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Abstract.  In this paper, we firstly propose a detailed model  for specifying real-time discrete event systems. This model uses 

a global clock, and several fictitious timers and counters. It can be used for applications in different areas, such as 

telecommunications or process control, which can be modeled as concurrent and real-time discrete event systems (DES). 

Next, we propose an application of this model for deriving protocol and medium specifications from service specifications 

for real-time applications. Compared to [KBD93], the application field is much broader, because two important restrictions 

are removed. Firstly, temporal requirements are between events which are not necessarily consecutive. Secondly, the systems 

considered can be concurrent .   
 

1. Introduction 
 

A  discrete event system (DES) is a dynamic system where events are executed instantaneously, causing 

a discrete change of the state of the system. If sequences of events are a regular language, the system can 

be specified by a finite automaton. A first example of DES is a telecommunication network; an event 

can then be the transmission of a packet of data. Another example is a communication protocol, and an 

event can be execution of a service primitive. For some DES it is not enough to represent the ordering of 

events. We must also specify temporal requirements between events. This class of DES are called Real-

time DES. For specifying such DES, we use timed automata (TA) which are defined by using a global 

clock, and several fictitious timers and counters. And for studying them, we use the approach which 

consists of transforming a real-time problem to an untimed problem ([AD90,BW92]). In comparison with 

[KBD93], two extensions are made: a) temporal requirements are not only between consecutive events; 

b) concurrent systems are considered. Henceforth, DES means Real-time discrete event system. 
 

   This paper is organized as follows. In section 2, we introduce in detail the model we have developed 

for specifying and studying a real-time DES. In section 3,  we propose an application of our model for 

designing real-time protocols in a systematic way. Both sequential and parallel protocols are considered. 

And at last, we conclude in section 4. We will notice that the possible concurrency  in the  parallel 

systems, and the timing  requirements  cause  a  problem  of  state  space explosion and of complexity.  
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Here is a table of some of the most important notations used in this paper. They will be explained in the 

following sections. 

N is the set of positif integers, and N* is the set of strictly positive integers, i.e., N*=N-{0} 

DES    means : Real-time discrete event system 

|E|   is the cardinal of a set E, and 2E is the set of subsets of E  

uct  is an abbreviation for : unit of clock time 
trc = ... nn   is a finite timed trace, and  Trc = ... ii ...   is an  infinite timed 

trace 
TRC = 12 ... j ... is an infinite untimed trace   

T  is the set of timers T1, T2, ..., TNt,  where Nt  is the number of timers 

ts= (t1, t2, ..., tNt) is the Nt-uplet representing the current values of all the timers (ts = timer state) 

T    is the set of all possible values of the Nt-uplet ts  

ET is the set of  enabling boolean functions, w.r.t. T={T1, ..., TNt}, i.e., depending on ts=(t1, ..., tNt) 

C  is the set of counters C1, C2, ..., CNc,  where Nc  is the number of counters. 

Vci is an alphabet associated to counter Ci. 

cs= (c1, c2, ..., cNc) is the Nc-uplet representing the current values of all the counters (cs = counter state) 

C    is the set of all possible values of the Nc-uplet cs  

EC is the set of  enabling boolean functions, w.r.t. C={C1, ..., CNc}, i.e., depending on cs=(c1, ..., cNt) 

TA means: a timed automaton. Such TA is defined by At=(Q,V,T,V,, q0)  

LAt is the timed language accepted by  the TA  At 

Tr =[q1;;q2;E(ts),R;K(cs)] defines a timed transition of At, where [V, E(ts)[ET, R⁄ T, and K(cs)[EC  

V*  is the set of finite sequences of events over the alphabet V 
Mti is the maximum value a timer  Ti  is compared to.  

Mt  is the maximum value  any timer is compared to, i.e., : ( Mti  : Mti Mt )   and  (Mti : Mt=Mti ). 

Mci is a bound on the counter Ci,  and Mc=sup(Mci), i.e., : ( Mci : Mci Mc)  and  (Mci : Mc=Mci).  

ExtW(At) is the extension of At to the alphabet W, with V⁄W (see def. 20) 

AtBt , At�Bt and AtBt  are three types of products of two TA  At and Bt, (def. 18, 21, 22) 

tick   is the event representing the passing of one uct 

Aut =(Qut,V{tick }, ut, q0
ut

) is a FSM called untimed automaton  (UA)  over the alphabet V{tick } 
LAut is the untimed language accepted by  Aut 

tr = [q1;;q2] defines a transition of Aut , where  [ V{tick }  and  q1, q2 [ Qut 

pr(T)  is the set of sequences  which are prefixes of the sequence T   

PW(Aut) is the projection of Aut  on alphabet W{tick  } , with W ⁄V 

AutBut  is the synchronized product of two untimed automata  Aut and But. 

UntimeT  and UntimeL  are operators for untiming respectively timed traces and timed languages   

UntimeA  is the operator for untiming timed automata,  i.e.,  Aut=UntimeA(At) . 
 

Table 1. Notations  
 
2.  Real-Time systems specifications 
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For specifying a real-time discrete event system (DES), we use a global digital clock, and the set N of 

natural numbers is our domain of time. The time is then modeled by a global variable, noted and called 

discrete time :  is initially equal to zero and is incremented by one after the passing of each unit of 

clock time (uct) ([Os90, BW92, OW90]).  
 

2.1. Timed traces and Timed languages 
 

A finite timed trace  trc over an alphabet V is a finite sequence of pairs ii, where i is an event of 

V, and i is an integer such that i+1 i . Such trace is represented by trc = ...nn and 

contains all events that have occurred before time n+1. Each ii means that the event i has 

occurred when the discrete time is equal to i. It is clear that there is an inaccuracy of one uct on the 

exact delay of event occurrences.  
An infinite timed trace  Trc over an alphabet V is an infinite sequence of pairs ii; any finite prefix 

of Trc is called a finite timed trace over V. Such infinite trace is represented by  Trc= 
...ii... Each pair ii defined in Trc is called a component of Trc which is noted : 

ii �Trc. Since a i may be equal to i+1, several consecutive events may occur at the same discrete 

time, i.e., during one uct.  
 

Definition 1. ( Finiteness property) 

An infinite timed trace respects the finiteness property (FP) if the number of events executed during one 
uct is bounded by  an  arbitrary  constant Mc.  Formally, Trc = ...ii ... respects the FP if 

and only if :  ¢ i 0 ,   ¡ j i  such that  j-1 = i  < j    and   j i+Mc.  The FP is differently defined in 

[TH92], where it only requires that a finite number of events occur in any finite time interval. 

  
 

Example 1.  Let  Trc be the following infinite trace Trc=24...i,2i  Trc respects the 
finiteness property because one event occurs when  is even, and no event occurs when  is odd.
  
 

Example 2.  Let  Trc be the following infinite trace Trc=14...i,2ii,  where  
,pmeans that  occurs p times when the discrete time is equal to . Trc does not respect the FP 
because the number of events during one uct is not bounded.      
   
 

Definition 2. (Timed trace and timed language) 

In this paper, we consider only  infinite   timed traces. Such traces, will be simply called timed traces.    
A timed language  L  over an alphabet V is a set of infinite timed traces over V.    

We say that L  respects the finiteness property (FP) if all its timed traces respect the FP.   

Infinite timed traces, which will be simply called timed traces , are executed by non terminating 

processes. This is not really a restriction. In fact, a terminating process which may be executed infinitely 

often, can also be considered as a non terminating process.  
 

Definition 3. (Projection of a timed trace) 
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Let V be a subset of an alphabet W, and let Trc= ...ii... be a timed trace over W. The 

projection  of Trc on V, noted ProjV(Trc), is obtained by removing from Trc all ii, where i�V.

    
 
 

Definition 4. (Projection and Extension of a timed language)  
Let V be a subset of an alphabet W. Let L1 be a timed language over W. The projection of L1 on V,  

noted ProjV(L1), is defined by  :       ProjV(L1 )= {Trc, over V |  ¡ Trce �L1  with  Trc=ProjV(Trce)}; 

Let L2 be  a timed  language over V. The extension of L2 to W,  noted ExtW(L2),  is defined by :  
    ExtW(L2)={Trc , over W | ProjV(Trc)�L2}.      
Remark 1 :  a) if W=V then  ProjV(L)=ExtW(L )=L ;  b) ProjV(ExtW(L ))=L   and L ExtW(ProjV(L )) . 
 

2.2. Timers and counters  

A DES may be specified by a timed automaton, or simply a TA, which is an extended FSM  accepting a 

timed language (def. 2). For defining a TA, we use several fictitious  timers and counters.  
 

Definition 5. (Timer)  
A fictitious timer Ti is a conceptual entity associated to a variable ti belonging to the set N of natural 

numbers . ti  is automatically incremented after the passing of one uct, and is called the current value of 

timer Ti. The operations we can do on the timer are : 

- Reset : a timer Ti, whose value ti is increasing regularly by one after each uct, can be set to zero. ti  

represents therefore the time elapsed from the last reset of timer  Ti. 

- Comparison : the value ti of timer Ti  can be compared to a constant integer. The comparison 

operators are =,  > and  . Other operators < and  are not necessary because timer values are integers. 
Initially, when the discrete time  is equal to zero, ti also is equal to zero.     

We deduce that if several timers T1, T2, ..., TNt are used, then their current values t1, t2, ..., tNt are 

automatically and simultaneously   incremented after the passing of one uct, i.e. when the discrete time   
is incremented. Therefore, all the timers are synchronized on the digital global clock.  
 

Definition 6. (Timer state) 
Let Nt (or |T|) be the number of timers T1, T2, ..., TNt. The Nt-uplet ts=(t1,..., tNt), where ti is the current 

value of timer Ti, is called the current timer state .        
 

Definition 7. (T_Condition,  set ET) 

Let T={ T1, T2, ..., TNt} be a set of timers. A T_Condition E(ts), w.r.t. T,  is a boolean function 

depending on the current timer state ts=(t1,..., tNt). E(ts) is formed from : a) canonical boolean functions 

ti~k,  where ti  is  the current value of a timer  Ti ,  k�N*,  and  ~  is   =,      or    > ;   

b) operators AND(�), OR(), and NOT(�) on these canonical boolean functions. 
The set of all T_Conditions, w.r.t. T, is noted ET.        

  
 

Definition 8. (Counter)  
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A fictitious counter Ci, w.r.t. an alphabet Vci is a conceptual entity associated to a variable ci belonging 

to N. ci is called the current value of  Ci, and is automatically : a) incremented after the occurrence of 

any event of Vci; b) set to zero after the passing of one uct, i.e.,when is incremented.     
 

