
1

Automatic Analysis and Test Case Derivation for a Restricted
Class of LOTOS Expressions with Data Parameters *

Teruo Higashino and Gregor v. Bochmann

30th November 1992

 : Department of Information and Computer Sciences,

Faculty of Engineering Science, Osaka University,

Machikaneyama 1-1, Toyonaka, Osaka, 560, Japan

Phone : +81-6-850-3069 Fax : +81-6-850-3059

E-mail : higashino@ics.osaka-u.ac.jp

 : D�partement d'IRO, Universit� de Montr�al,

C.P. 6128, Succursale A, Montr�al, Qu�bec, H3C 3J7, Canada

Phone : +1-514-343-7484 Fax : +1-514-343-5834

E-mail : bochmann@iro.umontreal.ca

* : This work was started during 1990 when T. Higashino was on leave at the

University of Montreal.

2

Abstract

In this paper, we propose an automatic analysis and test case derivation method for LOTOS

expressions with data values. We introduce the class of P-LOTOS expressions where the data types

are restricted to the integer and boolean types and the operators of the integers are restricted to

addition, subtraction and comparison. For this class, we give an algorithm for deriving a set of test

cases (a test suite). The algorithm is carried out by using a decision procedure for integer linear

programming problems. We also give solutions for the deadlock detection problem, the detection of

non-executable branches and the detection of non-deterministic behaviours. We have implemented a

tool for the analysis and test selection based on our techniques. The derivation of a test suite for a

simplified Session protocol is described as an example.

Index Terms

Automatic Test Case Derivation, Communication Protocols, Conformance Testing,

Formal Description Techniques, LOTOS, Protocol Models

3

1. Introduction

Precise specifications are essential for the design and implementation of distributed systems and

communication networks. They are important during the validation of the system design, the

implementation development and conformance testing phase [Boch 90]. The use of formal

description techniques (FDT's) allows the automation of certain aspects of these activities. For the

description of OSI communication protocols and services, the standardized languages Estelle [ISO

89b], LOTOS [ISO 89a] and SDL [CCITT 88] are proposed. In this paper, we are particularly

concerned with the following questions:

(1) Are all branches of the specification executable ?

(2) Does a given specification contain a deadlock ?

(3) Does the specification contain non-deterministic behaviors ?

(4) Can one derive a test suite that covers all branches of the specification ?

While the first three questions relate mainly to the system design phase, the last question is

important for conformance testing, which is of large interest in the context of standardized

communication protocols, in particular OSI.

While the above questions can be solved for the simple specification model of finite state

machines, they become usually undecidable for more complex languages, such as the FDT's

mentioned above, because of the data parameters. Already the inclusion of integer parameters and

their related operations makes many questions undecidable.

The selection of appropriate test cases is an important issue for conformance testing of

communication protocols, as well as for software engineering. In the software engineering context,

it is well known that the problem of deciding whether a given branch of a program is executable, and

if yes, which test inputs would lead to the execution of this branch, is undecidable. Therefore it is

understandable that most work on test suite development for communication protocols assumes that

the protocol is specified in a state transition model without interaction parameters. Many methods

exist for test selection for finite state machine (FSM) specifications (for on overview, see for instance

[Fuji 91a]). Certain authors have considered extended finite state machine (EFSM) specifications

4

which include interaction parameters and additional state variables. Usually, the data flow relations

between input/output parameters and state variables are considered in the test selection process [Sari

87], however, it is generally assumed that the transitions do not contain enabling conditions

depending on the additional state variables, or such dependencies are treated in an informal manner.

The situation is similar for the work on test selection based on LOTOS specifications. Several

authors limit their attention to basic LOTOS, ignoring interaction parameters [Brin 88, Weze 89,

Lang 89]. The approach of [TrSa 89] considers the data flow relation automatically, while [Tret 89]

leaves certain aspects to be carried out interactively, as certain problems can not be solved

automatically in the general case.

In this paper, we show that the problems mentioned above, including the problem of test suite

development with interaction parameters, can be completely automated if the power of the underlying

specification language is sufficiently restricted. We use in this paper the notation of LOTOS and

consider a subset of the language where the data parameters are restricted to values belonging to the

integer and boolean types, and the operations of the integers are restricted to the operations addition,

subtraction and comparison. Integers with these restricted operations were first considered by

Presburger [Pres 29]; therefore we call our LOTOS subset "P-LOTOS". It is known that the theory

of integers with addition is decidable [Oppe 78]. This is the reason that many questions related to

specifications written in P-LOTOS are also decidable, as further discussed in this paper.

In [HiBo 92], we introduced a method to generate test cases for finite P-LOTOS expressions. In

this paper, we generalize the method so that we can treat not only the test case generation problem

but also the analysis problems such as the above (1), (2) and (3). The class is also extended to

infinite P-LOTOS expressions. The paper is structured as follows. The definition of P-LOTOS

expressions and the corresponding extended labeled transition systems (ELTS's) are given in Section

2. In Section 3, we introduce the problems (1) through (4) above in more details by discussing

some simple examples in the context of LOTOS. In Sections 4, we provide the basic idea to solve

the above four problems. If the control flow part of a given P-LOTOS expression is finite, then all

problems are decidable. We show them in Section 5. Although it is shown that the problems are

undecidable in general for infinite control flows, they can be solved algorithmically if the control

flow is restricted to the equivalent of finite state machines (FSM's). Some solutions for infinite

5

systems are described in Section 6. As an example, the test suite derivation for a simplified Session

protocol is described in Section 7. In Section 8, a tool for the analysis and test selection based on

our techniques is explained.

2. P-LOTOS expressions and corresponding extended LTS's

2.1 P-LOTOS expressions

In this section, we define the class of LOTOS expressions considered in this paper. In general,

we assume that a LOTOS expression "t" consists of a tuple "<P0,P1(..),..., Pk(..)>" of one main

process P0 and some sub-processes P1(..),...,Pk-1(..) and Pk(..). We use a slightly simplified

syntax and do not write the gate declarations in the process definitions. We assume that the gates are

globally defined.

[Example 2.1]

t1 = <R,D(w)>

R := f?x:int[-8≤x≤8] ; g!x ; h?y:int[-8≤y≤8] ;

 (([y≥0 and x=y] -> k!x ; stop) [] ([y≤-1] -> k!y ; D(x-1)))

D(w:int) := a?z:int ; (b!z ; stop [] ([w≥7] -> c!z ; D(w-1))) []

In Example 2.1, the process R is the main process of t1 and the process D(w) is a sub-process.

Here, "f?x" and "h?y" are input events, and "g!x" is an output event. The process R is finished when

it executes "stop". Some LOTOS operators are used for specifying the temporal ordering of

execution of the events. Let B, B1 and B2 denote behaviour expressions. A behavior expression "a

; B" represents that "B" is executable after the event "a" is executed. A behavior expression "B1 []

B2" represents that either "B1" or "B2" is executed. A behavior expression "B1 |[g1,..,gn]| B2"

represents that both "B1" and "B2" are executable in parallel. The events in "B1" and "B2"

communicating via the gates in the set {g1,..,gn} must be executed as rendezvous interactions. A

behavior expression "B1 >> B2" represents that "B2" is executable after the execution of "B1" is

finished successfully. An internal event "exit" represents the successful termination of a behavior

expression. The expressions appearing in input/output events are called "input/output parameters".

The predicates, such as [-8≤x≤8] and [y≥0 and x=y], are called "guards". The behaviour expression

"[y≥0 and x=y] -> k!x ; stop" represents that the event "k!x" is executable if and only if the

6

predicate [y≥0 and x=y] holds. The variable "w" in D(w:int) is called a formal process parameter of

the process D, and the expression "x-1" in D(x-1) is called an actual process parameter of the process

D. Although the main process is not required to have its formal process parameters, all sub-

processes may have their formal process parameters. We say that a LOTOS expression "t" is finite if

and only if it can execute only a finite number of events. Otherwise, we say that "t" is infinite.

[Definition 2.1]

A term which consists of integers, variables of integer type, and operators "+" and "-" is called a

P-term ("P" stands for Presburger who first studied this limited arithmetic). A P-sentence is defined

inductively as follows.

(A) If t1 and t2 are P-terms, then "t1=t2", "t1<t2", "t1≤t2", "t1≥t2" and "t1>t2" are P-sentences.

(B) If α and β are P-sentences, then "(α) and (β)", "(α) or (β)", "not (α)", "(α) ⊃ (β)" are P-

sentences. []

For example, "x+y-3" and "(x≥y-z) or (z=w)" are a P-term and a P-sentence, respectively.

However, "x2+2x-3=0" is not a P-sentence because multiplication is used.

[Definition 2.2]

A LOTOS expression "t=<P0,P1(..),...,Pk(..)>" is called a "P-LOTOS expression" if it satisfies

the following restrictions.

