→si  (si  so) in S. It follows that (so after σ) = {si | so=ε⇒ si} iff go=σ⇒ go.

Proposition 3.5

Consider the AGs G1 = <Sg1, L1, Ac1, Tg1, g1o>, G2 = <Sg2, L2, Ac2, Tg2, g2o>, and

the LTSs S1 =  <S1, L1, T1, s1o>, S2 =  <S2, L2, T2, s2o>, such that  S1 = lts(G1) and S2 = lts(G2).

1 - a -  S1 ~ S2 implies that S1 te S2. By Lemma 3.1 it follows that G1 ~g G2,

since G1 =ag(S1) and G2 =  ag(S2),  .
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1 - b -  G1 ~g  G2:  by definition, we have Gi = ag(lts(Si)), i = 1, 2. It follows that Tr(Si) = Tr(Gi), i = 1, 2. 

By hypothesis,  G1 ~g  G2,  therefore Tr(S1) = Tr(S2) = Tr(G1) = Tr(G2). We have to prove that 

the following relation R = {(s1i, s2j): s1o=σ⇒ s1i−τ→, s2o=σ⇒ s2j−τ→, σ ∈ Tr(S1)} (= R1) " {(s1Aik,

s2Ajl): s1Aik ∈ f(g1o after σ), s2Ajl ∈ f(g2o after σ), Aik = Ajl, and σ ∈ Tr(S1)}(= R2) is a strong 

bisimulation. Note that (s1o, s2o) ∈  R1.

- Consider an element (s1i, s2j) ∈  R1. By definition of R1, for some σ ∈ Tr(S1), s1o=σ⇒ s1i−τ→, 

s2o=σ⇒ s2j−τ→. Assume that s1i−τ→s1Aik,  (−τ→ is the only kind of transition we have for 

such states by definition of lts(G) in Proposition 3.4). From Proposition 3.4, we have s1Aik ∈ 

f(g1o after σ).  By hypothesis, G1 ~g  G2, therefore, ∀ σ ∈ Tr(G1), Ac1(g1o after σ) = Ac2(g2o after 

σ). It follows that there is a state s2Ajl ∈ f(g2o after σ),  such that  Aik = Ajl, and by definition of 

lts(G) in Proposition 3.4, s2j−τ→s2Ajl. Therefore, (s1Aik, s2Ajl) ∈ R2.  The second part of the 

proof (assume that s2j−τ→s2Ajl ...) is symmetrical.

- Consider an element (s1Aik, s2Ajl) ∈ R2. It follows that s1Aik ∈ f(g1o after σ), s2Ajl ∈ f(g2o after 

σ), for some σ ∈ Tr(S1), and Aik = Ajl. Now assume that s1Aik−a→s1l,  (−a→ is the only kind of

transition we have for such states by definition of lts(G) in Proposition 3.4). By definition of 

lts(G), this is possible if and only if g1i−a→g1l in G1. Since G1 ~g  G2, then we also have g2j−

a→g2m in G2. Since Aik = Ajl and a ∈ Aik, it follows that a ∈ Ajl.  By definition of lts(G), we 

have s2Ajl−a→s2m. We have s1o=σ.a⇒ s1l−τ→, s2o=σ.a⇒ s2m−τ→, for some σ.a ∈ Tr(S1). 

Therefore, (s1l, s2m) ∈ R1. The second part of the proof (assume that s2Ajl−a→s2m...) is 

identical. We have proved that R is a bisimulation. Therefore,  if G1 ~g  G2, then

lts(G1) ~ lts(G2). Consequently, G1 ~g  G2 iff lts(G1) ~ lts(G2).

2 - From Proposition 3.2 and Lemma 3.1, S1 and S2 have the same set of cyclic traces, if and only if

G1 and G2 have the set  of  cyclic traces. From (1), G1 ~g  G2 iff lts(G1) ~ lts(G2). Therefore,

G1 ~cg  G2 iff lts(G1) ~c lts(G2).