Definition 9. (counter state) 
Let Nc (or |C|) be the number of timers C1, C2, ..., CNc. The Nc-uplet cs=(c1,..., cNc), where ci is the 

current value of counter Ci, is called the current counter state .     

  
 

Definition 10. (F_Condition, set EC) 

Let C={ C1, C2, ..., CNc} be a set of counters.  A  F_Condition  K(cs),  w.r.t.  C,   is  a  boolean  function  

depending on the current counter state cs=(c1,..., cNc). K(cs) is formed from : a) canonical boolean 

functions ci < Mci,  where ci  is  the current value of a counter  Ci, and Mci�N*; b) operator AND(�) on 

these canonical functions. The set of all F_Conditions, w.r.t. C, is noted EC.   

  
Example 3. if K(cs)=(c1 < Mc1) must be always true, and C1 is w.r.t. Vc1, then no more than Mc1 

events of Vc1 may occur during one uct.        

  
 

2.3 Timed Automata for real-time processes 
 

For defining a TA, we use in general:   

- a global digital clock  which informs about the passing of one uct,  

- a finite set of fictitious digital timers (def. 5), for specifying the timing requirements, 

- a finite set of counters (def. 8), for respecting the finiteness property (def. 1).  
 

Definition 11. (Timed transition, and Reset) 
Let A=(Q,V,,q0) be a FSM where Q is a set of states, V is an alphabet, q0 is the initial state, and 

QVQ defines the transitions, i.e.,  a transition of A can be represented by [q1;;q2]. 

Let T={T1,  ..., TNt} be a set of timers, and let C={C1,  ..., CNc} be a set of counters,  w.r.t Vci V,  for 

i=1,2, ..., Nc.  Let ET (resp. EC) be the sets of T_Conditions (resp. F_Conditions), w.r.t. T (resp. C).  

A timed transition , w.r.t. T and C, is defined by Tr=[q1;;q2;ts);R;cs)], with �V, q1,q2�Q,  

E(ts)�ET, K(cs)�EC, and RT. R is called Reset of the transition Tr. The semantics of Tr is the 

following.  Let q1 be the current state : (1)  may occur only if E(ts)  (def.7) and K(cs) (def. 10) are true; 

(2) after the occurrence of : a) the state q2 is reached, timers of R are set to zero, and  

                                                b) ci is incremented if   �Vci,  for i=1,2, ..., Nc.   

Besides, K(cs)=(ci1<Mci1)��(cip<Mcip), where ci1,..., cip are all counters respectively w.r.t. Vci1,..., 

Vcip, such that �Vci1Vcip.         

  
Informally, the event  of V in Tr=[q1;;q2;ts);R;cs)] may occur only if the T_Condition E(ts) is 

true. Besides, if  �Vci (V), then  (ci<Mci) also must be true for occurrence of .  
 

Definition 12. (Enabled and Eligible timed transition)  
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A timed transition [q1;;q2;ts);R;cs)] is enabled if conditions for occurrence of  are true (def.11). 

A timed transition Tr=[q1;;q2;ts);R;cs)] is eligible  if :  

 Tr is  enabled or will become enabled with the passing of time (without occurrence of any event).

  
 

A timed automaton (TA) At can then be constructed from the FSM A=(Q,V, ,q0), the finite sets T (of 

timers T1,...,TNt)  and C (of counters C1,...,CNc). For that, we transform each transition tr=[q1;;q2] of A 

into a timed transition Tr (def.11) by associating to it, a T_condition E(ts), a Reset, and a F_Condition. 
 

In this paper, we consider only TA which accept (def.14) a timed language, i.e., a set of infinite timed 

traces. Here is a simple example, where we see that a TA is convenient for specifying a DES.  
 

Example 4. Let's consider a communicating system which executes the three following service 

primitives :  connect.request,  connect.confirm, and disconnect.indication. These primitives are 

respectively abbreviated by cr , cc , di . The informal desired behaviour is the following. The primitive 

cr  is first executed. It can be accepted and followed by cc , or refused and followed by  di  .  And this 

process is repeated indefinitely. Between two consecutive cr  ,  there  must be at most  9  uct. After cc  

or di ,  we must wait at least 3 uct before the next cr  . After its execution, if cr   is not refused (i.e.,  not 

followed by di ) 2 uct  after its  occurence,  it will be inevitably  accepted (i.e.,  followed by cc ) within  

3 uct  after its occurence.  With this informal specification, the finiteness property (def.1) is 

automatically respected, because of the minimum 3 uct between cc  or di   and cr .   
 

 This desired behaviour is formally specified by the TA of figure 1, which uses two timers T1 and T2. 

T1 is used for defining timing requirements between : two cr ,  cr  and cc , cr  and di . T2 is used for 

defining timing requirements between : cc  and cr ,  di  and cr . We may also use one counter C1, w.r.t. 

Vc1=V={cr, cc, di } with Mc1=2, but in this example, the counter is not really necessary. In fact, the 

timing requirements ensure that the finiteness property is respected. But in general, they do not. 

(di,E ,R )3 3

(cr,E ,R )1 1

(cc,E ,R )22q0 q1

 
Figure 1. Timed automaton  

 

In this example, Nt=2, T={T1,T2}, ts=(t1, t2), C1 is w.r.t. V, the F_Condition of all timed transitions is 

K(c1)=(c1 < 2), the T_Conditions are E1(ts)=( (t1  9) 3 (t2 > 2) ), E2(ts)=(t1  3),  E3(ts)=(t1  2), and 

the Resets are R1={T1}, R2={T2}, R3={T2}. Let's now give a formal definition of a timed automaton.  
 

Definition 13.  (Timed automaton) 
A timed automaton  At=(Q,V,T,V,,q0) is defined as follows. Q is the set of states, q0 is the initial state, 

V is the alphabet, T is the set of timers T1, T2,...,TNt, V={Vci for ic}1 2V, where each Vci is 

associated to one counter Ci, and QVQT2TEC defines the timed transitions (def.11), where 

Tand EC are the sets of T_Conditions and F_Conditions (def.7 and 10).  

Besides,  At  accepts only infinite timed traces  (def. 14), and is called a sequential TA.   
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In example 4, the TA of figure 1 is defined by At=(Q,V,T,{V},,q0) where: Q={q0, q1}, V={cr,cc,di}, 
T={T1,T2}, C={C1}, Mc1=2, ={[q0;cr;q1;E1;R1;K], [q1;cc;q0;E2;R2;K], [q1;di;q0;E3;R3;K]}. 
 

Definition 14. (Acceptance of a timed trace and of a language, equivalence, partial order relation) 
Let At be a TA (Q,V,T,V,,q0) and let Trc= ...ii... be an infinite timed trace.  

- Trc is accepted by  At , is formally defined by :  
i�N* : Tri=[qi-1;i;qi;Ei(ts);Ri;Ki(cs)]�  with : (i=i) 3 ( (i) � (Ei(ts)3Ki(cs)=True) ). 

Informally, a system specified by At may execute a trace accepted by At. 
- A timed language, noted LAt, is accepted by At if it contains all and only the traces accepted by  At. 

- A1
t
 and A2

t
 are equivalent , and noted A1

t
A2

t
, if and only if LA1

t  LA2
t  .     

- A1
t
 is smaller than or equal to  A2

t
, and noted A1

t
A2

t
, if and only if LA1

t  LA2
t  .                                   

 

Property 1. Let At=(Q,V,T,V,,q0) be a timed automaton specifying a non terminating system,  with 

V={Vc1, Vc2,...,VcNc}2V. If Vc1VcNcV, then the  language  LAt  accepted by  At (def.14) 
respects the finiteness property. In this case, we say that At respects the finiteness property. 

Proof : See Appendix A .                                                                                                                                                
 
 

Definition 15. (set T   of timer states)  

Let T={T1, ..., TNt} be a set of timers used for defining a TA At, and let Mti be the maximum value a 

timer Ti is compared to, for defining the T_Conditions (def.7) of all the  transitions  of  At.  In this  case,  
the value  ti  of  Ti   does  not  need  to  be  incremented  as  soon  as  ti=Mti+1.  In fact,  in  this case  the 

incrementation would have no influence on truths of the T_Conditions. Therefore, we can limit the value 
of ti by Mti+1, for i=1, 2, ..., Nt, and the set T   of timer states ts=(t1, ... , tNt) is equal to or included in 

Mt1+1...MtNt+1, where Mti+1 is the set of integers belonging to the interval 

Mti+1  

In example 4, Mt1=9, and Mt2=2, and then T   1063
 

Definition 16. (Addition between T  and N)  

Let T={T1, ..., TNt} be a set of timers used for defining a TA At. The addition between T  and N is 

defined as follows : if ts=(t1, ..., tNt)�T  and p�N, then ts+p=(inf(t1+p,Mt1+1),..., inf(tNt+p, MtNt+1)).  

Where  inf   is defined by  :    inf(A,B) �{A,B} and ( (inf(A,B)=A) � (AB) ).                                    

Intuitively, if ts is the current timer state, then ts+p is the futur timer state after the passing of p units of 

clock time (uct). In example 4, if ts=(4,1) and p=3, then ts+3=(inf(4+3;10), inf(1+3;3))= (7,3) �(7,4). 
 

Definition 17. (set C   of counter states)  

Let C={C1, ..., CNc} be a set of counters used for defining a TA At, and let Mci be the maximum value 

which bounds the value ci. Therefore, the set C   of counter states cs=(c1, ... , cNc) is equal to or included 

in Mc1...McNc, where Mci is the set of integers belonging to the interval Mti

  

In example 4, Mc1=2, and then C   2.
 

2.4. Product of two timed automata over the same alphabet 
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Let A1
t
 and A2

t
 be two TA (def.13) defined over the same alphabet V. An intuitive definition of the 

synchronized product of A1
t
 and A2

t
,  noted A1

t
6A2

t
, is the following. A1

t
6A2

t   is a TA specifying a system 

which may  execute all and only   the infinite timed traces accepted by both A1
t
 and A2

t
.   

