

page 1

A SYSTEMATIC AND OPTIMIZED METHOD FOR

SYNTHESIZING PROTOCOL SPECIFICATIONS FROM

SERVICE SPECIFICATIONS FOR REAL-TIME APPLICATIONS

A. Khoumsi , G.v. Bochmann , R. Dssouli and A. Ghedamsi

Université de Montréal

Faculté des arts et des sciences

Département d'informatique et

de recherche opérationnelle

C.P. 6128, Succursale A

Montréal, (Quebec)

H3C 3J7

Abstract. In [KBD93] and in this paper, service and protocol are specified by timed automata. In [KBD93], a method for

deriving real-time protocol specifications from service specifications is proposed. In this paper, we improve and generalize

this method. Improvement is made by minimizing the number of exchanged messages between protocol entities. In this

case, temporal requirements on protocol are less strong than in [KBD93]. Generalization is made by considering an

unreliable medium. An error-recovery capability is then necessary.

Key-words. communication services, protocol specifications, deriving protocols, static and dynamic timing requirements,
real-time constraints, synchronizing clocks, reliability of the medium.

1. Introduction

 A way for specifying real-time applications is to use timed automata, where executions of

transitions are associated to temporal conditions. In this paper, conditions represent temporal

requirements only between consecutive transitions. For instance, we can specify that the delay between
a data transmission and its reception must be smaller than a value tmax. More generally, a time between

two consecutive events must be in an interval [tmin, tmax]. In [KBD93], we propose a method for

generating timed automata specifying the protocol from a timed automaton specifying the desired

service. In this paper, we firstly improve this method by proposing a way for reducing the number of

synchronization messages exchanged between protocol entities. We show that the temporal

requirements synthesized for the protocol entities are less strong than those generated in [KBD93].

Secondly, we show that our method can be used even if the medium is unreliable, provided that few

modules are added to protocol entities: one module per protocol entity.

 The remaining of this paper is organized as follows. In section 2, we show how services and

protocols for non-real-time applications are specified. In section 3, we introduce the basic principle for

deriving protocol entities, and we improve the way this principle is used in [KBD93] by minimizing the

number of exchanged messages. Afterwards, we present some rules for deriving protocols without real-

page 2

time requirements. In section 4, we describe how temporal requirements are specified in services and

protocols. In section 5, we explain the approach used for calculating temporal requirements for protocol

entities from temporal requirements on the service. In section 6, we reslove the problem in three cases,

one static and two dynamic. We show that the obtained temporal requirements are less strong than

those in [KBD93]. In section 7, we present the different steps used for deriving protocol specifications

for real-time applications. In section 8, few examples illustrate our method. In section 9, we consider

that the medium is unreliable. We show that the protocol entities synthesized for a reliable medium can

be used for an unreliable medium. In this case, a protocol entity communicates with the medium via a

module which makes the unreliability of the medium invisible by the protocol entity. Finally, section

10 includes some conclusion remarks as well as points for futur research.

2. Service and protocol specifications for non real-time applications

2.1. Service specification

 A service desired by the user is described by a FSM, noted SS, which specifies the sequences of

service primitives (SP) we would like to observe at the different service access points (SAPs). To each

SAP corresponds one protocol entity (PE) and we will not make a distinction between a PE and its

corresponding SAP. Transitions of SS are defined by three parameters (fig.1) which are :

 - the service primitive E executed by the transition,

 - a number a identifying the entity or the SAP where the service primitive E is executed.
 This entity is noted PEa , and

 - a number p identifying the transition, which is noted Tp=(E,a).

T = (B, 4) T = (B, 1) T = (C, 4)4 5 6

T = (A, 1) T = (B, 3) T = (C, 2)2 31
T1

T2

T4

T5

T63T

1

2

3 4
Figure 1. Service specification

 A transition is then designated by Tp=(E,a) and means that the primitive E is executed in PEa. As

in [SP90, KBD93], for a state e of SS, out(e) et in(e) are respectively the sets of SAPs corresponding to
the outgoing and ingoing transitions. Example : on Figure 1 in(2)={SAP1, SAP2, SAP4}, and

out(2)={SAP1,SAP3}.

2.2. Protocol specification

A protocol entity PEa is described by a FSM, noted PSa (fig. 6), which has three types of transitions.

First type : execution of a service primitive
Second type : the sending of a message is defined by si(p), and means "message parameterized by p is

sent by PEa to entity PEi".

page 3

Third type : reception of a message is defined by ri(p), and means "message parameterized by p is

received by PEa from PEi".
3. Deriving protocol entities for non real-time applications

3.1. Principle of derivation

 Deriving protocol consists on generating as many finite automata as the number of protocol
entities. Each of these FSMs is noted PSi and specifies action sequences executed by the protocol

entity PEi. For providing the desired service, the different PEis will exchange synchronization

messages through a reliable medium. The basic principle used for deriving protocol is rather simple :
when, in the service, two consecutive primitives A and B are executed by two different entities PEa and

PEb, then :

 - after the execution of A by PEa, this one sends a message m to entity PEb

 - after reception of the message m by PEb, this one executes B

If after execution of the service primitive A by PEa, there is a choice between k service primitives Bi

executed by PEbi (for i=1, 2, ... , k) (fig.2), the basic principle is then used in [KBD93] as follows. When

PEa executes transition Tp, it decides which transition among Tpi (for i=1, 2, ... , k) must be executed. It

sends then the same message to all PEbi (PEa). The message contains the following two parameters:

 - the identifier p of the executed transition Tp,

 - the identifier pj of the chosen transition Tpj to be executed.

T =(A, a)

T =(B1, b1)

T =(Bk, bk)

n
p

p1

pk

Figure 2. Choice between several actions.

All entities PEb1 to PEbk receive the message sent by PEa but only the chosen entity executes its

transition. With this method, PEa may possibly send an important number of messages to inform one

entity that it can execute its transition, and all other entities that they must do nothing. For a state e of

SS, the number of messages is equal to the cardinal of out(e), noted |out(e)|. Our improvement here is
that PEa must send only one message, to the selected entity to inform it that it can execute one of its

transitions.

3.2. Rules for deriving protocol entities

3.2.1. Transformation of the service specification

 The first step for deriving protocol is to transform the service specification SS into a specification

TSS (Transformed SS). The transformation consists in two steps.

First step : each transition of SS : n1 n2
T =(E,a)p

 is replaced by :
n1 n2

T =(E,a) t(p)p

page 4

 where t(p), which is said transition of type t(), is an intermediate transition used in the

following steps for deriving protocol.

