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ABSTRACT   We present a method of generating test sequences for concurrent programs and

communication protocols that are modeled as communicating nondeterministic finite state machines

(CNFSMs). A conformance relation, called trace-equivalence, is defined within this model, serving as a

guide to test generation.  A test generation method for a single nondeterministic finite state machine (NFSM)

is developed,  which is an improved and generalized version of the Wp-method that generates test sequences

only for deterministic finite state machines.  It is applicable to both nondeterministic and deterministic finite

state machines.  When applied to deterministic finite state machines, it yields usually smaller test suites with

full fault coverage  than the existing methods that also provide full fault coverage, when the numbers of

states in implementation NFSMs are bounded by a known integer.  For a system of CNFSMs, the test

sequences are generated in the following manner: A system of CNFSMs is first reduced into a single NFSM

by reachability analysis; then the test sequences are generated from the resulting NFSM using the

generalized Wp-method.
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1. INTRODUCTION

The testing phase represents a large effort within the common software development cycle.  In the area of

communication software, systematic approaches have been developed for protocol conformance testing [31,

5], and the generation of appropriate test suites [11, 30, 36, 34, 10].  These approaches can produce

significant economic benefits [1, 3].   A considerable amount of work has been done in the area of test

generation for the software modeled by deterministic finite state machines (DFSMs) [11, 36, 29, 10, 15,

41, 33, 40].  However, relatively little work has been done to generate test sequences for nondeterministic

models and concurrent models.  There is a practical need for testing nondeterministic models [42]; for

instance, some CSMA protocols for local area networks are nondeterministic [38]. Nondeterminism and

concurrency are two important features of formal specification languages for communication software, in

particular, communication protocols.  All the three major specification languages for communication

software, LOTOS [7], ESTELLE [9]  and SDL [4] support  the description of nondeterminism and

concurrency (SDL will support nondeterminism in the near future [35]).

In order to generate test sequences for the control portion of software written in SDL or ESTELLE,

usually, one first abstracts, by neglecting interaction parameters, a given specification into a system of state

machines that communicate with each other over input queues and channels as described in SDL and

ESTELLE.  Test sequences are then developed from the resulting machines.

Some work on test generation for nondeterministic models  has been done in the context of basic LOTOS

[30, 8] and finite labeled transition systems [12, 13].  However, these approaches are not applicable to

testing nondeterministic finite state machines (NFSM) where every transition is associated with an input and

an output.  Several methods of generating test sequences for NFSMs have been given in  [23, 39, 20] and

they are all based on the generalization of unique I/O sequences [33].  However, these methods are not

guided by any pre-defined conformance relation and have limited fault detection power.  Furthermore, even

when the methods are applied to DFSMs, a specific class of NFSMs, they still cannot guarantee the full

fault coverage that the W- and Wp-methods can provide; the reason is the same as pointed out in [41].   To
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deal with concurrency, some heuristic approaches for concurrent program testing, based on  extended finite

state machines [24, 19, 2], have been reported,  but they did not address the issue of nondeterminism.

We present in this paper a test generation method for a single NFSM and apply it to test a system of

CNFSMs (Communicating NFSMs).

In Section 2 we first define NFSMs and related notations that are similar to those for labeled transition

systems [8, 12]. Then, we define a conformance relation between specifications and their implementations,

called trace-equivalence, for NFSMs. This relation is presented in the context of the black-box testing

strategy under which  implementations are viewed as black boxes.  We finally present a fault model for

NFSMs and several definitions related to testing.

Guided by the given conformance relation,  we present, in Section 3, a method for generating test sequences

from NFSMs.  Our method is based on extending the state identification approach used for DFSMs  [10,

33, 28, 11] to NFSMs. We first transform  an NFSM to an equivalent one that belongs to a specific class of

NFSMs, called observable  NFSM (ONFSM).  An  ONFSM has a property that a state and an input/output

pair uniquely determine the next state,  while a state and an input alone do not necessarily determine a

unique next state and an output.  Test sequences are then generated from the resulting ONFSMs by a

method generalized from the Wp-method [11].   As an example, we finally apply the method to generate a

test suite for a communication protocol, called Inres [16],  within the ISO remote testing architecture.

In the Section 4 we consider a system of several CNFSMs.  We first illustrate that such a system, in

general, cannot be modeled as a deterministic finite state machine with the same input/output behavior, and

that even a system of communicating DFSMs may still behave in a nondeterministic manner.  We then use

two heuristic approaches to derive a reduced state machine  from a system of CNFSMs,  one of which is

based on a restriction on the channel and queue lengths and the other on an assumption about the speed at

which inputs are sent by the environment.  The test generation method for a single NFSM is used to derive

test sequences from the resulting machine.



                                                                                                                                        Page  4

We conclude by discussing the application of the method to generate test sequences from SDL

specifications.

2. NOTATIONS AND ABSTRACT TESTING FRAMEWORK

We first give in this section the definition of NFSMs, the several typical classes of them, and additional

notations related to them.  We then present  a conformance relation for NFSMs, on the basis of the black-

box testing strategy under which implementations  are viewed as black boxes.  Finally, we  present a fault

model for NFSMs and give some definitions related to testing.

2.1 Nondeterministic finite state machine

DEFINITION  Nondeterministic Finite State Machine.

A Nondeterministic Finite State Machine  (NFSM) is  a 5-tuple (St, Li, Lo, h, S0)  where:

(1) St  is a finite set of states, St={S0, S1, ..., Sn-1}.

(2) Li is a finite set of inputs.

(3) Lo is a finite set of outputs, and it may include a special  symbol λ that represents an empty output.

(4)  h   is a behavior function.

          h :   St  6Li  -->  powerset(St × Lo) \ {∅}

      where  ∅  denotes the empty set.  Let P, Q∈St, a∈Li and b∈Lo. We write P-a/b->Q to denote

(Q,b)∈h(P,a);  P-a/b->Q is also called a transition from P to Q with label  a /b.

(5) S0 is the initial state which is in St.

This definition is basically the same as the one given in [37].  An NFSM becomes deterministic, denoted as

a DFSM, if none of transitions from the same state have the same input.  We also assume that  a "reliable"

reset input  r   is available in any NFSM implementation such that upon receiving r   in any state the machine

returns to the initial state.
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According to the above definition, the NFSM is completely defined, thus for every input and every state, the

NFSM has at least one transition with this input.  During testing, whether an input causes a transition with

an empty output may be determined by waiting a certain period of time; if there is no output  during that

period, the transition invoked by the input is considered to produce an empty output λ.  We do not include

spontaneous transitions (or called internal actions) in our model, since the NFSMs that allow spontaneous

transitions can be modeled by equivalent (i.e., "trace-equivalent" in Section 2.2) NFSMs without

spontaneous transitions, using an approach similar to that given in [26].  In some situation, a single

transition may be associated with several outputs, for instance, the transitions in SDL;  in this case, the

several outputs can be modeled by a new single output in NFSMs.