 

Definition 18. (Product over a same alphabet) 

Let Ai
t
=(Qi,V,Ti,Vi,i,qi0), for i=1,2, be two TA over a same alphabet V, with T1T2=�, and 

Vi={Vci1,...,VciNci}. Each Ai
t
 uses then a set Ti={Ti1,...,TiNti} of timers and a set Ci={Ci1,...,CiNci} of 

counters, where each Cij is w.r.t. Vcij. The product, noted At=A1
t
6A2

t
, is defined by At=(Q,V,T,V,,q0), 

with V=V1V2, T=T1T2, QQ16Q2,  q0=q10,q20�Q,  and  : 
Definition of  :  Let ET1, ET2 and ET be the set of T_Conditions (def. 7), respectively w.r.t. T1, T2 and 
T=T1T2.  Let EC1, EC2 and EC be the set of F_Conditions (def. 10), respectively w.r.t. C1, C2 and 

C=C1C2. Then   q1,q2r1,r2�Q,  �V,    E�ET,   RT,   K�EC :   

([q1,q2,,r1,r2,E,R,K] �)  � ( E1�ET1, E2�ET2, R1, R22,  K1�EC1, K2�EC2, )

             (with :  R=R1R2,    E=E1�E2,   K=K1�K2,   and      

) 

             ([q1,,r1,E1,R1,K1]�1,    and    [q2,,r2,E2,R2,K2]�2.  )

  
 

Theorem 1. If LA1
t  and LA2

t   are respectively the timed languages accepted by  A1
t
  and  A2

t
 over the same 

alphabet, then:   LA1
t

6A2
t =LA1

t  LA2
t .  (Proof : See Appendix A ).    

Property 2. In def. 18,  if Vc11Vc1Nc1Vc21Vc2Nc2V, then  A1
t
, A2

t
, and A1

t
A2

t
  respect the  

finiteness property.       (Proof : See Appendix A ). 
   
 

Remark2 : a) In def.18, if there exist  iNci and jNcj such that Vc1i=Vc2j, then counters C1i and C2j 

may be a same counter for defining A1
t
, A2

t
 ,  and A1

t
6A2

t
 . In fact, the values c1i and c2j are incremented 

and set to zero simultaneously. Therefore, one counter, for example C1i,  is sufficient. 

b) From theorem 1, we deduce that if A1
t
 and A2

t
  specify two sequential processes over the same 

alphabet, then their synchronized product also specifies a sequential process.  
 

Example 5. A1
t
  and  A2

t
  are respectively represented on figures 2.a and 2.b.  A1

t
=(Q1,V,T1,V,1,q10) and 

A2
t
=(Q2,V,T2,V,2,q20), with V={Vc1}={Vc2}={V}, Q1={q10,q1}, T1={T11,T12}, Q2={q20,q2}, 

T2={T21,T22},  V={a,b},and Mc1=Mc2=10. The values  of  timers  T11,T12, T21 and T22  are 

respectively  t11,t12, t21 and t22.  The values  of  counters  C1 and C2 are respectively  c1 and c2. 

1={[q10,a,q1,E11,{T11},K1], [q1,b,q10,E12,{T12},K1]}, with : E11=(t11 5), E12=(t11 2) �(t12 5), and 

K1=(c1<10).  2={[q20,a,q2,E21,{T21},K2], [q2,b,q20,E22,{T22},K2]}, with :  E21=(t22 3), E22=(t21 0), 

and K2=(c2<10) Since V=Vc1=Vc2,  only  one  counter, for example C1, is used (remark 2.a),  and 

transitions of A1
t
, A2

t
 ,  and A1

t
6A2

t
 are enabled only if (c1<10). The synchronized product of A1

t
  and  A2

t
  

is represented on figure 2.c.          
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(a, ((t 1 Š5)(t 2  Š3)),{T 1  ,T2 })
1 2q1

(a, (t 1  Š5), {T 1 })

(b, ((t 1  Š2)(t 1 Š5)), {T 1 })
q10 q2

(b, (t 2 >0), {T 2  })

(a, (t 2  Š3), {T 2 })
q2 0 1 2q

(b, ((t 1  Š2)(t 1  Š5)(t 2 >0)), {T 1  ,T2  })

q0

1 1

1 2 2

1

1 2

2 1 1 1

1 1

2

22 2  
2.a. A1

t
                                2.b. A2

t
                                  2.c.  At =A1

t
A2

t
 

                                  Figure 2. Synchronized product over the same alphabet   
 

2.5. Product of two timed automata over alphabets V1 and V2 with V1V2 

Before defining the product over alphabets V1 and V2, with V1V2, let's give two definitions.  
Definition 19. (Operator on En) 
Let E1(ts), E2(ts), ..., Ek(ts) be k T_Conditions (def. 7), depending on a set of timers {T1, T2, ..., TNt}. 

We define  E(ts)=E1(ts)E2(ts)...Ek(ts)  as follows. 

   (E(ts)=false) �{ i �{1, ... ,k}, p �N : Ei(ts+p)=false }   

   
Informally, E1(ts)...Ek(ts) is false if and only if all Ei(ts) are false and remain false with the passing 
of time. If for instance T={T1},E1(t1)=(t15), E2(t1)=((t1>2)�(t16)), then E(t1)=E1(t1)E2(t1)=(t16). 
 

Definition 20. (Extension of a timed automaton) 
Let At=(Q,V,T,V,,q0) be a TA over an alphabet V with T={T1,...,TNt}, V={Vc1,...,VcNc}, and then 

C={C1,...,CNc}. Let ET (resp. EC) be the set of T_Conditions  w.r.t. T (resp. F_Conditions w.r.t. C). Let 

W be an alphabet such that VW. The extension  of At to the alphabet W,  noted ExtW(At),  is a TA 

defined by (Q,W,T,V,ext,q0), where extQWQT2TEC is such that :  

q1,q2�Q,�V, E�ET, RTK�EC :[q1,,q2,E,R,K] �  � [q1,,q2,E,R,K] �ext .
q�Q : Let Ei �ET, for i=1,..., k, be all the T_Conditions of ET such that :  qi�Qi�V
Ri�Ki�EC, with  [q,i,qi,Ei,Ri,Ki] �,  and let  then E= E1E2... Ek .   

          Then �W-V: [q,,q',E',R,K]�ext � (q'=q, E'=E, R=�, K=True). 

If Bt=ExtW(At), then At is called projection of Bt in the alphabet  V, and is noted  At=ProjV(Bt).         
 

Informally, ExtW(At) is obtained by adding selfloops of all events of W-V to each state of At . The resets 

of these selfloops are empty, and their T_conditions are defined as follows. The T_Condition of the 

added selfloops at a state q of At is true if at least one of the transitions defined in At from q is eligible.  
The F_Condition for events of W-V is always true, and then ExtW(At) does not necessarily respect the 

finiteness property  (property 1).   
Intuitively, let P ext and P  be two non terminating processes respectively specified by ExtW(At) and At,  

where At is defined over the alphabet V.  An external agent who can observe all and only the events of 
V, cannot differentiate the two processes. If the T_Conditions of the added selfloops in ExtW(At) were 

always true, the external agent may see P ext as a terminating process. In fact in this case, it is possible 

that a selfloop of an event of W-V is indefinitely executed. In Example 6 (next section 2.6), the two 

timed automata of figures 3.a. and 3.b. are extended into the two timed automata of figures 4.a and 4.b.   
 

Lemme 1. If LAt is the timed language accepted by a TA At over an alphabet V, and if W is an alphabet 

such that  VW, then : LExtW(At)=ExtW(LAt). (see def. 4 for ExtW(LAt) )  (Proof : See Appendix A ).   
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Before defining formally the product over V1 and V2 with V1V2, let's give an intuitive definition. Let 
A1

t
 and A2

t
 be two TA defined over V1 and V2 with V1V2. The product of these two TA is a TA  

specifying a system which may execute all and only   the infinite timed traces which both :  

  are accepted by A2
t
, and whose projections  (def. 3) on V1 are accepted by  A1

t
 . 

 

Definition 21.  (Product over V1 and V2 with V1V2) 

Let Ai
t
=(Qi,Vi,Ti,Vi,i,qi0), for i=1,2, be two TA (def.13) over alphabets V1 and V2, with V1V2, 

T1T2=�, and Vi={Vci1,...,VciNci}, i.e., each Ai
t
 uses a set Ci={Ci1,...,CiNci} of counters where each 

Cij is w.r.t. Vcij. Their synchronized product, noted A1
t
�A2

t
, is defined by :               

A1
t �A2

t
 =(Q,V2,T1T2,V1V2, ,q0)= ExtV(A1

t
)A2

t
     (See def.18  and 20 for   and ExtV(A1

t
)).

  
 

Theorem 2.  If LA1
t  and LA2

t   are respectively the timed languages accepted by  A1
t
  and  A2

t
 respectively 

over alphabets V1 and V2, with V1V2, then: LA1
t

�A2
t =L ExtV(A1

t
)LA2

t .   (Proof : See Appendix A ). 

 
 

Property 3. Let A1
t
 and A2

t
 be two TA, respectively over alphabets V1 and V2 with V1V2.  If A2

t
 

respects the finiteness property (FP), then A1
t
�A2

t
 respects the FP.  (Proof : See Appendix A ).  

 

Remark3 :  a) in definition 21, if V1=V2, then A1
t
*A2

t
 =  A1

t
A2

t
  (def. 18), because  ExtV(A1

t
)=A1

t
 ; 

b) From theorem 2, we deduce that if A1
t
 and A2

t
 specify two sequential processes respectively over 

alphabets V1 and V2 with V1V2, then their synchronized product also specifies a sequential process.  
 

2.6. General parallel  product of two timed automata 

Before defining formally the parallel product of two TA A1
t
 and A2

t
, respectively over alphabets V1 and 

V2, let's give an intuitive definition. The product of A1
t
 and A2

t
 is a TA specifying a parallel system 

which may execute all and only  the timed traces over the alphabet V1V2: a) whose projections (def.3) 

on V1 are accepted (def.14) by A1
t
 and ; b) whose projections on V2 are accepted by A2

t
. 

 

Definition 22. (Parallel product of two TA) 

Let Ai
t
=(Qi,Vi,Ti,Vi,i,qi0),  for i=1,2,  be  two  TA  over  alphabets  V1  and  V2,  with  T1T2=�,  and 

Vi={Vci1,...,VciNci}.Their  parallel  product, noted A1
t
A2

t
, is defined by :  

  A1
t
A2

t
= (Q,V1V2,T1T2,V1V2,,q0) =ExtV1V(A1

t
)ExtV2V(A2

t
).    

 

Remark 4 : in definition 22,   if V1V2  then A1
t
A2

t
=A1

t
*A2

t
,     and if V1=V2  then  A1

t
A2

t
=A1

t
6A2

t
   

 

Theorem 3.  If LA1
t  and LA2

t   are the timed languages accepted by  two TA A1
t
  and  A2

t
  over  alphabets 

V1 and V2, then :       LA1
t
A2

t =L ExtVV(A1
t
)L ExtVV(A2

t
)        (Proof : See Appendix A ).  