Remark : If a state e of the generated specification TS is reachable by a transition t(p), its outgoing

transitions are not of type t().

Second step : The specification TS, generated from SS in the first step, is transformed into an

equivalent TSS. From every state e of TSS, the following condition C1 must be respected.

C1 = (C1.a OR C1.b) where :

 - C1.a : only a transition t(p) is executable from e (fig. 3.a),

 - C1.b : no transition t(p)is executable from e, and all executable outgoing transitions Tp are

executed by a same protocol entity PEb (fig. 3.b), i.e., cardinal of out(e) is equal to one (|out(e)|=1).

e
t(p)

T =(B1, b)

T =(Bk, b)

p1

pk

e

3.a. outgoing transition t(p) 3.b. outgoing transitions Tp

Figure 3. Outgoing transitions in a state of the transformed specification TSS.

The way for obtaining TSS from TS is the following. For every state e of TS reachable by transition(s)
of type t() (fig. 4.a), e is replaced by as many states ei as the cardinal of out(e) (fig. 4.b) . Outgoing

transitions from states ei - which are not of type t() - respect the condition C1.b and the two following

conditions C2 and C3.

C2: Outgoing transitions of two different states ei and ej of TSS, generated from a same state

 e of TS, are executed by two different protocol entities.

C3: The sets of ingoing transitions of two different states ei and ej of TSS, generated from a

 same state e of TS, are equal to the set of ingoing transitions of state e .

e

T =(E1, b)p1

T =(E3, b) p3







T =(E2, c)p2

t(p)


t(q)

e1

T =(E1, b)p1

T =(E3, b) p3







T =(E2, c)p2
e2

t(p)



t(q)

t(p)

t(q)

 4.a. State e in TS 4.b. Transformation of e in TSS

Figure 4. Example of transformation from SS to TSS

Remarks : - if two states n1 and n2 of TSS are connected by a transition t(p) then |in(n1)| =

 |out(n2)| = 1

 - if TSSTS, then TSS is non deterministic.

 - If for every state e of TS, |ou(e)|=1, then TSS=TS.

The transformation of the specification SS of Figure 1 gives the specifications TS and TSS on Figure 5.

page 5

(A,1)

t(1)

1

2

3
4

(B,1)
(B,3)(C,2)(B,4)

(C,4)
t(2)

t(3)

t(4)

t(5)

t(6)

(A,1)
1

t(4)

221 2

32 4

31

(B,4)
t(2)
(B,3)

t(2)

t(1) t(1)

(B,1)

t(5)

(C,2)

t(3)

t(3)

(C,4)

t(6)

t(6)

5.a. TS 5.b. TSS

Figure 5. Transformation of specification in Figure 1

3.2.2. Rules

From the sevice specification SS, the derivation procedure consists of five steps.

Step 1 : SS is transformed into TSS

Step 2 : From TSS, we generate GPS (global protocol specification) with the following rules :

 - For a transition t(p): n1
t(p)

n2

 Case a : if in(n1)=out(n2), the transition becomes : n1


n2

 Case b : if in(n1)={SAPa}≠out(n2)={SAPb},

 the transition becomes: n1 n2
t (p)a

b

 where: - tb
a(p) means "message parameterized by p is sent by PEa and then received by PEb ".

 -  represents a spontaneous transition.

 - For a transition Tp : it remains unchanged

Step 3 : For each PEi, we generate GPSi from GPS by the following rules :

 For a transition Tp=(E,a) : n1 n2
T =(E,a)p

 Case a : if a=i, the transition becomes : n1 n2
E

 Case b : if a≠i the transition becomes: n1 n2


 where  represents a spontaneous transition.

 For a transition tb
a(p) : n1 n2

t (p)a
b

 Case a : if a=i (then b≠i), the transition becomes : n1 n2
s (p)b

 Case b : if b=i (then a≠i), the transition becomes: n1 n2
r (p)a

 Case c : if a≠i and b≠i, the transition becomes: n1 n2


 where sb(p) means " message parameterized by p is sent to PEb ",

 and ra(p) means " message parameterized by p and coming from PEa is received"

page 6

Step 4 : Transitions  of the different GPSi are considered spontaneous and are removed by projection

for obtaining protocol specifications PSi . An algorithm for removing  is given in [BC79]. Intuitively,

let A be an automaton containing transitions  and specifying a system A, and let A be the automaton

obtained by removal of  from A. If an external observer can detect all transitions but , then A is the

specification of A as it is perceived by the observer.

Step 5 : The obtained PSi are minimized, and are transformed into deterministic automata if they are

non deterministic.

For our example in Figure 5, we obtain the specifications in Figure 6:

A

B

s (1)3

r (3)2 s (5)4

r (6)4

r (4)4

B

r (3)2

r (4)4

s (3)1

C

r (2)3

3s (3)

r (6)4r (1)1

r (3)2

s (2)2

B

s (2)4

r (6)4

r (5)1

B

C

s (6)1

r (5)1

r (2)3

s (4)1

3s (6)

r (5)1
r (2)3

 6.a. PS1 6.b. PS2 6.c. PS3 6.d. PS4

 Figure 6. Obtained protocol specifications .

We can prove that the unique obtained solution is semantically and syntactically correct . The

semantics is correct means that the derived entities provide the service specified by SS. Their syntax is

correct because they are deadlock-free and livelock-free, and no unspecified reception errors are

possible.

4. Service and protocol specifications for real-time applications

4.1. Service specification

On a service specification with time requirements (SST), each transition is defined by :

- the three parameters presented in the previous section,
- a set Cp of time intervals, where p is the number identifying the transition .

A transition is then defined by Tp=(E,a,Cp), and the execution of Tp means execution by entity PEa of

action E of the transition Tp. Let's consider for a state n of SST, its k ingoing transitions Tpi, and its m

outgoing transitions Tqj (Figure 7). The representation of Figure 7 is used for defining the semantics of

the sets Cqj of the outgoing transitions . Each Cqj contains as many time intervals as there are ingoing

transitions on state n, i.e., it contains k intervals noted Tpi,qj =[Tmipi,qj; Tmapi,qj] (for i= 1, 2, ..., k).