(1) All guards in the LOTOS expression are described as P-sentences.

(2) The data types of all formal process parameters of the sub-processes P1,...,Pk-1 and Pk are

integers, and all actual process parameters in the LOTOS expression are described as P-terms.

(3) All input/output parameters of the events are described as P-terms. []

The LOTOS expression t1 = <R,D(w)> in Example 2.1 is a P-LOTOS expression. Although only

integer and boolean types are treated in our P-LOTOS expressions, we can also treat enumeration

types, such as for instance "PDUtype = (CR, CC, DR, DC, DT)". Such enumeration types are very

common in most specifications. The values of an enumeration type may be represented as integer

values, and the operators included in P-LOTOS are sufficient to handle such values. Therefore, P-

LOTOS expressions have considerable power for the purpose of system description.

7

2.2 Extended labeled transition system

In this section, for a given LOTOS expression "t=<P0,P1(..),...,Pk(..)>", we will define a tree

called an "extended labeled transition system" which represents the possible sequences of events that

may be executed for the LOTOS expression "t". First, we will explain the outline of our extended

labeled transition system ELTS(t) for a LOTOS expression "t", and then, we will give its formal

definition.

Let LTS(t) denote the general labeled transition system [ISO 89a] for the LOTOS expression

"t=<P0,P1(..),..,Pk(..)>". If "t" is a Basic LOTOS expression (i.e. without input/output

parameters), then the ELTS(t) is the same as the tree representation of the LTS(t). That is, each node

in the ELTS(t) has a label which is a behaviour expression. The label of the root node in the ELTS(t)

is the main process "P0". Let "n" and "label(n)" denote a node in the ELTS(t) and its label,

respectively. Suppose that label(n) is "B". If an event "a" is executable for the behaviour expression

"B" and "Ba" denotes the behaviour expression after "a" is executed for "B", then there is a node

"na" whose label is "Ba" which is a child node of the node "n" in ELTS(t).

If "t" is not in Basic LOTOS, that is, if "t" contains data values, then there exists a little difference

between the ELTS(t) and LTS(t). Suppose that the label of a node "n" in LTS(t) is B and that B is

"f!x[0≤x]; B'(x)" where "x" is a variable of the type integer. Since "f!0", "f!1" , "f!2",... are

executable at the node n, the node n has infinitely many children whose labels are B'(0), B'(1),

B'(2),..., respectively. However, in the corresponding ELTS(t), the number of children for the

node n is only one. Let n' denote this child node. We define that label(n') is B'(x), and that the

relation B-<f!x, [0≤x]>->B'(x) holds between the two behaviour expressions B and B'(x). That is,

the relation B-<f!x, [0≤x]>->B'(x) represents that "f!k" is executable for B if the integer "k" is

greater than or equal to 0, and that B'(k) is the behaviour expression after "f!k" is executed. With

the edge n→n', we associate two labels Event(n→n') and Cond(n→n'). The labels Event(n→n') and

Cond(n→n') represent the event "f!x" and the condition "[0≤x]", respectively. For instance, Fig. 1

is the ELTS(t1) for the LOTOS expression t1 = <R,D(w)> in Example 2.1.

Next, we will give the formal definition of our extended labeled transition systems. First, for two

behaviour expressions B and B', we define the relation B-<a,c>->B' by using the axioms and

8

inference rules of Table 1. The extended labeled transition system is then defined by using this

relation as follows.

[Definition 2.3]

The extended labeled transition system ELTS(t) for a given LOTOS expression "t=<P0,P1(..),..,

Pk(..)>" is a tree (in general, infinite tree) satisfying the following conditions.

(1) Each node n in the ELTS(t) has a label "label(n)" which is a behaviour expression. The label

of the root node is the main process "P0".

(2) Let n denote a node in the ELTS(t) and suppose that label(n) is B. The node n has a child

node n' whose label is B' if and only if there exists a behaviour expression B' satisfying the

relation B-<a,c>->B'.

(3) Let n and n' denote a node and its child node in the ELTS(t), and suppose that label(n)=B,

label(n')=B' and the relation B-<a,c>->B' hold. The edge n→ n' has two labels

Event(n→n') and Cond(n→n') where Event(n→n') is "a" and Cond(n→n') is "c". []

For example, in Fig. 1, label(m2) is "g!x ; h?y:int[-8≤y≤8] ; ...)". At the nodes m6 and m9, the

same process "D" is invoked. The variables "z" of two events "a?z" in the processes D(x-1) and D(x-

2) must be treated as different variables. In order to distinguish the two variables "z", the variable

"z" in the second process D(x-2) is replaced by a new variable "z1" at the node m9 using an inference

rule in Table 1. Then, Event(m9→m10) is "a?z1".

3. Problems related to specification analysis and test selection

Since a LOTOS expression describes non-determinism and parallelism, several event sequences

are executable in general. The ELTS(t) described in Section 2 represents the set of event sequences

which cover all branches of a given specification as a tree structure. In order to show an

implementation conforms a given specification, we need to check whether the implementation

executes correctly the event sequence corresponding to each path in a given ELTS(t). Such event

sequence is called a test case. In this section, first we explain test cases and then we explain the four

questions described in Section 1.

9

Let us consider the LOTOS expression t1 = <R,D(w)> in Example 2.1, and let TR denote the

sequence of the output events "f!8 ; g!8 ; h!8 ; k!8". If R and "TR ; stop" are executed in parallel,

that is, if R || (TR ; stop) is executed, then the events on the path from the root node m1 to the node

m5 in the ELTS(t1) in Fig. 1 are executed sequentially as follows.

R || (TR ; stop) -f!8-> (g!8 ; h?y:int[-8≤y≤8] ; ...) || (g!8 ; h!8 ; k!8 ; stop)

-g!8-> (h?y:int[-8≤y≤8] ; ...) || (h!8 ; k!8 ; stop)

-h!8-> (([8≥0 and 8=8]->k!8 ; stop) [] ([8≤-1]->k!8 ; D(8-1))) || (k!8 ; stop)

-k!8-> stop || stop

This means that TR makes the process R trace the path from the root node m1 to the node m5 in

Fig. 1. In this paper, a sequence of output events, such as TR, is called a test case. Next, we define

the test cases treated in this paper more precisely.

Let s1 be the root node of the ELTS(t) for a given LOTOS expression "t=<P0,P1(..),..., Pk(..)>",

and let s1,s2,s3..sn-1,sn be a path from the root node s1 to a node sn in the ELTS(t). For this path

s1,s2,s3..sn-1,sn, we assume that the following relations hold.

label(s1) -<a1,c1>->label(s2) -<a2,c2>->label(s3)....label(sn-1) -<an-1,cn-1>->label(sn)

Let α[s1,sn](x1,...,xk) denote the sequence of the output events which is obtained by replacing all

input symbols "?" in the sequence "a1 ; ... ; an-1" by the output symbols "!" and deleting all internal

events from the sequence. Here, x1,...,xk are variables appearing in the sequence "a1 ; ... ; an-1",

and let α[s1,sn](x1/n1,...,xk/nk) denote the sequence of the output events which is obtained by

substituting the integer values n1,...,nk for the variables x1,...,xk, respectively. Let Ψsn(x1,...,xk)

denote the conjunction of the conditions c1,...,cn-1. In order to execute the sequence

α[s1,sn](x1/n1,...,xk/nk) for the behaviour expression "P0 || (α[s1,sn](x1/n1,...,xk/nk);stop)" and trace

the path from the root node s1 to the node sn in the ELTS(t), the value of Ψsn(n1,...,nk) must be

true. In this paper, the predicate Ψsn(x1,...,xk) is called a "reachability condition from the root node

s1 to the node sn in the ELTS(t)".

[Definition 3.1 (Test case)]

10

If the value of the reachability condition Ψsn(n1,...,nk) from the root node s1 to a node sn in a

given ELTS(t) is true, then the sequence α[s1,sn](x1/n1,...,xk/nk) is called a "test case to trace the

path from the root node s1 to the node sn in the ELTS(t)". []

 [Problem 1 (The test case derivation problem)]

The test case derivation problem is the problem for deriving a test case to trace the path from the

root node to a given node in an ELTS(t). []

In general, for a given node sn in an ELTS(t), there may not exist a test case to trace the root node

to the node sn. For example, consider the following LOTOS expression t2 = <S>.

[Example 3.1]

t2 = <S>

S := f ? x : int [-2≤x≤2] ; (([x≥5] -> (p ! x ; stop)

[] ([x≥0] -> (i ; g ! x ; stop)

 [] ([x≤0] -> g ! x ; q ! z [z=-x] ; stop)) []

The ELTS(t2) is described in Fig. 2. Since an input for "f?x" is less than or equal to 2, the

condition [x≥5] is always false. That is, there is no test case to trace the path from the root node to

the node s3 in the ELTS(t2) and we say that the branch s2→s3 is non-executable.