3 - From (1), we know that G1 ~g  G2 iff lts(G1) ~ lts(G2). Due to the correspondence between states 

of an G1 (respectively G2) and states of lts(G1) (respectively lts(G2), it is obvious that there is a

bisimulation between G1 and G2 where each state of G1 is related to one and only state of G2, 

if and only if there is a bisimulation between lts(G1) and lts(G2) where each state of lts(G1) is 

related to one and only state of lts(G2).

Proposition 4.1

Consider the AGs G1 = <Sg1, L1, Ac1, Tg1, g1o>, G2 = <Sg2, L2, Ac2, Tg2, g2o>.

We have to prove that Merge(G1, G2) satisfies the consistency constraints Co, C1, C2, C3, and C4.
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For that, we have to prove that <Sg3, L1 " L2, Ac3, Tg3, <g1o, g2o>> as defined in Definition 4.1

satisfies these requirements:

- Co: By definition of the acceptance sets of the states in Sg3, we have ∀ gi ∈  Sg3, Ac3(gi)  ø,

because G1 and G2 are AGs, ∀ g1j ∈ Sg1, Ac1(g1j)  ø  and ∀ g2k ∈ Sg2, Ac2(g2k)  ø.

- C1 and C2: The constraints C1 and C2 are satisfied by definition of the transition function Tg3 and 

the fact that G1 and G2 are AGs. For each state gi in Sg3, set A in Ac3(gi) and interaction a in A, 

there is one and only transition labelled by a from this state. For each state in gi in Sg3,  there is

a transition from gi labelled by interaction a only if ∃ A ∈ Ac3(gi) such that a ∈ A.

- C3 (closure under union): ∀ gi ∈ Sg3, if gi = <g1j, g2k>, then Ac3(gi)=Ac1(g1j) x Ac2(g2k), if A1, A2 ∈  Ac3(gi),

then  A1 = A1j1 " A2k1 and A2 = A1j2 "  A2k2, where A1j1, A1j2 ∈ Ac1(g1j) and A2k1, A2k2 ∈ Ac2(g2k)

by definition of Ac3. Since Ac1 and Ac2 satisfy C3, we have (A1j1 " A1j2) ∈ Ac1(g1j) and

(A2k1" A2k2) ∈ Ac2(g2k). It follows that (A1j1" A1j2)" (A2k1 " A2k2)=A1 " A2 ∈  Ac3(gi). For the

cases where gi = g1j, or gi = g2k, the proof is obvious since Ac1 and Ac2 satisfy C3 by 

hypothesis. The proof of satisfaction of C4 is similar to the proof for C3.

<Sg3, L1 " L2, Ac3, Tg3, <g1o, g2o>> is an AG. Consequently, Merge(G1, G2) = reachable(<Sg3, L1 " L2,

Ac3, Tg3, <g1o, g2o>>) is an AG.

Proposition 4.2

Let G1 = <Sg1, L1, Ac1, Tg1, g1o>, G2 = <Sg2, L2, Ac2, Tg2, g2o> and G3 = <Sg3, L3, Ac3, Tg3, g3o>.

(a) Merge(G1, G2)  =g Merge(G2, G1):

let Sg4 and Sg5 be the set of states of Merge(G1, G2) and Merge(G2, G1) , respectively. The 

relation {(<g1i, g2j>, <g2j, g1i>): g1i ∈ Sg1, g2j ∈ Sg2, <g1i, g2j> ∈ Sg4  and <g2j, g1i> ∈ Sg5}   "

{(gi, gi'):  gi ∈ Sg4, gi' ∈ Sg5, and gi = gi'} is a bisimulation containing the pair (<g1o, g2o>, <g2o, g1o>)

and each state of Merge(G1, G2) is related to one and only state of Merge(G2, G1) and vice et 

versa. The AGs G1 and G2 have symmetrical roles in the definition of Merge(G1, G2).