The semantics of a Tpi,qj is the following:

When state n is reached by an ingoing transition Tpi, then :

 Condition 1 : if the transition Tqj is executed, it must be executed in the time interval Tpi,qj

 after state n has been reached.
 Condition 2 : besides, an outgoing transition among all the transitions Tqj (j = 1, 2, ... ,

 m) must inevitably be executed after state n is reached.

page 7

(E1, a1, C)p1

(Ek, ak, C) pk

n

q1(F1, b1, C)

qm(Fm, bm, C)

T =p1

T =pk

T =q1

T =qm

Figure 7. Ingoing and outgoing transitions on a state in SST

Example: let n be a state with one ingoing transition and two outgoing transitions (fig.8).

T =p1

T =q1

T =q2

(E1, a1, C)p1

q1(F1, b1, C)

q2(F2, b2, C)

n

Figure 8. Example on the definition of the semantics of time intervals

Each of Cq1 and Cq2 contains one interval , with Cq1={Tp1,q1} and Cq2={Tp1,q2}. For example

Tp1,q1=[1,3] and Tp1,q2=[2,5]. In this case, if Tq1 (resp. Tq2) is executed, it must be executed in the

interval [1,3] (resp. [2,5]) after the execution of Tp1 (condition 1). Besides, if neither Tq1 nor Tq2 are

executed in a time equal to 3 after execution of Tp1, then Tq2 must inevitably be executed in the

interval [3,5] after execution of Tp1 (condition 2). With this condition we have no deadlocks due to

time constraints. From this semantics, we deduce that if state n is the initial state then the different
intervals of each Cqj are equal. In other words, for each j=1, 2, ... , m , we have

Tp1,qj=Tp2,qj=...=Tpk,qj .

Remark: Tp is a transition identified by p, while Tp,q is the time interval containing the delay between

transitions Tp et Tq.

4.2. Protocol specification for real-time applications

 There are three types of transitions in a protocol specification PSTa.

First type : execution of a service primitive is defined by (E, Dp) where :

 - E is the name of the service primitive,
 - Dp is a set of intervals which represent temporal requirements and whose

 semantics is detailed in section 7 (steps 2 and 3).

Second type : sending a message to another protocol entity is defined by si(p){Sp,b}, where:

 - si(p) means "message parameterized by p is sent by PEa to entity PEi"

 - Sp,b is an interval which represents a temporal requirement on si(p). It is

 defined in section 5.2. Its semantics is showed in section 7 (step 3).

Third type : receiving a message is defined by ri(p). There is no time requirement in this type of

transition (fig. 13). Time requirements in types one and two are sufficient for

respecting time requirements in the service .

page 8

5. Approach for the problem of computing time requirements (PCTR)

5.1. Transforming SST into TSST

 Before computing temporal requirements for protocol entities, the transformation presented in

section 3.2 must be applied to the timed service specification SST for obtaining the specification TSST.

The method for obtaining TSST from SST is similar to the method explained in section 3.2.1, if we
replace transitions Tp=(E,a) by transitions Tp=(E,a,Cp). Therefore, outgoing transitions of a state e in

TSST which is reachable by a transition t(p), are executed by a same protocol entity.

Example of Figure 1 is reconsidered for a real-time application (Fig. 9.a). After transformation, we

obtain the non deterministic specification of Figure 9.b.
T = (A, 1, C)

T = (B, 3, C)

T = (C, 2, C)

T = (C, 4, C)

T1

T2

T4

T5

T63T

1

2

3 4

1 1

2 2

3 3

4T = (B, 4, C) 4

5T = (B, 1, C) 5

6 6

(B,4,C)

(A,1,C)

(B,3,C) (B,1,C)

(C,2,C) (C,4,C)

2

3

5

1

6

4

1

t(4)

221 2

32 4

31
t(2)

t(2)

t(1) t(1)

t(5)
t(3)

t(3)t(6)

t(6)

 9.a. Specification SST 9.b. Specification TSST

Figure 9. Example of transformed real-time specification

5.2. Approach for the problem

 For computing time constraints for protocol entities, for every pair of states n1 and n2 of TSST

which are connected by a transition t(p), we must consider the ingoing transition of n1 and all outgoing
transitions of n2 (Fig.10). In a first time, we consider the case where out(n2)={SAPb}≠in(n1)={SAPa}.

In other words, the protocol entity PEa (executing the ingoing transition of n1) is different than PEb

(which executes the outgoing transitions of n2).

T =p

T =(E1, b, C)p1

T =(Ek, b, C) pk

n2
(E, a,C)p

p1

pk

n1
t(p)

Figure 10. Outgoing transitions on a state of TSST

Let then Tp be a transition in an entity PEa followed by several transitions Tpj, for j=1, 2, ..., k, in PEb.

After Tp, PEa must send a message to PEb (by sb(p)). When PEb receives the message (by ra(p)), it

executes one of the k transitions Tpj (for j=1, 2, ..., k). The sequencing of events between Tp and Tpj is

represented in function of time as in Figure 11.a.

time axis t j

t s t m tj r

s (p)bTp r (p)a Tpj

s (p)b r (p)a

PE PEa b

TpjTp

 11.a. Representation in function of time 11.b. Representation by entity

Figure 11. Representation of events between Tp and Tpj

page 9

The temporal requirements in the service impose that the time tj , between executions of Tp and Tpj ,

belongs to Tp,pj=[Tmip,pj; Tmap,pj]. We suppose that we have a model of the reliable medium, i.e., the

transit delay tm , in the medium, of a message sent by PEa and received by PEb, belongs to an interval

Ma,b=[Mmia,b, Mmaa,b] which depends on PEa and PEb.

The aim of temporal requirements derivation on protocol entities is the the following one.

From requirements tm Ma,b and t j Tp,pj (for j= 1, 2, ..., k), we must derive constraints on ts and t
jr (for j= 1, 2, ..., k) which ensure that temporal requirements t j  Tp,pj on the service will be

respected . These derived constraints are written in the form ts Sp,b=[Smip,b ,Smap,b], and tjr R p,pj

=[Rmip,pj , Rmap,pj], for j= 1, 2, ..., k.

Requirements on ts and tjr are temporal requirements on the protocol. In fact, ts is the delay between Tp

and sb(p) which are executed in PEa, and tjr is the delay between ra(p) and Tpj which are executed in

PEb (fig. 11.b).

Remark : If PEa=PEb, no message is sent. In this case we take ts=tm=0. So the derivation is trivial:

tj=tjr, then Sp,b=[0;0], Ma.b=[0;0] and Rp,pj=Tp,pj .