[Problem 2 (The non-executable branch detection problem)]

The non-executable branch detection problem is the problem for deciding whether a given LOTOS

expression "t=<P0,P1(..),..,Pk(..)>" contains non-executable branches in the ELTS(t) and detecting

all non-executable branches if such branches exist. []

For a given ELTS(t), let RG(t) denote a tree obtained from the ELTS(t) by deleting all non-

executable branches and their descendants. Here, we call the RG(t) the "reachability graph for t".

Let us consider the following LOTOS expression t3 = <S>.

t3 = <S'>

S' := f ? x : int [-2≤x≤2] ; (([x≥0] -> (i ; g ! x ; stop)

[] ([x≤0] -> g ! x ; q ! z [z=-x] ; stop))

11

The reachability graph RG(t2) for the LOTOS expression t2 in Example 3.1 is the same as the

ELTS(t3).

[Definition 3.2 (Test suite)]

For any leaf node sn in the reachability graph RG(t) for a given LOTOS expression "t", if a set of

test cases TS(t) contains a test case to trace the path from the root node to the node sn, then the set

TS(t) is called a "test suite for t". []

[Problem 3 (The test suite derivation problem)]

The test suite derivation problem is the problem for deriving a test suite for a given LOTOS

expression "t". []

In general, a LOTOS expression may contain deadlocks. For example, for the LOTOS

expression t1 = <R,D(w)> in Example 2.1, suppose that an event sequence "f!0 ; g!0 ; h!1" is

executed for the behaviour expression R. This means that a test case to trace the path from the root

node m1 to the node m4 in Fig. 1 is executed. Since the integers "0" and "1" are assigned to the

variables "x" and "y" in the process R, respectively, the values of the two predicates [y≥0 and x=y]

(Cond(m4→m5)) and [y≤-1] (Cond(m4→m6)) are both false. Therefore, both "k!x" and "k!y"

cannot be executed, which means that the system enters a deadlock state. For such a case, we say

that the LOTOS expression t1 = <R,D(w)> contains a deadlock. In this paper, an event sequence

such as "f!0 ; g!0 ; h!1" is called a test case for leading to a deadlock state.

[Problem 4 (The deadlock detection problem)]

The deadlock detection problem is the problem for deciding whether a given LOTOS expression

"t" contains deadlocks and generating test cases for leading to the deadlock states if they exist. []

LOTOS expressions may describe non-deterministic behaviors. For the above t2 = <S>, if an

event sequence "f!0 ; g!0" is executed for the behaviour expression S, then there are two

possibilities. If "f!0 ; g!0" represents a test case to trace the path from the node s1 to the node s5 in

Fig. 2, then there is no executable event after the interaction at gate g in the node s5. If it represents a

test case to trace the path from the node s1 to the node s6, then "q!0" is executable after the

12

interaction at gate g in the node s6. In this case, we say that the LOTOS expression describes non-

determinism, and "f!0 ; g!0" is called a test case representing non-deterministic behaviors.

[Problem 5 (Non-determinism detection problem)]

The non-determinism detection problem is the problem for deciding whether a given LOTOS

expression "t" describes non-determinism and generating test cases representing non-deterministic

behaviors if they exist. []

4. Basic idea for automatic analysis and test case derivation

It would be desirable that the test cases described in the above Problems 1 to 5 could be derived

algorithmically for any LOTOS expression, however, this is impossible in general. For example,

consider the following LOTOS expression t4 = <Q> which is the specification of Fermat's last

conjecture [Tret 89].

[Example 4.1]

t4 = <Q>

Q := f ? x ? y ? z ? n [x≥1 and y≥1 and z≥1 and n>2 and xn+yn=zn] ; stop []

No algorithm is known to determine whether this condition is satisfiable. This shows that we

cannot derive algorithmically test cases for full LOTOS expressions in general. Hereafter, we will

give a restriction on LOTOS specifications which will ensure that test cases can be derived

algorithmically. In this paper, we will consider P-LOTOS expressions. In this section, we will give

the basic idea for automatic analysis and test case derivation.

4.1 Automatic test case derivation

In this subsection, we will describe an algorithm to derive a test case which traces a specific path

in the corresponding ELTS(t) of a LOTOS expression "t=<P0,P1(..),..,Pk(..)>" written as a P-

LOTOS expression. We must give concrete values for the input/output parameters in order to derive

such test cases. At first, we will explain how to calculate the condition which is necessary for taking

the path from the root node to a given node. Next, we will show that it is decidable whether the

13

condition is satisfiable or not. If it is satisfiable, we will give the concrete values for the variables

through integer linear programming. If not, we conclude that the path is non-executable.

In Section 3, we defined the reachability condition Ψsn(x1,...,xk) from the root node to a given

node sn. For the ELTS(t1) in Fig. 1, for instance, we have

Ψm1 = true

Ψm2(x) = (-8≤x≤8)

Ψm4(x,y) = (-8≤x≤8) and (-8≤y≤8)

Ψm5(x,y) = (-8≤x≤8) and (-8≤y≤8) and (y≥0) and (x=y)

Note that the path from the root node s1 in an ELTS(t) to a node sn is non-executable if and only if

Ψsn(x1,..,xk) is unsatisfiable, i.e., "not(∃ x1,...,xk [Ψsn(x1,...,xk)])".

[Lemma 4.1]

For any node s in a given ELTS(t), the reachability condition Ψs(x1,...,xk) is a P-sentence if "t"

is a P-LOTOS expression. []

[Lemma 4.2]

For any P-LOTOS expression "t" and a node s in the corresponding ELTS(t), it is decidable

whether the reachability condition Ψs(x1,...,xk) is satisfiable, i.e., whether the following predicate

holds.

∃ x1,...,xk [Ψs(x1,...,xk)]

(proof) From Lemma 4.1, Ψs(x1,...,xk) is a P-sentence. Therefore, ∃ x1,..,xk [Ψs(x1,..,xk)] is a

Presburger sentence [HoUl 79]. It is decidable whether a given Presburger sentence is true or not

[HoUl 79]. []

One way to decide this problem is through integer linear programming. By replacing

"not(E1≥E2)" by "(E1<E2)", we can transform a given reachability condition Ψs(x1,...,xk) into an

equivalent P-sentence Ψ's(x1,...,xk) which does not contain "not". Let

Ψ1s(x1,...,xk) or Ψ2s(x1,...,xk) or ... or Ψms(x1,...,xk)

14

be a disjunctive normal form of Ψ's(x1,...,xk) where each Ψqs(x1,...,xk) (1≤q≤m) is a conjunction

of some linear inequalities. So, "∃ x1,...,xk [Ψs(x1,...,xk)]" is true if and only if, for some q

(1≤q≤m), Ψqs(x1,...,xk) is satisfiable. By regarding each linear inequality in Ψqs(x1,...,xk) as a

constraint on an integer linear programming problem, we can decide whether the integer linear

programming problem has integer solutions.

[Theorem 4.1]

For any P-LOTOS expression "t", the test case derivation problem (Problem 1) described in

Section 3 can be solved algorithmically.

(Proof) For each node s in the corresponding ELTS(t), we can decide whether Ψs(x1,...,xk) is

satisfiable. If Ψs(x1,...,xk) is satisfiable, then we can also give a solution <X1,...,Xk> such that

Ψs(X1,...,Xk) is true. Therefore, we can derive algorithmically a test case which traces the path

from the root node in the ELTS(t) to the node s if such a test case exists. []

For example, the reachability condition Ψm5(x,y) for the node m5 is

Ψm5(x,y) = (-8≤x≤8) and (-8≤y≤8) and (y≥0) and (x=y)

which is a P-sentence. We find that "∃x,y[Ψm5(x,y)]" holds. One such solution is <8,8> since

Ψm5(8,8) is true. Therefore, "TP := f!8 ; g!8 ; h!8 ; k!8" is a test case which traces the path from

the root node m1 to the node m5 of the ELTS(t1) in Fig. 1.

4.2 Detecting non-executable branches

We can find all non-executable branches in the corresponding ELTS(t) of a given P-LOTOS

expression "t" as follows. A branch "s→u" in the corresponding ELTS(t) is non-executable if the

following two predicates hold.

(1) ∃ x1,...,xk [Ψs(x1,...,xk)]

(2) not(∃ x1,...,xk [Ψu(x1,...,xk)])

[Lemma 4.3]

It is decidable whether a given branch in the ELTS(t) is non-executable.

