Merging Behavior Specifications

Ferhat Khendek and Gregor v. Bochmann
Département d'informatique et de recherche opérationnelle
Université de Montréal

C. P. 6128, Succ. A, Montréal, Que H3C 3J7, Canada

Abstract

This paper describes a method for merging behavior specifications modeled by transition systems.
Given two behavior specifications B1 and B2, Merge(B1, B2) defines a new behavior specification
that extends B1 and B2. Moreover, provided that a necessary and sufficient condition holds,
Merge(B1, B2) isacyclic extension of B1 and B2. In other words, Merge(B1, B2) extends B1 and
B2, and any cyclic trace in B1 or B2 remains a cyclic in Merge(B1, B2). Therefore, in the case of
cyclic traces of B1 or B2, Merge(B1, B2) transforms into Merge(B1, B2), and may exhibit, in a
recursive manner, behaviors of B1 and B2. If Merge(B1, B2) is a cyclic extension of B1 and B2,
then Merge(B1, B2) represents the least common cyclic extension of B1 and B2. This approach is
useful for the extension and integration of system specifications.

1 Introduction

Formal specifications play an important role in the development life cycle of systems. They capture
the user requirements. They can be validated against such requirements and used as basis for the
design of implementations and test suites. A formal specification represents the reference in each
step of the development life cycle of the required system. The design and the verification of the
specification of a system isavery complex task. Therefore, methodologies for the design of formal
specifications become very important.

Systems may consist of many distinct functions. During the design and the validation of the
specification, these functions may be taken into consideration simultaneously. The validation of
such specification may be avery complex task. In order to facilitate the design and validation of the

* This research was supported by a grant from the Canadian Institute for Telecommunications Research under the NCE
program of the Government of Canada and by an IBM research fellowship.

specification of a multiple-functions system, the divide-and-conquer approach may be very useful.
In this case, a specification for each function is designed and analyzed separately. These
specifications are then combined to form the required system specification. The combination of
these functions specifications should preserve the semantic properties of every single function
specification.

From another point of view, system specifications may be enriched by adding new behaviors
required by the user, such as adding new functionality to a given system specification. Different
system specifications may be integrated. In both cases, the semantic properties of the given system
specifications and behaviors should be preserved. Preserving semantic properties may, for instance,
mean that the combined specification exhibits at least the behavior of each single specification
without introducing additional failures for these behaviors. Thisis captured by the formal relation
between specifications, called extension, introduced in [Brin 86]. Informally, a behavior
specification B2 extends a behavior specification B1, if and only if, B2 allows any sequence of
actions that B1 alows, and B2 can only refuse what B1 can refuse, after a given sequence of actions
alowed by B1.

Given two behavior specifications B1 and B2, we may combine them into a new behavior
specification B, such that B extends B1 and B extends B2. By definition of the extension relation,
B may exhibits behaviors of B1 (respectively B2), without any new failure for these behaviors.
However, B may exhibits behaviors of B1 and behaviors of B2, in an exclusive manner. In other
words, B may exhibits only behaviors of B1 or only behaviors of B2, once the environment has
chosen abehavior of B1 or abehavior of B2, respectively.

A behavior specification B may contain certain sequences of actions that may be repeated
recursively. Such sequences of actions start from the initial state of B and reach the initial state of
B1. They are called cyclic sequences of actions. We assume that the completion of a cyclic sequence
of actionsin B corresponds to the completion of B. In other words, we assume that the initial state
of B represents the "final" state for the sequences of actions (functionalities) in B. We are interested
in combining two behavior specifications B1 and B2 into a new specification B, such that, in the
case of cyclic sequences of actions of B1 or B2, B may exhibit, without any new failure, behaviors
in B1 and behaviorsin B2, in arecursive manner. In other words, B extends B1 and B2, and after a
cyclic sequence of actions of B1 or B2, B transforms into B', with B' extends B1 and B2, and after
acyclic sequence of actions of B1 or B2, B' transforms into B, with B" extends B1 and B2, and so
on. Thisis possible, if B extends B1 and B2, and any cyclic sequence of actions in B1 or B2

remains cyclic in B. Therefore, after a cyclic sequence of actions of B1 or B2, B transformsinto B,
which extends B1 and B2. This new relation between behaviorsis called cyclic extension.

In this paper, we describe a formal approach for merging behavior specifications modeled by
transition systems. Given two behavior specifications B1 and B2, we define a new specification
behavior, called Merge(B1, B2), which extends B1 and B2. Moreover, provided that a necessary
and sufficient condition holds, Merge(B1, B2) isthe least common cyclic extension of B1 and B2.

We consider two models of transition systems, the Acceptance Graphs (AGs), which are similar to
the Acceptance Trees of Hennessy [Henn 85] and the Tgraphs in [Clea 93], and the Labelled
Transition Systems (LTSs) [Kell 76]. The merging of behavior specifications is, first, defined in
the AGs model, which is more tractable mathematically than the LTSs model. The merging of LTSs
Is based on the merging of AGs and relies on a correspondence between LTSs and AGs, which is
introduced in this paper.

The remainder of this paper is structured as follows. The next section introduces the LTSs model,
some related equivalence relations and preorders and the notions of least common extension and least
common cyclic extension. Section 3 introduces the AGs model, the related equivalences and
preorders, the notions of least common extension and least common cyclic extension for AGs, and
the correspondence between AGs and LTSs. The merging of two AGs G1 and G2, Merge(G1, G2),
Is defined in Section 4. Main properties of Merge are listed and an example of application is also
provided in Section 4. In Section 5, the merging of LTSsis defined, aswell asits properties and an
example of application. In Section 6, our approach is compared to the related ones. In Section 7, we
conclude. The proofs of the propositions and the theorem stated in this paper are provided in the
Appendix.

2 Labelled Transition Systems

2.1 Model

An LTSisagraph in which nodes represent states, and edges, also called transitions, represent state
changes, labelled by actions occurring during the change of state. These actions may be observable

or not.

Definition 2.1 [Kell 76]
AnLTSSisaquadruple<St, L, T, so>, where

- Stis a (counta et i e
- L isa(countable) set ,
-T & St Tn'ﬁ
state s to state § by an action p (U L
T represents the internal, nonobservable
- §istheinitia state.

ad@bn (T O L).

AnLTSS= <, L, T, so> represents a process
environment by executing the actionsinL {1} follo

gracting, in aggMchronous manner, with the
b specified by T. More exactly S
represents a set of processes. Each state 5; of S corresponds to a process P represented by the LTS
<$t, L, T, 5>. Inthe following, we use the terms process and state as synonyms. We also may
refer to an LTS by its initial state. All the definitions on the states are extended to LTSs and
processes. The term "interaction” refersto an observable action.

A finite LTS (FLTSfor short) isan LTS in which St and L are finite. For the graphic representation
of the FLTSs|ihe initial state will be circjilb. The notationsin Table 1 are used for the LT Ss.

OP; (0<i<n)suchth
0Q such that P-p1...u
not (P-p1...kpn-)

P-p1...un-Q =Po-p1-P1..Pn-1-Un-Pn=Q
P—l.ll...un—»
P—,/ul...un—»
P=e0 Q
P=alQ
P=a1.a2.. an]
P=cO

Pol

Tr(P)

out(P)

L* |P=00 }
L |P=al }

Notations:

mow Ol {1} asq
0 =ag.a... an, where"."

ts the empty trace,

otes the concatenation of events or [lilluence of events (traces).

Table 1. Notations for

Foragiven LTSS
S can perform starting
traces of S. 5 after o (={§
o.out(s, 0) (= S0 (s after
from state 5. A trace of Siscyclic, if and only if the set of states reachable by thistrace is equal to
the set of states reachable by the empty trace from the initial state. An elementary cyclic traceisa
cyclic trace that is not prefixed by a nonempty cyclic trace. Note that, any cyclic trace results from
the concatenation of elementary cyclic traces.

state 5, is a sequence of interactions that
can perform from itsinitial state represent the
e set of all states reachable from s by sequence
tes the set of all possible interactions after o, starting

Definition 2.2 (Cyclic Tjce for LT
Givenan LTS
(so after 0) ={

Definition 2.3 (Elementa
GivenanLTS S=<%&, L,
(1) oisacyclictrace, and

o>, atrace i an elementary cyclictracein S, iff

and o' isacyclictracein S.

2.2 Equivalences and Pj@orders

Intuitively, different LTSs may describe the same "observable behavior”. Different equivalences
have been defined corresponding to different notions of "observable behavior" [DeNi 87]. In the
case of trace equivalence, two systems are considered equivalent if the set of all possible sequences
(traces) of interactions that they may produce are the same.

Finer equivalences are obtained if the refusal (blocking) properties of the systems, which are in
general non-deterministic, are also taken into account. P ref A meansthat P refuses to perform any
interaction in A (Parj O al A). In other words, P deadlocks with any interaction ain A. A is

called arefusal for P. Notethat if A isarefusal for P, then any subset of A isarefusa for P.

Ref(P, 0) ={X | 0Q O (P after o) such that Pref X} denotes the refusal set of P after o.
Notethat if o O Tr(P), then Ref(P, 0) = @.

]
Two systems are testing equiWe equivalence, they have the same refusa
(blocking) progerties | Brin 86| .

Definition 2.4 (Testing EMlva ence tor

Let S1and S2 betwo LTSs, S1and S2 aretesting equivalent, Site S2, iff
@O Tr(S) Tr(S2), and
@ o0 L*, Ref(S2,0) Ref(Sy,0).

For instance, the LTSs S1, S2 and S3 in Figure 1 can perform the same sequences (a, a.b, a.b.c,
a.b.d) of interactions (a, b, ¢ and d). They have the same set of traces, they are trace equivalent.
Moreover, the LTSs S1 and S2 have the same refusal properties. Because of nondeterminism, S1

and S2 may both refuse interaction ¢ (respectively d) after the sequence of interactionsa.b. Si and
S2 are not distinguishable by external experiences. They are testing equivalent. However, S3is not
testing equivalent to S1 (and S2). S3 aways accept interaction ¢ or d, after the sequence a.b.

S1 S2

Instead of considering the sets of inte , we may consider the sets of
interactions that may be accepted. The iJual to the notion of refusal sets.
If Ref(P, o) isarefusal set, then the , IS defined as the
complement of therefusalsin Ref(P, o

Acc(P, 0) ={out(P, o) - X | X [Ref
={X | QU (P after 0) suc

The following properties of Acc(P, 0)
- Acc(P, 0) = giff c O Tr(P),
-0A1, A20Acc(P, 0), A1 A2 Acd

-DALA20 AP, 0),if AT A3 A i Al acsE ol

Intuitively, a set of inth(P, 0), if and only if there is a state Q reachable
from P by o and X includes the set of interactions enabled in this state, but X isincluded in the set of

al possible interactions of iP after ci. This definition corresponds to the acceptance sets definition in
[Henn 85].

Condition (2) in Definition 2.4 may be stated in terms of acceptance sets as follows:
(o O L*, Acc(S2,0) Acc(Sy, o).