The following notations will also be used :
 - Vmip,b et Vmap,b are parameters belonging to [0,1]. They are defined for a transition Tp

 (executed by an entity PEa) and a protocol entity PEb (≠PEa) which executes transitions

 consecutive to Tp. They are used to choose one solution among an infinite number of

 solutions. If we obtain, as we will see later, for Sp,b=[Smip,b, Smap,b] the constraint

 Smap,b[], we choose Smap,b = +Vmap,b*(-). In the same manner, if we obtain

 Smip,b [], we choose Smip,b =  + Vmip,b*().

 - Addition and subtraction of two intervals [a, b] and [c, d] are defined by

 [a, b] + [c, d] = [a + c, b + d] , and [a, b] - [c, d] = [a - c, b - d].

If we summarize, the entries of PCTR for protocol entities are :
 - Tp,q and Ma,b for every pair of consecutive transitions Tp and Tq , respectively executed in

 PEa and PEb (if PEa=PEb then Ma,b=[0;0]),

 - Vmip,b and Vmap,b for every pair (Tp, PEb) where PEb, executes transitions which succeed to

 Tp. Vmip,b and Vmap,b are used to choose a particular solution among an infinite number of

 solutions.

Solutions of PCTR are :
 - Sp,b for every transition Tp executed by an entity PEa and followed by transitions executed

 in PEb≠PEa (if PEb=PEa, we can take Sp,b=[0;0]),

 - Rp,q for every pair of consecutive transitions Tp and Tq .

We show in the next section 5.3 that there exist conditions on entries Tp,q and Ma,b of PCTR for the

existence of solutions.

page 10

5.3. Condition for existence of solutions

 For every two states n1 and n2 of TSST connected by a transition t(p), we consider then the
ingoing transition Tp of n1 (executed in PEa), and all outgoing transitions Tpj , for i=1, 2, ... , k ,

(executed in PEb) of n2 (fig. 10). From Figure 11.a, we can write :

for j= 1, 2, ..., k : tj  Tp,pj implies ts + tm + tjr  Tp,pj (1)

As tm  Ma,b=[Mmia,b, Mmaa,b], then condition (1) implies :

for j= 1, 2, ..., k : ts + Mmia,b + tjr ≥ Tmip,pj (2)

 ts + Mmaa,b + tjr ≤ Tmap,pj (3)

Formulae (2) and (3) imply

 for j= 1, 2, ..., k : Tmap,pj - Mmaa,b ≥ sup(Tmip,pj - Mmia,b; 0) (4)

Condition (4) corresponds to one pair of states n1 and n2 of TSST which are connected by a transition

t(p). Therefore, for every pair of states n1 and n2 connected by a transition of type t(), the resolution of

PCTR consists in :

 - checking if condition (4) is respected

 - if the checking is positive then :
 * interval Sp,b is calculated (constraint on ts),

 * intervals Rp,pj , for j=1, 2, ... , k , are calculated (constraints on tjr , for j=1, 2, ... , k).

5.4. Comparison with [KBD93] approach (old approach)

 In [KBD93], the resolution of PCTR is done from the specification SST . In our improved approach,

the resolution is done from the transformed specification TSST . Therefore, condition (4) with the old

approach is more restricting than here. In fact, a condition C of existence from SST can be a

conjunction of several conditions of existence from TSST, and then C is respected if all those

conditions are respected. An example is given on Figure 12.

T =(B,1,{T })2 1,2

T =(C,2,{T })3 1,3

T =(A,1,{T ;T })1 2,1

1

t(1)

21

3,1

t(1)

t(2)

t(3)

T =(A,1,{T ;T })1 2,1 3,1

T =(B,1,{T })2 1,2

T =(C,2,{T })3 1,3

1 2

4

5

3

 12.a. SST 12.b. TSST

Figure 12. Example for comparing conditions for existence of solutions

From SST, a condition corresponds to :

 - a state e of SST,

 - one of the ingoing transitions of e,

 - all outgoing transitions of e.

page 11

We have then three conditions of existence (i, j, and k), which are the following.

 - for state 1 and ingoing transition T2 : Tma2,1 ≥ Tmi2,1 (i)

 - for state 1 and ingoing transition T3 : Tma3,1 - Mma2,1 ≥ sup(Tmi3,1- Mmi2,1 ; 0) (j)

 - for state 2 and ingoing transition T1 : Tma1,2 ≥ Tmi1,2 (k1)

 : Tma1,3 - Mma1,2 ≥ sup(Tmi1,3- Mmi1,2 ; 0) (k2)

where :
 (i) is a condition on temporal requirements between T2 and T1

 (j) is a condition on temporal requirements between T3 and T1

 (k1) is a condition on temporal requirements between T1 and T2

 (k2) is a condition on temporal requirements between T1 and T3

 and condition (k) is the conjunction of (k1) and (k2).

If for instance only (k2) is not respected, then condition (k) is not respected, and we consider with
approach in [KBD93] that the temporal requirements cannot be respected for transitions T2 and T3

(which succeed to T1). . The last assumption is too restricting, because in reality only temporal

requirements between executions of T1 and T3 cannot be respected (because k2 is not respected).

With the improved approach,the restriction does not exist. In fact, from TSST there are four

independent conditions (i, j, k1, and k2). If only (k2) is not respected, only temporal requirements
between T1 and T3, are considered impossible to respect.

The new approach has then a second advantage. Besides minimizing the number of messages,

sometimes we can have solutions for PCTR from TSST when there are not from SST.

6. Resolution of PCTR

 For resolving PCTR, we consider the three following cases :

Static case : messages transmitted by the protocol entities contain no temporal

 information ,

First dynamic case : the PE put a temporal information in messages they send,

Second dynamic case : besides the temporal information put by the PE, the medium adds a second

temporal information in the message. This information is an estimation of the transit delay of the

message in the medium. This third case is processed in detail in section 6.3, the receiving entity can

have a good temporal information without using a global clock.