15

(proof) Obvious. []

For example, for the node m10 and m12 in Fig. 1, we can show that

(1) ∃ x,y,z,z1 [Ψm10(x,y,z,z1)]

= ∃ x,y [(-8≤x≤8) and (-8≤y≤8) and (y≤-1) and (x-1≥7)]

= true

(2) ∃ x,y,z,z1 [Ψm12(x,y,z,z1)]

= ∃ x,y [(-8≤x≤8) and (-8≤y≤8) and (y≤-1) and (x-1≥7) and (x-2≥7)]

= false.

Therefore, we conclude that m10 is reachable, but the branch "m10→m12" is non-executable. It

means that t1 is finite and that it cannot invoke sub-process D more than two times.

4.3 Test cases for checking the presence of specified deadlocks

For a LOTOS expression "t", let s be a node of the corresponding ELTS(t) and let u1, u2, ... and

up be all children of the node s. We assume that the relations label(s)-<a1,c1>->label(u1),..,

label(s)-<ap,cp>->label(up) hold. Then, we can conclude that a P-LOTOS expression "t" contains a

(possible) deadlock if and only if there exists a node "s" in the ELTS(t) such that the following

predicate is true.

∃ x1,...,xk [Ψs(x1,...,xk) and not(c1) and ... and not(cp)]

Because, if the above predicate is true, then there is no executable event at the node s, which means

that node s is a deadlock state. The above predicate is called the predicate for checking the presence

of a deadlock at the node "s".

For the node m4 of the ELTS(t1) in Fig. 1, for example, we can show that the predicate for

checking the presence of a deadlock is

∃ x,y [Ψm4(x,y) and not(Cond(m4→m5)) and not(Cond(m4→m6))]

 = ∃ x,y [(-8≤x≤8)) and (-8≤y≤8) and not((y≥0) and (x=y)) and not(y≤-1)]

16

This can be satisfied, for instance by <x,y>=<0,1>. Therefore, the node m4 is a deadlock state and

"f!0 ; g!0 ; h!1" is a test case leading to the deadlock state.

[Lemma 4.4]

For a given node s in the ELTS(t) of a P-LOTOS expression "t", it is decidable whether the node

s is a deadlock state. If s is a deadlock state, then a test case leading to the deadlock state can be

derived algorithmically. []

4.4 Detecting non-determinism

Next, we will give a procedure for deciding whether a given P-LOTOS expression contains non-

determinism. Let "t" be a P-LOTOS expression and let s denote a node in the corresponding

ELTS(t). Suppose that there are two different paths "s →∗ u" and "s →∗ v" satisfying the following

conditions (1) and (2), respectively.

(1) label(s)-<i,c1>->label(u1)-<i,c2>->label(u2)...-<i,cn>->label(un)-<a1,cn+1>->label(u)

holds and the event "a1" is "g$e1". Here, "g" is a gate name and "$" denotes either the input

symbol "?" or the output symbol "!". If n=0, then the above sequence represents "label(s)-

<a1,c1>->label(u)".

(2) label(s)-<i,d1>->label(v1)-<i,d2>->label(v2)...-<i,dm>->label(vm)-<a2,dm+1>->label(v)

holds and the event "a2" is "g$e2". Here, the gate name "g" is the same as that of the event

"a1" in the condition (1). If m=0, then the above sequence represents "label(s)-<a2,d1>-

>label(v)".

We also assume that the following predicate

∃ x1,...,xk [Ψs(x1,...,xk) and {c1 and ... and cn+1} and {d1 and ... and dm+1} and (e1=e2)]

is true and integers n1,...,nk are their solutions. Since Ψs(n1,...,nk) is true, the event sequence

α[s1,s](x1/n1,...,xk/nk) is a test case to trace the path from the root node s1 of the ELTS(t) to the node

s.

If the above predicate holds, then "α[s1,s](x1/n1,...,xk/nk) ; g!e1(x1/n1,...,xk/nk)" is a test case to

trace the path from the root node s1 to the node "u". Here, g!e1(x1/n1,...,xk/nk) represents the

17

output event obtained by substituting the values n1,...,nk into the variables x1,...,xk of the

expression e1, respectively. Since the values n1,...,nk also satisfy the conditions d1,...,dm+1,

"α[s1,s](x1/n1,...,xk/nk) ; g!e2(x1/n1,...,xk/nk)" is a test case to trace the path from the root node s1

to the node "v". The value of the expression "e1(x1/n1,...,xk/nk)" is the same as that of

"e2(x1/n1,...,xk/nk)". It means that "t" contains non-determinism and that the sequence

"α[s1,s](x1/n1,...,xk/nk) ; g!e1(x1/n1,...,xk/nk)" is a test case representing non-deterministic

behaviours. Hereafter, the node "s" is called the node starting non-deterministic behaviours. Since it

is decidable whether the above predicate "∃ x1,...,xk [Ψs(x1,...,xk) and {...} and {...} and (e1=e2)

]" is true, the following lemma holds.

[Lemma 4.5]

For a given node "s" in the ELTS(t) of a P-LOTOS expression "t", it is decidable whether "s" is

the node starting non-deterministic behaviours. If "s" is such a node, then a test case representing

non-deterministic behaviours is also derived algorithmically. []

For the ELTS(t2) of P-LOTOS expression t2 = <S> in Fig. 2, for instance, there are two paths

s2→ s4→ s5 and s2→ s6. We can show that Event(s2→ s4)="i", Event(s4→ s5)="g!x" and

Event(s2→s6)="g!x", and that

∃ x [Ψs2(x) and Cond(s2→s4) and Cond(s4→s5) and Cond(s2→s6) and (x=x)]

= ∃ x [(-2≤x≤2) and (x≥0) and true and (x≤0) and (x=x)]

which can be satisfied by "x=0". Therefore, we conclude that the P-LOTOS expression "t2" is non-

deterministic.

5. Automatic analysis and test selection for finite P-LOTOS expressions

5.1 Algorithms for finite P-LOTOS expressions

[Theorem 5.1]

If a given P-LOTOS expression "t=<P0,P1(..),..,Pk(..)>" is finite, then the following analysis

problems, which are described in Section 3 as Problems 2, 4 and 5, can be solved algorithmically.

(1) The non-executable branch detection problem (Problem 2)

(2) The deadlock detection problem (Problem 4)

(3) Non-determinism detection problem (Problem 5)

18

(proof) Let RG(t) be the reachability graph for "t". That is, RG(t) is a tree obtained from the

ELTS(t) by deleting all non-executable branches and their descendants. In general, the ELTS(t) may

be infinite even if "t" is finite. However, by definition, RG(t) is finite if and only if "t" is finite. For

instance, although the P-LOTOS expression "t1" in Fig. 1 is finite (see Section 4.2), the ELTS(t1) in

Fig. 1 is an infinite tree. Since the branch "m10→m12" in Fig.1 is non-executable, the corresponding

RG(t1) is a finite tree, which is obtained by deleting the branch "m10→m12" and its descendants from

the ELTS(t1). By Lemma 4.3, it is decidable whether a given branch in the ELTS(t) is non-

executable. By checking whether each branch in the ELTS(t) is non-executable inductively from the

root node, we can construct the corresponding finite RG(t) if "t" is finite. Then, Problem 2 can be

solved algorithmically. By Lemmas 4.4 and 4.5, Problems 4 and 5 can also be solved

algorithmically. []

Since Theorem 5.1 holds, we can decide whether a given finite P-LOTOS expression "t" does not

contain non-executable branches, deadlocks nor non-determinism.

[Theorem 5.2]

For any finite P-LOTOS expression "t=<P0,P1(..),..,Pk(..)>", we can derive a set of test cases (a

test suite) which covers all paths in the RG(t) algorithmically. That is, Problem 3 in Section 3 can be

solved algorithmically.

(proof) We can assume that the RG(t) is finite if "t" is finite. By Theorem 4.1, we can derive the set

of all test cases which trace the paths from the root node of the RG(t) to all leaf nodes. Therefore,

Problem 3 can be solved algorithmically. []

Since we show that the P-LOTOS expression "t1" in Fig. 1 is finite and the branch "m10→m12" is

non-executable, the following set TS1(t1) of test cases is a test suite for "t1".

TS1(t1) = { f!0 ; g!0 ; h!0 ; k!0, f!0 ; g!0 ; h!-1 ; k!-1 ; a!0 ; b!0 ,

f!8 ; g!8 ; h!-1 ; k!-1 ; a!0 ; c!0 ; a!1 ; b!1 }

5.2 Discussion

For the purpose of test suite development, we assume that the objective is the coverage of all the

branches in the specification. Therefore solutions to all the three problems in Theorem 5.1 are

19

required for the test suite development. It is clear that non-executable branches cannot be tested.

Given the detection of non-executable branches, as described in Section 4.2, we can assume that all

branches are executable.

The detection of deadlocks is also important; in fact, a testing framework has been proposed

[Lang 89] in which the presence of deadlocks in the tested implementation can be detected, possibly

through waiting until a timeout occurs. In the case that the specification contains a deadlock for

certain input parameter values, it could be suggested to generate tests with input values that lead to

the deadlock (to test that this case is correctly implemented), and other tests with input values that

avoid the deadlock (to test that the remaining part of the specified branch is correctly implemented).