Similar testing equivalence relations are defined in [Broo 85, DeNi 84, Henn 88]. ey differ from
the testing equiyvalence we consider in thi
sequence of irjrnal actgns) IS dealt wi

paper, in the way the divergence (possibility of infinite

Finer equiva
observation e

ivalence (strong bisimulation,) [Park 81] and the
N, =) [Miln 89], may be defined if the internal states of

the two systqai i These relations are based on the notions of strong
bissmulation [respectively
Definition
A relation R O R implies that
Oad(L At) OR,
d(sq, s) OR
Definition 270
ArelaionR StHEa 5. S) [1 Rimpliesthat
Oalb (L {g}), .]) UR,

if §=a0 g then s=ad s¢ and (s, §) O R

Two LTSs S1 and S2, with sig and 25 as initial state, respectively, are (strongly) bisimulation
equivalent, S1 S2, (respectively observation equivalent, S1 = S2), if and only if thereis a strong
bisimulation R (respectively weak bisimulation R) with (slo, S20) [I R. The observation equivalence
of Milner is stronger than the testing equivalence, but weaker than the bisimulation equivalence.
Two LTSs S1 and S2, with s1p and 25 asinitia state, respectively, are isomorphic, if and only if
there is a strong bisimulation R, such that (s1o, S20) [0 R and each state of S1 is related to one and
only one state of S2 and vice et versa.

In addition to the equivalences, many preorders (reflexive and transitive relations) have been defined
in the literature [DeNi 87, Henn 85, Brin 86]. The extension preorder defined in [Brin 86] is most
appropriate for extending specification behaviors. Informally, S2 extends S1, S2 ext Si, if and only
If S2 may perform any sequence of interactions that S1 may perform, and S2 can not refuse what S1
can not refuse after a given sequence of interactions alowed by S1 [Brin 86]. The extension preorder
induces the testing equivalence [Brin 86]. In other words, two specifications are testing equivaent if
and only if each isthe extension of the other. In the following, for agiven set X, P(X) denotes the
power set of X, i.e. the set of subsets of X.

Definition 2.7
LetA,B P(L ™[B such that B1

Al
|

The following def troduced in [Ledu 90] is equivalent to the original one:
Definition 2.8 (Extelt§
Let S1 and S2 betwo LTSs, S2 ext Si, iff

M Tr(S) Tr(%
(@ Lo O Tr(S1), AcCc(S2, 0 CC(S1, 0).

For instance, the LTSs S6 and S7 in Figure 2 extend both of the LTSs $4 and S5. S6 (and S7) may
perform any sequence of interactions that $4 (respectively S5) may perform and Se6 can not refuse
what S4 (respectively S5) may not refuse after a sequence of interactions allowed by $4
(respectively Ss). However, S8 does neither extend S3 nor $S4. Indeed, S8 may perform any
sequence of interactions that S4 (respectively S5) may perform, but S8 may, for instance, refuse
interaction b (respectively c) after sequence a, whereas S4 (respectively S5) never refuses to
interaction b (respectively c) after sequence a.

A s5 S6 S7 S8

Figure 2. Extension of behaviors.
Among the common extensions of $4 and S5, S6 is the least one. In other words, any common
extension of $4 and S5 is an extension of S6. For instance, S7 extends S6. The least common

extension is unique up to testing equivalence.

Definition 2.9 (Least Common Extension for LTSs)

Given three LTSs S1, S2 and S3, such that S3 ext S1 and S3 ext S2,
S3istheleast common extension of S1 and S2, iff
any common extension of S1 and S2 is also an extension of S3.

As introduced previously, in this paper we assume that the completion of a cyclic sequence of
interactions in a given specification S corresponds to the completion of S. For instance, after
performing a.b, S4 has completed its functionality and may repeat it in arecursive manner. TheLTS
Se6, in Figure 2, extends both S4 and Ss. However, S6 may exhibit only behavior a.b of S4in a
recursive manner or only behavior a.c of S5in arecursive manner. S6 does not exhibit behaviors of
S4 and behaviors of S5, in a recursive manner, contrarily to the LTS Soin Figure 3. Indeed S9
extends both $4 and S5 and after performing a cyclic sequence of interactionsin $4 (respectively Sb)
S9 transforms into S9 and offers again behaviors of $4 and S5. S9 may exhibit the behaviors
a.b.a.b..., a.c.a.c...., a.b.a.c.a.b.a.c, ... etc. A condition for S9 to transform into S9 after
any cyclic trace of $4 or S5, isthat any cyclic trace in $4 (respectively Ss) isacyclic tracein $9. In
thiscase, S9is called acyclic extension of $4 (respectively S5).

SO S10
b a <c¢

Figure 3. Cyclic extension of behaviors.

Definition 2.10 (Cyclic Extension for LTSs)

Let S1 and S2 betwo LTSs. S2isacyclic extension of S1, S2 extc S, iff
(1) S2 ext S1, and
(2) any cyclictracein Stisacyclictracein S2.

Since any cyclic trace results from the concatenation of elementary cyclic traces, any cyclic tracein
Stisacyclictracein S2, if and only if any elementary cyclic trace in S1 is a cyclic trace in S2.
Among the common cyclic extensions of S4 and S5 shown in Figure 2, S9 shown in Figure 3 isthe
least one. In other words, any common cyclic extension of S4 and S5 isacyclic extension of So. For
instance, S10, a cyclic extension of $4 and S5, is also a cyclic extension of S9. Note that the least
common cyclic extension of $S4 and S5, S9, extends the least common extension of S4 and S5, S6.

Definition 2.11 (Least Common Cyclic Extension for LTSs)
Given three LTSs S1, S2 and S3, such that S3 extc S1 and S3 extc S2,
S3istheleast common cyclic extension of S1 and S2, iff

any common cyclic extension of S1 and S2 isalso acyclic extension of S3.

The testing equivalence is refined into the cyclic testing equivaence, if the preservation of the cyclic
traces is taken into account. Note that the cyclic extension is a preorder and it induces the cyclic
testing equivalence.

Definition 2.12 (Cyclic Testing Equivalence for LTSs)

Let S1 and S2 betwo LTSs. S2 and S1 are cyclic testing equivaent, S1tec S2, iff
(1) Site 2, and
(2 any cyclictracein Stisa cyclic tracein S2 and reciprocally.

S1 and S2 have the same set of cyclic traces, as stated by condition (2) in Definition 2.12, if and only
iIf S1 and S2 have the same set of elementary cyclic traces, since the concatenation of elementary
cyclic traces leads acyclic trace. Similarly to the testing equivalence, the strong bisimulation and the
observation equivalence are also refined into the cyclic strong bisimulation (¢) and the cyclic
observation equivalence (=c), respectively, when the preservation of the cyclic traces is taken into

consideration.

3 Acceptance Graphs

3.1 Model

An AG is a bilabelled graph-structure. An AG is a graph in which nodes represent states, and
transitions represent interactions occurring during state changes. Instead of modeling the
nondeterminism by the labels of the transitions, the AGs model alows to keep such information in
the labels of the states. Each stateislabelled by a set of sets of interactions, called acceptance set,
that the system may accept (perform) at this state. The outgoing transitions, from a given state, have
distinct labels.

Definition 3.1 (Acceptance Graph)

An AG Gis5-tuple<Sg, L, Ac, Tg, go>, where
- Sgisa(countable) non empty set of states.
- L isa(countable) set of interactions.

10

- Ac: Sg - P(P(L)) isamapping from Sg to a set of subsetsof L.
Ac(g;) is called the acceptance set of state g;.
- Tg: Sg x L - Sg isatrangition function, where atransition from state
gi to state gj by aninteraction a(aJ L) is denoted by gi-a- g;.
- goistheinitial state.
The AGs used in this paper are similar to the Acceptance Trees of Hennessy [Henn 85] and Agraphs
distinguish between "closed and "open" states, since
divergence is not considered explicitly asin [llenn 85] or [Clea 93]. Injiis paper, any state g; is
labelled by an acceptance set, Ac(g;), which mjil be infinite or contain soifi infinite elementsin the
case where g; is infinitely branching ({ gj | gi i X fIte). 11e mapping Ac

in [Clea93]. However, in our case, we do not Q

and the transition function Tg should satisfy th y i raints, which are similar
to the consistency constraints defined for the ™

Co: Ugi U Sg, Ac(g) @.
CLOg O0Sg, A OAc(g) andald A, there i s"Olg
C2:0g USg, if g O Sy, such that gi—a- g, t
C3: Og OSg,if A1, A200Ac(gi), then A1 A2 0O Ac(

e LR Vv 1= 1= GNP (0] R—

A finite AG (FAG for short) isan AG in which Sg and L arefinite. Asfor the LTSs, theinitial state
will be circled for the graphic representation of an FAG. The notations introduced in Table 1 will be
used for the AGs with the sgggne meaning as for the LTSs, since leaving the mapping Ac out of
account, an AG can be scen llan LTS. In the case of AGs, the notation "g; after o will denote the
state gj such that gi=ol] g, ijead of set of statesin the case of LTSs. The notion of cyclic trace for

AGs corre
trace, of the initial state, thg
trace, isacyclic trace, whic
trace results from the concatg

f cyclic path in the graph theory. A cyclic traceis a
a state. Similarly to the LTSs, an elementary cyclic
rom the concatenation of cyclic subtraces. Any cyclic
pry cyclic traces.

Definition 3.2
GivenanAGG= e g isacyclictracein Giff go=o0 go.
Definition 3.3 (Elementa
Givenan AG G=<Sg, L, A{

(1) oisacyclictrace, and

e for AGS)
P 0 isan elementary cyclictracein G, iff

and o' iscyclictracein G.

11

An AG G may contain certain states that are not reachable (A state g; is reachable iff 0o O Tr(G)
such that go=0L1 g;.). The graph defined by the set of reachable states, their acceptance sets and their
transitions as defined in G, denoted by reachable(G), is an AG. It is obvious that reachable(G)
satisfies all the consistency requirements listed above.

Definition 3.4 (Reachable Part of an AG)
Givenan AG G =<3g, L, Ac, Tg, go>, the reachable part of G, reachable(G),
iIsan AG G' =<5, L, Ac', Td, go>, where

-Sg° ={gi 0 Sg| o O Tr(G) such go=all gi}

-0 gi U Sy, Ac(gi) = Ac(g),

-0g,90Sg, g—a-g 0Tg iff g-a-gj0Tg.

3.2 Equivalences and preorders

Similarly to the
equivaent, if an
the observation
than the AG's str
M-bismulation intr

, in the case of trace equivalence, two AGs G1 and G2 are considered
nly if Tr(G1) = Tr(G2). However, in the case of AGs, the testing equivalence and
Ivalence coincide with the bismulation equivalence. The LTSs structure isfiner
ture. In this paper, we define the bisimulation for AGs as an instantiation of the

Definition 3.5 (Bisimulation)

AreaionR SgxSaisabismulati R implies that

Definition 3.6
Two AGs G1 = <591, L1, Aci, Tgi, glg> and G2 = <§g2, L2,
equivalent, G1 ¢ G2, if and only if thereis abismulation R su

An aternative definition of the bisimulation equivaence for AGsis given by Proposition 3.1.
Proposition 3.1

Given two AGs Gi = <3gi, Li, Aci, Tgi, gig>, i=1,2, G1 gG2 iff
Tr(G1) =Tr(G2) and (Cb O Tr(G1), Aci(glo after o) = Ac2(g2g after 0)).