6.1. Static case

 This case is static because the intervals Sp,b and Rp,pj are constant. When an entity PEa executes a

transition Tp and decides to send a message to entity PEb, the time ts, between execution of Tp and

transmission of the message, belongs to a constant interval Sp,b. When PEb receives the message from

PEa, it can execute a transition Tpj, among the k possible transitions (for i=1, 2, ... , k), in a time tjr

belonging to a constant interval Rp,pj . The latter depends on Tp,pj - Ma,b - Sp,b .

page 12

If Sp,b and Rp,pj are such that condition (1) is respected for every ts  Sp,b and tjr  Rp,pj and tm 

Ma,b, then it is equivalent to have :

 for j= 1, 2, ..., k : Sp,b + Ma,b + Rp,pj  Tp,pj (5)

that is to say : for j= 1, 2, ..., k : Smip,b + Mmia,b + Rmip,pj ≥ Tmip,pj (6)

 Smap,b + Mmaa,b+ Rmap,pj ≤ Tmap,pj (7)
Resolution :

 Condition (7) implies : Smap,b  [0; minj=1 to k (Tmap,pj - Mmaa,b)] (8)

 then (6) and (7) imply : Smip,b  [sup(U, 0); Smap,b] (9)

 with U = maxj=1 to k (Smap,b + (Mmaa,b - Mmia,b) - (Tmap,pj - Tmip,pj)) (10)

By using parameters Vmap,b and Vmip,b , we choose a particular solution for Smap,b and Smip,b which

respects (8) and (9). We have then :
 Smap,b = Vmap*minj=1 to k (Tmap,pj - Mmaa,b) (11)

 Smip,b = sup(U, 0) + (Smap,b - sup(U, 0))*Vmip,b (12)

We choose afterwards the less restrictive solutions on Rp,pj=[Rmip,pj; Rmap,pj] respecting (6) and (7).

We have then :

 for j= 1, 2, ..., k : Rmap,pj = Tmap,pj - Mmaa,b - Smap,b (13)

 Rmip,pj = sup(Tmip,pj - Mmia,b- Smip,b; 0) (14)

 We can easily check that the obtained service is included in the desired service (safety).
It is better to choose Vmap,b as small as possible and Vmip,b as big as possible. This implies to have

Smap,b and Smip,b as small and close as possible. Rmap,pj and Rmip,pj will be then the less constrained as

possible, and the receiving entities will have as much time as possible to provide the service.

6.2. First dynamic case

 This case is dynamic because the receiving PEb calculates dynamically the interval Rp,pj, when it

receives the message from PEa. In fact, after execution of Tp, PEa sends to PEb a message with

information ts. And PEb calculates Rp,pj , in function of ts and of Xp,pj =Tp,pj - Ma,b.

Resolution:

 formula (3) implies ts + Mmaa,b ≤ Tmap,pj . If Sp,b=[Smip,b;Smap,b] is an interval always containing ts

then we have the condition (8) as in the static case:

Smap,b  [0; minj=1 to k (Tmap,pj - Mmaa,b)] (8)

And Smip,b is less constrained than in the static case :

 Smip,b  [0 ; Smap,b] (15)

page 13

As in the static case , a particular solution is chosen by using parameters Vmap,b and Vmip,b :

 Smap,b = Vmap,b*minj=1 to k (Tmap,pj - Mmaa,b) (11)

 Smip,b = Smap,b*Vmip,b (16)

 If ts , which belongs to [Smip,b; Smap,b] , is the delay when the message is sent after execution of Tp,

the receiving entity knows it and can choose :

 for j= 1, 2, ..., k : Rmap,pj (ts) = Tmap,pj - Mmaa,b - ts (17)

 Rmip,pj (ts) = sup(Tmip,pj - Mmia,b - ts; 0) (18)

 We can easily check that the provided service is included in the desired service. With the
information ts, the receiving entity PEb will use the time allocated to it to provide the service more

efficiently then in the static case. In fact, time interval Rp,pj(ts) ((17) and (18)) is less restricting than

interval Rp,pj ((13) and (14)), because Rp,pj is strictly included in Rp,pj(ts). Intuitively, in dynamic

case the receiving entity PEb has a more accurate information about when Tp has been executed by

PEa. In the static case, it has to suppose the "worst" cases for the time ts . Therefore, sometimes in static

case it has to "hurry up", when in dynamic case it has not to.

6.3. Second dynamic case

 In this case, PEb receives the message with informations ts and tm, and it calculates dynamically

the interval Rp,pj , in function of these two informations and of Tp,pj.

Resolution :

Sp,b = [Smip,b ; Smap,b] is resolved as in section 6.2 ((11) and (16)). Rmap,pj and Rmip,pj are calculted

dynamically by PEb with the following formulae :

 for j= 1, 2, ..., k : Rmap,pj (ts, tm) = Tmap,pj - ts - tm (19)

 Rmip,pj (ts, tm) = sup(Tmip,pj - ts - tm; 0) (20)

We can check that the desired service is respected (safety) by the protocol. With information tm, the

receiving entity PEb uses more efficiently the time allocated to it to provide the service. In fact, Rp,pj(ts)

((17) and (18)) is strictly included in Rp,pj(ts, tm) ((19) and (20)).

6.4. Comparison with [KBD93] approach

 Temporal requirements on protocol obtained with [KBD93] approach are more restricting than
those derived with our improved approach. In fact, intervals containing Smap,b and Smip,b ((8), (9) and

(15)) are bigger than or equal to those obtained in [KBD93]. With the improved approach, Sp,c and Rp,pj

are independent when Tpj is executed by PEb≠PEc.

If we recapitulate, advantages of the approach here are :

page 14

 - the number of exchanged messages is minimized,

 - conditions for existence of solutions are less strong,

 - derived temporal requirements are less restricting.

6.5. Transit delay in the medium

 In the second dynamic case, time tm is not an accurate value. It is an estimation of the transit

delay in the medium. In fact, if the message goes through many nodes before reaching its
destination, tm comprises estimations of :

 * transmission and propagation delays between the different adjacent nodes,

 * the time passed in the nodes (processing and especially waiting in queues) .

For these reasons, positive parameters  and  can be added in formulae (19) and (20) which become :

 for j= 1, 2, ..., k : Rmap,pj (ts, tm) = Tmap,pj - tm - ts -  (21)

 Rmip,pj (ts, tm) = sup(Tmip,pj - tm - ts + ; 0) (22)

This is equivalent to estimate the transit delay in the interval [tm -  ; tm + ] .

7. Deriving protocol for real-time applications

 The first step for deriving protocol is to transform the service specification SST into an equivalent

specification TSST (Transformed SST). The derivation procedure consists then of five steps.

Step 1 : The service specification SST is transformed into the equivalent TSST

Step 2 : From the specification TSST, we generate GPST defined below.