The detection of non-determinism is important since the testing process becomes much more

difficult (see for instance [Brin 89b, Fuji 91b]). The implementation may either implement one

possibility only, or include both possibilities. In the latter case, special precautions must be taken to

assure that all branches of the implementation are sufficiently tested. The specification of a test case

must also foresee all possible responses from the implementation, even if the purpose of the test case

is the testing of one of the branches only [Weze 89].

We conclude that the problem of test case selection for a specification written in the form of a P-

LOTOS expression is solved by the algorithm described above. Each element (event sequence) of the

resulting test suite represents a test case. The execution of all these test cases leads to the coverage of

all branches of the given specification. In the case that the specification contains the possibility of

deadlock for certain input parameter values, additional tests for testing these deadlock cases should

be foreseen. In the case of non-deterministic choices in the specification, the specification of the test

cases must be enhanced for taking into account the different branches that the implementation may

choose.

6. Treatment of infinite P-LOTOS expressions

6.1 Termination of processes

It has been shown that a Basic LOTOS expression can simulate a Turing machine [FaGn 90].

Since P-LOTOS is an extension of Basic LOTOS, it is undecidable whether a given P-LOTOS

20

expression "t=<P0,P1(..),..,Pk(..)>" will terminate eventually, i.e., whether "t" is finite. In general,

LOTOS expressions can be treated as term rewriting systems (TRS's). Several sufficient conditions

to guarantee the termination of TRS's have been proposed [Klop 87]. These sufficient conditions

can be used to guarantee the termination of P-LOTOS expressions. If "t" is infinite, we cannot

derive a test suite, in general, because there may exist infinite leaves. In the next sub-section, we

will give a solution for this problem. We can also show that it is undecidable whether the main

process P0 will eventually invoke a process Pj. Therefore, even if the process Pj contains a

deadlock, it is undecidable whether the main process P0 can reach the deadlock state. That is, in

general, it is undecidable whether a P-LOTOS expression "t" contains deadlocks if "t" is infinite. In

Section 6.3 and 6.4, we will explain how to treat this problem.

6.2 Test suite derivation for infinite systems

In general, if a given P-LOTOS expression "t" is an infinite system, then the number of test cases

may be infinite. A solution for the purpose of practical conformance testing is to reduce the

maximum number of executed events or process invocations. In this paper, we will limit the number

of executed events to a maximum "M". Let ELTSM(t) denote the sub-graph of the ELTS(t) which is

obtained from the ELTS(t) by deleting all branches whose distances from the root node are greater

than "M". And let RGM(t) denote the sub-graph of the ELTSM(t) which is obtained from the

ELTSM(t) by deleting all non-executable branches and their descendants. If a set TSM(t) of test

cases whose lengths are less than or equal to "M" satisfies the following condition (1), then the set

TSM(t) is called an M-test suite for "t".

(1) For any leaf node sn in the RGM(t), TSM(t) contains a test case to trace the path from the

root node in the RGM(t) to the node sn.

[Theorem 6.1]

For a given P-LOTOS expression "t" and a given positive integer M, an M-test suite for "t" can be

derived algorithmically.

(proof) Obvious. []

[Example 6.1]

21

t5 = <R,D>

R:= f?x:int[-8≤x≤8] ; g!x ; h?y:int[-8≤y≤8] ;

 (([y≥0] -> k!x ; stop) [] ([y≤-1] -> k!y ; D))

D:= a?z:int[z≥0] ; (b!z[z=0] ; stop [] (c!z ; D)) []

The P-LOTOS expression t5 = <R,D> in Example 6.1 is an infinite system. By using the above

technique, we can derive an M-test suite of "t5" for any positive integer M. For instance, the

following TS4(t5) and TS6(t5) are a 4-test suite and a 6-test suite of "t5", respectively.

TS4(t5) = { f!0 ; g!0 ; h!0 ; k!0, f!0 ; g!0 ; h!-1 ; k!-1 }

TS6(t5) = { f!0 ; g!0 ; h!0 ; k!0, f!0 ; g!0 ; h!-1 ; k!-1 ; a!0 ; b!0,

 f!8 ; g!8 ; h!-1 ; k!-1 ; a!1 ; c!1 }

6.3 Regular P-LOTOS expressions

In this sub-section, we will introduce a sub-class of P-LOTOS, called "regular P-LOTOS" such

that we can detect all non-executable branches, deadlocks and non-determinism algorithmically. If a

given P-LOTOS expression "t" contains only the action prefix operators ";" and choice operators "[]"

as the operators, then "t" is called a "regular P-LOTOS expression". The control flow of regular P-

LOTOS expressions is restricted to the equivalent of FSM's. That is, a regular P-LOTOS

expression corresponds to a specification model of extended finite state machines (EFSM's) where

variables are of type boolean or integer, and where the integer operations are restricted to addition,

subtraction and comparison. More particularly, if a regular P-LOTOS expression "t" does not

contain processes with process parameters, then "t" is called a "regular P-LOTOS expression

without process parameters". The P-LOTOS expression t5 = <R,D> in Example 6.1 is a regular P-

LOTOS expression without process parameters.

For each process Ph in a regular P-LOTOS expression "t=<P0,P1(..),..,Pk(..)>", let [t]Ph denote

the regular P-LOTOS expression [t]Ph=<Ph(..)>. Since "t" is a regular P-LOTOS expression, the

corresponding ELTS([t]Ph) (1≤h≤k) are all finite trees and the labels of all leaf nodes in each

ELTS([t]Ph) are either "stop" or process names. For example, Fig. 3 (a) and Fig. 3 (b) are the

corresponding ELTS([t5]R) and ELTS([t5]D) for the regular P-LOTOS expression t5 = <R,D> in

22

Example 6.1. For the ELTS([t5]R) and ELTS([t5]D), we can also define the test cases and the

predicates for checking the presence of a deadlock, which are defined in Section 4. For example,

"f!0 ; g!0 ; h!-1 ; k!-1" is a test case to trace the path from the root node "m1" of the ELTS([t5]R) to

the node "m6". It corresponds to the case where the process R invokes the process D.

In general, the ELTS(t) for a regular P-LOTOS expression "t=<P0,P1(..),..,Pk(..)>" can be

constructed by concatenating the corresponding ELTS([t]Ph) (1≤h≤k). For example, for the regular

P-LOTOS expression t5 = <R,D> in Example 6.1, the ELTS(t5) can be constructed as follows.

First, suppose that "ω" represents the ELTS([t5]R). The label of the leaf node "m6" of the tree "ω"

is "D". Then, we append the ELTS([t5]D) to the node "m6" of the tree "ω". Since the label of the

leaf node "p4" of the new tree "ω" is "D", we append the ELTS([t5]D) to the node "p4" of the tree

"ω". The derived tree "ω" by repeating this process corresponds to the ELTS(t5). If "t" contains

processes with process parameters, then the formal process parameters in the appended ELTS([t]Ph)

must be replaced by the actual process parameters. Note that the ELTS(t) can be constructed only by

appending the corresponding ELTS([t]Ph) (1≤h≤k) without replacing process parameters if "t" does

not contain processes with process parameters.

[Theorem 6.2]

For a regular P-LOTOS expression "t=<P0,P1,..,Pk>" without process parameters, the three

analysis problems (Problems 2, 4 and 5) described in Theorem 5.1 can be solved algorithmically

even if "t" is infinite.

(proof) As we described above, the ELTS(t) can be constructed simply concatenating the

corresponding ELTS([t]Ph) (1≤h≤k) and the label of each node of the ELTS([t]Ph) is either "stop"

or a process name. Therefore, we can determine what processes can be invoked directly from a

given process "Ph". Then, we can also determine whether the main process P0 of "t=<P0,P1,..,Pk>"

can invoke each process "Ph" and derive a test case to invoke the process Ph from the main process

P0 algorithmically. If the main process P0 can invoke a process Ph and there exists a deadlock state

in the corresponding ELTS([t]Ph), then "t" contains a deadlock. Otherwise, "t" does not contain a

deadlock. Then, the deadlock detection problem (Problem 4) can be solved algorithmically for any

regular P-LOTOS expression without process parameters. By using similar techniques, Problems 2

and 5 can also be solved algorithmically. []

23

6.4 Sufficient conditions for proving that a specification has no

deadlocks

Next, we will consider regular P-LOTOS expressions with process parameters. In general, it is

undecidable whether a regular P-LOTOS expression with process parameters contains deadlocks

because we can derive a regular P-LOTOS expression which simulates a given Turing machine.