(b) Merge(Merge(G1, G2), G3) =g Merge(G1, Merge(G2, G3)):

let Sg4 and Sg5 be the set of states of Merge(Merge(G1, G2), G3) and Merge(G1, Merge(G2, G3)), 

respectively. The relation {(<<g1i, g2j>, g3k>, <g1i, <g2j, g3k>>): g1i ∈ Sg1, g2j ∈ Sg2, g3k ∈ Sg3, 

<<<g1i, g2j>, g3k> ∈ Sg4  and <g1i, <g2j, g3k>> ∈ Sg5} " {(gi, gi'):  gi ∈ Sg4, gi' ∈ Sg5, and gi = gi'} is a

bisimulation containing the pair (<<g1o, g2o>, g3o>, <g1o, <g2o, g3o>>) and each state in Sg4 is 

related to one and only state of Sg5 and vice et versa.

Proposition 4.3

Given the AGs G1 = <Sg1, L1, Ac1, Tg1, g1o>, G2 = <Sg2, L2, Ac2, Tg2, g2o>,
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we have to prove that Merge(G1, G2) extg G1:

a - Consider an arbitrary trace σ G1 with g1o=σ⇒ g1i. From definition of Merge(G1, G2), ∃ gi ∈ Sg3 such

that <g1o, g2o>=σ⇒ gi, where gi = g1i or gi = <g1i, g2j>, for some state g2j ∈ Sg2. Consequently,

Tr(G1) ⁄ Tr(Merge(G1, G2)).

b - From (a) above, if g1o=σ⇒ g1i, then ∃ gi ∈ Sg3 such that <g1o, g2o>=σ⇒ gi, where gi = g1i or

gi =<g1i, g2j>, for some state g2j ∈ Sg2. If gi=g1i, by definition of Merge we have Ac3(gi) = Ac1(g1i),

it follows that Ac3(gi) 11 Ac1(g1i). If gi = <g1i, g2j> for some g2j ∈ Sg2, by definition of Merge, 

we have Ac3(gi) = {X1"X2 |X1 ∈ Ac1(g1i) and X2∈ Ac2(g2j)}. It follows that Ac3(gi) 11 Ac1(g1i), since

for any X∈ Ac3(gi), there is an X1∈ Ac1(g1i) such that  X1 ⁄ X. Consequently, Merge(G1, G2) extg G1.

Proposition 4.4

Let G1 = <Sg1, L1, Ac1, Tg1, g1o> and  G2 = <Sg2, L2, Ac2, Tg2, g2o>.

Consider an elementary cyclic trace σ = a1.a2...an in G1. It follows that ∃ g1i, g1i+1,..., g1i+n-2 in g1, such

that g1o=a1⇒ g1i, g1i=a2⇒ g1i+1,..., g1i+n-2=an⇒ g1o, with  g1j  g1o,  for j = i, ..., i+n-2.

Sufficient condition:

σ {  Tr(G2), it follows that σ = σ'.aj.σ" and g2o=a1⇒ g2k, g2k=a2⇒ g2k+1, ..., g2k+j-3=aj-1⇒ g2k+j-2, and

g2k+j-2 aj⇒  for some 1 j n. From the definition of Merge(G1, G2), we have <g1o,g2o>=a1⇒ < g1i,g2k>,

<g1i,g2k>=a2⇒< g1i+1,g2k+1>,..,<g1i+j-3,g2k+j-3>=aj-1⇒ < g1i+j-2,g2k+j-2>, <g1i+j-2,g2k+j-2>=aj⇒ g1i+j-1,

..., g1i+n-2=an⇒ <g1o,g2o> in Merge(G1, G2), which means that σ is a cyclic trace in Merge(G1, G2).

σ is a cyclic trace in G2, it follows ∃ g2k, g2k+1, ..., g2k+n-2 in Sg2 such that g2o=a1 ⇒ g2k,

g2k=a2 ⇒ g2k + 1 , ..., g2k+n-2=an ⇒ g2o . From the definition of Merge(G1, G2), we have

<g1o,g2o>=a1⇒< g1i,g2k>, <g1i,g2k>=a2⇒< g1i+1,g2k+1>, ..., and <g1i+n-2,g2k+n-2>=an-2⇒< g1o,g2o> in

Merge(G1, G2), which means that σ is a cyclic trace in Merge(G1, G2).