 - For a transition Tp=(E,a,Cp) : n1 n2
T =(E,a,C)p p

 It becomes : n1 n2
(E,a,D)p

 - For a transition t(p): n1
t(p)

n2

 Case a : if in(n1)=out(n2), the transition becomes : n1


n2

 Case b : if in(n1)={SAPa}≠out(n2)={SAPb},

 the transition becomes: n1 n2
t (p){S }a

b p,b

 where :

 - tb
a(p) means "message parameterized by p is sent by PEa and then received by PEb ",

 - Sp,b is an interval defined in section 5.2,

 - Dp is the set of intervals :

 * Rpi,p in the static case,

 * Xpi,p=Tpi,p-Mbi,a in the first dynamic case, where PEbi is the entity which executes a transition Tpi,
 * Tpi,p in the second dynamic case. Then Dp=Cp .

 -  represents a spontaneous transition,

page 15

 - Tpi are transitions which precede Tp in SST.

In fact :
 - In the static case, PEa must know the constant interval Rpi,p (by formulae (13) and (14)) ,

 for executing Tp after transition Tpi ,

 - In the first dynamic case, PEa must know the constant interval Xpi,p = Tpi,p - Mbi,a (and parameter

ts if PEbi≠PEa), for calculating dynamically Rpi,p (by formulae (17) and (18)) and for executing

Tp after transition Tpi ,

 - In the second dynamic case, PEa must know the constant interval Tpi,p (and parameters ts and tm if

PEbi≠PEa), for calculating dynamically Rpi,p (by formulae (19) and (20)) and for executing Tp after

transition Tpi .

Remark : Intervals in Dp have not the same semantics in the three cases. In the static case, Rpi,p are

constant temporal requirements, while in the two other cases, Xpi,p and Tpi,p are constant intervals used

for dynamic calculation of the time requirements on Tp when it succeeds to transition Tpi in SST.

The complexity of the algorithm for generating GPST is in O(n*e*s) with :

 - n : number of states of TSST,

 - e : maximum number of ingoing transitions by state in TSST,

 - s : maximum number of outgoing transitions by state in TSST.

Step 3 : For each PEi we generate GPSTi from GPST by the following rules :

 - For a transition tb
a(p){Sp,b} : n1 n2

t (p){S }a
b p,b

 Case a : if a=i (then b≠i), the transition becomes :

 - in the static case :
s (p){S }

n1 n2p,bb

 - in the two dynamic cases : n1 n2
s (p,t){S }p,bb s

 Case b : if b=i (then a≠i), the transition becomes:

 - in the static case : n1 n2
r (p)a

 - in the first dynamic case : n1 n2
r (p, t)a s

 - in the second dynamic case : n1 n2
r (p, t , t)a s m

 Case c : if a≠i and b≠i, the transition becomes: n1 n2


 where :
 - sb(K) means " message parameterized by K is sent to PEb ",

 - sb(K){Sp,b} means that sb(K) is executed after Tp in a time belonging to Sp,b.

 See sections 6.1 to 6.3 for calculation of Sp,b.

 - ra(K) means " message parameterized by K and coming from PEa is received"

page 16

 - For a transition Tp=(E,a,Dp) : n1 n2
(E,a,D)p

 Case a : if a=i, the transition becomes : n1 n2
(E,D)p

 Case b : if a≠i the transition becomes: n1 n2


 where :

 -  represents a spontaneous transition,

 - (E,Dp) in GPSTi means : for every transition Tpi =(Ei,bi,Cpi) preceding Tp=(E,a,Cp) in SST, Tp

must be executed in a time belonging to the interval Rpi,p , after execution of :

 > Tpi executed by PEbi=PEa ,

 > rbi(pi, ...) if Tpi is executed by PEbi≠PEa .

 * in the static case : the constant interval Rpi,p belongs to Dp. See section 6.1 for calculating Rpi,p.

 * in the first dynamic case : Rpi,p is calculated dynamically in function of the constant interval

Xpi,p= Tpi,p - Mbi,a and of ts (ts=0 if PEbi=PEa), where Xpi,p belongs to Dp. See section 6.2 for

calculating Rpi,p.

 * in the second dynamic case : Rpi,p is calculated dynamically in function of the constant interval

Tpi,p, of ts and of tm (ts=tm=0 if PEbi=PEa), where Tpi,p belongs to Dp . See section 6.3 for

 calculating Rpi,p.

Step 4: The transitions  are considered spontaneous and are removed by projection (see also section
3.2.2). We obtain then timed protocol specifications for each PEi.

Step 5 : The obtained specifications are minimized, and transformed into deterministic automata PSTi

if they are non deterministic.

8. Examples

8.1. Example 1

 We consider example of Figure 9. This example is also in [KBD93] with the old approach. We
have C1 = {T4,1}, C2 = {T1,2 ; T3,2 ; T6,2} , C3 = {T2,3}, C4 = {T2,4}, C5 = {T1,5 ; T3,5 ; T6,5} ,

C6 ={T5,6}.

For instance T4,1=[3, 6], T1,2 =[5,10], T3,2=[4,8], T6,2=[4,10] , T2,3=[3,8] , T2,4=[4,9] , T1,5=[1,3] ,

T3,5=[4,8] , T6,5=[3,8] , T5,6=[4,10]. And we choose for instance the medium Mu,v=[2,4] for every

(u,v), and at last Vmap,a=Vmip,a=0.5 for (p,a){(1,3);(2,2);(2,4);(3,1);(3,3);(4,1);(5,4);(6,1);(6,3)}.

The derived protocol specifications are represented below (Figure 13).

page 17

r (2)3s (3){S }1 3,1

(C,D)3

s (3){S }3 3,3

r (6)4r (1)1

r (3)2

r (6)4

(B,D)2

s (2){S }2 2,2

s (2){S }4 2,4

r (5)1

r (5)1

r (2)3

r (5)1

r (2)3 (C,D)6

(B,D)4

3s (6){S }6,3 s (6){S }1 6,1

s (4){S }1 4,1

r (3)2

r (6)4

r (4)4

r (3)2

r (4)4(A,D)

(B,D)

1

5

(B,D)5

s (1){S }3 1,3

s (5){S }4 5,4

1

2

3 4 5 6

 13.a. PST1 13.b. PST2 13.c. PST3 13.d. PST4

Figure 13. First example of protocol specifications with time requirements

 With D1={R4,1}, D2={R1,2; R3,2; R6,2}, D3={R2,3}, D4={R2,4}, D5={R1,5; R3,5; R6,5}, D6={R5,6} .

Remark: Synthesized protocol specifications can contain redundant temporal requirements. For
example on Figure 13.a, D5={R1,5; R3,5; R6,5}. But for transition (B,D5) from state 2, only R1,5 is

necessary. And for transition (B,D5) from state 4, only R3,5 and R6,5 are necessary.