An NFSM can be represented by  a directed graph in which the nodes are the states  and the directed edges

are transitions linking the states.   Figure 1 shows an example of an NFSM.

P1

P2 P3

Figure 1.  An example of an NFSM

b/f

a/f

a/f

b/f

a/d
a/ea/d

b/e

Li = { a, b }

Lo = { d, e, f }

P1 is the initial state

We define in the following the concept of ONFSMs (Observable Nondeterministic Finite State Machines),

originally described in [37],  a specific class of NFSMs.

DEFINITION  Observable  NFSMs  (ONFSMs).

An NFSM is said to be observable  if ∀S∈St ∀u∈L (S-u->Si & S-u->Sj  ==> i=j)

   where L=  Li 6 Lo. 
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Given an ONFSM,  for every state S in St, and every input/output pair a/b in L, there is at most one

transition from S with label a/b.  ONFSMs are a typical class of NFSMs where a state and an input/output

pair uniquely determine the next state.  However, an ONFSM may still be nondeterministic because given a

state and an input, one cannot determine a unique next state and a unique output.

For the convenience of the presentation, we introduce in Table 1 several notations, which are similar to

those in the labeled transition systems [8].  We treat an I/O pair as a single label and  a sequence of I/O pairs

as a sequence of labels, called traces.  This provides us with a convenient means to capture the nature of

nondeterminism.

Table 1.  Notation for NFSMs
    notation                             meaning
  L                       Li 6 Lo, a set of input/output pairs; u denotes such a pair
  ε                        ε is the empty sequence
 L*                     set of sequences over L; x denotes such a sequence.  Note that ε∈L*
 P=ε=>Q           P=Q
 P=x=>Q    ∃P1, ..., Pk-1∈St (P=P0-u1->P1...-uk->Pk=Q) where  u1,...,uk∈L, and  x=u1...uk
 P=x=>              ∃Q∈St (P=x=>Q)
Tr(P)               Tr(P)={ x |  P=x=>}     ( note that  Tr(P)={ x |  P=x=>Q for some Q∈St  } )
 xin                    For x∈L*, xin  is an input sequence obtained by deleting all outputs in x
                             ( note that xin∈Li* )
 Vin                   For V⁄L*,  Vin={xin |  x∈V }

Given an NFSM S,  we say that S is  initially connected  if every state is reachable from the initial state by a

directed path in the machine; i.e., ∀Si∈St ∃x∈L*  (S0=x=>Si). Without loss of generality, we assume that

all NFSMs considered in the rest of the paper are initially connected. If a given NFSM S is not initially

connected, we need to consider only such a sub-machine that is a portion of S consisting of  all states and

transitions that are reachable from the initial state of S.  The unreachable states and transitions of machines

do not affect the behavior.
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2.2. Conformance relation for NFSMs

In black box testing,  the only way to distinguish an implementation from its specification is to check the

difference between their output sequences caused by input sequences.  We assume in the rest of the paper

that the NFSMs of interest have the same Li and Lo if we do not specify them explicitly.

We now discuss a conformance relation for NFSMs.  For DFSMs, there is a widely accepted conformance

relation,  (see, e.g.,  [11, 10, 40, 37, 14]),  which requires that a specification and its implementation

produce the same output sequence for every input sequence.  A generalized version  of this relation  was

defined in [37],  which we call  trace-equivalence,  applicable not only to DFSMs but also to NFSMs.

Trace-equivalence requires that a specification and its implementation produce the same set of possible

output sequences for every input sequence.

DEFINITION Trace-equivalence.

The trace-equivalence  relation between two states P and Q in NFSMs, written

      P=traceQ,  holds      iff      Tr(P) =Tr(Q)

Given  two NFSMs S and I with their initial states S0 and I0,  we write S=traceI  iff  S0=traceI0. 

The trace-equivalence relation is an equivalence relation since it is reflective, transitive and symmetric.  This

relation serves as a guide to test generation for NFSM specifications.  For  a DFSM,  the above relation

becomes the ordinary equivalence relation as defined in [21, 10, 11].

It is  well-known that any nondeterministic finite automaton where each transition is associated with a single

symbol (not with an I/O pair) can be modeled by an equivalent deterministic automaton [18].  However,

nondeterministic finite state machines where each transition is associated with an I/O pair  cannot be

modeled by trace-equivalent deterministic finite state machines.  For example, assuming a∈Li, in an NFSM

with S0=a/b=>  and S0=a/c=>, we have {a/b, a/c}⁄Tr(S0).  However, none of DFSMs can have {a/b,

a/c}⁄Tr(S0).
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2.3. Fault model for an NFSM

In the area of test generation for DFSMs, a fault model serves as a basis for fault coverage analysis [10, 41,

29, 11].  A general survey on a variety of  fault models in testing was given in [6].  We now give a fault

model for NFSMs, which is a generalized version of the fault model given in [10].  Let S and I be two

NFSMs, with S being a specification and I its implementation. Assume that they have the same Li and Lo.

If S=traceI, we say that I has no fault with respect to S;   and if not(S=traceI), we define the fault types as

follows:

(1) Single output fault:  We say that a transition in I has a single  output fault if there exists S' such that

(i) S=traceS', and (ii) S' can be obtained from I by changing the output of this transition.

(2) Single transfer fault:  We say that a transition in I has a single transfer fault if there exists S' such

that  (i) S=traceS',  and (ii) S' can be obtained from I by changing the ending state of the above

transition.

(3) Single extra (missing) transition fault:   We say that  I has a single extra (missing) transition fault if

there exists S' such that  (i) S=traceS', and (ii) S' can be obtained from I by eliminating (adding) a

transition from (to)  I.

(4) Multiple faults:  We say that  I has multiple faults if there exists S' such that  (i) S=traceS', (ii) S' can

be obtained from I by changing the outputs of certain transitions, changing the ending states of

certain transitions, and eliminating and/or adding transitions on I, and (iii) the fault type of I is not

one of the above (1)-(3).

According to this definition, if S=traceI, then I has no fault with respect to S.  For NFSMs, if a testing

method can check the trace-equivalence between specifications and their implementations, then it can detect

any types of faults in this model;  such a testing method is said to be able to provide full fault coverage.

We note that the development of our test generation method is only guided by the conformance relation.

However, in the area of test generation for state machines, fault models are widely used for evaluating the



                                                                                                                                        Page  9

goodness of test generation methods in terms of detectable faults [10, 12, 33, 41, 11, 6].   Therefore, we

give this fault model to show that our method when applied to DFSMs can detect all types of faults that can

be detected by the former methods.

2.4.  Definitions related to testing

We define in the following several concepts that are related to testing NFSMs.

Given an NFSM,  an input sequence t of a finite length is said to be a test sequence; and a finite set of test

sequences is  a test suite.