12

Two AGs G1 and G2, with g1 and g2 as initial state, respectively, are isomorphic, G1 =¢ G2, if
and only if thereisabig o) (1 R and each state of G1 isrelated to one

and only one state ofgg¥? and vice et versa.

Similarly to the LS, the extension relatiogal ined as follows:
Definition 3.7 (E
Let G1and G2 betwo A
G2 extends G1, G2 exty G1, iff

O Tr(G1) Tr(
@ o O Tr(Gy), iczl 020 g!er o! gm,glo 5!3 0).

In the case of AGs, the extension is a preorder that induces the bisimulation equivalence. From
Proposition 3.1 and Definition 3.6, it is obvious that if G2 exty G1and G1 exty G2, then G1 ¢ G2.
If we take into consideration the preservation of the cyclic traces, the extension and the bisimulation
equivalence are refined into the cyclic extension and the cyclic bisimulation equivalence. Note that
the cyclic extension preorder induces the cyclic bisimulation equivalence. Similarly to the LTSs, the
cyclic traces of agiven AG are preserved, if and only if its elementary cyclic traces are preserved, at
least, as cyclic traces. Two AGs have the same set of cyclic traces, if and only if they have the same
set of elementary cyclic traces.

sion for AGS)

Definition 3.8 (Cyclic Extension for AGS)

Let G1 and G2 be two AGs,

G2isacyclic extension of Gi1, written G2 extcy G1, iff
(1) G2extg G
(2) any cycly einG cyclict n G2.

Definition 3.9 (Cyclic Bisimulation for AGSs)

Let G1 and G2 be two AGs,

G2 and G1 are cyclic bismulation equivalent, written G1 ¢q G2, iff
1HG1 gG2and
(2) any cyclictracein Glisacyclic tracein G2 and reciprocaly.

The notions of least common extension and least common cyclic extension for AGs are defined in a
similar way asfor LTSs.

13

Definition 3.10 (Least Common Extension)

Given three AGs G1, G2 and G3, such that G3 exty G1 and G3 exty G2,
G3isthe least common extension of G1 and G2, iff

any common extension of G1 and G2 is aso an extension of G3.

Definition 3.11 (Least Common Cyclic Extension)

Given three AGs G1, G2 and G3, such that G3 extcy G1 and G3 extcy G2,
G3istheleast common cyclic extension of G1 and G2, iff

any common cyclic extension of G1 and G2 isalso acyclic extension of G3.

3.3 Correspondence and transformations between AGs and LTSs

This section aims to define a correspondence between the LTSs and the AGs as well as the
constructions for generating AGs from arbitrary LTSs and vice et versa. The correspondence
between LTSs and AGs s based on the preservation of the traces, the acceptance sets and the cyclic
traces.

Definition 3.12 (Correspondence between LTSs and AGS)
Givenan LTSS=<S, L, T,sp>andan AG G =<, L, Ac, Tg, go>,
we say that G isthe AG corresponding to S, G = ag(S), iff

@ Tr(S) =Tr(G),

(@ o O Tr(G), Ac(go after o) = Acc(so, 0),

(3) any cyclictracein Sisacyclictracein G, and

(@) any cyclictracein Gisacyclictracein S.

Note that, for a given LTS, the corresponding AG is unique up to the cyclic bisimulation
equivalence. However, An AG may correspond to more than one LTS. These LTSs are cyclic
testing equivalent. The following proposition is straightforward.

Proposition 3.2
Giventwo LTSs S1, S2, and two AGs G1, G2,
such that G1 = ag(S1) and G2 = ag(S2), the following holds:
(1) S2ext St iff G2 exty G1.
(2 any cyclictracein Stisacyclic tracein &2 iff
any cyclictracein G1isacyclictracein G2.

14

Lemma 3.1 follows from Proposition 3.2, since the extension (respectively, the cyclic extension)
Induces the testing equivalence ing equivalence) in the case of LTSsand
the bisimulation equivalence ation equivalence) in the case of AGs.

Lemma 3.1
Giventwo LTSs S1, S2, and two AGs G1, G2,
such that G1=ag(S1) and G2 =ag(S2), thefollowing holds:
(1) StteS2 iff G1 ¢ G2,
(2 Sitec &2 iff G1 ¢y G2.

Lemma 3.2 follows from Proposition 3.2 and the definitions of least common extension and least
common cyclic extension for LTS and AGs, respectively.

Lemma 3.2
Given three LTSs S1, S2, S3 and three AGs G1, G2, G3, such that G1 = ag(S1), G2 = ag(S2) and
G3 = ag(S3), the following holds:
(1) S3istheleast common extension of S1 and S2, iff
G3 isthe least common extension of G1 and G2.
(2 S3istheleast common cyclic extension of S1 and S2, iff
G3 isthe least common cyclic extension of G1 and G2.

In the following proposition we define for an arbitrary LTS the correspo
the corresponding AG for an arbitrary LTS is similar to the construg
arbitrary LTSin [Clea93].

g AG. The definition of
bn of a Tgraph from an

Definition 3.13 (e-closure of a set of states) [Clea 93]
Givenan LTSS=<%t, L, T, sp>, the e-closure of a set of states Qt [(3
is defined asfollows: Qt¢={s [St|Os 0 Qt such that =€l

Proposition 3.3 (Definition of the AG corresponding
GivenanLTSS=<&, L, T, so>, thefollowing AG G is sucl
G =<9, L, Ac, Tg, go>, where

(1) Sg={gi UP(Y) | gi = gi¥},

(2 9o ={s O St|so=el s}(={s U St|so=el s}¥) U Sy,

(3) 0 gi U Sy, Ac(gi) ={X |Os Og suchthat out(s) X

15

(4 O g U Sy, wehave gi-a- g, iff
alA, AOAc(g) and gj={s O St such thatils [g; with §5—a— s¢} 8.

alent LTSs. However, by
ten I1ts(G), corresponding to
in Figure 4. For each non
orresponds a state sajj in St.

' er sets of
et and isincluded in another
Dr a given G i WS

An arbitrary AG G corresponds t
Proposition 3.4, for an arbitrary AG G, we define asp
G. For that, each state of G isgplit into a set of S
redundant set of interactions Aj; il the acceptance set ¢
By a non redundagt set of interglitions, we denote a S
interactions in thejiliceptance schor it ingludes 2 ol

one. The correspdiiling S states

Definition 3.13A TS stateg
Givenan AG G g, L, Ac,
corresponding to gre defineclliS|
f(gi) = {saij | Aij (lAc(gi), ang
such that [l = Aik

orrespond

| o> and a Sl rrespondingto gj inan LTS

allows;

Proposition 3.4@@efinitiong@f 1ts(G) for an arDjry AG G)
GivenanAG G #
thefollowing LTS S,
S=<8, L, T, sp>, where
(D) St= g nsy(f(a)
(2) S—T - sajj, for each spjj O f(gj), for each 5 in St (see Figure 4),
(3) For each transition gi—a— gk in G, for each spjj U f(g;), with a [0 Ajj,

thereisatransition sajj—a- s in'S (see Figure 4).

16

Figure 4. Transformation of the AG G into Its(G).

By definition, for an arbitrary AG G, Its(G) is unique. Due to the specia form of LTSs defined by
Proposition 3.4, two AGs G1 and G2 are (cyclic) bissmulation equivalent, if and only if 1ts(G1) and
Its(G2) are (cyclic) strong bisimulation equivalent. Moreover, due to the correspondence between
states of an G1 (r G of Its(G1) ectively 1ts(G2), G1 and G2 are
isomorphic, if an ')

Proposition 3.
Given two AGs G1, G2, and two LINEGGNGG
such that S1 = Its(G1) and S2 = Its(G2), the following holds:

@msSt S2iff Gi g Gz,

@S1 cS2iff G ¢y G2,

@) Its(G1) = Itg(G2) iff G1 4 G2.

For this special form of LTSs, defined in Proposition 3.4, the (cyclic) testing, (cyclic) observation
and (cyclic) bisimulation equivalences coincide. Lemma 3.3 follows directly from the facts that G1

= ag(Its(G1)), G2 = ag(Its(G2)), Lemma 3.1 and Proposition 3.5.

Lemma 3.3
Given two AGs, G1 and G2,

17

(1 thefollowing statements are equivalent:
Its(G1) telts(G2), Its(G1) = Itg(G2), Its(G1) Itg(G2), G1 ¢ G2.
(@ thefollowing statements are equivalent:
Its(G1) tec Its(G2), Its(G1) =c It5(G2), Its(G1) cltsg(G2), G1 ¢y G2.

Note that similar correspondence between LTSs and Tgraphsis used in [Clea 93] in order to verify
the testing equivalence relation between LTSs as defined in [Henn 88] by verifying the bismulation
equivalence between the corresponding Tgraphs. Drira has used similar correspondence between
LTS and Refusal Graphs for the same purpose as in [Clea 93]. He also defined a specia form of
LTSs, called normal form, and proved that the testing, observation and bisimulation equivalences
coincide for these LTSs, as we have done in the first part of Lemma 3.3. The form of the LTSs
defined by Proposition 3.4 is similar to the normal form defined in [Drir 92], except that in our case
each state has, in an exclusive manner, transitions labelled by the silent action or transitions |abelled
by interactions, whereasin [Drir 92] a state may have both kind of transitions.

4 Merging Acceptance Graphs

In this section, we define the merging of AGs. The AGs are more tractable mathematically than the
LTSs, because the outgoing transitions, from a given state, have distinct labels. Given two AGs G1
and G2, we define an operation Merge, such that Merge(G1, G2) extends G1 and G2. Moreover,
provided that a necessary and sufficient condition holds, Merge(G1, G2) is the least common cyclic
extension of G1 and G2. The main properties of this Merge operation are described and an algorithm
for the construction of Merge(G1, G2) in the case of FAGs as well as an example of application are
given.

4.1 Definition and Properties of the Merge operation

Informally, given two AGs G1 = <Sg1, L1, Acl, Tgl, g1p> and G2=<Sg2, L2, Ac2, Tgz2, g2o>, we
define Merge(G1, G2) to be the reachable part of a graph in which a state g; is either apair <gi;, g2;>
consisting of a state g1; from Sg1 and a state g2; from Sgz (for instance, the initial state <g1o, g25>), or

asimple state g1; from Sgi, or asimple state g2 from Sge.