R1,5 contains the delay between executions of (A,D1) and (B,D5),

R3,5 contains the delay between executions of r2(3) and (B,D5),

R6,5 contains the delay between executions of r4(6) and (B,D5),

From formulae (11), (12), (13) and (14), we calculate :

 S1,3 = [1.5; 3] R1,2 = [1.5; 3] S3,3 = [1; 2] R3,2 = [1; 2]

 R1,5 = [1; 3] S4,1 = [0.5; 1] R4,1 = [0.5; 1]

 S2,2 = [1; 2] R2,3 = [0; 2] S5,4 = [1.5; 3] R5,6 = [0.5; 3]

 S2,4 = [1.25; 2.5] R2,4 = [0.75; 2.5] S6,1 = [1; 2] R6,5 = [0 ; 2]

 S3,1 = [1; 2] R3,5 = [1; 2] S6,3 = [1.5; 2] R6,2= [0.5; 3]

8.2. Example 2

 This example also is in [KBD93] with the old approach. Two protocol entities PE1 and PE2 must

communicate in a connected mode. To reduce calculations, we do the following hypotheses :
 - connection and disconnection are done by PE1 ,

 - the provider of service in PE2 cannot refuse a connection ,

 - data transfer is done from PE1 to PE2 ,

 - PE1 sends a new data only if the preceeding has been received by PE2 .

The executed events are noted TC.rqt, TC.ind, TC.rsp, TC.cnf, TD.rqt, TD.ind, TDt.rqt and TDt.ind .

TC, TD and TDt are respectively abbreviations of T-connect, T-disconnect and T-data. And rqt, ind, rsp

and cnf are respectively abbreviations of request, indication, response and confirm. A formal

representation of service with time requirements is represented on Figure 14, it is inspired by the

protocol of the transport layer classe 0 ([Ta90], that is why primitives have names beginning by letter

T). We have T1=(TC.rqt,1,C1), T2=(TC.ind,1,C2), T3=(TC.ind,2,C3), T4=(TD.rqt,2,C4),

T5=(TD.ind,1,C5), T6=(TC.rsp,2,C6), T7=(TC.cnf,1,C7), T8=(TDt.rqt,1,C8), T9=(TDt.ind,2,C9),

T10=(TD.rqt,1,C10), T11=(TD.rqt,1,C11), T12=(TD.ind,2,C12). Where C1={T2,1, T5,1, T12,1}, C2={T1,2},

page 18

C3={T1,3}, C4={T3,4}, C5={T4,5}, C6={T3,6}, C7={T6,7}, C8={T7,8, T9,8}, C9={T8,9}, C10={T7,10, T9,10},

C11={T8,11}, C12={T10,12, T11,12}.

T1
T2

T4

T5

T6 T7

3T

1

2

34 5 6
T8

7
T9

T10
T11

T12

Figure 14. Formal specification of the desired service with two communicating entities

On Figure 14:
 - T1 to T7 correspond to connection set-up phase. If the connection is accepted, state 6 is reached.

 - T8 to T9 represent data transfer phase,

 - T10 to T12 specify the disconnection phase.

 Let's take for instance T2,1=T5,1=T12,1=[3,6], T1,2=[1,2], T1,3=[3,7], T3,4=[1,2], T4,5=[2,5], T3,6=[2,3],

T6,7=[4,7], T7,8=[1,3], T9,8=[2,6], T8,9=[3,6], T9,10=[2,5], T8,11=[0,2], T10,12=T11,12=[3,6]. Let's also take

the medium Mu,v=[2,4] for every (u,v), and finally parameters Vma
p,b

=Vmi
p,b= 0.5 for every p=1, 4, 6,

and 8 to 12.

The derived protocol specifications with time requirements are represented on Figures 15 and 16, with

D1={R2,1, R5,1, R12,1}, D2={R1,2}, D3={R1,3}, D4={R3,4}, D5={R4,5}, D6={R3,6}, D7={R6,7}, D8={R7,8,

R9,8}, D9={R8,9}, D10={R7,10, R9,10}, D11={R8,11}, D12={R10,12, R11,12}.

1

(TC.rqt,D)1

(TC.cnf,D)7

(TC.ind,D)2

r (12)2

(TDt.rqt,D)8

(TD.ind,D)5

s (1){S }2 1,2 (TD.rqt,D)10

(TD.rqt,D)11

r (9)2

r (4)2

s (8){S }2 8,2

s (10){S }2 10,2

s (11){S }2 11,2

r (6)2

 Figure 15. Protocol specification for the communicating entity PE1

1

s (4){S }1 4,1

r (1)1

r (10)1

r (8)1

r (11)1

s (6){S }1 6,1

s (9){S }1 9,1

s (12){S }1 12,1 (TD.ind,D)12

(TC.ind,D)3

(TD.rqt,D)4 (TC.rsp,D)6

(TDt.ind,D)9

Figure 16. Protocol specification for the communicating entity PE2

From formulae (11), (12), (13) and (14) we calculate:
 R1,2 = [1; 2]

 S1,2 = [0.75; 1.5] , R1,3 = [0.25; 1.5] ; R2,1 = [3; 6] , R3,4 = [1; 2] , R3,6 = [2; 3] ;

 S4,1 = [0.25; 0.5] , R4,5 = [0; 0.5] ; R5,1 = [3; 6] ;

 S6,1= [1; 1.5] , R6,7 = [1; 1.5] ; R7,8 = [1; 3] , R7,10 = [1; 3] ;

 S8,2 = [0.5; 1] , R8,9 = [0.5; 1] ; R8,11 = [0; 2] ;

 S9,1= [0.25; 0.5] , R9,8 = [0; 1.5] , R9,10 = [0; 0.5] ; S10,2 = [0.5; 1] , R10,12 = [0.5; 1] ;

 S11,2= [0.5; 1] , R11,12 = [0.5; 1] ; S12,1 = [0.5; 1] , R12,1= [0.5; 1] .

page 19

9. Deriving protocol with unreliable medium

9.1 Approach

 When the medium is not reliable, two general approaches are thinkable. The first
one consists of modifying the protocol entities PEi obtained for reliable medium ([CL88]). The second,

which is the one we have adopted, consists of inserting a new module Mi between each PEi and the

medium (fig.17.).

Reliable Medium

PE1

SAP1

PE 2

SAP2

PE n

SAPn

...

...

...

Unreliable Medium

...

...
PE1

SAP1

PE 2

SAP 2

PE n

SAPn

...