Although the deadlock detection problem is undecidable in general, we can give a sufficient condition

to guarantee that a given regular P-LOTOS expression with process parameters contains no

deadlocks.

[Example 6.2]

t6 = <P,R(w)>

P := f?x:int [-8≤x≤8] ; (([x<0] -> g!x ; stop) [] ([x≥0] -> h!x ; R(x-1)))

R(w:int) := (([w≥-1] -> p!w ; stop) [] ([w≥0] -> q!w ; R(w-1))) []

Consider Example 6.2. We can derive the ELTS([t6]P) and ELTS([t6]R) in Fig. 4 from t6 =

<P,R(w)>. Let us apply the technique described in Section 6.3 for proving that t6 has no deadlocks.

Then, we find a deadlock occurs if R(-2) is invoked by checking the ELTS([t6]R). However, we

can easily find that "t6" contains no deadlocks because R(w) is invoked only for an integer "w" such

that "w≥-1" holds. Therefore, we will use the following technique.

At first, we specify the range conditions for the processes P and R(w) as follows :

RangeP := true

RangeR(w) := (w≥-1)

These range conditions must be described as P-sentences. "RangeP := true" means that there is no

assumption as the range condition. "RangeR(w) := (w≥-1)" means that the range of "w" must be

greater than or equal to "-1". We prove that these range conditions hold as for each process

invocation.

For the ELTS([t6]P) in Fig. 4 (a), we have "Ψp4(x) = (-8≤x≤8) and (x≥0)". Then, the following

predicate holds.

24

∀ x [RangeP and Ψp4(x) ⊃ RangeR(x-1)]

This means that the range condition for R(x-1) is satisfied when P is invoked and the events "f?x:int"

and "h!x" are executed. Similarly, for the nodes r1 and r3 in the ELTS([t6]R), the following

predicate holds.

∀ w [RangeR(w) and Ψr3(w) ⊃ RangeR(w-1)]

Since the above two predicates hold, the two range conditions RangeP and RangeR(w) hold as the

assertions when the processes P and R are invoked recursively.

For any node "s" in the ELTS([t6]P) in Fig. 4 (a), the following predicate holds (here, u1, u2, ..

and up denote the children nodes of the node s).

not(∃ x [RangeP and Ψs(x) and not(Cond(s→u1)) and ... and not(Cond(s→up))])

For any node "t" in the ELTS([t6]R) in Fig. 4 (b), the following predicate also holds (here, v1, v2, ..

and vq denote the children nodes of the node t).

not(∃ w [RangeR(w) and Ψt(w) and not(Cond(t→v1)) and ... and not(Cond(t→vq))])

Therefore, we can conclude that "t6" contains no deadlocks.

This technique is related to the program proof technique using invariant assertions. The range

conditions play the role of invariants. If suitable range conditions have been selected for each

process, their satisfaction can be shown algorithmically, as well as the implied deadlock. Similar

techniques can also be applied to the non-executable branch detection problem and non-determinism

detection problem for regular P-LOTOS expressions with process parameters.

7. Example

In this section, we will give an example of automatic analysis and test selection. A specification

of a simplified Session protocol is described in Table 2 (a). The specification treats only the data

transfer phase, not the connection establishment and release phases. It describes the four functional

units, kernel, half-duplex and minor and major synchronization [ISO 87]. The specification is

25

described as an extended finite state machine (EFSM) model. Some enumeration types are treated as

integer type. Three processes P713, P04A and P10A correspond to the states of this model. P713

corresponds to the data transfer state. P04A and P10A correspond to the "state waiting for Major-

Sync-Ack SPDU" and the "state waiting for S-Sync-Major response", respectively [ISO 87].

There are four integer variables "Va", "Vm", "Vr" and "Vsc" which correspond to the state variables

of this EFSM model. The variable "Va" holds the lowest serial number to which a synchronization

point confirmation is expected. No confirmation is expected when "Va=Vm" holds. The variable

"Vm" holds the next serial number to be used. The variable "Vr" holds the lowest serial number to

which resynchronization restart is permitted. The value of "Vsc" is either 1 or 0. If the value of

"Vsc" is 1 and the value of "Va" is less than that of "Vm", then the SS-user has the right to issue

minor synchronization point responses. If the value of "Vsc" is 0, then the SS-user does not have

the right to issue minor synchronization point responses. The events such as the

transmission/reception of MIA, MIP, MAA and MAP messages correspond to the state transitions.

We have proved that this specification does not have any deadlocks, non-executable branches, nor

non-determinism, by using the technique described in Section 6.4. A generated 3-test suite is shown

in Table 2 (b).

8. Test system for P-LOTOS expressions

We have implemented a test system for P-LOTOS expressions. The system has the following

facilities : (1) to draw the ELTSM(t) graphically on a display as a tree for a given P-LOTOS

expression "t" and a positive integer M, (2) to delete all non-executable branches and their

descendant nodes in the ELTSM(t) and draw the M-reachability graph RGM(t), (3) to generate a set

of test cases for the RGM(t) automatically based on the techniques described in Sections 4, 5 and 6,

and (4) to check whether the implementation under test (IUT) satisfies a given specification by using

the generated test cases. The test system has been developed on SUN SPARC workstations.

Hereafter, we will explain the outline of these facilities.

In general, the size of the ELTS's of P-LOTOS expressions may become large. For displaying

large trees, we have developed a graph editor VTM [MaNa 92]. VTM makes it easy to observe a

whole tree and some specified sub-parts simultaneously. The users can give the input commands for

26

the tree by direct manipulation on the display. VTM is a library program using the X Window

systems which can be used from any application program. Our test system uses VTM for displaying

the extended labeled transition systems and reachability graphs. The users can enlarge and reduce

the size of the graph arbitrarily on the display. It takes less than 0.2 seconds for VTM to display a

tree which has 1000 nodes (SUN SPARCstation ELC).

For a given P-LOTOS expression "t" and depth "M", our test system constructs the ELTSM(t)

which is a sub-graph of the ELTS(t) where all nodes in the ELTS(t) whose distances from the root

node are greater than M are deleted. Then, our system draws the graph. For example, for the P-

LOTOS expression "t1" in Example 2.1, the ELTS10(t1) and RG10(t1) are drawn in Fig. 5 (a) and

Fig. 5 (b), respectively. The corresponding ELTS(t1) is given in Fig. 1. In Fig. 5, all executable

events for a node "N" are described as the labels of its descendant nodes and the conditions for

executing their events are described as the labels of the branches from the node N. First, our test

system reads the P-LOTOS specification "t1" and depth "10" and draws ELTS10(t1) in Fig. 5 (a).

By clicking the button "cut node" on the display, all non-executable branches and their descendant

nodes in the ELTS10(t1) are deleted automatically. Then, RG10(t1) in Fig. 5 (b) is obtained. This

facility helps the designer to understand what kinds of event sequences are executable for a given P-

LOTOS expression.

If the user clicks a node on the ELTSM(t) (or RGM(t)), the test system generates automatically a

test case to execute the event sequence on the path from the root node to the designated node. For

example, if the node "k!y" in Fig. 5 (b) is clicked, then a test case "f!0; g!0; h!-1; k!-1" is generated

and the values of the variables are shown on a small window. If the user clicks the button

"test_suite", then an M-test suite for a given M-reachability graph is derived automatically. The M-

test suite can also be derived without displaying the M-reachability graph when the depth M is large.

The test system also decides whether a given node is a deadlock state, and if the node is a

deadlock state, then it derives a test case leading to the deadlock state. For example, Fig. 5 (c)

represents that "f!0 ; g!0 ; h!1" is a test case leading to a deadlock state for the P-LOTOS expression

"t1" in Example 2.1.

27

We have also implemented a tester to test a given IUT using the derived test suite. The tester

communicates with the IUT through the communication ports on UNIX. Suppose that a test case

"T" is given. When the IUT executes an input event, say "a?x", the tester finds the value of the

variable "x" in the test case "T" and sends it to the IUT through the communication port

corresponding to the gate "a". When the IUT executes an output event, say "b!y", the tester receives

the value of the expression "y" from the IUT through the communication port corresponding to the

gate "b", and checks whether it is the same as the value of the expression "y" in the test case "T". If

they are not the same, then the test fails. Therefore, the tester shows a warning message on the

display. The tester also checks whether the value of the expression "y" is sent from the gate "b". If

it is sent from another port, then the tester also generates a warning message. If all tests for "T"

succeed, then we consider that the test for "T" is success.

In order to generate a test case, some integer linear programming problems must be solved. It

takes about 10 and 20 seconds for our tester to solve the integer linear programming problems whose

constraints' numbers are 10 and 30, respectively. For example, for the P-LOTOS expression

"tSession" of the OSI Session protocol in Section 7, it takes about 12 minutes to draw the

ELTS3(tSession) which has 106 leaf nodes, delete all non-executable branches and their descendant

nodes, draw the RG3(tSession) and generate the 3-test suite (28 test cases) in Table 2 using a SUN

SPARCstation ELC (12MB Memory). It takes about 75 minutes to generate a 4-test suite.