The definition of the transitions from a state <g1;, g2j> in Merge(G1, G2) depends on the transitions
from g1j in G1 and from g2; in G2. For instance, the transition <g1;, g2j>-a- <gik, g2m> is defined

18

in Merge(G1, G2), if and only if there is atransition gij—a- gl in GLand atransition g2j—a— g2min
G2. A transition <g1j, g2j>—a- g1k isdefifiied in Merge(G1, G2), if g only if there exist atransition
gli—a- gik in G1, but there is no transitiog@abeled by g from go; in (M The trangtions frgm asimple
the lme a@lefined in
ich 3 repl 3d by corrdiibondi
A corfidlete g ollo

state in Merge(G1, G2), such as g1k for irgance, rem
the transitions that reach the initial states QEG1 or G2,
that reach the initial state <g1o, g2o> of M@e(G1, G2)

L or Gl except for

transitions

inition is 4

Definition 4.1 (Merge)

Giventwo AGs, G1 =<Sg1, L1, Act, Tgf sx and
G2 =<Sg2, L2, Ac2, Tg2, g2o>,
Merge(G1, G2) = reachable(<Sg3, L1 L2, A "i‘), Whise

(1) Sg3 = { <01, g2k> | 91; U Sg1 and g2 [Sg

(2) The mapping Ac3 isdefined asfollows. For ead®gtate gj in Sg3,
if g =<0, 92> then Ac3(gi) ={X1 X2|X10O 0 X2 0 Ac2(g2)},
if gi O Sgx, then Ac3(gi) = Acx(gi), wherex =1, 2.

(3) For each state <g1j, g2k> in Sgs,
3-1. <gYj, g2k>—a- <g1j, g2m> 0 Tg3 iff g1j—a- g1 0 Tg1 and g2k—a—- g2m 0 Tg2.
3-2. <01}, g2x>—a- <glo, 20> U T3 iff (g1j—a- g1o 0 Tg1 and g2k—/a— in Tg2)
or (91-/a- inTgiand g2x-a- g2o LI Tg2).
3-3.<g1j, gk>-a- gy 0 Tg3iff gij—a- g1 0 TgL, g1y glo, and g2k—,/a— in Tg2.
3-4.<g1j, g2x>—a- g2m 0 Tg3 iff g2x—a- g2m 0 Tg2, g2m 920, and gij—/a- in TgL.

(4) For each state gxj in Sg3, wherex = 1, 2,
4-1. gxj—a- <glo, 920> 0 Tg3 iff gxj—a— gxol Tox.
4-2. gxj—a— gx O Tg3iff gxj—a- gx O Tgx, g1 9xo.

If we consider, for instance, the AGs G1 and G2 shown in Figure 5, Merge(G1, G2) is described by
the reachable part (in bold) of G.

19

G1 G2

CaloD) () {{a}} O e
b @ c {fac} _ -c - {{anb}}
{{b}} {{C}} @ Goo.#> “ ’

/
{{b}} {{b. chy 2D {{c}}
Merge(Gi, G2)
a a

|
Ha) @D {{a}

Q

Figure 5. Example of Merge.

Merge(G1, G2) defines an AG. The consistency constraints defined in Section 3.1 are satisfied by
Merge(G1, G2) as stated by Proposition 4.1 below. Stated otherwise, given two AGs G1 and G2,
Merge(G1, G2), aways exists.

Proposition 4.1
Giventwo AGs, G1 and G2, Merge(Gi, G2) isan AG.

The operation Merge is commutative and associative. Therefore, AGs may be combined in an
incremental way and in any order.

Proposition 4.2
Given three AGs, G1, G2 and G3, the following holds:
(& Merge(G1, G2) =g Merge(G2, G1),
(b) Merge(Merge(G1, G2), G3) =g Merge(G1, Merge(G2, G3))

In the remainder of this paper, in order to avoid redundancy whenever G1 and G2 play symmetrical
roles, we state and prove properties of Merge(G1, G1) relatively to G1 only. Same properties hold
with respect to G2, since operation Merge is commutative.

Merge(G1, G2) always extends G1.

Proposition 4.3
Given two AGs, G1and G2, Merge(G1, G2) exty Gi.

20

In order to be a cyclic extension of G1, Merge(G1, G2) should preserve the cyclic traces of G1.
Merge(G1, G2) preservesthe cyclic traces of Gy, if and only if it preserves, at least as cyclic traces,
the elementary cyclic traces of G1. However, there is some situation where an elementary cyclic trace
in G1isanoncyclic tracein Merge(G1, G2). Indeed, thisis the case when a certain elementary cyclic
trace 0 in G1 (glg=00 glp) iS anoncyclic trace in G2 (g2o=00 g2k with g2k g2p). By definition of
Merge, after performing o, Merge(G1, G2) reaches a state <glo, g2k> different from itsinitial <gio,
020>, Since g2k g2¢. Therefore, o isanoncyclic trace in Merge(G1, G2). The example in Figure 6
Illustrates such situations. For instance, a is an elementary cyclic trace in G1 (glo=00 glp), but aisa
non cyclic trace in G2 (g2o=00 g21 with g21 g2p). Therefore, a is anon cyclic trace in Merge(G1,
G2) (<glo, g20>=00 <glg, g21> with g21 g2p). In Proposition 4.4, we state a necessary and sufficient
condition for an elementary cyclic tracein G1to remain acyclic tracein Merge(G1, G2).

Merge (G1, G2)

G1
{{a}} 1392 G20 {{a} <Sglo, Sg2o>) {{a}}
a
a

{{b}}
@ (e

.. b CyClIC traces by Merge.
Proposition 4.4 -
Given two AGs, G1and G2,

an elementary cyclictracecin Glisa

Figure 6. Pre

(oisacyclictraceinG2orao Tr(G2)).

From Proposition 4.4, it follows that Merge(G1, G2) pries
any elementary cyclic tracec in Glisacyclic tracein GZ0Or G
cyclictraceoinGlisacyclictraceinG2or o Tr(G2) asstated i

any

Proposition 4.5
Given two AGs, G1 and G2, the following statements are equival ent:

(a Merge(G1, G2) preservesthe cyclic traces of G1,

(b) any elementary cyclictraceo in GlisacyclictraceinG2or o Tr(G2).

21

(o) any cyclictracecinGlisacyclictraceinG2or o Tr(G2).

The conditions (b) (and (c)) in Proposition 4.5 can be stated in terms of states as follows: for any state
<g1j, 92> in Merge(G1, G2), if g1j = gio then g2j = g2,. This condition is very easy to verify in the
case of FAGs.

In Proposition 4.4, we have stated a sufficient and necessary condition for which an elementary
cyclic trace o in G1 remains a cyclic trace in Merge(G1, G2). Moreover, in this case o is an
elementary cyclic trace in Merge(G1, G2). Indeed, if 0 = al.a2...an and glp—al - g1j, gli—a2 - glj+1
..y Qli+n-2—an - glo With g1j+j glo forj=0,..,n-2, and o isacyclic trace in Merge(G1, G2), then
by definition of Merge, <glo, g20>—al - @i, glj=a2 - gi+1 ..., Gi+n-2—an - <Qlo, g20> With gj+j =
glj+j Or <g1lj+j, g2k;> for some state gzyjin G2 and gi+j <glo, 920>, SiNcEQli+j Qlo, forj =0, ..,
n-2. However, an elementary cyclic trace in Merge(G1, G2) is not always an elementary cyclic trace
in G1 or G2. As shown by the example in Figure 6, a.a is neither an elementary cyclic trace in G1
nor in G2. a.aisacyclic trace in G1. As stated by Proposition 4.6, any elementary cyclic trace in
Merge(G1, G2) isacyclic tracein G1 or G2.

Proposition 4.6
Given two AGs, G1 and G2,
any elementary cyclic tracein Merge(G1, G2) isacyclic tracein G1or G2.

Any trace in Merge(G1, G2) results from the recursive concatenation of cyclic traces of G1 or G2,
and a certain trace of G1 or G2. In other words, Merge(G1, G2) may only perform what G1 or G2
may perform, in arecursive manner.

Proposition 4.7

Given two AGs, G1 and G2,

any trace o of Merge(G1, G2) may be written as 0 = 01.02...0n.0n+1, with

oi asacyclictracein G1or G2, fori =1, .., n,and (on+1 0 Tr(G1) or on+1 O Tr(G2)).

In the case where the cyclic traces of G1 and the cyclic traces of G2 remain as cyclic traces in
Merge(G1, G2), Merge(G1, G2) represents the least common cyclic extension of G1 and G2. The
following theorem follows partly from Proposition 4.3 and Proposition 4.5.

Theorem 4.1
Given two AGs, G1, G2,

22

Merge(G1, G2) isthe least common cyclic extension of
any cyclictracecin GlisacyclictraceinG2or o Tr(G2), and recipially.

Due to the constraint for the preservation of the cyclic traces of G1 and G2 in Merge(G1, G2),
bisimulation equivalence is not substitutive under the Merge combinator. In other words, the fact that
X is bisimulation equivalent to Y does not ensure that Merge(X, z) is bisimulation equivalent to
Merge(Y, Z). The example in Figure 7, for instance, illustrates such situation. We have G1 g G3
but Merge(G1, G2) and Merge(G3, G2) are not bisimulation equivalent. As shown by this example,
thisis dueto the fact that aisacyclic trace in G1 but not in G3. The cyclic bismulation equivalence
Is substitutive under the Merge combinator. As stated by Theorem 4.2, if X is cyclic bisimulation
equivalent to Y then Merge(X, z) is cyclic bissmulation equivalent to Merge(y, z), for any AG z.
Therefore, Merge(X, z) is bismulation equivalent to Merge(Y, 2).

{a}@ ﬂ (o {{a}}
“ - U o

Figure 7. Substitution property!

Merge(G1, G2) Merge(G3, G2)

Theorem 4.2
Given three AGs, G1, G2, and G3, suchthat G1 ¢4 G3,
the following holds. Merge(Ga,

4.2 Merging FAGs an pplication

In the previous section the llerge combinator has been defined for arbitrary AGs. In the following,
we describe an algorithm, al led Merge for the construction of Merge(G1, G2), in the case of
FAGs, and we apply it for the cOMya the so-called Daemon Game [ISO
8807]. Notice that, in the case of an FAG G, for any state g; of G, Ac(gj) and any element in Ac(g;)

arefinite, since Ac(gj) P(LI |

Algorithm Merge

23

Given two AGs, G1 = <591, Acl,®ai a1,> an Sg2, L2, Age, To2l2o>,

Merge(G1, G2) = <Sg3, L1 L2, Acs, >, where S, Aciibnd Tg3 are built,
recursively, asfollows:

Initial step:

Sg3 = {<glo, 920>} and Ac3(Jlllo, 020>) = { X2 0O Ac2(g20)} -

L oop:

For each state gj entered into § 10, 020>) rejiliet the following:

if gi = <01, 92>, then for eag

if gj—a~gy O Tgrand g

Sg3= Sg3

Ac3(<gy, g2m

if g1j—a-g1o 0 Tgland g

if g1-/a~ inTgl and g

if g1—a- g1 0 Tg1, with

Sg3=Sg3 {d 0 <g1j, 0

if g1—/a~ in Tg1 and g2x—a % | . 020, the

Sg3=S03 {g2m}, Ad 2(g2m) and <gg2>—a- g2ml] Tgs.

if gi =0gxj, withx =1, 2, then for each A JAC3(gxj) andald A,
if gxj—a— gxo J Tgx, then gxj—a—'Sed,,020> [Tg3.

if gxj—a-gx O Tgx, with gx; gxo, the

Sg3=3g3 {gx}, A

[0 Tg3and

2 0 Ac2(g2m)}-
010,020> L Tgs.
<glo, 920> [Tg3.

g2k>—
b then

>-a-Qg1 U Tgs.

gx1), and gxj—a— gx 0 Tgs.
Application

As application, we consider two versions of the Daemon game [ISO 8807]. The first gameis called
Simple Daemon Game. The player may insert acoin, probe the system, then he randomly loses or
wins and collects. The behavior of this game is modeled by the FAG G1in Figure 8 (). The
second game is called Jackpot Daemon Game. The behavior of this second game is asfollows: the
player hasto insert a coin before starting the game. Once the coin has been inserted, the player can
probe, then he randomly loses or wins. If he wins, the game continues. He can probe again, then he
randomly loses or get the "Jackpot" and collect it. The behavior of Jackpot Daemon Game is
modeled by the FAG G2 in Figure 8 (b).