Necessary Condition:

Assume that σ∈ Tr(G2) and σ is not a cyclic trace in G2. It follows that  ∃ g2k, such that g2o=σ⇒ g2k,

with g2k  g2o. By definition of Merge(G1, G2), we have <g1o, g2o>=σ⇒< g1o, g2k>, with  <g1o,g2k> 

<g1o,g2o>.  Consequently, σ is not a cyclic in Merge(G1, G2),  which ends the proof that (σ { Tr(G2) or

σ is a cyclic trace in G2) is a necessary condition.

Proposition 4.5

Let G1 = <Sg1, L1, Ac1, Tg1, g1o> and G2 = <Sg2, L2, Ac2, Tg2, g2o>

1 - Equivalence between (a) and (b): we know that Merge(G1, G2) preserves the cyclic traces of G1, iff 

any elementary cyclic trace in G1 is preserved, as cyclic trace, in Merge(G1, G2). From Proposition

4.4, we know that any elementary cyclic trace σ in G1 is a cyclic trace in Merge(G1, G2), iff σ is a 
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cyclic trace in G2 or σ { Tr(G2). It follows that Merge(G1, G2) preserves the cyclic traces of G1 iff 

any elementary cyclic trace σ in G1 is a cyclic trace in G2 or  σ { Tr(G2).

2 - Equivalence between (b) and (c):

2- 1 - (c) implies (b): obvious since any elementary cyclic trace is a cyclic trace.

2 - 2 - (b) implies (c): assume that any elementary cyclic trace σ in G1 is a cyclic trace in G2 or  σ {

Tr(G2) and consider an arbitrary cyclic trace σ in G1. Any cyclic trace results from the 

concatenation of elementary cyclic traces, therefore σ = σ1.σ2...σn, with  σi as elementary cyclic

trace in G1, for i = 1, ..., n. σi is an elementary cyclic in G1, by hypothesis, it follows that σi is 

a cyclic trace in G2 or σi { Tr(G2), for i = 1, ..., n. Assume that σi is a cyclic trace in G2, for i = 1, 

..., n, it follows that σ = σ1.σ2...σn is a cyclic trace in G2 (concatenation of cyclic traces is a 

cyclic trace). Now assume that σi, for i =1, ...j -1, are cyclic traces in G2  and  σj { Tr(G2) with 1 

j  n . It follows that σ1.σ2...σj-1 is a cyclic trace in G2, but σ1.σ2...σj-1.σj { Tr(G2), which means 

that σ { Tr(G2). Therefore,  (b) implies (c).

Consequently, the statements (a), (b) and (c) in Proposition 4.5 are equivalent.

Proposition 4.6

Let G1 = <Sg1, L1, Ac1, Tg1, g1o> and G2 = <Sg2, L2, Ac2, Tg2, g2o>.

Consider σ = a1.a2....an,  an arbitrary elementary cyclic trace in Merge(G1, G2). By definition of the

elementary cyclic trace, we have <g1o, g2o>=a1⇒ gi1=a2⇒ gi2...gin-1=an⇒ <g1o, g2o> with gij <g1o, g2o>,

for j = 1, ..., n-1. From  the Definition of Merge, we have the following three cases:

(a) gij = <g1ij, g2ij>, with <g1ij, g2ij>  <g1o, g2o> for j = 1,..., n-1, which implies that 

g1o=a1⇒ g1i1=a2⇒ g1i2...g1in-1=an⇒ g1o and g2o=a1⇒ g2i1=a2⇒ g2i2... g2in-1=an⇒ g2o. Therefore,

σ is a cyclic trace in G1 and G2.

(b) gij =  <g1ij, g2ij> with <g1ij, g2ij>  <g1o, g2o> , for j = 1,..., k, (for a certain k) and gij = g1ij (  

g1o), for j = k+1,..., n-1, which means that g1o=a1⇒ g1i1=a2⇒ g1i2...g1in-1=an⇒ g1o. Therefore, σ

is a cyclic trace in G1.