9. Conclusion

In this paper, we consider specifications written in a restricted form of LOTOS, called P-LOTOS

where variables are of type boolean or integer, and where the integer operations are restricted to

addition, subtraction and comparison. We show that in this context, the problems of detection of

deadlock, non-executable branches and non-deterministic choice, as well as the selection of a test

suite, can be solved by using a decision procedure for integer linear programming. However, these

problems become in general undecidable if specifications with infinite loops are considered.

However, with invariant assertions provided by the user, some of these problems can be solved

algorithmically in the case of regular P-LOTOS expressions. By using a similar technique, the

28

question of equivalence between two specifications (with process parameters) is solved

algorithmically [HiNi 89].

For a given branch in a specification written in P-LOTOS, the algorithm described in this paper

determines a sequence of input values which lead to the execution of the branch, if the branch is

executable. Similarly, for a given alternative choice in the specification, it finds a sequence of input

values which allow for both alternatives to be chosen by the specified system (non-determinism), if

such a sequence exists. And for each transition with a guard (or alternatives with guards), it

determines whether a sequence of input values exists which leads the execution of the system to this

transition and the guard is false (or to the alternative and the guards of all alternatives are false),

which is a deadlock. In the context of programming languages written in high-level programming

languages, such questions can be resolved through symbolic execution [ChLe 73] or through the

calculus of weakest preconditions [Dijk 75]. The algorithm proposed in this paper, which is

applicable for P-LOTOS is more efficient than those methods. A tool for the analysis and test

selection based on our techniques has been implemented.

In this paper, we have assumed a restricted specification language, called P-LOTOS. Although it

seems that in many areas, most aspects to be specified can be described in this restricted framework,

including for instance, sequence numbering in communications protocols, it would be desirable to

extend the power of the specification language for which the here described methods for analysis and

test suite development could be applied.

Acknowledgments

 This work was partly supported by the IDACOM-NSERC-CWARC Industrial Research Chair on

Communication Protocols at Universit� de Montr�al.

29

References

[Boch 90] G. v. Bochmann : "Protocol specification for OSI", Computer Networks and ISDN

Systems 18, pp.167-184, April 1990.

[Brin 88] E. Brinksma : "A Theory for the Derivation of Tests", Proc. 8th Int. Conf. Protocol

Specification, Testing and Verification, pp.63-74, North-Holland, June 1988.

[Brin 89b] E. Brinksma, R. Alderden, R. Langerak, J. v. d. Lagemaat and J. Tretmans : "Formal

approach to conformance testing", Proc. Int. Workshop on Protocol Test Systems,

pp.311-325, North-Holland, Oct. 1989.

[CCITT 88] CCITT : "SDL : Specification and Description Language", Recommendation Z.100,

Nov. 1988.

[ChLe 73] C. L. Chang and R. C. Lee : "Symbolic Logic and Mechanical Theorem Proving",

Academic Press, 1973.

[Dijk 75] E. W. Dijkstra : "Guarded Commands, Nondeterminacy and Formal Derivation of

Programs", Comm. ACM 18, 8, pp. 453-457, Aug. 1975.

[FaGn 90] A. Fantechi, S. Gnesi and G. Mazzarini : "How much Expressive are LOTOS

Behaviour Expressions ?", Proc. 3rd Int. FORTE Conf., pp.17-32, North-Holland,

Nov. 1990.

[Fuji 91a] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou and A. Ghedamsi : "Test

Selection Based on Finite State Models", IEEE Trans. Soft. Eng., Vol. 17, No. 6,

pp.591-603, June 1991.

[Fuji 91b] S. Fujiwara and G. v. Bochmann : "Testing Non-deterministic State Machines with

Fault Coverage", Proc. 4th Int. Workshop on Protocol Test Systems, pp.267-280,

North-Holland, Oct. 1991.

[HiBo 92] T. Higashino, G. v. Bochmann, X. Li, K. Yasumoto and K. Taniguchi : "Test System

for a Restricted Class of LOTOS Expressions with Data Parameters", Proc. 5th Int.

Workshop on Protocol Test Systems, North-Holland, Sept. 1992 (to appear).

[HiNi 89] T. Higashino, K. Ninomiya, T. Kimoto, K. Taniguchi and M. Mori : "Automated

Verification of Equivalence of Protocol Machines", Proc. 9th Int. Conf. Protocol

Specification, Testing and Verification, pp.235-246, North-Holland, June 1989.

30

[HoUl 79] J. E. Hopcroft and J. D. Ullman : "Introduction to Automata Theory, Languages, and

Computation", Addison-Weslay, 1979.

[ISO 87] ISO : "Information Processing System - Open Systems Interconnection - Basic

Connection Oriented Session Protocol Specification", IS 8327, Aug. 1987.

[ISO 89a] ISO : "Information Processing System, Open Systems Interconnection, LOTOS - A

Formal Description Technique Based on the Temporal Ordering of Observational

Behaviour", IS 8807, Jan. 1989.

[ISO 89b] ISO : "Estelle : A Formal Description Technique Based on an Extended State Transition

Model", ISO 9074, July 1989.

[Klop 87] J. W. Klop : "Term Rewriting Systems : A Tutorial", Bull EATCS, 32, pp.143-183,

1987

[Lang 89] R. Langerak : "A Testing Theory for LOTOS using Deadlock Detection", Proc. 9th Int.

Conf. Protocol Specification, Testing and Verification, pp.87-98, North-Holland, June

1989.

[MaNa 92] T. Matsuura, T. Nakamura, T. Higashino, K. Taniguchi and S. Masuda : "VTM: A

Graph Editor for Large Trees", Proc. 12th IFIP World Computer Congress'92, Vol. I,

pp.210-216, Sept. 1992.

[Oppe 78] D. C. Oppen : "A 2
2

2pn

 upper bound on the complexity of Presburger arithmetic", J.

Comput. Syst. Sci., No. 16, pp.322-332, 1978.

[Pres 29] M. Presburger : "Uber die Vollstandigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchen die Addition als einzige Operation hervortritt", in Comptes-

Rendus du ler Congres des Mathematiciens des Pays Slavs, 1929.

[Sari 87] B. Sarikaya, G. v. Bochmann and E. Cerny : "A Test Design Methodology for

Protocol Testing", IEEE Trans. on Soft. Eng., pp. 518-531, May 1987.

[TrSa 89] P. Tripathy and B. Sarikaya : "Test Generation from Protocol Specification", Proc. 2nd

Int. FORTE Conf., pp.329-343, North-Holland, Nov. 1989.

[Tret 89] J. Tretmans : "Test Case Derivation from LOTOS Specifications", Proc. 2nd Int.

FORTE Conf., pp.345-359, North-Holland, Nov. 1989.

[Weze 89] C. D. Wezeman : "The CO-OP Method for Compositional Derivation of Conformance

Testers", Proc. 9th Int. Conf. Protocol Specification, Testing and Verification, pp.145-

158, North-Holland, June 1989.

Figures & Tables

Fig. 1 An Extended Labeled Transition System ELTS(t1) for LOTOS Expression t1

Fig. 2 An Extended Labeled Transition System ELTS(t2) for LOTOS Expression t2

Fig. 3 ELTS([t5]R) and ELTS([t5]D) for the regular P-LOTOS expression t5 = <R,D>

Fig. 4 ELTS([t6]P) and ELTS([t6]R) for the regular P-LOTOS expression t6 = <P,R>

Fig. 5 Test System for P-LOTOS Expressions

Table 1 Axioms and Inference Rules to Define the Relation B-<a,c>->B'

Table 2 A Regular P-LOTOS expression "tSession" for Simplified OSI Session Protocol

 and a 3-Test Suite for "tSession"

 k ! x [y≥0 and x=y]

D(x-1)

c ! z [x-1≥7]b ! z [true]
D(x-2)

D(x-3)

a ? z1:int [true]

b ! z1 [true] c ! z1 [x-2≥7]

m7

m9

m10

m8
stop

m5
stop

m11
stop

h ? y : int [-8≤y≤8]

m12

label(m2)�= g!x ; h?y:int[-8 ≤y≤8] ; ...
label(m4)�= ([y ≥0 and x=y]->k!x ; stop)
 [] ([y≤-1]->k!y ; D(x-1))
label(m6)�= D(x-1)
label(m7) �= (b!z ; stop)
 [] ([x-1≥7] -> c!z ; D(x-2))
label(m10)�= (b!z1 ; stop)
 [] ([x-2≥7] -> c!z1 ; D(x-3))

m4
k ! y [y≤-1]

a ? z:int [true]
m6

m1

m2

m3

f ? x : int [-8≤x≤8]

g ! x

R

Fig. 1 An Extended Labeled Transition System ELTS(t1) for LOTOS Expression t1

f ? x : int
 [-2≤x≤2]

s1

s2

s3

s4

s5

q ! z [z=-x] g ! x [true]

s7

 i
 [x≥0]

g ! x [x≤0]
p ! x [x≥5]

s6
stop

stop stop

Fig. 2 An Extended Labeled Transition System ELTS(t2) for LOTOS Expression t2

m1

m2

m3

m4

m5

f ? x : int [-8≤x≤8]

h ? y : int [-8≤y≤8]

k ! y [y≤-1] k ! x [y≥0]

stop

g ! x [true]