Assume that we want to combine these two games, in order to describe a new system, called
Combined Game, where the player can, aternatively, play the Simple Daemon Game and the
Jackpot Daemon Game, without any interference between these two games. Merge(G1, G2), as
shown in Figure 9, defines such a combination of the Simple Daemon Game and the Jackpot

24

Daemon Game. We have Merge(G1, G2) extends G1 and G2. Moreover, any cyclic trace of G1
remains as cyclic trace in Merge(G1, G2), since there is no state <gio, g2j> in Merge(G1, G2) with
g2j d20. Any cyclic trace of G2 remains as cyclic trace in Merge(G1, G2), since there is no state
<0g1j, g20> in Merge(G1, G2) with g1; glo. Merge(G1, G2) isthe least common cyclic extension
of G1 and G2. Merge(G1, G2) is able to behave, dternatively, in arecursive manner, as G1 and G2.

{{coin}}

lose {{probe}}

collect

{{lose}, {win},
{lose, win}}

(9137 ({collect}}

@

{{coin}}

{{probe}}

probe

Icl)se
{{lose}, {win},

@ {lose, win}}
\ .
win

\ collect
{{probe}}

probe

Y

jackpot

(925 {{collect}}

{{lose}, {jackpot},
{lose, jackpot}}

(b)

Figure 8. (a) Simple Daemon Game (b) Jackpot Game Descriptions.

25

Merge(Gl, G2)

{{coin}}
{{probe}} /'

lose

{{lose}, {win},

_ collect
{lose, win}}

{{probe, collect}}

{{lose}, {jackpot},
{lose, jackpot} }

{{collect}} @

Figure 9. Combined Game Description.
4.3 Discussion
The operation Merge defined in Section 4.1 is such that, for given AGs, G1 and G2, in the case of

the cyclic traces of G1 or G2, Merge(G1, G2) may exhibit the behaviors of G1 and the behaviors of
G2, in arecursive manner, without any new failure for these behayig onsider, for instance, the

may not block, respectively.

Merge(G1, G2) aways extends G1 and G2. Provided that ¢
(Theorem 4.1) is satisfied, Merge(G1, G2) is the least comr™g i j md G2. In
general, Merge(G1, G2) is not the least common extension d
extension of G1 and G2 is defined by the combinator , which is very similar to Merge operation,
except for the rules defining the transitions, which are replaced by the following rules:

26

(3) For each state <g1j, g2x> in Sgs,
3-1. <01, g2x>-a-<g1, @2> L Tg
3-2. <gyj, g2k>—a- gy O Tg3 iff g1

3-3. <01}, g2x>—a-g2m U Tg3 iff g |Iﬁ i

(4) For each state gxj in Sy e = | [EER)

Contrarily to Merge(
g2;j of G2), that reac Wé i ! a DE
] ! '
h

change. For a stats
| = " .
=

g2k>—a—- <dib, ¢

~ TEE

iff g1j—a- g1 Tg1 and g2x—4& 92m O Tg2.

labelled by ain G

The operation N other wort
gG3 G2. Moreover, preserves the cyclic bisimulation equivalence?
cyclic traces of G1 (respectively G3) and G2 are preserved in G1 G2 (respectively G3 G2).

27

G1 G2

coin

{{probe}
lose
probe
\ Y |
{{lose}, {win},
{lose, win}}

win

@ {{probe, collect}}

collect

{{coin}}

{{coin}}

|
lose {{probe}}

probe

probe
colléct
{loss}, {wir}, 91D
{lose, win}} .
win
{{collect}}

{{lose}, {jackpot},
{lose, jackpot} }

Figure 10. Application of the operation

5 Merging Labelled Transition Systems

The definition of Merge for LTSs is based on the definition of Merge for AGs and the
correspondence between LTSs and AGs.

5.1 Definition and Properties of Merge

28

Definition 5.1 (Merge for LTSS)
Giventwo LTSs S1 and S2, Merge(S1, S2) = Its(Merge(ag(S1), ag(S2))).

AG G thereis
ways

Since for any LTS S, there is one and only one AG G such that G = ag(S), for
one and only one LTS such S = Its(G), and for given AGs G1 and §

All the propositions, lemmas and Theorem 4.1 stated for Mergei holds for Merge
in the case of LTSs. For instance, Merge(S1, S2) always extends) is
commutative and associative. Merge(S1, S2) is the least common cyclic exiens and S, if
and only if any cyclictracec in StisacyclictraceinS2or o Tr(S2) and reciprd

their corresponding AGs ag
3), Merge(ag(x), ag(2)) is
Section 4), and Its(Merge
equivaent (Proposition 3.5 in gl

Similarly to Merge, S1 S2=Its(ag(S1) ag(S2)). By corresponden®®
least common extension of S1 and S2 and the propertiesof in the case of AGs hold for
caseof LTSs.

inthe

5.2 Merging FLTSs and Application

In the previous section, we defined Merge(S1, S2) for arbitrary LTSs. In this section, we describe
an agorithm for the construction of Merge(S1, S2), for the case where S1 and S2 are FLTSs. This
algorithm consists of three steps. In the first step, S1 and S2 are transformed into FAGs G1 and G2,
such that G1 = ag(S1) and G2 = ag(S2). In the second step, Merge(G1, G2) is constructed

29

following algorithm Merge described in Section 4.2. In the last step, Merge(G1, G2) is translated
into Its(Merge(G1, G2)).

5.2.1 From an FLTS to an FAG

Givenan FLTSS=<&, L, T, s>, the following algorithm dg corresponding
<Sg, L, Ac, Tg, go>. It isbased on the "subset construction” i defined in [Hopc 79].

Step 1: Apply the "subset construction” algorithm [Hopg transforrgs a
nondeterministic finite state automata to a deter
each state in G corresponds a set of statesin S. To't

corresponds the set of states{s 0 St | sp=¢[] s}.

Step 2: For each state gjin G, Ac(gi) ={X Jout(s) X
m}, if {s1,, ... Sm} corresponds to g

5.2.2 From an FAG to an FLTS

Givenan FAG G=<%g, L, Ac, Tg, go>, thefo
FLTSS=<S, L, T, so> = Ity(G).

Step 1. (Reduction of the acceptance sets):

Ogi 0Sg, Ac'(gi) = {X | X O Ac(gi), sud

andxX=Y ZoryY

Step 2: Each state gj is decomposed into k+1 LTS states s, Si1, Si2, --+» Siks

where k = cardinal (Ac'(gj)). So represents the initial state of S. Each S
corresponds to an element Ajj of Ac'(gj).

Thetranstionss—1- 5 aredefinedin S, forj=1, ...k, for each state 5 in S.

Step 3: For each state s;j in &, for each allAjj, if gi—a—gm U Tg, then 5j—a-sn O T.
5.2.3 Application

We consider the same example as in Section 4. The behaviors of the "Simple Daemon Game" and the
"Jackpot Daemon Game" are modeled by FLTSs S1 and S2 in Figure 11, respectively. Merging S1

30

and S2 yieldsthe FLTS S3 shown in Figure 11. S3 extends S1 and S2. Moreover, any cyclic trace of
S1 or S2 remainsacyclic trace in S3. S3 is the least common cyclic extension of S1 and S2. S3 may
behave, alternatively, in arecursive manner, as S1 and S2. Note that S3 may be reduced with respect
to the (cyclic) observation equivalence by removing some internal transitionsTt.

S1 S2

%

lose C*r)
T

T collect
Q’l b \CD/ E collect \ probe
<1

Figure 11. (a) Simple Daemon Gghe (b) Jackpot

6 Related work

In [Ichi 90], the problem of incre
approached. They introduced a new L O'g@S operato
rules, called specification merging operatO™Lieay
without the internal actiont. B1 B2 defines a behavior, which is supposed to be an extension of

31

B1 and B2. Unfortunately, it isnot al
For instance, B1 never refuses interaction 0"
c after trace a.b. Moreover, B1 B2 is not able to behave, alternatively, as B1 and B2. B1
may behave only as B1 or only as B2, once the environment has chosen B1 or B2, respectively. |
the case of deterministic LTSs, this combinator leads the same LTS as the combinator (merging
without taking into account the preservation of cyclic traces) introduced in this paper.

Bl B2 B1l B2

a@a
A

Mayr has considered the choig LOTOS langumme for the extensio
specifications [Mayr 88]. The e or m is denoted by
[] m. However, strong restrictid in order to ensure
t. For instance, theinitial interag itial interactions o

In [Rudk 91] the notion of inHe is dqened for L@M™OS. It is seen as an incré
modification technique. A correspond o
isdefined such that if s=t m, then sextendst and any recursivecall int or misredirected to s.
However, strong restrictions are imposed on t and m, such that m should be stable (no internal
trangition asfirst event), the initial events of m should be unique and distinct from initial events of t,
and so on. The specifications B1 and B2 in Figure 14, for instance, do not satisfy such
requirements. In order to define a recursive choice between t and m, Rudkin extended the LOTOS
language by a new primitive process "self". Thereis no requirement such that s should also extend

32

m, and no considerations to the structure of t or how this modification m is propagated to the
processesint.

Lin has developed an approach for merging alternative protocol functions [Lin 91]. The approach is
based on the model of communicating finite state machines. It consists of designing a component
protocol for each individual function and then combine them into a single alternating-function
protocol. The combination agorithm resolves problems of competition and synchronization between
the component protocols, in order to preserve the safety properties (absence deadlock and
unspecified receptions) of the component protocols. However, this approach does not take into
account the service realized by each protocol component and how this service is preserved in the
aternating-function protocol.