(c) gij =  <g1ij, g2ij> with <g1ij, g2ij>  <g1o, g2o> , for j = 1,..., k, (for a certain k) and gij = g2ij (  

g2o), for j = k+1,..., n-1, which means that g2o=a1⇒ g2i1=a2⇒ g2i2...g2in-1=an⇒ g2o. Therefore σ

is a cyclic trace in G2.

Consequently, σ is a cyclic trace in G1 or G2.

Proposition 4.7

Let G1 = <Sg1, L1, Ac1, Tg1, g1o> and  G2 = <Sg2, L2, Ac2, Tg2, g2o>.
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(a) σ is a cyclic in Merge(G1, G2):  σ = σ1.σ2...σn.σn+1, with σi as elementary cyclic trace in Merge(G1,

G2), for i =1, ..., n+1, for a certain integer n.  From Proposition 4.6, σi as a cyclic trace in G1 or G2, for

i =1, ..., n+1. Therefore, σi is a cyclic trace in G1 or G2, for i=1,..., n, and (σn+1∈ Tr(G1) or σn+1 ∈ Tr(G2)).

(b) σ is a noncyclic in Merge(G1, G2): σ = σ'.a1.a2...am with <g1o, g2o>=σ'⇒ g1o, g2o>=a1⇒ gi1=a2⇒ gi2 ...

gim-1=an⇒ gim with gij <g1o, g2o>, for j = 1, ..., m. σ' is a cyclic trace in Merge(G1, G2). Therefore, σ' =

σ'1.σ'2...σ'n, with σ'i as elementary cyclic trace in Merge(G1, G2), for i =1, ..., n, for a certain integer n.

From Proposition 4.6, σ'i as a cyclic trace in G1 or G2, for i =1, ..., n.

We have <g1o, g2o> =a1⇒ gi1=a2⇒ gi2 ...  gim-1=an⇒ gim with gij <g1o, g2o>, for j = 1, ..., m.  From the

definition of Merge, we have the following three cases:

(a) gij = <g1ij, g2ij>, with <g1ij, g2ij>  <g1o, g2o> for j = 1,..., m, which means that 

g1o=a1⇒ g1i1=a2⇒ g1i2...g1im-1=am⇒ g1m and g2o=a1⇒ g2i1=a2⇒ g2i2...g2im-1=am⇒ g2m. 

Therefore, a1.a2...am ∈ Tr(G1) and a1.a2...am ∈ Tr(G2).

(b) gij =  <g1ij, g2ij> with <g1ij, g2ij>  <g1o, g2o> , for j = 1,..., k, (for a certain k) and gij = g1ij

(  g1o), for j = k+1,..., n-1, which means that g1o=a1⇒ g1i1=a2⇒ g1i2...g1im-1=am⇒ g1m.

Therefore, a1.a2...am ∈ Tr(G1).

(c) gij =  <g1ij, g2ij> with <g1ij, g2ij>  <g1o, g2o> , for j = 1,..., k, (for a certain k) and gij = g2ij

(  g2o), for j = k+1,..., n-1, which means that g2o=a1⇒ g2i1=a2⇒ g2i2...g2im-1=am⇒ g2m.

Therefore, a1.a2...am ∈ Tr(G2).

Consequently, any trace σ of Merge(G1, G2) may be written as σ = σ1.σ2...σn.σn+1, with

σi as a cyclic trace in G1 or G2, for i =1, ..., n, and (σn+1 ∈ Tr(G1) or σn+1 ∈ Tr(G2)).

Theorem 4.1

Let G1 = <Sg1, L1, Ac1, Tg1, g1o> and  G2 = <Sg2, L2, Ac2, Tg2, g2o>.

From Proposition 4.3, we have Merge(G1, G2) extg Gi, i =1, 2.

From Proposition 4.5,  Merge(G1, G2) preserves the cyclic traces of G1 iff

any cyclic trace σ in G1 is a cyclic trace in G2 or σ { Tr(G2).