                                        
 

Property 4.  If two TA A1
t
 and A2

t
, respectively over alphabets V1 and V2, respect the finiteness 

property, then  A1
t
A2

t
  respects the finiteness property.    (Proof : See Appendix A ).
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Example 6. Let A1
t
=(Q1,V1,T1,V1,1,q10) and A2

t
=(Q2,V2,T2,V2,2,q20) (figure 3), with 

Vi={Vci1}={Vi}, Qi={qi0,qi}, Ti={Ti1,Ti2},  Mc=Mci1=10, for i=1,2.  V1={a,b}, V2={a,c}. The values  

of  timers  T11, T12, T21 and T22, are respectively  t11, t12, t21 and t22,  and the values  of  counters C11 

and C21, are respectively  c11 and c21.   

1={[q10,a,q1,E11,{T11},K1],[q1,b,q10,E12,{T12},K1]},  E11=(t115), E12=(t112)�(t125),  K1=(c11<10).  

2={[q20,a,q2,E21,{T21},K2],[q2,c,q20,E22,{T22},K2]},  E21=(t223), E22=(t213)and K2=(c21<10).  

ExtV1V(A1
t
) and ExtV2V(A2

t
)  are on figure 4, and the product of the two parallel TA is on figure 5. 

The F_Conditions (def. 9) of transitions in A1
t
A2

t
  (fig.5) are as follows.  

Transitions with event a  are enabled only if both (c11<10) and (c21<MA) are true  (a�Vc11Vc21). 

Transitions with event b  are enabled only if  (c11<10) is true (because b �Vc11). 

Transitions with event c  are enabled only if  (c21<10) is true (because c �Vc21). 

(b; ( (t 1 1Š2) (t 1 2Š5) ); {T 1 2})

(a; t 1 1Š5; {T 11})
q1q10

(c; t 2 1>3; {T 22})

(a; t 2 2Š3; {T 21})
q2 0 q2

  
3.a. A1

t
                                                3.b. A2

t
                             

Figure 3. Two concurrent automata  
 

 

(b; ( (t 1 1Š2) (t 1 2Š5) ); {T 1 2})

(a; t 1 1Š5; {T 11})
q1q10

(c; t 2 1>3; {T 22})

(a; t 2 2Š3; {T 21})
q2 0 q2

(c; t 1 1Š5; )
(c; ( (t 1 1Š2) (t 1 2Š5) ); )

(b; t 2 2Š3; ) (b; True; )

 
4.a. ExtV1V(A1

t
)                                       4.b. ExtV2V(A2

t
)                             

Figure 4. Extensions of the two concurrent automata of figure 3 
 

(c ; (t 2 1>3) (t 1 1Š5);{T 22}) 

(b ; (t 1 1Š2)(t 1 2Š5)(t 2 2Š3);{T 1 2}) 

(a ; (t 1 1Š5)(t 2 2Š3);{T 11,T 2 1}) 

(c ;(t 2>3) (t 1 1Š2)t 12Š5);{T 2 2}) 

(b ; (t 1 1Š2)t 1 2Š5);{T 12}) 

q0

 
Figure 5. Synchronized product A1

t
A2

t
  

Definition 23. (Independent and concurrent DES) 

Let Ai
t
 be two TA over alphabets Vi, for i=1, 2, specifying two processes.  

If  V1V2�, the two processes are independent with each other   
If V1V2��, the two processes are concurrent. In fact, they may run in parallel by executing 
respectively events of  V1 - V2 and V2 - V1 , but they must execute conjointly  events of  V1V2.
  
 

2.7. Untimed traces and untimed languages  
So far, an infinite sequence of events has been represented by a timed trace Trc=...ii...   

If we introduce a fictitious event tick  which represents the passing of one uct, the same sequence can be 
represented by an untimed trace TRC= 12...j ..., where each j for j=1,2,..., is equal to tick  or to one  

of 1, 2, ... 
 

Example 7. The timed Trc=1,2i,2ican equivalently be represented by the untimed :  

TRC=tick tick 1tick tick 2...i-1tick tick i tick tick i+1...  
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A formal definition of the untimed trace corresponding to a timed trace is the following.  
 

Definition 24. (Untimed trace and operator UntimeT  )    
Let Trc = ... ii... be a timed trace. We define the operator UntimeT , for obtaining the 

untimed trace TRC corresponding to Trc, by  :         TRC=UntimeT(Trc)=12 ... j ...   

with :      (i+i=i )  and   (j=tick  , if ™ k>0 such that j=k+k ) ,  for i,j=1,2, ...      

If Trc respects the finiteness property (def.1), we also say that TRC respects the finiteness property.  

Let's notice that the operator UntimeT   is   a bijection.      

  
 

Property 5. Let TRC= 12 ... j ... be a infinite untimed trace respecting the finiteness property .  

Mc>0 such that : k>0, l1>k, l2>k  with l1 �tick ,  l2-k Mc+1,  and l2=tick . 

Proof : See Appendix A           
  
More informally, property 5 means that the untimed TRC corresponds to an infinite timed trace (by 
l1�tick  )  which respects the finiteness property   (by  l2-k Mc+1  and  l2= tick  ). 
 

Definition 25. (Untimed language and operator UntimeL ) 
Let L  be a timed language. Lu, which is called untimed language and noted Lu=UntimeL(L), is  defined 

by :        Lu=UntimeL(L)={TRC | Trc �L with TRC=UntimeT(Trc) }        
 

Theorem 5.  Let  L1 and L2 be two timed languages over a same language.  

UntimeL(L1L2)=UntimeL(L2)UntimeL(L2).   (Proof : See Appendix A   

  
 

2.8. Untimed automata  
 

Definition 26. (Untimed automaton and operator UntimeA  ) 
Let At be a TA over an alphabet V which accepts (def. 14) a timed language L , and let Lu=UntimeL(L).  

Aut is the minimal FSM over the alphabet  V{tick }, called untimed automaton (UA) which accepts the 
untimed language Lu.   In other words :            LAut =UntimeL(LAt),     (def. 25, for UntimeL) 

A sufficient condition of existence of Aut is the finiteness of the set of timers. 

We also define the surjective operator UntimeA  such  that  :            Aut=UntimeA(At).                        
 

Example 8. Let's consider the timed At =(Q,V,T,{V},,q0) on figure 6.a, where we use one timer T1, 

and one counter C1 w.r.t. V, with Mc1=5 . In this specification, the value c1 of C1 is smaller than or 

equal to c1, and since Mt1=5 (def. 15), the value t1 of T1 is smaller than or equal to 6. The obtained 

untimed Aut is on figure 6.b, each state being defined by q,t1,c1, where q is a state in At.  

 

Remark 5:Since untimed traces accepted by Aut correspond to infinite timed traces accepted by At, then 

Aut  accepts only infinite untimed traces, and does not contain indesirable states.  An indesirable state is 

either a deadlock state or a state from which only  a selfloop tick  is executable.  

- A deadlock in Aut is indesirable, because it has no sense. In fact, a deadlock state means that  the event 

tick  is not executable. Therefore, the passing of time is stopped! 
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- A state from which only a selfloop tick  is executable is indesirable, because it implies that Aut accepts 

a trace TRC=UntimeT(Trc) where Trc is a finite timed trace!  
 

tick - tick -

a-

a-
a-

a-

a-
b,c -

b,c -

b,c -

b,c -

b,c - b,c -

tick - tick - tick -

tick -

tick -

tick -

tick -

tick - tick -

(a , (t 1>0)(t 15), )
1

(b ,True,{T 1} )

(c ,True ,{T 1} )

2

 
                                6.a. At                                                        6.b. Aut                 

Figure 6.  Timed and untimed automata     
 

Informally, Aut allows to represent a real-time system specified by At, as a system without timing 

requirement, but where a new event tick  is added. This event, which models the  passing of one unit  of 

clock time (uct), is processed like any other event.   
Let's give an idea of how Aut is obtained from At over an alphabet V, when only one counter C1, w.r.t. 

Vc1V is used. This implies that At respects the finiteness property (theorem 1). Let T={T1,..., TNt} be a 

set of timers used for defining a TA At, let Mti be the maximum value a timer Ti is compared to, for 

defining the T_Conditions (def. 7) of all the transitions of At. In this case, the value ti of Ti  does not 

need to be incremented as soon as ti=Mti+1 (def. 15). A state of Aut is defined by  q1,ts,c1, where q1 

is a state of At, ts=(t1,..., tNt) is a timer state (def.6), and c1 is a value of C1. The passing of one uct is 

represented in Aut by the event tick . Execution of tick  from state q1,ts,c1 leads to state 

q1,ts+1,0i.e., timers are incremented and the counter is set to zero. Execution of an event tick   
from state q1,ts,c1  of Aut leads to state q2,ts',c1+1, where q2 is a state of At which is reached by a 

transition tr=[q1,,q2,E,R,K] from state q1 of At (with E true for the current timer state ts, and c1<Mc1), 

and ts' is obtained from ts by setting to zero timers belonging to R. Besides, Aut is minimal.  
 

Remark 6 : a) if ts=(Mt1+1, ... , MtNt+1) then ts+1=ts. In this case, an event tick  is a selfloop in Aut ;  

b) Since two Ai
ut

 over alphabets Vi{tick }, for i=1,2, are FSM, we can use  the  classic synchronized 

product between them, noted A1
ut
A2

ut
, where events of (V1V2{tick} are executed conjointly. 

c) The product UntimeA(A1
t
)UntimeA(A2

t
)  may contain deadlocks, therefore it does not correspond to a 

real DES. In fact, a deadlock  prevents the event tick ,  i.e., the passing of time is stopped.  
 

Lemmes 2.  Let At =Ai
t
=(Q,V,T,V,,q0) be a TA  and Aut=UntimeA(At). Let's remind some notations :  

a) Nt and Nc are the numbers of timers and counters; b) Mc bounds all the Mci, for i=1,...,Nc; c) Mt is 

the maximum constant any timer is compared to; d) |Q| and || are numbers of states and of transitions.  
2.a. The number |Qut| of states of Aut is bounded by  :         |Q|*(Mt+2)Nt*(Mc+1)Nc  

2.b. The number |ut| of transitions of Aut is bounded by : (|Q| + ||)*(Mt+2)Nt*(Mc+1)Nc  

2.c. The complexity for calculating Aut is in :              O( |Qut|2)=O( |Q|2*(Mt+2)2Nt*(Mc+1)2Nc ) .  

|Qut|, |ut| and the complexity for calculating Aut are then  exponential in the numbers of timers  

and of counters.        (Proof : See Appendix A ). 
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Remark 7 : a) The number of counters is not really a problem. In fact, in general one counter is 

sufficient, for ensuring the finiteness property. Therefore, the complexity is essentially due to the 

number of timers. b) If the timing requirements are only between consecutive events, one timer is 

sufficient for specifying temporal constraints. In this case, the complexity is no more exponential. 