DEFINITION:  Concatenation of sets of i/o sequences or input sequences.

Assuming V1, V2 ⁄L* (or V1, V2 ⁄Li*),    the concatenation of sets, written ".",  is defined as follows:

   V1.V2 =  { t1.t2 |  t1∈V1 &  t2∈V2}   where t1.t2 is the concatenation of t1 with t2.

     We write                              Vn= V.Vn-1    for  n>1  and     V1=V.  

This notation is required for presenting test suites.

DEFINITION :  V-equivalence of states  and NFSMs.

Given two states  P and Q,  and a set V⁄Li*,

               P=VQ    holds      iff      ∀x∈L* ( xin∈V ==>   x∉Tr(P)&Tr(Q) )

                                   where      Tr(P)&Tr(Q)=(Tr(P)∪Tr(Q)) \(Tr(P)∩Tr(Q))

 Given  two NFSMs S and I with their initial states S0 and I0,  we write S=VI  iff  S0=VI0. 

The V-equivalence relation requires that, for every input sequence in V, the specification and its

implementation produce the same set of possible output sequences.  We need this relation for analyzing the

validity of our test generation method.   We have:  P=traceQ   iff  ∀V⁄Li* ( P=VQ ).
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In order to test nondeterministic implementations, one usually makes a so-called complete-testing

assumption:  it is possible, by applying a given input sequence t to a given implementation a finite number

of times, to exercise all possible execution paths of the implementation that are traversed by t [12, 13, 23].

Without such an assumption, no test suites can guarantee full fault coverage for nondeterministic

implementations.  This assumption is similar to the one of so-called "all weather conditions" for

nondeterministic systems of Milner [27, page 11].  For testing nondeterministic models, as pointed in [8],

the quality of testing increases with the number of repetitions of test sequence application; in actual testing,

this number is limited by practical and economical considerations.  Ideally, for an implementation and a

given input sequence, the probability that not all possible corresponding execution paths are exercised at

least once, may be reduced to close to zero by applying the input sequence a sufficiently large number of

times.

3. TEST GENERATION FOR A SINGLE NFSM

A method of generating test sequences for a single NFSM is presented in this section.  This method is based

on state identification approach [11, 10, 33] for DFSMs;  however, it has to cope with an additional

problem, nondeterminism. In a deterministic model, an input sequence uniquely determines one output

sequence, which is not necessarily true in a nondeterministic model. We first present in Section 3.1 a

method of generating test sequences for ONFSMs; and in Section 3.2 we then apply this method to generate

a test suite for an example, the communication protocol called Inres.  Finally, we discuss in Section 3.3 the

transformation of an NFSM into a trace-equivalent ONFSM; incorporating such transformation, our test

generation method can generate test sequences for any NFSM.

3.1. Test generation

We first introduce several concepts that are needed for presenting our test generation algorithm.
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DEFINITION:  Minimality of  ONFSMs.

An ONFSM is minimal  if none of its states  are trace-equivalent.

For test generation, we first transform general NFSMs into trace-equivalent minimal ONFSMs, then

generate test sequences from the resulting minimal ONFSMs.  For example, a trace-equivalent minimal

ONFSM for the NFSM in Figure 1 is shown in Figure 2.

S0

b/f

a/f

a/f

a/f

b/f

b/e
b/e

a/d

Figure 2.  Minimal ONFSM trace-equivalent to the NFSM in Figure 1

a/e

Li = { a, b }

b/f

Lo = { d, e, f }

S1

S3

S2 Relations between the 
states of two machines:
S0 <> {P1}
S1 <> {P2, P3}
S2 <> {P2}
S3 <> {P3}

DEFINITION:  Prime machine.

For a given NFSM S (St, Li, Lo, hS, S0), the prime machine  of S is a minimal ONFSM M (StM, Li, Lo,

hM, M0)  such that  S=traceM.

In test generation, the role of prime machines for NFSMs is the same as that of minimal DFSMs for

DFSMs.  For two given NFSMs S1 and S2, if S1=traceS2, then their prime machines, say M1 and M2, are

isomorphic to one another.  It is easy to prove that the trace-equivalence relation is the isomorphism between

M1 and M2.  The isomorphism of DFSMs and NFSMs were studied in [10] and [37], respectively.

DEFINITION:  Characterization set   W.

Given an  ONFSM,  a characterization set  is a set W ⁄Li* such that :

∀Si, Sj∈St         ( i≠j  ==>  ∃x∈Tr(Si)&Tr(Sj) (xin∈W ) )

                               where      Tr(Si)&Tr(Sj)=(Tr(Si)∪Tr(Sj)) \(Tr(Si)∩Tr(Sj)). 
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According to this definition, if and only if a given ONFSM is minimal,  there exists a characterization set for

it.  The W set is introduced to distinguish states from each other in a minimal ONFSM; when it is applied to

different states, different sets of possible output sequences are produced.  Intuitively, given a minimal

ONFSM, for any two different states, there exists an input sequence in W such that two different sets of

possible output sequences are produced when this input sequence is applied to these states, respectively.

The ONFSM shown in Figure 2 is minimal; and the set {a, b}, for instance, is a characterization set.

Although we do not present the algorithm for generating characterization sets, one can develop such an

algorithm by borrowing the ideas of generating characterization sets for deterministic machines pointed out

in [21, 10].

DEFINITION:  prefix set   pref(V) for a given  set of sequences.

Given a set  of sequences V⁄Li*,

        pref(V)={t1 | t2∈Li* & t1.t2∈V  & t1≠ε}       where t1.t2 is the concatenation of t1 with t2.

We note that for x≠ε, x∈pref({x}).  This notation enables us to present the following definition precisely.

DEFINITION:  A tuple of state identification  sets  {W0, W1, ..., Wn-1}.

Given an ONFSM and a characterization set  W, {W0, W1, ..., Wn-1} is said to be a tuple of state

identification sets   if,  for  i=0, 1, ..., n-1,  Wi is a (preferably minimal) set such that

        (i)   Wi⁄pref(W),

        (ii)  for  j=0, 1, ..., n-1,  ( j≠i   ==>   ∃x∈Tr(Si)&Tr(Sj) ( xin∈Wi )). 

According to this definition, if a given ONFSM is minimal,  there exists a tuple of state identification sets

for it.  The motivation of introducing state identification sets is as follows.  A state identification set Wi can

determine whether  an ONFSM is in the given state Si. The idea of state identification sets intuitively

captures the following notion:  Given a state Si, for any other state Sj, there must exist an input sequence in

Wi such that two different sets of possible output sequences are produced when this input sequence is

applied to these states, respectively.  In an extreme case, the W set can serve as a state identification set for
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any state.  As an example, for the ONFSM shown in Figure 2, we have state identification sets W0={a},

W1=W3={b}, W2={a, b}.