It follows that  Merge(G1, G2) is a cyclic extension of G1 and G2, iff

any cyclic trace σ in G1 is a cyclic trace in G2 or σ { Tr(G2), and reciprocally.

Now, we have to prove that Merge(G1, G2) is the least common cyclic extension of G1 and G2. For

that, we consider an arbitrary AG G4 = <Sg4, L4, Ac4, Tg4, g4o> such that G4 extcg G1, G4 extcg G2 and

we will prove that  G4  extcg  Merge(G1, G2).

First, we have to prove that any cyclic trace in Merge(G1, G2) is a cyclic trace in G4.  Consider a cyclic

trace σ in Merge(G1, G2). σ = σ1.σ2...σn with σ1, σ2, ..., σn as elementary cyclic traces in Merge(G1, G2).
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By Proposition 4.6, it follows that σi is a cyclic trace in G1 or G2, for i = 1, ..., n. We have σi as a

cyclic trace in G1 or G2, for i = 1, ..., n. It follows that σi is a cyclic trace in G4, for i = 1, ..., n, since G4

is a cyclic extension of G1 and G2. Consequently, σ is a cyclic trace in G4 (concatenation of cyclic

traces is a cyclic trace)

Secondly, we have to prove that G4 extg Merge(G1, G2):

(1) Consider an arbitrary trace σ in Merge(G1, G2).  The trace σ can be written as σ = σ1.σ2...σn-1.σn 

with σi as cyclic trace in G1 or G2, for i = 1, ..., n-1,  and σn ∈ Tr(G1) or σn ∈ Tr(G2). G4 extcg G1 and 

G4 extcg G2, it follows that any trace of G1 (respectively G2) is a trace of G4, and any cyclic trace 

in G1 (respectively G2) is a cyclic trace in G4, it follows that σi is a cyclic trace in G4, for i = 1, ...,

n-1,  and σn ∈ Tr(G4). We deduce that σ = σ1.σ2...σn-1.σn ∈ Tr(G4).

(2) Consider an arbitrary trace σ in Merge(G1, G2): as previously,  the trace σ can be written as σ = 

σ1.σ2...σn-1.σn with σi as cyclic trace in G1 or  G2, for i = 1, ..., n-1,  and σn ∈ Tr(G1) or σn ∈ Tr(G2). 

We have deduced that σi is a cyclic trace in G4, for i = 1,..., n-1, and σn∈ Tr(G4). σ∈ Tr(Merge(G1, G2)),

it follows that ∃ gi in Merge(G1, G2) such that <g1o,g2o>=σ⇒ gi. Since σ = σ1.σ2....σn, and σ1, 

σ2,..., σn-1 are (elementary) cyclic traces in Merge(G1, G2), it follows that <g1o, g2o>=σn⇒ gi. Same

reasoning for G4, ∃ g4j in G4 such that g4o=σ⇒ g4j and g4o=σn⇒ g4j. If σn ∈ Tr(G1) and σn {  Tr(G2), we

deduce that ∃ g1i in G1 such that g1o=σn⇒ g1i, and by definition of Merge, gi = g1i and Ac3(gi) = 

Ac1(g1i). We have G4 extg G1, it follows that  Ac4(g4j) 11 Ac3(gi) = Ac1(g1i). Reciprocally, if σn ∈ 

Tr(G2) and σn { Tr(G1).  If σn ∈ Tr(G1) and σn ∈ Tr(G2), ∃ g1i in G1 and ∃ g2j in G2 such that 

g1o=σn⇒ g1i, and g2o=σn⇒ g2j, and by definition of Merge, gi = <g1i, g2j> and Ac3(gi) = {X1 " X2 | 

X1 ∈ Ac1(g1i) and X2 ∈ Ac2(g2j)}. We have G4 extg G1, and G4 extg G2, it follows that Ac4(g4j) 11

Ac1(g1i) and Ac4(g4j) 11 Ac2(g2j). It follows that Ac4(g4j) 11 Ac3(gi), which ends the second part 

of the proof G4 extg Merge(G1, G2).