7 Conclusion

In this paper, we described an approach for merging behavior specifications. These behav,
modeled by acceptance graphs or labelled transition systems. Given two behavior specific
and B2, we defined the merging of B1 and B2, written Merge(B1, B2). We proved certain prq
of Merge; for instance, Merge(B1, B2) extends B1 and B2. Provided that a necessary and S
condition holds, the cyclic traces in B1 (respectively B2) remain cyclic traces in Merge(B1)'5
Therefore, Merge(B1, B2) isacyclic extension of B1 and B2. Moreover, in this case, Merge(B1, B
Is the least common cyclic extension of B1 and B2. We defined a second combinator, , whichis
very similar to Merge, but differs on the treatment of the cyclic traces of B1 and B2. The operation
aways leads the least common extension of B1 and B2.

The proposed approach for merging behavior specifications is useful for the construction of
multiple-function specifications. Instead of handling all the functions simultaneously, the designer
may design and verify one function at atime. The merging approach will then derive the required
combined specification. From another point of view, it allows the designer to enrich existing
specifications with new behaviors required by the user and to integrate existing system
specifications.

The approach introduced in this paper has been extended to structured specifications, i.e.
specifications which are modeled as parallel composition of subsystem specifications [Khen 93]. As
future development, the application of the extended approach to real case system specifications, such
as the telephone system specification, is expected.

33

The labelled transition systems model used in this paper isthe B
specification languages, such as LOTOS [ISO 8807] and CCS [Mil

algebraic properties of the merging operators Mergeand aswell as the congruence property of the

newly introduced (cyclic) equivalences in the context of these languages is left for future
development.

References

[Brin 86]

[Broo 85]

[DeNi 84]

[Deni 87]

[Clea 93]

[Drira92]

[Henn 85]

[Henn 88]

[Hopc 79]

E. Brinksma, G. Scollo and S. Steenbergen, LOTOS specifications, their
implementations and their tests, Protocol Specification, testing, and verification,
Montréal, Canada, June 1986, Sarikaya and Bochmann (eds.).

S. D. Brookes et A. W. Roscoe, An Improved Failure Model for Communicating
Sequentia Processes, Proceedings of the NSF-SERC Seminar on Concurrency,
Springer-Verlag LNCS 197, 1985.

R. De Nicolaet M. Hennessy, Testing equivalences for processes, Theo. Comp.
Sci. 34, 1984, pp. 83 133.

R. De Nicola, Extensional Equivalencesfor Transition Systems, Acta Informatica,
24, 1987, pp. 211-237.

R. Cleaveland and M. Hennessy, Testing Equivalence as Bisimulation Equivalence,
Formal Aspects of Computing, 5, pp. 1-20, 1993.

K. Drira, Tranformation et composition de graphes de refus: analyse de la testahilité,
Doctorat Thesis, Université de Toulouse, 1992.

M. Hennessy, Acceptances Trees, J. of ACM, Vol.32, No. 4, Oct. 85, pp. 896 - 928.

M . Hennessy, Algebraic Theory for Processes, MIT Press, Cambridge, 1988.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979, 418p.

34

[Ichi 90]

[1SO 8807]

[Khen 93]

[Ledu 90]

[Kell 76]

[Lin 91]

[Mayr 88]

[Miln 89]

[Park 81]

[Rudk 91]

Appendix

H. Ichikawa, K. Yamanaka and J. Kato, Incremental Specificationin LOTOS,
Symposium on Protocol Specification, Testing and Verification X (1990), Ottawa,
Canada, Logrippo, Probert and Ural (eds.).

I SO -Information Processing Systems - Open Systems Interconnection, LOTOS - A
Formal Description Technique Based on the Tempora Ordering of Observational
Behaviour, DIS 8807, 1987.

F. Khendek and G.v. Bochmann, Incremental Construction Approach for Distributed
System Specifications, Proceedings of the Int. Symp. on Formal Description
Techniques, Boston, Mas., 26-29 Oct., 1993.

G. Leduc, On the role of Implementation Relationsin the Design of Distributed systems
using LOTOS, Doctoral Dissertation, Liége, Belgium.

R. Kéller, Formal verification of parallel programs, Comm. of the ACM 19, July 1976,
pp. 371-384.

H. A. Lin, Constructing Protocols with Alternative Functions, |EEE Transactions on
Computer, Vol. 40, No. 4, April 1991.

T. Mayr, Specification of object-oriented systemsin LOTOS, FORTE, Stirling, 1988.

R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

D. Park, Concurrency and Automatain Infinite Strings, Lecture Notes in Computer
Science 104, Springer-Verlag, Berlin, 1981, pp. 167-183.

S. Rudkin, Inheritance in LOTOS, Formal description technique - FORTE, Sydney,
Australia, 1991, pp. 415 - 430.

Proposition 3.1
Consider two AGS, G1=<Sg1, L1, Acl, Tgl, glp> and G2 = <Sg2, L2, Ac2, Tg2, g25>.

35

e

1- Assumethat Tr(G1) = Tr(G2) and (o O Tr(G1), Acl(glg after o) = Ac2(g2g after 0)).

Toprovethat G1 ¢ G2, we have to prove that the relation {((glo after o), (920 after 0)): 0 O Tr(G1)} isa
bisimulation. By hypothesis, Acl(glg after o) = Ac2(g2g after o), (o O Tr(G1).

, for some ¢ 0O Tr(G1), (glo after 0)-a- g1j, if and only if (g2 after
e have g1 = glg after 0.a and g2} = g2 after 0.3, since the transition
function in of AGs. Therefore, (g1, g2j) O {(g1o after 0, g2 after 0): o O Tr(G1)},
and the relation {((g1o after 0), (929 after 0)): o O Tr(G1)} isabisimulation.

2-Gl ¢G2, thereisabisimulation R such that (g1, 920) O R, and O (g1j, g2)) O R, Acl(glj) = Ac2(g2)).
Consider o, an arbitrary sequence of actions. First caseo =¢, it is obvious that € 0 Tr(G1) and € O
Tr(G2). By definition of AGs, gl after € = glg and g2 after € = g2o. By hypothesis, (g1o, 920) O R and
Acl(glp after €) = Ac2(g2g after £). Second case o = al.a2..an, o O Tr(G1) if and only if glg-al- glj-
a2- glj+1.-.9li+n-2-an - glj+n-1. The trangition relations Tgl and Tg2 are functions and (g1o, g2o) O R.

1-1- Provethat S2ext S1 1) G2 extg Gl:
1-1-a- Provethat Tr(G1) Tr(
Tr(S2) =Tr(G2). S2 ext SLimpliesthat Tr(S1)
1-1-b-0c 0 Tr(Gl), Ac2(g2p after o)
Acc(slg, 0). G2 = ag(S2) implies that Ac2(g2g after o) = Acc(s2p, 0). o O Tr(S1)
0), because s2 ext S1. It follows that, (o O Tr(G1), Ac2(g2g after o) Acl(gl after). Consequently,
S2ext S1 U G2 extg G1.

1-2- The proof for G2 extgG1 L S2ext S1isvery similar.

2-Any cyclictraceinsiisacyclictracein s2, iff any cyclictracein Glisacyclictracein G2 :
2-1-Any cyclictraceinstisacyclictracein s2 I any cyclictracein GlisacyclictraceinG2:
G1=ag(Sl), it followsthat any cyclic tracein s1isacyclic trace in G1, and reciprocally.

G2 =ag(S2), it follows that any cyclic tracein 2 isacyclic trace in G2, and reciprocally.

Now, assume that any cyclic tracein s1isacyclic tracein s2. It follows that any cyclictracein G1is
acyclic tracein s2. We deduce that any cyclic trace in G1 isacyclic trace in G2, which concludes the

36

first part of the proof. The proof for any cyclic tracein Gilisacyclictracein G2 LI any cyclic trace
inslisacyclictracein s2issimilar.

Proposition 3.3
Consider an LTS s=<%, L, T, sp> and thegraph G = <Sg, L, Ac, Tg, go> defined by Proposition 3.3.
Wefirst have to prove that G isan AG. The constraints Co, C3, C4 are satisfied by definition of Ac(gj),
for each state gj in Sg. Constraint C2 is satisfied by definition of the transitions in G. We have to
prove that G satisfies constraint C1: Given a state gj, we have to provethat Dad A, A O Ac(gj), there
is one and only one gj such that gj-a- gj: by definition of G, 0al A, and A O Ac(gj), gi-a-gj iff
gj = {5 O St| Osm O gj such that sm—a—-5}8. DalA, and A O Ac(gy), gj dways exists, since DaO L, a0
A, and A OAc(gj), if and only if there exists at least one state si in gj such that sy=al{ or a state sm
such that sm—a-). gj = {sj O St| Osm O gj such that sm-a— 5} € is unique, because the set {s; O St | Osm O
gi such that sm-a— s} is unique.

The proof of G = ag(S) follows directly_from the definition of G, i
after o). It follows that Tr(gg) = Tr(sg) rom the definition of A
with go=00 gj, Ac(gi) = Acc(so, 0). For cyclic traces, from th
Tr(go), go=00 go iff (sp after 0) = go ={ St such that sp=¢0 s}, it
tracein G, iff oisacyclictracein s.

is clear that go=00 gj, iff gj = (o
r each state in Sg, 0 o O Tr(go),
efinition of G we have, Do O
lows that atrace o isa cyclic

Proposition 3.4
Consider an AG G=<Sg, L, Ac, Tg, go>
A trace o O Tr(sp) iff thereisastate 5
iff there isastate g; in G such that go=00 g;.
By definition of S, (sp after o) ={s} f(gj), iff 9o WS that Acc(sp, 0) = Ac(gj).

From the definition of the transitionsin S, sak-a— s iff gk-a— go. MoOreover, in this case, there is no

ows that (sg after 0) ={sj | so=¢00 s,}lih_i..-.l

Consider the AGs G1 = <Sg1, L1, Acl, Tgl, glg>, G2 = <Sg2, L2, Ac2, Tg2, g2¢>, and
the LTSsS1= <S1, L1, T1,slg>, S2= <S2, L2, T2, 25>, such that S1 = Its(G1) and S2 = It5(G2).
1-a- S1 S2impliesthat sites2. By Lemmas3s.1it followsthat G1 ¢ G2,

since G1 =ag(S1) and G2 = ag(S2), .

dthe LTSS=<%,L,T,
that sp=00 5. From

= Its(G) as defined by Prop. 3.4.
efinition of S, the state s; exists

37

T

1-b- G1 g G2 by definition, we have Gi = ag(Its(Si)), i = 1, 2. It follows that Tr(Si) = Tr(Gi), i =%,
By hypothesis, G1 g G2, therefore Tr(S1) = Tr(S2) = Tr(G1) = Tr(G2). We have to prove that
the following relation R = {(slj, s2j): slo=00 sl| ~T-,20=0082j-1—~,0 OTr(S1)} (=R1) {(slAik,
s2A|1): slaik O f(g1o after 0), s2Aj| U f(g20 Tr(S1)} (= R2) isastrong
bissimulation. Note that (slo, s20) O R
- Consider an element (s1j, s2j) O R1.

definition or some o [0 Tr(S1), slg=00 slj-T -,
2p=00 $2j-1- . Assume that s1j-1-slajk, (-1 istheonly kind of transition we have for
such states by definition of Its(G) in Proposition 3.4). From Proposition 3.4, we have siajk O
f(glo after 0). By hypothesis, G1 g G2, therefore, o O Tr(G1), Acl(glo after 0) = Ac2(g2o after
o). It followsthat there is a state s2Aj| O f(g2o after 0), such that Aik = Ajl, and by definition of
Its(G) in Proposition 3.4, s2j-1- s2aj|. Therefore, (slajk, s2aj1) 0 R2.
proof (assume that s2j-1-s24j| ...) is symmetrical.
- Consider an element (slajk, s2aj) O R2. It follows that siak O f(glo after o), s2Aj T T(g2 after
o), for some o O Tr(S1), and Aik = Ajl. Now assume that 51A|k a- sl|, (-a- isthe onIy kind of

have s2aj|-a- s2m. We h
Therefore, (s1), s2m) O R1. The second part of the proof (

identical. roved isimul atiogll T heref
Its(G1) G2). Conflhu Gl gB2iff Itilb1) Its(G2).