We note:  All existing test generation methods for DFSMs that ensure full fault coverage (for examples, the

W- and Wp- methods [10, 11]), require that the user previously estimates an upper bound  on the number of

states in the prime machine of the given DFSM implementation.  Similarly, our test generation method also

requires that the user previously  estimates an upper bound  on the number of states in the prime machine of

the given NFSM implementation.   In the simplest case, one may assume that this number is equal to the

number of states of the specification.  Without the assumption of such an upper bound, no method can

check the trace-equivalence between specifications and their implementations for DFSMs, as pointed out in

[14]; therefore, for NFSMs, this assumption  is also necessary.  We now present the test generation

algorithm as follows.

ALGORITHM 1:  Test generation.

Input : A specification S in the form of a minimal ONFSM with n states, and  the upper bound m (n≤m)

on the number of states  in the prime machine of the given NFSM implementation.

Output :  a test suite ∏.

Step 1: Construct a characterization set W, and a tuple of state identification sets

               {W0, W1, ..., Wn-1}.

Step 2: Construct a (preferably minimal) set  Q⁄Li* such that:

                       ∀Si∈St ∃x∈L* (xin∈Q & S0=x=>Si).

Step 3:  Construct two sets P and R  such that: P=Q.({ε}∪Li) and R=P\Q.

Step 4:  First, define operator 8 as follows:

                        for V⁄Li*, V8{W0, W1, ..., Wn-1}= ∪
S0=x=>Si
& xin∈V

{xin}.Wi.

              Then, construct  a  test suite ∏  in the following manner:

                         ∏=∏1∪∏2

           where    ∏1=Q.({ε}∪Li∪Li2∪...∪Lim-n).W,
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                         ∏2=R.Lim-n8{W0, W1, ..., Wn-1}. 

Remarks on Algorithm 1:

(1)  Wi can be derived from W by checking the sequences in W one by one, and by eliminating the

unnecessary sequences for the state identification set.  It is not difficult for one to develop a detailed

algorithm for generating Wi.

(2)  Q is a so-called state cover.  A set  Q⁄Li* is a state cover if, for every state Si, Q contains an input

sequence that may lead the machine from the initial state S0 to Si; and  Q is preferably minimal but not

necessarily.  To avoid cumbersome presentation, we do not give the method of deriving a minimal Q.

     Given an ONFSM S, a state cover  Q can be derived as follows:

(i) Construct a tree such that (a) the tree is a subgraph of the machine S, and it contains all nodes of S

with the node labeled S0 being the root; and (b)  for every node in the tree,  there is a directed path in

the tree from the root to this node.

(ii) Q contains all input sequences each of which is obtained along a path from the root to a node in the

tree (including the root).

We note:  For DFSMs, if Q is derived using this approach, then it is minimal; however, it is not

necessarily minimal for NFSMs.

(3)   P is a so-called transition cover.  A set  P⁄Li* is a transition cover if,  for every transition Si-u->Sj,

P contains an input sequence xin.uin such that xin and   xin.uin may lead the machine from the initial

state S0 to Si and Sj, respectively.

      We note:  For DFSMs, if Q is derived using the approach in (2), then  P\{ε} is a minimal transition

cover.

(4)  We intuitively explain the validity of Algorithm 1 as follows:

      Consider a given specification S in the form of an ONFSM, and any NFSM I; let M be the prime

machine of I.  Assume that the number of states in M is bounded by m.  Assume  S=∏I. Then,

(i)  the set Q.({ε}∪Li∪Li2∪...∪Lim-n) is a state cover for M; therefore, ∏1 is used to verify that every

state in M is W-equivalent to a state in S.  In other words, if S=∏1I, each state in M is W-equivalent

to one and only one state in S.  In this sense, checking S=∏1I is a kind of state verification.
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(ii) The set Q.({ε}∪Li∪Li2∪...∪Lim-n)∪R.Lim-n is a transition cover for M; ∏1∪∏2 is used to

verify transitions in M.    For every state Mi in M that is W-equivalent to a state in Sj, if S=∏I, then

(a) for any input a, the same set of possible outputs is produced when a is applied to Mi and Sj,

respectively;  (b) if Mi=a/c=>Ml and Sj=a/c=>Sk, then Ml is Wk-equivalent to Sk.

      In this sense, when S=∏1I, checking S=∏2I is a kind of transition verification.

      Note:   P.({ε}∪Li∪Li2∪...∪Lim-n)=Q.({ε}∪Li∪Li2∪...∪Lim-n)∪R.Lim-n.

(iii) The state and transition verifications together check S=traceM;  therefore, they check  S=traceI

because of I=traceM.

The validity of Algorithm 1 is formally presented in Theorem 1 given hereafter, and is proved in the

Appendix 1.

THEOREM 1: (Validity of the test generation method)

Consider a specification S in the form of a minimal ONFSM, and any NFSM I.  Suppose n≤m  where n is

the number of states in S, and m is the upper bound on the number of states in the prime machine of I.   Let

∏ be  the test suite generated for S using Algorithm 1.   We have   S=traceI   iff    S=∏I.

Proof:  It follows from Lemmas given in Appendix 1. ( The skeleton of the proof is given above in the

remarks on Algorithm 1). 

According to Theorem 1, provided that the number of states in the prime machine of a given NFSM

implementation is bounded by m  (n≤m), the test suite produced using Algorithm 1 can detect any type of

faults given in the fault model, including multiple faults; in this sense, our method can guarantee full fault

coverage, with respect to the given bound m.

Test application:  If the complete-testing assumption is satisfied by the given implementation NFSM I,

for a given NFSM specification S and a given test suite ∏, then the relation "S=∏I" can be checked as

follows.  For every test sequence t in ∏, let A and B be the two sets of possible output sequences produced

when t is applied to S and I, respectively.  A is easy to be derived from S.  B can be obtained through



                                                                                                                                        Page  16

applying the test sequence t a sufficient number of times if the complete-testing assumption is satisfied by I.

If for every test sequence t in ∏, A=B, then "S=∏I".  Thus, according to Theorem 1, the test suites

generated by Algorithm 1 can be used to test NFSM implementations against their specifications with

respect to the trace-equivalence.