Consequently, G4  extcg Merge(G1, G2) and Merge(  an arbitrary elementary cyclic trace in Merge(G1,
G
2
). By

t i o n  o f  a n  e l e m e n t a r y  c y c l i c  t r a c e ,  w e  h a v e  < g 1 o ,

. . g 4 i n - 1 = a n fi < g 1 o ,  g 2 o >  w i t h  g 4 i j  < g 1 o ,  g 2 o > , f o r j =

1 ,  . . . ,  n - 1 .  F r o m   t h e  D e f in i t i o n  o f  M e r g e ,  w e  h a v e  the

lowing three cases:

(a) g 4 i j  =  < g 1 i j ,  g 2 i j > ,  w i t h

<g1
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ij, g2ij>  <g1o, g2o>, for j = 1,..., n-1, it follows that <g3o, g2o>=a1fig3i1,

g2i1>=a2fig3i2, g2i2>..<g3in-1, g2in-1>=anfi<g3o, g2o> in Merge(G3, G2) with <g3ij, g2ij> 

<g1o, g2o> for j = 1,..., n-1, since   an arbitrary elementary cyclic trace in Merge(G1, G2). By definition

of an elementary cyclic trace, we have <g1o, g2o>=a1⇒ g4i1=a2⇒ g4i2...g4in-1=an⇒ <g1o, g2o> with g4ij

<g1o, g2o>, for j = 1, ..., n-1. From  the Definition of Merge, we have the following three cases:

(a) g4ij = <g1ij, g2ij>, with <g1ij, g2ij>  <g1o, g2o>, for j = 1,..., n-1, it follows that <g3o, 

g2o>=a1⇒ g3i1, g2i1>=a2⇒ g3i2, g2i2>..<g3in-1, g2in-1>=an⇒ <g3o, g2o> in Merge(G3, G2) with 

<g3ij, g2ij>  <g1o, g2o> for j = 1,..., n-1, since g3ij = g3o iff  g1ij = g1o, for j = 1,..., n-1 (G1 and

G3 have the same cyclic traces). Therefore, σ is an elementary cyclic in Merge(G3, G2).

(b) g4ij =  <g1ij, g2ij> with <g1ij, g2ij>  <g1o, g2o> , for j = 1,..., k, (for a certain k) and g4ij = g1ij (  

g1o), for j = k+1,..., n-1, it follows that <g3o, g2o>=a1⇒< g3i1, g2i1>...<g3ik-1, g2ik-1>=ak⇒ 

<g3ik, g2ik>=ak+1⇒ g3ik+1...g3in-1=an⇒ <g3o, g2o>in Merge(G3, G2) with <g3ij, g2ij> <g3o, g2o>

for j = 1, ..., k,  and  g3ij  g3o, for j = k+1, ..., n-1, since g3ij = g3o iff  g1ij = g1o, for j = 1, ..., n-1

((G1 and G3 have the same cyclic traces)). Therefore, <g3o, g2o>=a1⇒ g5i1=a2⇒ g5i2 ...     

g5in-1=an⇒ <g3o, g2o> with g5ij <g1o, g2o>, for j = 1, ..., n-1, which means that σ is an 

elementary cyclic in Merge(G3, G2).

(c) g4ij =  <g1ij, g2ij> with <g1ij, g2ij>  <g1o, g2o> , for j = 1,..., k, (for a certain k) and g4ij = g2ij (  

g2o), for j = k+1,..., n-1, it follows that <g3o, g2o>=a1⇒< g3i1, g2i1>... <g3ik-1, g2ik-1>=ak⇒ 

<g3ik, g2ik>=ak+1⇒ g2ik+1...g2in-1=an⇒ <g3o, g2o> in Merge(G3, G2) with <g3ij, g2ij> <g3o, g2o>

for j = 1,..., k, since g3ij = g3o iff g1ij = g1o  for j = 1,..., k ((G1 and G3 have the same cyclic 

traces))  and  g2ij  g2o, for j = k+1,..., n-1. Therefore, <g3o, g2o>=a1⇒ g5i1=a2⇒ g5i2...          

g5in-1=an⇒ <g3o, g2o> with g5ij  <g1o, g2o>, for j = 1, ..., n-1, which means that σ is an 

elementary cyclic in Merge(G3, G2).