R

Dm6

a ? z:int [z≥0]

c ! z [true]b ! z [z=0]

D

p2

p3 p4stop

p1

 (a) ELTS([t5]R) (b) ELTS([t5]D)

Fig. 3 ELTS([t5]R) and ELTS([t5]D) for the regular P-LOTOS expression t5 = <R,D>

p4

p2

p3

g ! x [x<0] h ! x [x≥0]

R(x-1)stop

p1

f ? x : int [-8≤x≤8]

r1

r2
r3

p ! w
 [w≥-1]

q ! w [w≥0]

R(w-1)stop

 (a) ELTS([t6]P) (b) ELTS([t6]R)

Fig. 4 ELTS([t6]P) and ELTS([t6]R) for the regular P-LOTOS expression t6 = <P,R>

(a) ELTS10(t1)

(b) RG10(t1)

(c) Derivation of a test case leading to a deadlock state

Fig. 5 Test System for P-LOTOS Expressions

Table 1 Axioms and Inference Rules to Define the Relation B-<a,c>->B'

Axioms

¥ h ? x1:int ...! E1 ... ; B -<h ? x1:int ...! E1..,true>-> B
¥ h ? x1:int ...! E1 ... [Q] ; B -<h ? x1:int ...! E1..,Q>-> B
¥ i ; B -<i,true>-> B
¥ i [Q] ; B -<i,Q>-> B
¥ exit -<exit,true>-> stop

Inference Rules
 B -<a,c>-> B'
¥ ______________________
 ([Q] -> B) -<a,c and Q>-> B'

 B -<a,c>-> B'
¥ ______________________________________
 (B [] B") -<a,c>-> B' (B" [] B) -<a,c>-> B'

 B -<a,c>-> B' & a≠exit
¥ ___
 (B ||| B") -<a,c>-> (B' ||| B") (B" ||| B) -<a,c>-> (B" ||| B')

 B1 -<exit,c1>-> B1' & B2 -<exit,c2>-> B2'
¥ ___
 (B1 ||| B2) -<exit,c1 and c2>-> (B1' ||| B2')

 B -<a,c>-> B' & a∉G∪{exit}
¥ __
 (B |[G]| B") -<a,c>-> (B' |[G]| B") (B" |[G]| B) -<a,c>-> (B" |[G]| B')

 B1 -<a,c1>-> B1' & a=g$e1...$ek & B2 -<a',c2>-> B2' & a'=g$e1'...$ek'
 & g∈G∪{exit} (Here,"$" denotes either the input symbol "?" or the output symbol "!".)
¥ ___ ____
 (B1 |[G]| B2) -<a,c1 and c2 and (e1=e1' and ... and ek=ek')>-> (B1' |[G]| B2')

 B -<a,c>-> B' & a≠exit B -<exit,c>-> B'
¥ ________________________ ¥ ________________________
 (B >> B") -<a,c>-> B'>> B" (B >> B") -<i,c>-> B"

 B -<a,c>-> B' & a≠exit B -<exit,c>-> B'
¥ _______________________ ¥ _______________________
 (B [> B") -<a,c>-> (B' [> B") (B [> B") -<exit,c>-> B'

 B" -<a,c>-> B'
¥ __________________
 (B [> B") -<a,c>-> B'

 P(x) is a process & P(x):=B(x) & B(x)-<a,c>->B'(x) & "α" is an expression
 & B"(x) is a behavior expression which is obtained by replacing all variables except "x" in
 B'(x) by new variables
¥ ___
 P(α) -<a,c>-> B"(α)

 * For simplicity, the inference rules for "let", "hiding", "par", "generalized choice" and
"accept" operators are omitted.

Table 2 A Regular P-LOTOS expression "tSession" for Simplified OSI Session Protocol
and a 3-Test Suite for "tSession"

(a) Regular P-LOTOS expression

tSession =<Pinit,P713(Va,Vm,Vr,Vsc),P04A(Va,Vm,Vr,Vsc),P10A(Va,Vm,Vr,Vsc)>

 Pinit := Init ? Va:int ? Vm:int [Va=Vm] ; P713(Va,Vm,0,0)

 P713(Va,Vm,Vr,Vsc):=
 (rcvDT ; P713(Va,Vm,Vr,Vsc))

[] (sndDT ; P713(Va,Vm,Vr,Vsc))
[] ([Vsc=1] -> rcvMAP ? Sn:int [Sn=Vm] ; P10A(Va,Vm+1,Vr,Vsc))
[] ([Vsc=0] -> rcvMAP ? Sn:int [Sn=Vm] ; P10A(Vm,Vm+1,Vr,Vsc))
[] ([Vsc=1] -> sndMAP ; P04A(Vm,Vm+1,Vr,0))
[] ([Vsc=0] -> sndMAP ; P04A(Va,Vm+1,Vr,0))
[] ([Vsc=0] -> rcvMIA ? Sn:int [(Vm>Sn)and(Sn>Va)] ; P713(Sn+1,Vm,Vr,Vsc))
[] ([Vsc=1] -> rcvMIP ? Sn:int [Sn=Vm] ; P713(Va,Vm+1,Vr,1))
[] ([Vsc=0] -> rcvMIP ? Sn:int [Sn=Vm] ; P713(Vm,Vm+1,Vr,1))
[] ([Vsc=1] -> sndMIA ? Sn:int [(Vm>Sn) and (Sn>Va)] ; P713(Sn+1,Vm,Vr,Vsc))
[] ([Vsc=1] -> sndMIP ; P713(Vm,Vm+1,Vr,0))
[] ([Vsc=0] -> sndMIP ; P713(Va,Vm+1,Vr,0))

 P04A(Va,Vm,Vr,Vsc) :=
 (rcvDT ; P04A(Va,Vm,Vr,Vsc))
[] (rcvMAA ? Sn:int [Sn=Vm-1] ; P713(Vm,Vm,Vm,Vsc))
[] ([Vsc=0] -> rcvMIA ? Sn:int [not(Sn=Vm-1)and(Vm>Sn) and (Sn>Va)] ;

P04A(Sn+1,Vm,Vr,Vsc))

 P10A(Va,Vm,Vr,Vsc) :=
 (sndDT ; P10A(Va,Vm,Vr,Vsc))

[] (sndMAA ? Sn:int ; P713(Vm,Vm,Vm,Vsc))

(b) 3-test suite TS3(tSession) for the above regular P-LOTOS expression "tSession"

TS3(tSession)
 = { Init!0!0 ; rcvDT ; rcvDT, Init!0!0 ; rcvDT ; sndDT, Init!0!0 ; rcvDT ; rcvMAP!0,

 Init!0!0 ; rcvDT ; sndMAP, Init!0!0 ; rcvDT ; rcvMIP!0, Init!0!0 ; rcvDT ; sndMIP,
 Init!0!0 ; sndDT ; rcvDT, Init!0!0 ; sndDT ; sndDT, Init!0!0 ; sndDT ; rcvMAP!0,
 Init!0!0 ; sndDT ; sndMAP, Init!0!0 ; sndDT ; rcvMIP!0, Init!0!0 ; sndDT ; sndMIP,
 Init!0!0 ; rcvMAP!0 ; sndDT, Init!0!0 ; rcvMAP!0 ; sndMAA!0,
 Init!0!0 ; sndMAP ; rcvDT, Init!0!0 ; sndMAP ; rcvMAA!0,
 Init!0!0 ; rcvMIP!0 ; rcvDT, Init!0!0 ; rcvMIP!0 ; sndDT, Init!0!0 ; rcvMIP!0 ; rcvMAP!1,
 Init!0!0 ; rcvMIP!0 ; sndMAP, Init!0!0 ; rcvMIP!0 ; rcvMIP!1, Init!0!0 ; rcvMIP!0 ; sndMIP,
 Init!0!0 ; sndMIP ; rcvDT, Init!0!0 ; sndMIP ; sndDT, Init!0!0 ; sndMIP ; rcvMAP!1,
 Init!0!0 ; sndMIP ; sndMAP, Init!0!0 ; sndMIP ; rcvMIP!1, Init!0!0 ; sndMIP ; sndMIP }