We now give an example of the application of this algorithm.  Assuming that the implementation is a

minimal ONFSM and will not have more than 4 states,  we generate a test suite for the ONFSM of Figure 2

as follows:

     W = {a, b},   W0={a},    W1=W3={b}, W2={a, b}

    Q={ε, a,  a.b},   P={ε, a, b,  a.a,  a.b,  a.b.a,  a.b.b},  R={b,  a.a,  a.b.a,  a.b.b}

     ∏1={ε, a,  a.b}.{a, b}={a, b, a.a, a.b, a.b.a, a.b.b}

     ∏2= R8{W0, W1, ..., W3}

          ={b}.W0∪{a.a}.W3∪{a.b.a}.(W3∪W1)∪{a.b.b}.W0

          ={b.a,  a.a.b,  a.b.a.b,  a.b.b.a}

     ∏=∏1∪∏2={a, b, a.a, a.b, a.b.a, a.b.b, b.a,  a.a.b,  a.b.a.b,  a.b.b.a}

We note that in this example, Q is not minimal since it is derived using the approach of Remark (2) given

before; and Q could be {a,  a.b}.  Furthermore, a test suite could be reduced by deleting each test sequence

that is a prefix of another test sequence. The final test suite for the ∏ given above is {b.a,  a.a.b,  a.b.a.b,

a.b.b.a}.  The expected output sequences for the final test suite are listed as follows:

input sequences the corresponding output sequences
b.a f.d, f.e
a.a.b d.f.e, e.f.e
a.b.a.b d.f.d.f, d.f.d.e, d.f.e.e, d.e.f.e, e.e.f.e
a.b.b.a d.f.f.d, d.f.f.e, d.e.f.d, d.e.f.e, e.e.f.d, e.e.f.e

A reset input must be sent before each test sequence of  the test suite is applied.

We now illustrate how the resulting test suite can reveal faults.   Consider the NFSM shown in Figure 3,

which is a faulty implementation of the NFSM shown in Figure 2.  This machine contains a single transfer
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fault, as shown by the bold line in Figure 3.  Assume that the complete-testing assumption is satisfied.

When the input sequence a.a.b of the test suite is applied to the machine a number of times, the set of output

sequences observed will be {d.f.e, e.f.f}, which is different from the expected set {d.f.e, e.f.e}.

Therefore, a fault is discovered.

S0

b/f

a/f

a/f

a/f

b/f

b/e
b/e

a/d

Figure 3.  A faulty implementation of the ONFSM shown in Figure 2

a/e
b/f

S1

S3

S2

The above method may be considered a generalization of the Wp-method [11], and is, in particular,

applicable to DFSMs, which are a class of NFSMs.  We note that even for DFSMs, our method is slightly

different from the Wp-method.  (1) We do not require Wi⁄W as in the Wp-method, instead, we only

require Wi⁄pref(W).  Since Wi⁄W implies Wi⁄pref(W) but not vice versa, our method may produce

shorter test sequences than W- and Wp-methods. (2) We do not require ∏2 =R.({ε} ∪ Li ∪  Li2 ∪ ... ∪

Lim-n)8{W0, W1, ..., Wn-1} as in the Wp-method; instead, we only require ∏2 =R.Lim-n8{W0, W1, ...,

Wn-1}, because of  R.({ε} ∪ Li ∪  Li2 ∪ ... ∪  Lim-n-1)⁄Q.({ε} ∪ Li ∪  Li2 ∪ ... ∪  Lim-n).

3.2. Test generation for Inres protocol

As an application example,  we consider the Inres protocol (Initiator-responder protocol) from [16], which

has already been used as a reference in many publications. To show how a test suite for the protocol under

the ISO remote testing architecture can be obtained, we construct an NFSM for the system under test that

consists of Responder and User (see Figure 4a); User refers to the upper layer protocols.
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S1

S2S3

a/u

a/v

a/v

c/w

b/z

a/w

a/w

c/x
b/y 

a/v
b/y 

c/w

b/t

c/tthe initial state is S1.

User

Responder

Medium Service

System under test

Figure 4. (a) Remote testing of Inres-responder, (b) NFSM for System under test

Tester

(a) (b)

The DFSM model of Responder can  be easily constructed from state tables [22] and is not presented in this

paper. We assume that User may disconnect by sending IDISreq only in response to an ICONind or

IDATind, and that it may send ICONresp when receiving ICONind, and send λ when receiving IDATind.

During a test campaign, User executes each option sufficiently often.  We also assume that Tester sends

inputs slowly;  it sends inputs to Responder only when no transitions in both User and Responder will be

executed without new inputs sent from Tester (in this case, the FIFO queue between User and Responder

will not contain more than one input (output)).  This assumption is called slow-environment assumption,

discussed in more detail in Section 4.   Then, the behavior of the system under test is described by a

minimal ONFSM with three states, as shown in Figure 4b.   Interpretation of inputs, outputs and states is

given in Table 2 [16].

Table 2. Interpretation of inputs, outputs and states
Inputs: Li = {a,b,c}.
    a - "CR PDU",   b - "DT_1 PDU",  c - "DT_0 PDU";

Outputs: Lo = {t,u,v,w,x,y,z}.
    t - "no output",   u - "DR PDU",   v - "CC PDU",   w - "AK_0 PDU",
    x - "AK_0 PDU followed by DR PDU",  y - " AK_1 PDU",
    z - "AK_1 PDU followed by DR PDU".

States: St = {S1,S2,S3}.
  S1 - "disconnected" (initial state), S2 - "data transfer & dat_nr=1", S3 - "data transfer & dat_nr=0".

We derive a test suite ∏ as follows:

           Q={ε, a, a.b},      W=W1 =W2
 =W3

 ={b}.
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Assuming that a prime machine of any implementation does not have more than 3 states (i.e., m=3), we

have the final test suite:          ∏ = {a.a.b,  a.b.a.b,   a.b.b.b,  a.b.c.b,  a.c.b,  b.b,  c.b}.

3.3. Trace-equivalent transformation to obtain ONFSMs

We now discuss the method of transforming arbitrary NFSMs into trace-equivalent ONFSMs.  Combined

with this transformation, the test generation method described in Section 3.1 can be used to generate test

sequences for arbitrary  NFSMs.  As discussed in Section 2.2, in general, NFSMs cannot be transformed

into trace-equivalent DFSMs, but they can be transformed into trace-equivalent ONFSMs. The method of

transforming nondeterministic finite automata into equivalent deterministic automata given in [18] can be

modified to transform arbitrary NFSMs into trace-equivalent ONFSMs.  The main idea of the modification

is as follows:  (1) Given an NFSM F1, by viewing input/output pairs in F1 as labels,  consider the NFSM

F1 as a nondeterministic finite automaton A1.  (2)  Apply the method given in [18] to  A1 to obtain an

equivalent deterministic finite automaton A2.  (3) By viewing the labels in A2 as original input/output pairs,

derive an ONFSM F2 from A2.  The details of a transformation algorithm can be found in Appendix 2.