The proof for any elementary cyclic trace in Merge(G3, G2) is an elementary cyclic trace in Merge(G1,

G2) is symmetrical. Consequently, Merge(G1, G2) and Merge(G3, G2) have the same set of (elementary)

cyclic traces.

2 - Merge(G1, G2) ~g Merge(G3, G2):

2 - 1 - Tr(Merge(G1, G2)) = Tr(Merge(G3, G2)):

Consider a trace σ ∈ Tr(Merge(G1, G2)).  σ = σ1.σ2...σn.σn+1, with σi as elementary cyclic trace in

Merge(G1, G2), for i =1, ..., n,  and  (σn+1 ∈ Tr(G1)  or σn+1 ∈ Tr(G2)). It follows, from (1) above, 

that σi is an elementary cyclic trace in Merge(G3, G2), for i =1, ..., n. Merge(G3, G2) extg G3 and G2 

and G1 ~cg G3, we deduce that (σn+1 ∈ Tr(G3) or σn+1 ∈ Tr(G2)). Therefore, σ = σ1.σ2...σn.σn+1 ∈ 
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Tr(Merge(G3, G2). The proof for any trace σ of Merge(G3, G2) is a trace of Merge(G3, G2) is 

symmetrical.

2 - 2 - ∀ σ ∈ Tr(Merge(G1, G2)), Ac4(<g1o, g2o> after σ) = Ac5(<g3o, g2o> after σ):

Consider a trace σ ∈ Tr(Merge(G1, G2)).  σ = σ1.σ2...σn.σn+1, with σi as elementary cyclic trace in

Merge(G1, G2) and Merge(G3, G2), for i =1, ..., n,  and  (σn+1 ∈ Tr(G1) (and σn+1 ∈ Tr(G3) ) or σn+1 ∈ 

Tr(G2)). Therefore,  <g1o, g2o> after σ = <g1o, g2o> after σn+1 and <g3o, g2o> after σ = <g3o, g2o> 

after σn+1.  Ac4(<g1o, g2o> after σ) = Ac5(<g1o, g2o> after σ), iff Ac4(<g1o, g2o> after σn+1) = 

Ac5(<g3o, g2o> after σn+1). We have three cases:

- σn+1 ∈ Tr(G1) (σn+1 ∈ Tr(G3)): Ac4(<g1o, g2o> after σn+1) = Ac1(g1o after σn+1) = Ac3(g3o after 

σn+1) = Ac5(<g3o, g2o> after σn+1), since G1 ~cg G3.

- σn+1 ∈ Tr(G2): Ac4(<g1o, g2o> after σn+1) = Ac2(g2o after σn+1) = Ac5(<g3o, g2o> after σn+1).

- σn+1 ∈ Tr(G1) (σn+1 ∈ Tr(G3)) and σn+1 ∈ Tr(G2): Ac4(<g1o, g2o> after σn+1) = {X1 " X2 | X1 ∈

Ac1(g1o after σn+1)  and  X2 ∈ Ac2(g2o after σn+1)} and Ac5(<g3o, g2o> after σn+1) = {X3 " X2 | X3

∈ Ac3(g3o after σn+1)  and  X2 ∈ Ac2(g2o after σn+1)}. Since G1 ~cg G3, Ac1(g1o after σn+1) = 

Ac3(g3o after σn+1). It follows that Ac4(<g1o, g2o> after σn+1) = Ac5(<g3o, g2o> after σn+1).

Merge(G1, G2) ~g Merge(G3, G2) and a trace σ is cyclic in Merge(G1, G2) iff σ is cyclic in Merge(G3, G2).

Consequently, Merge(G1, G2) ~cg Merge(G3, G2).