M1 M M2 n

 17.a. Realiable medium 17.b. Unreliable medium with modules

Figure 17. Addition of modules for an unreliable medium

The aim of each module Mi is to hide as much as possible the unreliability of the medium. The ideal

would be that the unreliable medium combined with modules Mi is equivalent to a reliable medium.

But in reality, it is not always possible.

9.2. Classical examples

9.2.1. Transport Layer ([Ta90])

 If the medium is made up of the three basic layers (physical, data linker and network), the added
modules Mi can be the transport layer. If for instance the network is unreliable and generates N-Reset,

then the transport protocol is of class 4. For the protocol entities, the transport service is then a reliable

medium.

9.2.2. "Alternating bit" protocol ([MB83])

 If the medium can loose or garble messages, the modules Mi can for instance be the "alternating

bit" protocol. On Figure 18, there is an example of two communicating entities PE1 and PE2. Here, for

simplicity, PE1 is a sender and PE2 is a receiver.

Unreliable Medium

s0

s1

rack 0

rack 1

racke

r0

r1

re

sack 0

sack 1

r (p)1s (p)2

M 1

PE1

M 2

PE 2

SAP1 SAP2

Figure 18. Alternating bit for an unreliable medium

si and ri (i=0, 1) represent respectively the sending and receiving of an information frame which

contains the last data block submitted by the user and the "alternating bit". Similarly, the operations

page 20

sacki and racki are the sending and receiving of an acknowledge frame which contains only a single

bit. The operations re and and racke are a reception of a frame in error.
Specifications of the unreliable medium, of the sender (M1) and of the receiver (M2) are given in

[MB83], respectively on Figures 10.a, 10.b and 10.f.

10. Conclusion

 A method for deriving protocol for real-time applications is proposed in [KBD93]. In this paper, we

improve and extend this method. We improve it by minimizing the number of exchanged messages.

Consequences of this improvement are :

 - conditions for existence of solutions are less strong. In some cases, approach in [KBD93] does not

derive a protocol which respects a desired service, when the improved approach gives a solution.

 - temporal requirements on derived protocols are less strong.

Extension of [KBD93] is done by considering an unreliable medium.

As in [KBD93], the time requirements can be calculated statically or dynamically. In the dynamic case, a

method for exchanging complete temporal informations between entities is proposed. In this case,

synchronization of local clocks is not necessary, so a global clock is not necessary. It is possible

because exchanged informations are not absolute, but relative. The dynamic case is interesting because

the receiving protocol entities use more efficiently the time allocated to them to provide the service. In

this paper, we give the same examples (sections 8) than those in [KBD93], but the derived protocols are

not the same. Let's notice that the proposed algorithm can be useful in other areas than

telecommunications (robotics ...) where several systems interact with each other to perform tasks in

bounded delays. But there is a restriction : tasks are not concurrent.

At the present time, we are working for the two following improvements ([KBD94]):

 - considering concurrent tasks ,

 - considering time requirements between events which are not consecutive.

REFERENCES

[Al90] R. Alur, C. Courcoubetis and D. Hill, "Model checking for real-time systems." Proceedings of the 5th
Symposium "Logic in computer Science", June 1990.

[BC79] W.A. Barrett and J.D. Couch, " Compiler Construction: Theory and Practice ", Publisher: Science

Research Associates, Inc. 1979.

[BD91] B. Bertomieu and M.Diaz, "Modeling and verification of time dependant systems using Petri nets." IEEE

Transactions of Software engineering, vol.17, No 3, March 1991.

page 21

[BG86] G.v. Bochmann and R. Gotzhein, "Deriving protocols specifications from service specifications."
Proceedings du Symposium ACM SIGCOM '86, Vermont, USA, pp.148-156, 1986.

[CL88] P.Y.M. Chu and M.T.Liu, "Synthesizing Protocol specifications from service specifications in FSM

model." Proceedings IEEE Computer Networking Symposium 1988.

[KHB92] C. Kant, T. Higashino and G.v. Bochmann, "Deriving protocol specifications from service

specifications written in LOTOS." Rapport interne No 805, Département d'Informatique et de Recherche
Opérationnelle. Faculté des arts et des sciences, Université de Montréal, January 1992.

[Ka91] M. Kapus Kolar, "Deriving protocol specifications from service specifications with heterogeneous timing

requirements." Proceedings IEEE Int. Conf. on Software Engineering for real time systems, United-
Kingdom, 1991.

[KBD93] A. Khoumsi, G.v. Bochmann, and R. Dssouli, ''Dérivation de spécifications de protocoles à partir de

spécifications de services avec contraintes temporelles.'' Colloque Francophone pour l'ingénierie des
protocoles (CFIP), Montréal, September 1993.

[KBD94] A. Khoumsi, G.v. Bochmann, and R. Dssouli, ''Deriving protocol and medium specifications from

service specifications for concurrent and real-time distributed discrete event systems. " Report in preparation.

[KR91] M. Kapus Kolar and J. Rugelj, "Deriving protocol specifications from service specifications with simple

relative timing requirements." Proceedings ISMM Int. Workshop on parallel computing, Italy, 1991.

[RDU85] C.V. Ramamoorthy, S.T. Dong and Y. Usuda, "An implementation of an automated protocol

synthesizer (APS) and its application to the X21 protocol." IEEE Transactions on Sofware Engineering, Vol.
SE-11, No 9, pp. 886-908, Sept. 1985.

[RBC92] N. Rico, G.v. Bochmann and O. Cherkaoui, "Model-Checking for real-time systems specified in

LOTOS." CAV 1992.

[Si82] D. P. Sidhu, "Rules for synthesizing correct communication protocols." ACM SIGCOM comput.

Commun., Rev. Vol. 12, No 1, pp.35-51, January 1982.

[Sid92] D. P. Sidhu, "Protocol design rules, Protocol specification, testing and verificaation." Ed. Sunshine C.,

North-Holland, pp.283-300, 1982.

[SP90] K.Saleh and R. Probert, "A service-based method for the synthesis of Communications protocols."

International Journal of Mini and Microcomputers, Vol. 12, No 3, 1990.

[Ta90] A. Tanenbaum, "Réseaux : Architectures, protocoles, applications" InterÉditions, Paris 1990.

[ZWRCB80] Zafiropulo, C.H. West, H. Rudin, D.D. Cowan, and D. Brand, "Towards Analyzing and

Synthesizing Protocols ", IEEE Transactions on Communications, Vol.28(4), April 1980, pp.651-661.