Properties 6.  Let A1
t
andA2

t
 be two TA respectively over alphabets V1 and V2.  

    6.a.   If V1=V2 ,  then :                                 UntimeA(A1
t
A2

t
) UntimeA(A1

t
)UntimeA(A2

t
)  

    6.b.   If V1V2 , then :                                 UntimeA(A1
t
�A2

t
) UntimeA(A1

t
)UntimeA(A2

t
)  

    6.c.   If V1-V2 �� and  V2-V1 ��,  then : UntimeA(A1
t
A2

t
) UntimeA(A1

t
)UntimeA(A2

t
)      

    6.d.   If V1=V2 ,  then :                                 LA1
t  LA2

t    �LUntimeA(A1
t
)LUntimeA(A2

t
)  

    6.e.   If V1V2 , then :                                 UntimeL(ProjV1(LA2
t  ))=ProjV1(UntimeL(LA2

t  )) 

(where A B  means  LAut LBut).                         Proof : See Appendix A    

  
 

2.9. Why untimed automata are useful. 

Problem of using timed automata  (TA) : 

a) Respecting the timing requirements does not ensure to avoid deadlock states. 

b) Timing requirements between events are specified by using some fictitious timers. Therefore, if we 

project a TA into an alphabet, a few events may disappear. In this case, we have to respecify temporal 

requirements between events, and then we have to redefine new fictitous timers. This is not self-evident. 
 

Interest of using untimed automata  (UA) :  

A UA is a FSM. Therefore, all known methods used for FSMs can be used. Let's  see two examples :  

a) States respecting in general a certain "indesirable" property,  in particular deadlocks states, may be 

removed;  b) a UA defined over an alphabet W'=W{tick} can be projected in any alphabet VW'.   
 

Thus, before making some processings, a TA is untimed for obtaining a UA. But after the processing, it 

is convenient to transform the processed UA into an equivalent TA. This the object of the next section.  
 

2.10. Timing untimed automata 

Timing an untimed automaton is not self-evident, because for a UA Aut, there are an infinite number of 

TA A1
t
, A2

t
, ..., Ai

t
, ..., such that UntimeA(A1

t
)=UntimeA(A2

t
)=...=UntimeA(Ai

t
)=Aut. We propose an 

operator TimeA which, from a UA Aut, generates a timed automaton with a new model different than the 

model previously defined. A logic question arises : why two different models are used for specifying a 

DES ? 
 

The first model, previously defined, is used because it is more intuitive. In the case where a TA must 

specify a desired behaviour, it may be constructed manually by a user. In fact, the timers and counters 

are convenient fictitious entities which may be defined intuitively. 
 

The second model  is less intuitive, but it can be automatically and easily constructed from a UA. It uses 

only timers. Informally, if the alphabet of Aut is V{tick}, TimeA(Aut) is obtained as follows.  
a) Aut is projected into the alphabet V, for obtaining ProjV(Aut). 

b) For each state q of ProjV(Aut), several timers Tqi are defined, and  their values tqi are incremented at 
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     each tick.. 
c) For each transition Tr of ProjV(Aut) which is executable from a  state q1 and leads to  a state q2 :  

- Several enabling conditions Ei(tq1i) are defined. Each Ei(tq1i) depends on a timer Tq1i of state q1. 

- Several initializations tq2j Fi(tq1i) are defined. Each initialization consists in initializing a  

 timer Tq2j of q2 in function of the value tq1i of a timer Tq1i of q1. The index j also depends on tq1i. 
 

The semantics of the enabling conditions and of the initializations is the following. 

- When a timer is initialized by a transformation, it becomes the active timer.  

- The transition Tr may be executed only if its enabling condition depending of the active timer is true. 
- When Tr is executed, a timer Tq2j  is initialized in function of the value of the current active timer. 

 Tq2j becomes the new active timer. 

Let's give an idea of how the timers are defined. Each state q of TimeA(Aut) (and of ProjV(Aut)) 

corresponds to a group Gq of states of Aut closed under the event tick. The group Gq may be composed 
by several sequences Sqi of states.  Each Sqi contains a state, called first state, without ingoing tick, and 

all other states of Sqi are reachable from this first state by executing a few ticks. To each Sqi, we 

associate a timer Tqi whose value is equal to zero in the first state of Sqi. That is why several timers may 

be associated to each state of TimeA(Aut). 

If we consider the untimed Aut of figure 6.b, TimeA(Aut) is represented below. One timer T1 (resp. T2) is 

defined for state 1 (resp. state 2). For the transition from state 1 to state 2 : Its enabling condition is 

E1(t1)=(t15)�(t1>0), and its initialization is  t2 F1(t1)=t1-1. For the two transitions from state 2 to 

state 1 : Their enabling condition is True, and their initialization  is  t1 F2(t2)=0.  

(a ; (t 10)(t 15); t 2 <-- F 1 (t 1 ))
1

(b ;True; t 1 <-- F 2 (t 2))

2

(c ;True; t 1 <-- F 2 (t 2))  
We will see in the next section, that the untiming and timing operations may be convenient to resolve a 

real  problem, such as designing real-time protocols.  
 

3. Deriving protocols specifications providing real-time services  

 Let's firstly give a table of the main notations in the present section.  
 

RTDS                    : Real-time distributed system 
PEi                         : Protocol entity identified by number i 

SAPi                      : Service access point associated to PEi 

SSt                         : Timed automaton (TA) specifying a desired sequential real-time service 

SupMedi,j
t

              : TA specifying the supremal model of the medium for a pair  (PEi , PEj)  

PSi
ut                        : Untimed automaton (UA)  specifying  PEi, which contributes for providing SSt  

ReqMedi,j
ut (q)          : UA specifying timing requirements for the medium between PEi  and PEj 

SSut ,   PrSSut        : Two  UA specifying respectively the desired and the provided sequential services 

SS[j]t , for j=1, 2    :  Two sequential TA which compose a concurrent desired service 
PEc                         is the protocol which makes choices in a distributed system 
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PSi
ut[j], for j=1,2    : Untimed automata specifying PEi, which contributes for providing SSt[j], for j=1, 2 

Table 2. Notations in section 3  
 

3.1. Problem of the protocol derivation of real-time systems 

In a real-time distributed system (RTDS, fig.7), n protocol entities (with n>1) communicate : a) with the 

user of the system through several service access points (SAP); b) with each other through a medium 

assumed reliable. To each SAP corresponds one protocol entity.  

In the user's  viewpoint, the RTDS is a black box where only interactions with the user are visible. These 

interactions correspond to the executions of service primitives (or simply primitives). Therefore, the 

specification  of  the service  desired  by  (or  provided  to)  the  user  defines  the  ordering  and  timing  

requirements  between the executed primitives.  

But in the designer's viewpoint, it is necessary to compute the specifications of the local real-time 
protocol entities PEi, for i=1,2, ..., n, which may provide the service desired by the user. The designer 

must also compute timing requirements which must be respected by the medium. In order to avoid the 

computation of timing requirements impossible to respect by the medium, the designer may refer to a 

supremal model  (def.27) of the medium, and compute only timing requirements which respect this 

supremal model. Informally, if for instance we know that the medium needs at least two units of clock 

time (uct) to carry messages between two protocol entities, this information is contained in the supremal 

model. In this case, the designer will not compute timing requirements such as : some message must be 

carried in one uct.  We will see that the medium not only carries a message, but it also adds an 

information about the transit delay of the message in the medium. 
 

 The problem for desigining protocols is then : how can we derive systematically  the different local 

protocol specifications and the timing requirements on the medium, from : a) a global specification of 

the service desired by the  user ;  b) a supremal model of the medium. 
 

a1 a2 an

    Protocol  
     Entity 1 

    Protocol  
     Entity 2 

    Protocol  
     Entity n 

Reliable medium

      SERVICE 

SPECIFICATION 

a1 a2 an

 
Figure 7. Service and protocol concepts 

 

3.2. Approach of the problem of protocol derivation 
 

The approach used for deriving protocols is synthesis  ([BG86, KBK89, SP90, KHB92, KBD93]). Timing 

requirements are considered in [KBD93], but they are only between consecutive events, and the systems 

considered are sequential. In the present study, these two constraints are removed. For the sake of 

simplicity, we explain the basic principle of protocol derivation only for sequential systems. But parallel 

systems also are considered, farther in this paper (section 3.4). The principle is then : if a primitive A is 
executed by a protocol entity PEa, and is followed by execution of a primitive B by PEb, then after 

execution of A by PEa, this one sends a message to PEb to inform it that it may execute B. If after 

execution of A by PEa, there is a choice between several primitives executed by different PEbi, for 

i=1,2,..., p,  then PEa selects one PEbi  and sends a message to it to inform it  that it may execute one of 
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its primitives.  Let's now formally define the supremal model of the medium, which is one of the two 

starting points of protocol derivation (sect.3.1). 
 

Definition 27. (Supremal model of the medium) 

Let's firstly remind that the supremal model of the medium is used in order to avoid the derivation of 

timing requirements impossible to respect by the medium (sect.3.1). The medium is assumed reliable 

and its supremal model is the following :  
when PEi sends a message m to PEj, then the transit delay of  m  in the medium  belongs  to  an  interval 

Ii,j=[ti,j
min

; ti,j
max

], where ti,j
min

 and ti,j
max

 are constant integers such that  1 ≤  ti,j
min

 ≤ ti,j
max

 < � . Therefore, we 

suppose that there is at least one tick   (sect.2.7)  during  the transmission  of  a  message.  For  each  pair 

(PEi,PEj), this supremal model can be represented by a TA SupMedi,j
t

 (fig.8) defined below. 

For each pair (PEi,PEj), the TA SupMedi,j
t

 (fig.8) is defined by (Qi,j,Vi,j,{Ti,j},{Vi,j},i,j,q0i,j), where 

Qi,j={q0i,j,q1i,j}, Vi,j={si
j
,rj

i
}, i,j={[q0i,j,si

j
,q1i,j,True,{Ti,j},True], [q1i,j,

rj
i
,q0i,j,Ei,j(ti,j),�True]}, with 

Ei,j(ti,j)=(ti,j > (ti,j
min

 -1) )�(ti,j ti,j
max

).   