4.  APPLICATION OF THE GENERALIZED Wp-METHOD TO A SYSTEM OF CNFSMs

We first describe a system of CNFSMs.  We then illustrate that for concurrent software, even if each

individual sequential program is modeled by a  deterministic finite  state machine,  the whole system may be

nondeterministic, and cannot be necessarily modeled by a state machine with only a finite number of states;

the definition of  state machines is  the same as that of NFSMs except that St could be infinite.  We finally

show that  our test generation method for a single NFSM can be applied to generate test sequences for a

system of CNFSMs, incorporating exhaustive reachability analysis [17].
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4.1.  Communicating NFSMs

The control portion of concurrent programs, especially in the area of communication software and

communication protocols, can be modeled by a system of CNFSMs where the NFSMs communicate with

each other over queues and channels.  We assume that asynchronous communication mechanism is used in

a system of CNFSMs, as described in SDL [4].  We describe such a system of CNFSMs as follows:

A system of CNFSMs, denoted by com(F1, F2, ..., Fn), consists of a number of CNFSMs, F1, F2, ...,

Fn, where:

(1)   Each individual CNFSM is an NFSM plus an input FIFO (first-in and first-out) queue; the NFSM only

consumes the inputs in the queue.

(2)  Each pair of machines may have two FIFO channels for communication; each channel is designated for

one direction of communication.  A channel connects only  two machines.

(3) If a pair of machines, say F1 and F2,  can communicate with one another through the channels between

them,  then signals from one machine pass through a FIFO channel and enter the input queue in the

other machine (see Figure 5).

0
a/e

0
f/x

e/x

1

e/z

f/x

F1 F2

c12 q2q1

e

a f x, z

c21

channels
input queue

Figure 5.  A system of two CNFSMs

Channels can contain an unlimited number of signals. The signals can remain in a queue or in a channel, for

an arbitrary period of time.   Individual CNFSM has an input queue of an infinite length. Figure 5 shows a

system consisting of two communicating state machines.
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4.2.  Nondeterministic behavior of communicating DNFMs

We illustrate in this section, by an example, that (i) A system of communicating DFSMs may have

nondeterministic behavior. (ii) Moreover, a system of communicating NFSMs cannot be modeled, in

general, by a trace-equivalent state machine that contains only a finite number of states.

Consider the system of CDFSMs F1 and F2 in Figure 5. The two machines have the input queues q1 and

q2, respectively;  and c12 is the channel from F1 to F2.  We use a tuple (c12, c21, q1, q2, s1, s2) to

represent a global state of this system, where c12, c21, q1, q2 denote the contents of c12, c21, q1, q2, and

s1 and s2 denote the states of F1 and F2, respectively (note: we use bold characters for contents, and plain

characters for names to avoid confusing).  In the system shown in Figure 5, however,  F1 has only one

state, c21 is not used, and q1 receives inputs only from the environment.  Therefore, for simplicity, we use a

tuple (c12, q2, s2) to represent a global state.

Suppose that the environment sends the input sequence  a.f; let us examine the output sequences that can be

observed at the boundary of the system.  A state machine that models a system of CNFSMs is called a

global state machine of  the system.  Figure 6 shows a portion of the global state machine of the system

consisting of F1 and F2.  Assume that  the system is initially in the  state ( [], [], 0 ) where [] stands for the

empty queue or channel.  The following cases may happen along with other cases when the system receives

the sequence a.f:

(1) the system first enters the state ( [], [f,e], 0 ), then transfers to the state ( [], [], 0), issuing the output

sequence z.x.

(2) the system first enters the state ( [e], [f], 0 ), then transfers to the state ( [], [], 1),  generating x.z as

an output sequence.

Therefore, this system is nondeterministic, so is its global state machine. The existing test generation

methods for DFSMs are not applicable to such nondeterministic machines, therefore test generation methods

for handling nondeterministic machines are required.
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a/λ

a/λ

a/λ

a/λ

Figure 6.  The nondeterministic behavior of the system in Figure 5

note: i and λ  represent a spontaneous transition
         and an empty output, respectively.

It is obvious from the above example that the number of states in a global state machine becomes infinite in

case of unlimited channels and/or queues, since their contents are parts of global states.  Consequently, our

test generation method for a single NFSM, in general, cannot be applied to a system of CNFSMs directly,

unless bounded channels and queues are assumed.

4.3. Generating test sequences by generalized Wp-method for a system of CNFSMs

We show in the following that  the above developed method for a single machine can be applied to generate

test sequences for a system of CNFSMs.

4.3.1.  Approach based on bounded queues and  channels

Since unbounded queues or unbounded channels cannot be implemented in practical application, it is

reasonable to assume queue and channel to be of limited lengths.  In case of bounded queues and channels,

we model a system of CNFSMs  as a trace-equivalent NFSM using exhaustive reachability analysis [17].

Then,  we apply the generalized Wp-method to the resulting machine, with the upper bound m being

chosen, for instance, as the number of states in the resulting machine.  However, even if bounded queues
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and channels are assumed,  a trace-equivalent NFSM for a given system of CNFSMs may still be very

large.   In such cases,  we use in the following another, further restricted approach.

4.3.2.  Approach assuming a slow environment

For a system of CNFSMs, we say that the system runs in  a slow environment   if inputs can be sent from

the environment to the system only in situations where all the queues and all the channels are empty.  We

say that the system has a live-lock   if it is possible to execute an infinite number of transitions without

further inputs.  We assume in the following that the system has no livelock.  The assumption of a slow

environment is, for instance, satisfied for the communication protocols with handshake, such as connection

and disconnection phases, for instance, in the ISO transport protocol.

If a given system of CNFSMs com(F1, F2,..., Fn) contains no live-lock and runs in  a slow environment,

then it can be modeled by a trace-equivalent  NFSM with up to M16M26...6Mn states where M1, M2,...,

Mn are the numbers of states in  F1, F2,..., Fn, respectively.  For such a system of CNFSMs, the trace-

equivalent  NFSM can be obtained using the reachability analysis.  Figure 7 gives an example of a system of

two CNFSMs without live-lock, and Figure 8 shows the global NFSM of the system.

Figure 7.  An example of a system of two CNFSMs
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Figure 8.  The global NFSM generated by using reachability analysis

After the global machine has been obtained from a given system of CNFSMs, we apply the generalized Wp-

method to the resulting machine.

5. CONCLUSION

We presented in this paper a method of generating test sequences for NFSMs (nondeterministic finite state

machines). This method is a generalization of the Wp-method [11].  It can ensure full fault coverage under

the assumption of a limited number of states in the implementations, which has not been provided by other

known test generation methods for NFSMs.  It is also applicable to DFSMs (deterministic finite state

machines); in this case, it reduces to a slightly improved version of the Wp-method.  We also applied this

method to generate test sequences for a system of communicating NFSMs.

We note that our method can be used to perform test generation for the control part of SDL processes.  In

order to apply this method, SDL processes are first abstracted, by neglecting parameters, into a system of

communicating nondeterministic finite state machines with the SAVE constructs [32], called SDL-machines

[25].  Although SDL-machines cannot be necessarily modeled as trace-equivalent finite state machines,

most machines derived from practical SDL specifications can be modeled as trace-equivalent finite state

machines.  We use the algorithm given in  [25] to obtain the trace-equivalent machines from the SDL-
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machines, avoiding the SAVE constructs.  Then, the test generation methods described in this paper can be

applied.