2 - From Proposition 3.2 and Lem clic traces, if and only if
G1 and G2 havethe set of cyCli : Gl ¢gG Gl) Its(G2). Therefore,
Gl cg G2iff Its(G1) c Its(G2).

3- From (1), weknow that G1 ¢ G2iff Its(G1) Its(G2). Due to the correspondence between states
of an G1 (respectively G2) and states of Its(G1) (respectively Its(G2), it is obvious that thereisa
bisimulation between G1 and G2 where each state of G1 isrelated to one and only state of G2,
if and only if thereis abismulation between Its(G1) and Its(G2) where each state of Its(G1) is
related to one and only state of It(G2).

Proposition 4.1

Consider the AGs G1 = <Sg1, L1, Acl, Tgl, glg>, G2 = <Sg2, L2, Ac2, Tg2, g20>.
We have to prove that Merge(G1, G2) satisfies the consistency constraints Co, C1, C2, C3, and C4.

38

For that, we have to prjlFe that <Sg3, L1 §>> af@efined in Definition 4.1

satisfies these reguiremellis.

, AC

- Co: By definitilin of th@cceptance sets g stat Sg3. e havell GESq3, AB(0i)
because (M and GJlre AGs, Uglj U Sl Mc1(oj and 2k O . 92k)

- C1 and c2: Thieonstrajlis C1 and C2 are § ied [initin of thilr ion JNCti Ol g3 an(
the fa G1 ands2 are AGs. FQr SdqIl stat Sg3.Et Ain and ileractiih ain A

thereis . ther,

atrans

and orjl transition lal I o f
from gi"rgel led by inte

this Jate. FOsE SRt atc Wlo; in S
f OA JRAC3(0 T Bt 2

O Ac3ga

|
k2, whe - "'1| A\’ U] AC
2 | C3, W
c2 SAtisly m ﬂ’ 1 j
it (Al Alp) (Ad

= glj, or g = g2, the|gloof is obvious since Ac1 and Ac2 satisfy C3 by
The proof of satisfagI of C4 issimilar to the proof for C3.

- C3 (closure
then A
by defi
(A2x1

Union): Dg| e ,|f gi= i O C3(g| N\ c1(o T, o k) Al A

A2K1 and A
. Since Aclg

<Sg3,L1 L2, Ac3, T¢
Ac3, Tg3, <glg, g20>>) isan AG.

B> is an AG. Consequently, Merge(G1, G2) = reachable(<Sg3, L1 2,

Proposition 4.2
Let G1=<Sg1, L1, Acl, Tgl, glg>, G2 =<Sg2, L2, Ac2, Tg2, 920> and G3 = <Sg3, L3, Ac3, Tg3, g3p>.
(a) Merge(G1, G2) =g Merge(G2, G1):
let Sg4 and Sgs be the set of states of Merge(G1, G2) an
relation {(<glj, 92>, <g2j, 91i>): g1j 0 Sg1, g2j O Sg2, <g1;,

{(gi, gi"): gi 0 Sg4, gi' 0Sg5, and gj = gj'} isabisimulation , <020, 9lo>)
and each state of Merge(G1, G2) isrelated to one and only et
versa. The AGs G1 and G2 have symmetrica rolesin the

(b) Merge(Merge(G1, G2), G3) =g Merge(G1, Merge(G2, G3)):
let Sg4 and Sg5 be the set of states of Merge(Merge(G1, G2), 3)),
respectively. The relation {(<<glj, 92>, g3k>, <glj, <g2j, g3k> , 93k O Sg3,

<<<glj, 92j>, g3k> Ul Sg4 and <glj, <g2j, g3k>> L Sg5} {(gi, 9i): Sg5, and gj = gj'} isa
bisimulation containing the pair (<<glo, 920>, 930>, <glo, <020, g30>>) and each state in Sg4 is
related to one and only state of Sg5 and vice et versa.

Proposition 4.3
Given the AGs G1 = <Sg1, L1, Acl, Tgl, glg>, G2 = <Sg2, L2, Ac2, Tg2, g2o>,

39

gi =<glj, g2j>, for some stMyg
it follows that Ac3(gj)
we have Ac3(gj)) ={X1 X2|X1OAc Ac2(g2))}. It follows that Ac3(gj) Acl(glj), since

for any XOAc3(gge there is an X10Ac1(glj) such that X1 X. W

1, Tgl, glp>and G2 =<Sg2, L2, Ac2, Tg2, g20>.
ary cyclic trace o =al.a2..anin G1. It follows that [g1;, g1j+1...., 9lj+n-2 in g1, such

AZL1 gLi+1,..., 9li+n-2=anl] glo, with glj glo, forj =i, .., i+n-2.
Sufficien _
o Tr(G2), it follg
92k+j-2 0 for some 1j n. From the definition of Merge(G1, G2), we have <gl,g2p>=allk gl;,g2>,

sthat o = 0'.4.0" and g2p=al10 g2k, g2k=a20 g2k+1, -.., 02k +j-3=8j-10 g2k +j-2, and

<01j,92k>=a2l< glj+1,92k+1>,...<01i+{-3,92k+j-3>=a-10< 01i+j-2,92k+j-2>, <01i+j-2,92k+j-2>=aJ gli+j-1,
.., 0lj+n-2=an0 <glp,g20> in Merge(G1, G2), which meansthat o isacyclic trace in Merge(G1, G2).

o is a cyclic trace in G2, it follows Og2k, g2k+1, ..., 92k+n-2 in Sg2 such that g2o=al0 g2k,
g2k=a20 g2k+1, ... 92k+n-2=and g2o. From the definition of Merge(G1, G2), we have

<glp,920>=all¥ 91j,92k>, <g1j,92k>=a2¥ 01j+1,92k+1>, ..., and <glj+n-2,92k+n-2>=an-2¥ g¢10,920>gx
Merge(G1, G2), which meansthat o isacyclic trace in Merge(G1, G2).

Necessary Condition:
Assume that cO0Tr(G2) and o is not a cyclic trace in G2. It follows that g2k, such that g2p=Ctms
with g2k g2o. By definition of Merge(G1, G2), we have <glp, g20>=0& glo, g2k>, With <glo,g2k>
<g10,920>. Consequently, o isnot acyclic in Merge(G1, G2), which endsthe proof that (¢ Tr(G2) or
o isacyclictracein G2) is anecessary condition.

Proposition 4.5

Let G1=<Sg1, L1, Acl, Tgl, glg> and G2 = <Sg2, L2, Ac2, Tg2, 920>

1- Equivaence between (a) and (b): we know that Merge(G1, G2) preserves the cyclic traces of G1, iff
any elementary cyclic tracein G1 is preserved, as cyclic trace, in Merge(G1, G2). From Proposition
4.4, we know that any elementary cyclic trace o in G1isacyclic trace in Merge(G1, G2), iff cisa

40

cyclictraceinG2ora Tr(G2). It follovilthat Merge(G1, G2) preservest 1iff
any elementary cyclictracecin GlisacyclictraceinG2or ¢ Tr(G2).

b ementar

giisan

2 - Equivalence between (b) and (c):
2-1- (c) implies (b): obvious Since a
2-2-(b) implies (c): assume that an

clictraceisacyclic trace.
clictracecinGlisacyclictracein G2 or g

e N G1, by hypothesis, it

acyclict Tr(G2), fori = 1, n. Assume that oi isacyclic tr3
.., n, it fol [1.02...on1sacyclic trace in G2 (concatenation of ¢
cyclictra ethat ai, fori =1, ..j -1, are cyclic tracesin G2 and aj

j n.ltfollow . acyclic tracein G2, but 61.02...0j-1.gj
thato Tr(G2). Therefq

Tr(G2), which
P, (b) implies (c).

Consequently, the statements (a), (b) and (c) in Proposition 4.5 are equivalent.

Proposition 4.6
Let G1 =<Sg1, L1, Acl, Tgl, glg> and G2 = <Sg2, L2, Ac2, Tg2, g2o>.
Consider o =al.a2...an, an arbitrary elementary cyclic trace in Merge(G1, G2). By definition of the
elementary cyclic trace, we have <glo, g20>=alll gi1=a20 gj2...gin-1=an0 <glo, 920> with gjj <glo, 920>,
forj=1,..,n-1. From the Definition of Merge, we have the following three cases:
(8 gij = <gljj, g2jj>, with <gljj, 92jj> <glo, 920> for j = 1,..., n-1, which implies that
glo=alll glj1=a20 glj>...glin-1=an0 glg and g2p=all g2j1=a20 g2j2... g2in-1=an] g2o. Therefore,
oisacyclictracein G1 and G2.
(b) gij = <01jj, 92jj> with <gljj, g2jj> <glo, 920>, forj = 1,..., k, (for acertain k) and gjj = g1jj (
glp), for j = k+1,..., n-1, which means that glp=al0 g1j1=a20 glj...glin-1=an0 glo. Therefore, o
isacyclictracein G1.
(0) gij = <9glij, 92jj> with <gljj, 92jj> <glo, 920>, forj = 1,..., k, (for acertain k) and gjj = g2jj (
g20), for j = k+1,..., n-1, which means that g2qg=all g2j1=a20 g2j»...92in-1=an] g2o. Therefore o
isacyclictracein G2

Consequently, oisacyclic tracein G1 or G2.

Proposition 4.7
Let G1=<Sg1, L1, Acl, Tgl, glg>and G2 =<Sg2, L2, Ac2, Tg2, g20>.