SupMedi,j
t

 uses one timer Ti,j (def.5) for defining timing requirements between si
j
 and rj

i
, where the event 

si
j
  means "PEi sends a message to PEj", and the event rj

i
  means "PEj receives a message coming from 

PEi".  A counter is not necessary, because timing requirements ensure the finiteness property (def.1) due 

to (ti,j>(ti,j
min

 -1) ) in the T_Condition Ei,j(ti,j). Therefore, the F_Condition is True.  

  

q0i,j

(s  ,True, {T   })j
i i,j

(r , E   (t   ),   )i,j i,j i
j

q1i,j

 

Figure 8. Supremal  model  SupMedi,j
t

  of the medium for a pair (PEi,PEj) 

Remark 8 : timing requirements on SupMedi,j
t

 and SupMedj,i
t

 may be different. 
 

3.3. Protocol derivation for sequential real-time systems 

3.3.1. Service specification 

The desired service is, with the supremal model of the medium, one of the two starting points of the 

protocol derivation. It is described by a TA, noted SSt and defined by (Q,V,T,{V},,q0), where V is the 

set of interactions with the user, and T is the set of timers (def.5) used for defining timing requirements 

between these interactions. Only one counter C , w.r.t. V (def.8),  is used, and the finiteness property 

(def.1) is respected (property 1). Informally, no more than Mc service primitives are executed during 
one unit of the global clock time (uct).  Each  event  of  V is  represented  by  Ai,  where A is the name 

of the primitive executed, and i identifies the protocol which executes A.  
 

Example 9 : Here is a very simple service specified by SSt=(Q,V,T,{V},,q0) (fig.9.a), with Q={q0,q1}, 
V={A1,B2},T={T1},=[q0,A1,q1,E(t1),{T1},K(c1)],q1,B2,q0,E(t1),{T1},K(c1)]}, with E(t1)=(t12), and 

K(c1)=(c11). Informally, SSt uses one timer T1 and one counter C1, and specifies that : a) events A1 

and B2 are executed alternatively; b) at most one event occurs between two ticks (F_Condition K(c1)); 
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c) at most two ticks occur between two consecutive events (T_Condition E(t1)). SSut=UntimeA(SSt) 

(def.26) is represented on figure 9.b, and its states are q,t1,c1where q is a state of SSt. 

q0

 (A  ,(t 12), {T 1} )1
q1

 (B  ,(t 12), {T 1 } )2

q0,1,0

q0,0,0q0,2,0

q1,0,1 q1,1,0

q1,2,0

q0,0,1

A1

A1

A1 B2
B2

tick 
tick 

tick 

tick tick 
 

9.a. SSt                                             9.b. SSut    
Figure 9. Timed and untimed sequential service specification 

Let's notice that the timers and counters, used for specifying a desired service and for defining the 

supremal model of medium, are fictitious. For example, the desired service of figure 9.a just means that 

the user wants that there must be at most two uct between primitives A1 and B2. But the timers do not 

really exist. Therefore, a question such as,  how can we use a same timer in a distributed system,  has  no 

sense. If the timers were real, there would be a problem of using a same timer in different sites. 
 

Definition 28. (outgoing, ingoing, out(q), in(q), outsti(q), nbrout(q) ) 

Let SSt be a TA specifying a timed sequential service, and let q be one of its states.  

Outgoing  (resp. ingoing ) transitions of q are transitions which are executable from (resp.  lead to) q. 

out(q) (resp. in(q)) contains identifiers of SAP where outgoing (resp. ingoing) transitions of q occur. 
outsti(q) is the set of states of SSt reachable from q by transitions executed by PEi. 

nbrout(q) is the number of transitions executable from q.      

  
 

Example 10: for SSt of Example 9 (figure 9.a), in(q0)={2}, in(q1)={1}, out(q0)={1},out(q1)={2}, 
oust1(q0)={q1}, oust2(q0)=�, oust1(q1)=�, oust2(q1)={q0},  nbrout(q0)=nbrout(q1)=1.   
 

Since the starting points of the protocol derivation, i.e., the supremal model of the medium and the 

specification of the desired service, have been defined, we can propose a systematic method for deriving 

the specifications of : a) the local protocol entities; b) the necessary timing requirements on the medium, 

(sect. 3.1). These derived specifications are first untimed automata (def.26), and then are timed by using 

operator TimeA (sect.2.10). 
 

3.3.2. Transformation of the service specification 
 

 The first thing to do is to transform SSt into another timed automaton TSSt (Transformed SSt) with  

the following rules.  

First step  :  each timed transition of SSt:      
 (A  , E(ts), R)kq1 q2   

        is replaced by                      :       (A  , E(ts), R)k q2i(q 2)q1 q2q' 1  

A new state q'1 is then inserted between each pair of states q1 and q2 connected by a transition.  

q1 and q'1 are connected by an internal transition   i(q2)   parameterized by q2.  

After this first step, we obtain a TA noted TSt. Let's notice that if a state of TSt is reachable by an 

internal transition i(q), then its outgoing transitions are not internal. 
 

Second step : The specification TSt is transformed into an  equivalent (def.14) TSSt, such that every 

state q1 of TSSt respects either  condition C1 or  condition C2, defined below.  
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 C1 =  only an internal transition i(q) is executable from q1 (fig. 10.a), 

 C2 =  no internal transition is executable from q1, and all outgoing transitions (def.28) of q1 are 

executable by a same protocol entity, i.e., cardinal of out(q1) is  equal to one  (|out(q1)|=1) 
(fig.10.b).  On figure 10.b., out(q1)={k} and outstk(q1)={r1, ... , rp}.  

 

       

i(q)
 (A 1 , E1(ts), R 1)k

 (A p , Ep(ts), R p)k

q1 q1

r1

rp  
10.a. internal outgoing transition                10.b. non internal outgoing transitions  

 

 Figure 10. Outgoing transitions in a state of the transformed specification TSSt. 
 

The way for obtaining TSSt from  TSt  is  the  following.  Every  state  q  of  TSt  reachable  by   internal 

transition(s)  (fig.11.a), is replaced by as many states qi as the cardinal of out(q) (fig.11.b) . Outgoing 

transitions of states qi  (which are not internal) must respect the preceding condition C2, and the 

following condition C3.  Ingoing transitions of states qi must respect the following condition C4. 

C3 : Outgoing transitions of two different states qi   and  qj  of TSSt  (fig.11.b),  generated  from  a same 

state q of TSt  (fig.11.a),  are executed by two different protocol entities. 
 

C4 : The sets of ingoing transitions (which are internal) of two different states qi  and qj  of TSSt, 

generated from a same state q of  TSt, are equal to the set of ingoing transitions of state q  (fig.11). 

 

 (A 1  , E1(ts), R 1)k

 (A 3  , E3(ts), R 3)k

q







i(q)


i(q)

 (A 2   , E2(ts), R 2)m

q1 





q2

i(q)



i(q)
i(q)

i(q)

 (A 1  , E1(ts), R 1)k

 (A 3  , E3(ts), R 3)k

 (A 2   , E2(ts), R 2)m

 
   11.a. State e in TSt     11.b. Transformation of e in TSSt 

Figure 11. Example of transformation from TSt to TSSt 
 

Remark 9 : a) if two states r1 and r2 of TSSt are connected by a transition i(q) then |in(r1)|=|out(r2)|=1; 

b) if TSSt�TSt, then TSSt is non deterministic;  c) if for every state q of SSt,  |ou(q)|=1, then TSSt=TSt.  
 

Definition 29. (Operator Transf )  

Operator Transf  is simply defined by : TSSt=Transf (SSt).       
 

Example 11 : SSt of example 9 (fig.9.a.) is transformed into TSSt of figure 12. In this example, only the 

first step of the transformation is used, because |ou(q0)|=|ou(q1)|=1 (remark 9.c). 
 

q0

 (A  ,(t 12), {T 1})1
q'0

 (B  ,(t 12), {T 1 })2

q1
q'1

i(q 1)

i(q 0)
 

Figure 12. Transformation of SSt of figure 9.a.  
 

3.3.3. Procedure of protocole derivation for a sequential system 

Considering a TA SSt (sect.3.3.1) , and a TA SupMedi,j
t

 (def.27) for each pair (PEi,PEj),the proposed 

procedure of protocol derivation, is called Der_Seq_Prot   and  consists of eight steps.  
 

Step 1 :  SSt  is transformed into  TSSt, i.e.,  TSSt=Transf (SSt)   (sect.3.3.2, def.29).  
 

Step 2 : From TSSt and the different SupMedi,j
t

, we generate MedSSt   with the following rules : 

- A not internal transition remains unchanged. 
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- An  internal transition i(q)  
i(q)q1 q2    is replaced by :  

 Case a : if in(q1)=out(q2)  (def.28), the transition becomes  : q1 q2
 

 Case b : if in(q1)={i}≠out(q2)={j},  the transition becomes: q1
(s  (q),True, {T   })j

i i,j (r (q), E   (t   ),   )i,j i,j i
j q2  

This transformation uses SupMedi,j
t

 (def.27), but with si
j
 and rj

i
, (def. 27) parameterized by q.     

Informally, i(q) consists in : a) doing nothing, if it connects two consecutive transitions of SSt executed 
by a same PEi ; b) sending a message from PEi to PEj, if it connects two consecutive transitions of SSt 

respectively executed by PEi and PEj. The message is parameterized by q.   
 

Step 3 : Transitions  of MedSSt  are removed by  projection for obtaining MedSSt. An algorithm for 

removing these  is proposed in [BC79].  

Step 4 : MedSSt is untimed (def.26) for obtaining MedSSut=UntimeA(MedSSt).  MedSSut is a minimal 

FSM containing the event tick. Let's notice that the three remaining steps process FSMs with event tick . 
 

Step 5 : we generate an untimed automaton GPSut  (global protocol specification), by adding a second 

parameter to each event si
j
(q) or rj

i
(q)  in MedSSut, with the following rule :   

A transition  
s  (q)

j
iq1 q2  is replaced by a transition 

s  (q,q 2)
j
iq1 q2  . The same 

transformation is made on transitions rj
i
(q). This transformation allows to differentiate two transitions 

si
j
(q) (or rj

i
(q) ) which do not lead to the same state in MedSSut.   

Informally, a message is sent from a PEi with two parameters q and q2  (event  si
j
(q,q2) ), and may be 

received by a PEj with a different second parameter q'2 (event  rj
i
(q,q'2)). This means that the medium 

not only carries messages, but it also modifies their second parameters. This modification informs the 

receiving protocol entity about the transit delay of the message in the medium.  
 