APPENDIX 1:   VALIDITY OF TEST METHOD

We first introduce several definitions, then we prove several lemmas that lead to Theorem 1.

Given  a minimal ONFSM S (StS, Li, Lo, hS, S0) and a  NFSM I (StI, Li, Lo, hI, I0),   we assume in the

following:

(1) All states of  S and I are reachable from the initial states S0 and I0, respectively.

(2) S has n states with n ≥ 2.

(3)  M  (StM, Li, Lo, hM, M0)  is the prime machine of I, and may have at most m states with m≥n.

(4)  Si, Sj, Sk, Sl,  and Mi, Mj, Mk, Ml represent the states of S and M, respectively.

(5)  W,  {W0, W1, ..., Wn-1}, Q,  P, and R are produced using Algorithm 1.

(6)  A  test suite ∏  is constructed using Algorithm 1.

     Then,  ∏ = ∏1∪∏2    where ∏1 = Q.({ε} ∪ Li ∪  Li2 ∪ ... ∪  Lim-n).W,  and

                                                    ∏2 =R.Lim-n8{W0, W1, ..., Wn-1}.

 Definitions of several notations
    notation                                    meaning
 [Si,Mi] -u-> [Sj,Mj]            For  u∈L,  Si-u->Sj     and   Mi-u->Mj
 [Si,Mi] =x=> [Sj,Mj]          For  x∈L*,  Si=x=>Sj     and   Mi=x=>Mj
 [Si,Mi]-after-V                    Given a pair of states [Si,Mi]∈StS× StM,  and a set V⁄Li*
                                            [Si,Mi]-after-V={[Sj,Mj] | ∃x∈L* ( xin∈V & [Si,Mi] =x=> [Sj,Mj])}
 D                                         D =[S0, M0]-after-Li*
 Dr                                       Dr = {[Si,Mj] | [Si,Mj]∈D &  Si=WMi}
 Lik                                       Lik = {ε} ∪ Li∪ ... ∪  Lik, when k≥1;  and Li0 = {ε}.

It is easy to see Dr⁄D and  |Dr|≤|D|.  Since both S and M are observable, given [Si,Mi]∈D and x∈L*, if

there is a pair [Sj,Mj]∈D such that [Si,Mi]=x=>[Sj,Mj], then [Sj,Mj] is the only pair satisfying

[Si,Mi]=x=>[Sj,Mj].
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LEMMA 1:  For  V⁄Li*, assume  |[S0,M0]-after-V|≥k .

If  | D|>k,  then  |[S0,M0]-after-V.({ε} ∪ Li)| ≥k+1;  and if | D|≤k, then

               [S0,M0]-after-V.({ε} ∪ Li) =  [S0,M0]-after-V.

Proof:

(I)  To prove that the lemma holds when  | D|>k.

The lemma holds when |[S0,M0]-after-V |>k .  Now consider the case that  |[S0,M0]-after-V|=k.

                statements                                                              reasons

(1)   | D | > k                                                                                                  hypothesis

(2)         |[S0,M0]-after-V | =k                                                                       hypothesis

(3)         [S0,M0]-after-V⁄ D                                                                      definition of  D

(4)         ∃[Si,Mi]∈D\[S0,M0]-after-V                                                          (1) & (2) & (3)

(5)         ∃[Sk-1,Mk-1]∈[S0,M0]-after-V

              ∃[Sk,Mk]∈D\[S0,M0]-after-V

              ∃x∈L* & xin∈V  ∃u∈L such that:

             ([S0,M0]=x=>[Sk-1,Mk-1]-u->[Sk,Mk]                                          (4)

(6)         ∃[Sk,Mk]∈([S0,M0]-after-V.({ε} ∪ Li))\[S0,M0]-after-V            (5)

(7)          |[S0,M0]-after-V.({ε} ∪ Li)| ≥k+1                                               (6)

(II) To prove that the lemma holds when  | D|≤k.

(1)   | D | ≤ k                                                                                                 hypothesis

(2)         |[S0,M0]-after-V | ≥k                                                                      hypothesis

(3)         [S0,M0]-after-V⁄ D                                                                     definition of  D

(4)        [S0,M0]-after-V.({ε} ∪ Li) =  [S0,M0]-after-V                             (1) & (2) &(3).

LEMMA 2: Assume S0=QM0.  If  | D|>m, then |[S0,M0]-after-Q.Lim-n| ≥m;

                                   and if |D|≤m, then  [S0,M0]-after-Q.Lim-n = D.

Proof:

Since m≥n, Lm-n is always defined.

(I)  To prove that the lemma holds when | D|>m.
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(1)   S0=QM0                                                                                                       hypothesis

(2)           | D|>m                                                                                                 hypothesis

(3)           |[S0,M0]-after-Q| ≥n                                                       S is initially connected & (1)

(4)          |[S0,M0]-after-Q.Lim-n| ≥m                          (2) & (3) & "apply  Lemma 1 m-n times"

(II) It is evident from Lemma 1 that the lemma also holds when  |D|≤m.

LEMMA 3: | Dr| ≤ m.

Proof:

(1)  |StM| =m                                                                                                          hypothesis

(2)           |Dr| >m                                                                                                  assumption

(3)           ∃[Sj,Mk],[Si,Mk]∈Dr ( j≠i & Sj=WMk & Si=WMk )                          (1) & (2)

(4)          (3) is not true                                                         not(Sj=WSi ) by definition of W

(5)    |Dr| ≤m                                               (2) causes the contradiction between (3) and (4).

LEMMA 4: If S0=∏1M0,  then   [S0,M0]-after-Q.Lim-n = Dr.

Proof:

When | D|≤m, the lemma is evident from Lemma 2.   Now consider the case that | D|>m.

(1)    S0=∏1M0                                                                                                             hypothesis

(2)            | D| > m                                                                                      hypothesis

(3)            | [S0,M0]-after-Q.Lim-n | ≥m                                                     (2) & (1) & Lemma 2

(4)            [S0,M0]-after-Q.Lim-n⁄ Dr                                                      (1)

(5)            | [S0,M0]-after-Q.Lim-n | ≤ | Dr| ≤ m                                        (4) & Lemma 3

(6)            | [S0,M0]-after-Q.Lim-n| = | Dr| = m                                         (3) & (5)

(7)            [S0,M0]-after-Q.Lim-n =  Dr                                                     (4) & (6).

LEMMA 5:  If S0=∏1M0,  then ∀[Si,Mk]∈D (∃[Sj,Mk]∈Dr).