41

(@) o isacyclicin Merge(G1, G2): o = ol.02...on.on+1, with oi as elementary cyclic trace in Merge(G1,
G2), fori =1, ..., n+1, for a certain integer n. From Proposition 4.6, Gi as a cyclic trace in G1 or G2, for
i =1, .., n+1. Therefore, oi isacyclic tracein G1 or G2, for i=1,..., n, and (on+10Tr(G1) or on+1 0 Tr(G2)).
(b) o isanoncyclic in Merge(G1, G2): o = ¢'.al.a2...am with <glg, g20>=0'0 glo, 920>=al0 gj1=a20 gj2 ...
gim-1=an0 gim With gjj <glo, 920>, forj =1, .., m. " isacyclic trace in Merge(G1, G2). Therefore, o' =
g'l.c'2..0'n, with g'i as elementary cyclic trace in Merge(G1, G2), fori =1, ..., n, for a certain integer n.
From Proposition 4.6, 0'i asacyclic tracein G1or G2, fori =1, ..., n.
We have <g1o, 920> =alll gi1=a20 gi2 ... gim-1=anl gim With gjj <glo, 920>, forj =1, .., m. From the
definition of Merge, we have the following three cases.
(8 gij = <glij, 92ij>, with <gljj, g2jj> <glo, g2o> for j = 1,..., m, which means that
glo=all glj1=a20 glj2...glim-1=am glm and g2p=a10 g2j1=a20 g2;...92im-1=amd g2m.
Therefore, al.a2...am O Tr(G1) and al.a2...am O Tr(G2).
(b) gij = <0ljj, 92jj> with <gljj, 92jj> <glo, 920>, forj =1,..., k, (for acertain k) and gjj = g1jj
(91p), forj = k+1,..., n-1, which means that glg=all glj;1=a20 gij>...91ijm-1=am g1lm.
Therefore, al.a2...am O Tr(G1).
(0) gij = <9glij, 92jj> with <gljj, 92jj> <glo, 920>, forj =1,..., k, (for acertain k) and gjj = g2jj
(920), for j = k+1,..., n-1, which means that g2p=all g2j1=a20 g2j»...92im-1=amJ g2m.
Therefore, al.a2...am O Tr(G2).

.02...on.on+1, with

Consequently, any trace o of Merge(G1, G2) may be written aso =
oi asacyclictraceinGl1or G2, fori =1, ..,n,and (cn+1 0 T : 2)).

Theorem 4.1

Let G1=<Sg1, L1, Acl, Tgl, glp> and G2 =<Sg2, L2, A
From Proposition 4.3, we have Merge(G1, G2) extg Gi,
From Proposition 4.5, Merge(G1, G2) preserves the cy(
any cyclictracecinGlisacyclictraceinG2ora Tr
It followsthat Merge(G1, G2) isacyclic extension of G1 ares
any cyclictracecinGlisacyclictraceinG2ora Tr(G2), and recocally.

Now, we have to prove that Merge(G1, G2) is the least common cyclic extension of G1 and G2. For
that, we consider an arbitrary AG G4 = <Sg4, L4, Ac4, Tg4, g4o> SUch that G4 extcg G1, G4 extcg G2 and
we will provethat G4 extcg Merge(Gl, G2).

First, we have to prove that any cyclic tracein Merge(G1, G2) isacyclic tracein G4. Consider acyclic
trace o in Merge(G1, G2). ¢ = al.62...on With o1, 02, ..., on as elementary cyclic traces in Merge(G1, G2).

42

By Proposition 4.6, it follows that i is a cyclic trace in G1 or G2, fori =1, ..., n. We have gi as a
cyclictracein G1 or G2, fori =1, .., n. It follows that oi isacyclic tracein G4, fori =1, ..., n, Since G4

iIsacyclic extension of G1 and G2. Consequently, o isacyclic trace in G4 (concatenation of cyclic
tracesisacyclic trace)

Secondly, we have to prove that G4 extg Merge(G1, G2):
(1) Consider an arbitrary trace o in Merge(G1, G2). Thetrace o can be written aso = ¢1.02...on-1.0n
with ai as cyclic tracein Glor G2, fori =1, ..., n-1, and on O Tr(G1) or on 0 Tr(G2). G4 extcy G1 and

G4 extcg G2, it follows that any trace of G1 (respectively G2) is atrace of G4, and any cyclic trace
in G1 (respectively G2) isacyclic tracein G4, it follows that gi isacyclic tracein G4, fori =1, ...,

n-1, and on 0 Tr(G4). We deduce that ¢ = 01.02...on-1.0n O Tr(G4).
(
i i

at <glp, g20>=0on0 gj. S

e o can be written as
, andon O Tr(G1) or on O
, and onOTr(G4). o Tr(Merge

(2) Consider an arbitrary trace o in Merge(G1, G2): as previoudy, ths
0l.02...on-1.on With ¢i as cycligllrace in Gl or G2, fori =
We have deduced thatgidaad ace N G4, fori=1,..

it follows that ['
02,..., on-1 are (el centar
reasoning for G4, qu E- e [Tr(G1) andon Tr(G2)

deduce that gy; i !
Acl(glj). We have G4 4% , = Acl(glj). Reciprocaly, if off

q [g2; in G2 such that N -
9lp=on0 g1, and g2p=on0 g2

Tr(G2) and on Tr(G1).
and Ac3(gj) = {X1 X2

X1 0 Acl(glj) and X2 [Ac2(g2))} . ™ : :] . .
Acl(glj) and Ac4(g4)) Ac2(g2)). It follows that A(g4)) 5(0i), Which gillils the second part
of the proof G4 extg Merge(G1, G2).

Consequently, G4 Merge(G1, G2) and Merge(an arbitrary €l @hentary cyclijlitrace in Merge(G1,
G

2

). By

tion elementary cyclic tra G, we hays <glo,
.. 0 Zann<glo, g20> with g4ij glo, o>, f j =
1, n-1. From the Defi ition of Merge, N o ha the
lowing three cases:

(a gdij = <glij, g2i j>, W [t h
<gl

43

ij, 92ij> <glo, g20>, forj =1,...,, n-1, it follows that <g3o, g2o0>=alfig3il,
g2i1>=a2fig3i2, g2i2>..<g3in-1, g2in-1>=anfi<g3o, g2o> in Merge(G3, G2) with <g3ij, g2ij>
<glo, g20>forj =1,..,n-1,since an arbitrary elementary cyclic trace in Merge(G1, G2). By definition
of an elementary cyclic trace, we have <glo, g20>=all g4j1=a20 g4i2...g4in-1=an <glo, 920> With g4
<glp, 920>, forj =1, ..., n-1. From the Definition of Merge, we have the following three cases:

(8 g4ij = <glij, g2ij>, with <gljj, g2jj> <glo, 920>, for j = 1,..., n-1, it follows that <g3o,
920>=alll g3i1, 92j1>=a2l g3j2, 92i2>..<g3in-1, 92in-1>=anll <g3p, 920> in Merge(G3, G2) with
<g3ij, 92ij> <glo, 920> for j = 1,..., n-1, since g3jj = g3o iff gljj = glo, forj =1,..., n-1 (Gl and
G3 have the same cyclic traces). Therefore, o is an elementary cyclic in Merge(G3, G2).

(b) g4ij = <0lij, 92ij> with <gljj, 92ij> <glo, 920>, forj = 1,..., k, (for acertain k) and g4j = gljj (
glo), for j = k+1,.., n-1, it follows that <g3q, g20>=alX g3j1, 92i1>...<g3ik-1, 92ik-1>=ak[]
<g3ik, 92ik>=ak+10 g3jk+1...93in-1=anl] <g3p, g20>in Merge(G3, G2) with <g3jj, 92jj> <g3o, 920>
forj=1,.. k and g3j g3, forj=k+1, .., n-1, Since g3jj = g3o iff gljj =glo, forj=1, .., n-1
((G1and G3 have the same cyclic traces)). Therefore, <g3o, g20>=al0 g5j1=a20 ¢5;> ...
g5in-1=an0 <g3o, 20> with g5ij <glo, 920>, forj = 1, ..., n-1, which means that o is an
elementary cyclic in Merge(G3, G2).

() gdij = <9ljj, 92ij> with <gljj, 92jj> <glo, 920>, forj =1,..., k, (for a certain k) and g4jj = g2jj (
920), for j = k+1,..., n-1, it follows that <g3g, g20>=all® g3i1, 92i1>... <g3ik-1, 92ik-1>=ak[]
<g3ik, 92ik>=ak+10 g2jk+1...92in-1=anl] <g3p, 20> in Merge(G3, G2) with <g3jj, g2jj> <g3o, 920>
forj =1,.., k, since g3jj = g3o iff gljj = glp forj=1,., k (Gland G3 have the same cyclic
traces)) and g2jj 920, forj = k+1,..., n-1. Therefore, <g3p, g2o>=all g5j1=a20 g5i>...
g5in-1=an0 <g3p, 920> With g5jj <glo, 920>, forj = 1, ..., n-1, which means that o isan
elementary cyclic in Merge(G3, G2).

Merge(G3, G2) is an elementary cyclic trace in Merge(G1,
1, G2) and Merge(G3, G2) have the same set of (elementary)

The proof for any € fihentary cydlic trac
G2) issymmetrical.
cyclic traces.

2- Merge(G1, G2) g Merge(G3, G2):
, G2)). 0 =0l.02..on.on+1, With oi as elementary cyclic tracein
Merge(G1, G2), fori =1, ..., n, and (on+1 O Tr(G1) or on+1 O Tr(G2)). It follows, from (1) above,

that oi is an elementary cyclic trace in Merge(G3, G2), fori =1, ..., n. Merge(G3, G2) extq G3 and G2
andG1 cg G3, we deduce that (on+1 O Tr(G3) or on+1 0 Tr(G2)). Therefore, o = 01.02...on.on+1 0

44

Tr(Merge(G3, G2). The proof for any trace o of Merge(G3, G2) isatrace of Merge(G3, G2) iS
symmetrical.

2-2-b 0 Tr(Merge(Gl, G2)), Acd(<glg, g2¢> after o) = Ac5(<g3p, 920> after 0):
Consider atrace o O Tr(Merge(G1, G2)). o = gl.02...0n. i as elementarg@yclic t
Merge(Gl, G2) and Merge(G3, G2), fori =1, ..., n, and (
Tr(G2)). Therefore, <glg, g20> after 0 = <glg, 920> er o = <g3p,
after on+1. Ac4(<glg, 920> after o) = Ac5(<glo, 920> after 0), iff Acd(<glg, g2p> after on+1) =
Ac5(<g3p, g2p> after on+1). We have three cases.

- on+1 0 Tr(Gl) (on+1 O Tr(G3)): AcA(<glg, 920> after on+1) = Acl(glg
on+1) = Ac5(<g3p, g2o> after on+1), since G1 Cy G3.
- on+1 O Tr(G2): Acd(<glp, 920> after ont+l) = Ac2(g2q after an+1) =

Ac3(g3p after on+1). It folTOWS that Ac4(<glo, 920> after on+1) = Ac5(<g3q, 920> after an+1).

Merge(G1, G2) gMerge(G3, G2) and atrace 0 is cyclic in Merge(GL1, G2) iff o iscyclicin Merge(G3, G2).
Consequently, Merge(G1, G2) cg Merge(G3, G2).

45