Step 6 : For each PEi, the untimed automaton PSi
ut

 is derived by projecting GPSut in the alphabet 

Vi{tick }, where Vi contains all events in GPSut executed by PEi. An event of Vi may correspond to : 

a) execution of a primitive by PEi;  b) an event  si
j
(q,q2);   c) an event  ri

k
(q,q2), with j,k �i.   

 

Step 7 : For each pair  (PEi, PEj) and each q, where PEi sends to PEj a message whose first parameter is 

q (i.e., events si
j
(q,*) and rj

i
(q,*) exist in GPSut), the untimed automaton ReqMedi,j

ut
(q) is generated by 

projecting GPSut in the alphabet Vi,j(q){tick }. An element of  Vi,j(q)  may  be  any  event  si
j
(q,*) and 

rj
i
(q,*) of GPSut. The obtained ReqMedi,j

ut
(q) specifies the behaviour of the medium when it carries, from 

 PEi to PEj, a message whose first parameter is q. 
 

The informal semantics of the different PSi
ut

(step 6) and ReqMedi,j
ut

(q) (step 7) is the following. Let n be 

the number of protocol entities PEi, for i=1,..., n. If PEi are specified by PSi
ut

, and if the medium respects 

the specifications ReqMedi,j
ut

(q), then the service  SSt is totally or partially provided (def.30 and 31).  
 

Step 8 : The untimed specifications PSi
ut

 and ReqMedi,j
ut

(q) obtained at steps 6 and 7 are timed, by using 
the operator TimeA (sect.2.10).      End  of  Der_Seq_Prot 
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Remark 10: a) In steps 1, 2, 3, SSt, TSSt, MedSSt , and MedSSt use the same counter C1, w.r.t. the 

alphabet V of SSt;  b) MedSSt  and MedSSt use timers of SSt and a timer Ti,j for each pair (PEi,PEj) 

where PEi sends a message to PEj.  
 

Definition 30. (Provided service PrSSut) 

For obtaining an untimed automaton (with event tick ) specifying the service provided to the user, and 

noted PrSSut, one only has to project MedSSut (step 4) in V{tick}, where V is the alphabet of SSt. 

Informally, this projection consists  in  keeping  visible, in sequences accepted by MedSSut, only   

events  of  SSut.           

  
 

Definition 31. (Service totally or partially provided) 

Let SSut and PrSSut be untimed automata specifying respectively the desired and the provided service. 
The service is said totally  provided       if and only if : SSut PrSSut,  i.e., LPrSSut  LSSut ,  

The service is said partially  provided    if and only if : SSut < PrSSut, i.e., LPrSSut LSSut . 

  
 

Theorem 6. If SSt specifies a desired service, let SSut=UntimeA(SSt) (def.26),  and  let  PrSSut  be  the  
specification of the provided service (def.30).  Then :     PrSSut  SSut     (i.e., LPrSSut  LSSut ).   

The safety is then ensured.      (Proof : See Appendix A .   

  
 

 
3.3.4. Example 

We consider the SSt of example 9 (fig.9.a), with q0=1 and q1=2. The supremal model of the medium is 

defined by SupMed1,2
t

 and SupMed2,1
t

 (def.27, fig.8), with t1,2
min

=t2,1
min

=1 and t1,2
max

=t2,1
max

=2. Informally, 

during the transmission of a message, one or two ticks of the global clock may occur.  
By using the procedure Der_Seq_Prot (sect.3.3.3), we obtain, after the seventh step, the specifications 

PS1
ut

  and  PS2
ut

  of figure 13, and ReqMed1,2
ut

(2)  and ReqMed2,1
ut

(1)  of figure 14. 
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Figure 13.  Obtained untimed protocol 
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                             14.a. ReqMed1,2
ut (2)

                                                                                                  14.b. ReqMed2,1
ut (1) 

Figure 14. Obtained untimed medium  
 

Partial interpretation of the obtained specifications :  

a) On  
PS1

ut
  :  From state 0, PE1 executes the event a  after 0, 1 or 2 ticks. Then it sends to PE2 a 

message parameterized by 2 (by s1
2
(2, *) ). A second parameter is added to the message. If the latter is 

sent 1 tick after execution of event a  (from state 3), then the second parameter is 7 (by s1
2
(2,7)). 

Afterwards, PE1 can receive from PE2 a message parameterized by 1 ( by r1
2
(1,*) ). If the latter is 

received two ticks after s1
2
(2,7) (in state 10), then the second parameter is 2 ( by r1

2
(1,2) ). In this case, 

PE1 can execute the event a  immediately (from state 2) or after one tick (from state 5)...  

b) On PS2
ut

    :  From state 0, PE2 may receive a message parameterized by 2 (by r2
1
(2,*) ) after 1,2,3 or 4 

ticks. The message contains a second parameter. If, for example, the message is received after 4 ticks (in 

state 7), the second parameter is 10 (by r2
1
(2,10) ). In this case, PE2 must execute the event b  

immediately (from state 5 to state 6). Afterwards, PE2 sends to PE1 a message parameterized by 1 (by 
s2

1
(1,*) ). If the latter is sent one tick after execution of event b  (from state 8), then the second parameter 

of the message is 15 (by s2
1
(1,15) ) ...   

c) On Med1,2
ut (2) : From state 0, the medium may send, from PE1 to PE2, a message parameterized by 2 

(by s1
2
(2,*) ). If, for example, the message is sent after 3 ticks, the second parameter of the message may 

be 7 (by s1
2
(2,7)  from state 6 to state 4). In this case, if  the  message  reaches  its destination  (i.e.,  PE2) 

 after one tick, the medium changes the second parameter from 7 to 10 (by r2
1
(2,10) from state 7) ...  

d) On Med2,1
ut (1) : From state 0, the medium may send, from PE2 to PE1, a message parameterized by 1 

(by s2
1
(1,*) ). If, for example, the message is sent after 2 ticks, the second parameter of the message may 

be 12 (by s2
1
(1,12)  from state 2 to state 3). In this case, if the message reaches its destination (i.e.,  PE1) 

after two ticks the medium changes the second parameter from 12 to 5 (by r1
2
(1,5) from state 8) ...  

 

By using the operator TimeA  (sect. 2.10),  we obtain the specifications detailed below and represented 

on figure 15. In the description below, EC means Enabling condition, and In means Initialization. 

a) TimeA(PS1
ut

) : Timers T11 and T12 are respectively associated to states 1 and 2.  
       Timers T131 and T132 are associated to state3.  

Transition Tr11 : Event a;          EC  : t112; ------------------------------------------ In : t120. 

Transition Tr12 : Event s1
2
(2,3); EC  : (t12; ---------------------------------------- In : t1310. 

Transition Tr13 : Event s1
2
(2,7); EC  : (t12; ---------------------------------------- In : t1320. 
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Transition Tr14 : Event r1
2
(1,2);  ECs : (t131�(t131,  (t132-------------- In : t111. 

Transition Tr15 :  Event r1
2
(1,5); EC: (t131�(t131,  (t132---------------- In : t112. 

b) TimeA(PS2
ut

) : Timers T211, T212 and T213 are associated to state 1.  

       Timers T22 and T23 are respectively associated to states 2 and 3.  

Transition Tr21 : Event r2
1
(2,9);    ECs : (t211�(t211,  (t212�(t212,  (t213;   In: t120. 

Transition Tr22 : Event r2
1
(2,10);  ECs : (t211�(t211,  (t212�(t212, (t213;In: t120. 

Transition Tr23 : Event b;         EC : (t221); ---------------------------------------------------- In :  t230.  

Transition Tr24 : Event  s2
1
(1,12); EC : (t23 --------------------------------------------------- In :  t2120. 

Transition Tr25 : Event  s2
1
(1,15); EC : (t23 --------------------------------------------------- In :  t2130. 

c) TimeA(ReqMed1,2
ut (2)) :  Timers T311 and T312 are associated to state 1.  

                Timers T321 and T322 are associated to state 2.  

Transition Tr31 : Event s1
2
(2,3);   ECs : (t311�(t311,  (t312�(t312;   In  t3210. 

Transition Tr32 : Event s1
2
(2,7);   ECs : (t311�(t311,  (t312�(t312;  In  t3220. 

Transition Tr33 : Event r2
1
(2,9);   EC : (t321; -------------------------------------- In :  t3110. 

Transition Tr34 : Event r2
1
(2,10); ECs : (t321,  (t322; ------------------------- In : t3120. 

d) TimeA(ReqMed2,1
ut (1)) : Timers T411, T412 and T413 are associated to state 1.  

                Timers T421 and T422 are associated to state 2.  

Transition Tr41 : Event  s2
1
(1,12); ECs : (t411�(t411,  (t412�(t412;  (t413�(t413; 

             In : t4210. 

Transition Tr42 : Event  s2
1
(1,15); ECs : (t411�(t411,  (t412�(t412;  (t413�(t413; 

             In : t4220. 

Transition Tr43 : Event r1
2
(1,2); EC : (t421; ------------------------------------------------ In : t4120. 

Transition Tr44 : Event r1
2
(1,5); ECs : (t421, (t422; ----------------------------------- In : t4130. 
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 15.a. TimeA(PS1
ut

)                15.b. TimeA(PS2
ut

)  15.c. TimeA(ReqMed1,2
ut (2))   15.d. TimeA(ReqMed2,1

ut (1)) 
Figure 15. Obtained timed specifications  

3.4. Protocol  derivation for parallel and concurrent  real-time systems 

3.4.1. Introduction 

For the sake of simplicity, we only consider a parallel system composed by only two sequential systems.  

A desired parallel service is then specified by two TA (def.12) SSt[i] over alphabets V[i], for i=1,2. Each 

SSt[i] specifies a sequential desired service. Let's consider three cases : 

a) V[1]V[2] : SSt=SSt[1]�SSt[2] (def.21) is a sequential service (remark 3.b), and we may use the 
procedure Der_Seq_Prot  (sect.3.3.3) for deriving the  protocol providing the service specified by SSt.  

b) V[i]�� and V[i]V[j]=�, for i,j=1, 2, and i�j  : SSt[1] and SSt[2] are independent and compose a 

parallel system (def.23). We may process each sequential service separately, i.e., for each SSt[i], we use 
Der_Seq_Prot  for deriving the sequential protocol which provide SSt[i].  
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c) V[i]-V[j]��  and  V[i]V[j]��, for i,j=1, 2, and i�j  :  SSt[1] and SSt[2] are dependent and compose 

a concurrent system (def.23). This case is studied in detail in the present section 3.4. 
 