Proof:

(1)  S0=∏1M0                                                                                                             hypothesis
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(2)  S0=QM0                                                                                                               (1)

(3)  if | D|>| [S0,M0]-after-V|,

       then  |[S0,M0]-after-V.({ε} ∪ Li)| ≥|[S0,M0]-after-V|+1        the same reason as for Lemma 1

(4)  |[S0,M0]-after-Q| ≥n                                                                "S is initially connected" & (2)

(5)           not( ∀[Si,Mk]∈D (∃[Sj,Mk]∈Dr)  )                                  assumption

(6)           [S0,M0]-after-Q.Lim-n⁄Dr⁄D  &  Dr≠D                        (1) & (5)

(7)           | [S0,M0]-after-Q.Lim-n | ≥m                                             (4) & (6) & "apply  (3) m-n times"

(8)           | Dr|≥m                                                                              (6) & (7)

(9)           | Dr|=m                                                                              (8) & Lemma 3

(10)         ∃[Sj,Mk],[Sl,Mk]∈Dr ( j≠l & Sj=WMk & Sl=WMk )        (5) & (9)

(11)         (10) is not true                                                                not(Sj=WSl) by definition of W

(12)  ∀[Si,Mk]∈D (∃[Sj,Mk]∈Dr)                    (5) causes the contradiction between (10) and (11).

LEMMA 6:  If S0=∏1M0,  then ∀[Si,Mk]∈D ([Si=WiMk]  <==> [Si=WMk] ).

Proof:

(1)  S0=∏1M0                                                                                                         hypothesis

(2)          [Si,Mk]∈D  & Si=WiMk                                                         assumption

(3)          Sj=WMk                                                                                  (2) & (1) & Lemma 5

(4)          Si=WiSj                                                                                  (2) & (3) & Wi⁄pref(W)

(5)           i=j                                                                                          (4) & definition of Wi

(6)  ∀[Si,Mk]∈D ([Si=WiMk]  ==> [Si=WMk] )                                 (2) ==> (3) & (5)

(7)  ∀[Si,Mk]∈D ([Si=WiMk]  <== [Si=WMk] )                                 definition of Wi

(8)  ∀[Si,Mk]∈D ([Si=WiMk]  <==> [Si=WMk] )                               (6) & (7).

LEMMA 7:  If S0=∏M0,  then   [S0,M0]-after-Q.Lim-n = Dr = D.

Proof:

(1)  S0=∏M0                                                                                                                 hypothesis

(2)  S0=∏1M0                                                                                                               (1)
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(3)  S0=∏2M0                                                                                                               (1)

(4)   S0=QM0                                                                                                                (1)

(5)  [S0,M0]-after-R.Lim-n⁄ Dr                                                      (3)  & (2) & Lemma 6

(6)  [S0,M0]-after-Q.Lim-n+1⁄ Dr                                                  (5) & (2) &  Lemma 4

       (note:    R∪Q=Q.({ε}∪Li)

         Q.Lim-n+1∪Q.Lim-n=R.Lim-n∪Q.Lim-n

         From (2) and Lemma 4, [S0,M0]-after-Q.Lim-n⁄ Dr

         From (5) and Lemma 4, [S0,M0]-after-Q.Lim-n+1⁄ Dr)

(7)          | D|>m                                                                               assumption

(8)          |[S0,M0]-after-Q.Lim-n+1|≥m+1                                       (7) & (4) & Lemma 2 & Lemma 1

(9)          (7) is not true                                                                     (6) & Lemma 3

(10)   | D|≤m                                                            (7) causes the contradiction between (7) and (9)

(11) [S0,M0]-after-Q.Lim-n+1= D                                                   (10) & (4) & Lemma 2

(12) [S0,M0]-after-Q.Lim-n+1 =  Dr = D                                         (6) & (11) &  Dr⁄D

(13) [S0,M0]-after-Q.Lim-n =  Dr = D                                            (12) & Lemma 4.

LEMMA 8:  If  S0=∏M0, then S0=traceM0.

Proof:

Note that [S0,M0]-after-Q.Lim-n+1 =[S0,M0]-after-P.Lim-n.

(1)   S0=∏M0                                                                                                   hypothesis

(2)   ∀x∈L*(   if xin∈Q.Lim-n and [S0,M0]=x=>[Sj,Mj],

                         then   (i)  [Sj,Mj] is unique, and

                                   (ii) ∀a∈Li (Sj={a}Mj)   )                                              (1) & Lemma 7 &

                                                                                                                       "S, M are observable"

(3)              not (S0= traceM0 )                                                                         assumption

(4)              ∃z∈L* ∃a∈Li ∃[Si,Mi]∈D  such that

                   [S0,M0]=z=>[Si,Mi] & not(Si={a}Mi )

                   where [Si,Mi] is unique for z                                                     (3) & "S, M are observable"

(5)              ∃y∈L* ∃a∈Li ∃[Si,Mi]∈Dr  such that
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                  yin∈Q.Lim-n & [S0,M0]=y=>[Si,Mi] & not(Si={a}Mi )              (4) & (1) & Lemma 7

                  (note: From (1) & Lemma 7, [S0,M0]-after-Q.Lim-n = Dr = D)

(6)   S0= traceM0                                                  (3) causes the contradiction between (2) and (5).

LEMMA 9:  S0=∏M0      iff      S0=∏I0 .

Proof:  Since I0=∏M0, S0=∏M0 implies S0=∏I0.  By the same reason, S0=∏I0  implies S0=∏M0. 

APPENDIX 2:   TRANSFORMATION TO OBTAIN ONFSMS

We now present an  algorithm to construct a trace-equivalent ONFSM for an arbitrary NFSM.

ALGORITHM 2 : Constructing  a trace-equivalent ONFSM for a given NFSM.

Input : an NFSM S.

Output :  an ONFSM S'.

Step 1: Build a graph G consisting initially of a single unmarked node, labeled M0, where M0={S0}.

Step 2: If there is no unmarked node in the graph G, stop;  G is the ONFSM S' and the node M0

represents the initial state of S'.  Otherwise:

(a) find and mark a unmarked node M in G,  where the label M  is a set of states of S.

(b) for every  u∈L, (i) first construct M'={Q | P∈M (P=u=>Q)}, (ii) if M' is not a node label in the

resulting graph G,  then create a node with label M', (iii)  create a directed edge from M to M' with

label u.

(c)  Go to Step 2.

It is not difficult to prove that the NFSM S' resulting from the above algorithm is trace-equivalent to S.  For

example, this algorithm constructs the machine shown in Figure 2 from the NFSM in Figure 1.  In general,

the number of states in an ONFSM grows exponentially as the number of states in the original NFSM does.

However,  in practical application, NFSMs are usually  not so nondeterministic (i.e., there are only a few

states each of which has more than one transitions associated with the same input.); in this case, the number

of states in ONFSMs will not grow exponentially.  We note that the ONFSM obtained using Algorithm 2
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may not be a minimal machine.  In this case, it should be reduced to a minimal form using an approach

similar to the state minimization for DFSMs [21].
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