3.4.2. Solution for the problem of the choice 

In  a concurrent system, we think that one of the main problems consists in avoiding possible deadlocks. 

For that, we use the following approach, already proposed in [KHB92] :  

During the running of a concurrent distributed system, when a choice is possible between execution of 

different transitions, this choice is made locally by a same protocol entity.  
Let PEi, for i=1, ... , n, be the n protocol entities which execute the transitions of SSt[1] and SSt[2]. For 

the sake of simplicity, we suppose that all choices are made by a same protocol entity PEc, with c>n. In 

other words, if there is a choice to make, the protocol entities PEi, for i=1, ... ,n, "pass the buck" to PEc. 

Such constraint seems too restrictive, and we intend to weaken it in a next version. To enforce explicitly 
this choice, we must add to SSt[1] and SSt[2], some timed events (def.10) noted (ic,True,�), where ic is 

executed by PEc. These timed events are added as follows : for each state q of SSt[i], for i=1, 2, where 

nbrout(q) >1 (def.28), its ougoing transitions Tr1, ..., Trm  represented in figure 16.a. are replaced by  the 

structure of figure 16.b.  The obtained specifications are noted SSc
t [1] and SSc

t [2]. Let's now propose a 

procedure of protocol derivation for concurrent systems.  
 Tr 1

q

r1

rm Tr m

 Tr 1

q
 Tr m

(i  ,True, )c

(i  ,True, )c

r1

rm  
16.a. Before adding events ic    16.b. After adding events ic 

Figure 16. Adding events ic 

 3.4.3. Procedure of protocol derivation for a concurrent system 
 

 Let two TA SSt[i] over alphabets V[i], for i=1,2, and a TA SupMedu,v
t

 for each pair (PEu,PEv), the 

procedure of protocol derivation for concurrent systems, called Der_Conc_Prot, consists of nine steps. 
 

Step one : SSt[i] are modified into SSc
t [i], for i=1,2, (sect.3.4.2.). Besides, any two states of respectively 

SSc
t [1] and SSc

t [2] must be identified differently. This is necessary for not confusing exchanged 
messages, which are parameterized by  identifiers of states (see Der_Seq_Prot  in sect.3.3.3). 
 

Step two : Steps 1 to 5 of Der_Seq_Prot  are applied to each SSc
t [i] for obtaining GPSc

ut[i], for i=1,2, 

but with the following difference. At the third step of Der_Seq_Prot , not only transitions  , but also 

transitions (ic,True,�), are removed. Let Vg[i]{tick } be the alphabet of GPSc
ut[i],  then V[i]Vg[i]. 

Step three : The synchronized product GPSc
ut=GPSc

ut[i]GPSc
ut[i] is computed (remark 6.b). 

 

Step four :  Indesirable states are removed from GPSc
ut for obtaining GPSut. A state is indesirable if it is 

either a deadlock or only a selfloop tick  is executable from it (remark 5). For removing indesirable 

states, we may use a fixpoint method similar to the one used in the control theory for computing 

controllable languages ([WR87,KBD94]). 
 

Step five :  The protocol specification PSc
ut of PEc (sect.3.4.2) is obtained by projecting GPSut in  

alphabet Vc{tick }. Vc contains all events of GPSut  executed by PEc, and these events are of the form 
sc

*(*,*) and  rc
*(*,*)  (see def.26, and step two of Der_Seq_Prot ), where * may be any parameter. 
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Step six : the sequential GPSut[i] are obtained by projecting GPSut in alphabets Vg[i]{tick} of 
GPSc

ut[i], (step 2), for i=1, 2. The sequential processes specified by GPSc
ut[i], for i=1,2, interact with PEc 

specified by PSc
ut and do not lead to an indesirable state.  

 

Step seven : For each GPSut[i]  (for i=1,2),  we apply step 6 of Der_Seq_Prot for obtaining the untimed 

automata (UA)  PSj
ut

[i] corresponding to PEj (j=1, ... ,n). 
 

Step eight : For each GPSut[i] (for i=1,2), we apply step 7 of Der_Seq_Prot for obtaining the UA 

ReqMedj,k
ut

(q). Each  ReqMedj,k
ut

(q) depends implicitly  on i, because  q  identifies a state  of  SSc
t [i],  and  

states of SSc
t [1] and SSc

t [2] are identified differently (see step one).  
 

The informal semantics of PSc
ut (step 5), of PSj

ut
[i] (step 7), and of ReqMedj,k

ut
(q) (step 8) is the 

following. If each PEj, for j=1, ... ,n, is a parallel system specified by two PSj
ut

[i], for i=1,2, and if the 

medium respects the specifications ReqMedi,j
ut

(q), then the desired concurrent service specified by SSt[1] 

and SSt[2] (step one),  is totally or partially provided by the help of PEc specified by PSc
ut(step 5).    

 

Step nine : The untimed specifications obtained at steps 5, 7 and 8 are timed, by using the operator 
TimeA (sect.2.10).       End  of  Der_Conc_Prot  

  
 

3.4.4. Example  

Since the problem of concurrency exists even for systems without timing requirements, let's give an 

example for such systems. In this case, the T_Conditions (def.7) of timed transitions (def.11) are True, 

and their Resets are �. The untiming operation (def.26) consists just in adding a selfloop tick  to every 
state. For these reasons : a) timed events (Ai,True,�) are represented just by Ai ;  b) event tick   is not 

represented, therefore At and Aut=UntimeA(At) are not differentiated, and are refered to by A;  

c) the messages exchanged contain only the first parameter. The second parameter which implicitly 

contains only temporal informations, is not necessary.  
Then :  a) Step 2 of Der_Conc_Prot  is only composed by steps one to three of Der_Seq_Prot . 
            b) Step 4 of Der_Conc_Prot  just consists in removing deadlocks. 

            c) Steps 8 and 9 of Der_Conc_Prot  are not necessary. 
 

The  desired concurrent service is represented on figures 17.a and 17.b, and is specified by SS[1] and 
SS[2] respectively over alphabets V[1]={A1, B2, 2} and V[2]={A1, B2, 2}. SS[1] and SS[2] are then 

synchronized on  A1 and B2. After the first step, we obtain SSc[1] and SSc[2] on figures 17.c. and 17.d. 
 

1
 A  1 q12

 B  2

2
1

 A  1 q12

 B  2

2
3

4
i 3 i 3

2
11

 A  1 q112
 B  2

2
 A  1 q112

 B  2 13

14
i 3 i 311

 
17.a. SS[1]                  17.b. SS[2]                      17.c. SSc[1]                         17.d. SSc[2]         

Figure 17. Example of concurrent desired service without timing requirements 
If we apply Der_Conc_Prot , we obtain :  

a) at step 5, the specification PSc of PEc,  with c=3, is represented on figure 18.  

b) at step 7, the specifications PS1[1], PS2[1], PS1[2] and PS2[2] , are represented on figure 19. 



page 26               

 

s (3)2
3r (2)1

3

s (13)2
3

s (4)2
3

s (14)2
3

r (12)1
3 r (2)1

3

r (2)1
3

r (2)1
3

r (12)1
3

r (12)1
3

r (12)1
3

s (3)2
3

s (3)2
3

s (13)2
3

s (13)2
3

s (4)2
3

s (4)2
3

s (14)2
3

s (14)2
3

1

 A  11

r (1)2
1

s (2)3
1

r (11)2
1

 A  1 s (12)3
11

 B  2

2

r (3)3
2

r (4)3
2

s (1)1
21

2

r (13)3
2

r (14)3
2

s (11)1
2

 B  2

1

119.a. PS [1] 

219.b. PS [1] 

119.c. PS [2] 

219.d. PS [2] 
 

Figure 18. Specification of PEc          Figure 19. Specifications of the protocol entities  

 
4. Conclusion 
 

In this paper, we present a model we have developed for specifying real-time discrete event systems. An 

application of the model for designing real-time protocols is also proposed. The synthesis approach used 

for deriving a real-time protocol providing a desired service is inspired by other works, but our main 

contribution has been to consider real-time  systems, i.e., systems containing timing requirements.  We 

conclude this study by making an informal and succint comparison between our model for specifying 

DES, and the two models which have mainly inspired us. A few extensions are also proposed. 
 

First model  ([Os90, BW92, OW90]) : For defining a TA At, a global clock and a set of timers are 
used. For each transition Tri of At corresponds one timer Ti. This timer is reset only when a state q1, 

from which Tri is executable, is reached. This same timer is not  used in another state q2�q1. The 

enabling condition of Tri  is that the value of Ti must belong to an interval. We think that our model is 

more general because (in our model): a) the enabling condition of a transition may depend on several 

timers; b) a same timer may be used in the enabling conditions of several transitions; c) a timer may be 

reset at the occurrence of any transition; d) the finiteness property may be ensured by using counters;  

e) the operator TimeA is defined. 
 

Second model  ([AD90, TH92]) : For defining a timed automata, a dense time and a set of clocks are 

used. These clocks are used as we use the timers in our model, but the semantics is quite different, 

because the clocks are not synchronized. Besides : a) Our operators UntimeA  and TimeA are different 

than operators Untime  and Time proposed in [TH92]. In fact in [TH92], from a TA At, the operator 

Untime is used for obtaining a UA Aut. Some processing is then made on Aut for obtaining a UA But. 

And then the operator Time can be applied on But only if the processing for obtaining But from Aut 

makes no projection, i.e., Aut and But have a same alphabet; b) The finiteness property is supposed 

respected in [TH92], but it is not ensured. Another advantage with our model is then that we can ensure 

the finiteness property. c) In [TH92] the composition is defined only when the two TA have a same 

alphabet, and in [AD90], authors only specify how events executed conjointly by the two composed 

systems are processed.  Our limitation is that the time is discrete. 
 

Extensions : The exponential complexity in the number of timers imposes to investigate how to choose 

classes of systems which avoid this computational blow-up. The simplest but also the most restrictive 
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class contains systems respecting the following condition : timing requirements are only between 

consecutive events. With such systems, only one timer is necessary, therefore the complexity becomes 

polynomial.  In the presented model, the enabling conditions use only operators   , > and = for defining 

canonical boolean functions. We are also investigating how to extend this model by using arithmetic 

operators + and - in the canonical boolean functions. For instance, a canonical boolean function can be 
t1+t2-t3  k . We are also investigating how we can modify systematically  several existing protocol 

entities, which provide an old service, for providing a new desired service. For that, we intend to use 

control theory of the discrete event systems . 
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