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Abstract. In [KBD93] and in this paper, service and protocol are specified by timed automata. In [KBD93], a method for 

deriving real-time protocol specifications from service specifications is proposed. In this paper, we improve and generalize 

this method. Improvement is made by minimizing the number of exchanged messages between protocol entities. In this 

case, temporal requirements on protocol are less strong than in [KBD93]. Generalization is made by considering an 

unreliable medium. An error-recovery capability is then necessary.  
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1.  Introduction   
 

 A way for specifying real-time applications is to use timed automata, where executions of 

transitions are associated to temporal conditions. In this paper, conditions represent temporal 

requirements only between consecutive transitions. For instance, we can specify that the delay between 
a data transmission and its reception must be smaller than a value tmax. More generally, a time between 

two consecutive events must be in an interval [tmin, tmax]. In [KBD93], we propose a method for 

generating timed automata specifying the protocol from a timed automaton specifying the desired 

service. In this paper, we firstly improve this method by proposing a way for reducing the number of 

synchronization messages exchanged between protocol entities. We show that the temporal 

requirements synthesized for the protocol entities are less strong than those generated in [KBD93]. 

Secondly, we show that our method can be used even if the medium is unreliable, provided that few 

modules are added to protocol entities: one module per protocol entity.  
 

 The remaining of this paper is organized as follows.  In section 2, we show how services and 

protocols for non-real-time applications are specified. In section 3, we introduce the basic principle for 

deriving protocol entities, and we improve the way this principle is used in [KBD93] by minimizing the 

number of exchanged messages. Afterwards, we present some rules for deriving protocols without real-
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time requirements. In section 4, we describe how temporal requirements are specified in services and 

protocols. In section 5, we explain the approach used for calculating temporal requirements for protocol 

entities from temporal requirements on the service. In section 6, we reslove the problem in three cases, 

one static and two dynamic. We show that the obtained temporal requirements are less strong than 

those in [KBD93]. In section 7, we present the different steps used for deriving protocol specifications 

for real-time applications. In section 8, few examples illustrate our method. In section 9, we consider 

that the medium is unreliable. We show that the protocol entities synthesized for a reliable medium can 

be used for an unreliable medium. In this case, a protocol entity communicates with the medium via a 

module which makes the unreliability of the medium invisible by the protocol entity.  Finally, section 

10 includes some conclusion remarks as well as points for futur research.   

       
2. Service and protocol specifications for non real-time applications 
 

2.1.  Service specification  
 

 A service desired by the user is described by a FSM, noted SS, which specifies the sequences of 

service primitives (SP) we would like to observe at the different service access points (SAPs). To each 

SAP corresponds one protocol entity (PE) and we will not make a distinction between a PE and its 

corresponding SAP.  Transitions of SS are defined by three parameters (fig.1) which are : 

  - the service primitive E executed by the transition, 

  - a number a identifying the entity or  the SAP  where  the  service  primitive  E  is  executed.  
     This   entity is noted PEa , and 

  - a number p identifying the transition, which is noted Tp=(E,a).   
 

T  = (B, 4)       T   = (B, 1)       T   = (C, 4)4 5 6

T  = (A, 1)      T   = (B, 3)       T   = (C, 2)2 31
T1

T2

T4

T5

T63T

1

2

3 4  
Figure 1. Service specification  

 

 A transition is then designated by Tp=(E,a) and means that the primitive E is executed in PEa. As 

in [SP90, KBD93], for a state e of SS, out(e) et in(e) are respectively the sets of SAPs corresponding to 
the outgoing and ingoing  transitions. Example :  on  Figure 1  in(2)={SAP1, SAP2, SAP4},  and 

out(2)={SAP1,SAP3}.  
 

2.2. Protocol specification 
 

A protocol entity PEa is described by a FSM, noted PSa (fig. 6), which has three types of transitions.  
 

First type      : execution of a service primitive  
Second type : the sending of a message is defined by si(p), and means "message parameterized by p is 

sent by PEa to entity PEi".   
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Third type  : reception of a message is defined by ri(p), and means "message parameterized by p is 

received by PEa from PEi".  
3.  Deriving protocol entities for non real-time applications 
 

3.1. Principle of derivation 
 

 Deriving protocol consists on generating as many finite automata as the number of protocol 
entities. Each of these FSMs is noted PSi and  specifies action sequences executed by the protocol 

entity PEi. For providing the desired service,  the  different PEis  will  exchange  synchronization 

messages  through a reliable medium. The basic principle used for deriving protocol is rather simple : 
when, in the service, two consecutive primitives A and B are executed by two different entities PEa and 

PEb, then : 

  - after the execution of A by  PEa, this one sends a message m to entity  PEb 

  - after reception of the message m by  PEb, this one executes B 
 

If after execution of the service primitive A by PEa, there is a choice between k service primitives Bi  

executed by PEbi (for i=1, 2, ... , k) (fig.2), the basic principle is then used in [KBD93] as follows. When 

PEa executes transition Tp, it decides which transition among Tpi (for i=1, 2, ... , k) must be executed. It 

sends then the same message to all PEbi (PEa). The message contains the following two parameters: 

  - the identifier p of the executed transition Tp, 

  - the identifier pj of the chosen transition Tpj to be executed.  
 

T  =(A, a)

T   =(B1, b1)

T   =(Bk, bk) 

n
p

p1

pk

 
Figure 2. Choice between several actions. 

 

All entities PEb1 to PEbk receive the message sent by PEa but only the chosen entity executes its 

transition. With this method, PEa may possibly send an important number of messages to inform one 

entity that  it can execute its transition, and all other entities that they must do nothing. For a state e of 

SS, the number of messages is equal to the cardinal of out(e), noted |out(e)|. Our improvement here is 
that PEa must send only one message, to the selected entity to inform it that it can execute one of its 

transitions.  
 
3.2. Rules for deriving protocol entities 
 

3.2.1. Transformation of the service specification 
 

 The first step for deriving protocol is to transform the service specification SS into a specification 

TSS (Transformed SS). The transformation consists in two steps. 
 

First step     : each transition of SS :      n1 n2
T  =(E,a)p

 

                      is replaced by           :      
n1 n2

T  =(E,a) t(p)p
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                      where t(p), which is said transition of type t(),  is an intermediate transition used in the 

following steps for deriving protocol.  
 

Remark : If a state e of the generated specification TS is reachable by a transition t(p), its outgoing 

transitions are not of type t(). 

Second step : The specification TS, generated from SS in the first step, is transformed into an  

equivalent TSS. From every state e of TSS, the following condition C1 must be respected.  
 

C1 = (C1.a OR C1.b) where :   

       - C1.a  : only a transition t(p) is executable from e (fig. 3.a), 
 

       - C1.b  : no transition t(p)is executable from e, and all executable outgoing transitions Tp are 

executed by a same protocol entity  PEb (fig. 3.b),  i.e.,  cardinal of out(e) is  equal to one (|out(e)|=1).                          

e
t(p)

T   =(B1, b)

T   =(Bk, b) 

p1

pk

e

 
3.a. outgoing transition t(p)               3.b. outgoing transitions Tp 

 

Figure 3. Outgoing transitions in a state of the transformed specification TSS. 
 

The way for obtaining TSS from TS is the following. For every state e of TS reachable by  transition(s) 
of type t() (fig. 4.a), e is replaced by as many states ei as the cardinal of out(e) (fig. 4.b) . Outgoing 

transitions from states ei  - which are not of type t() - respect the condition C1.b  and the two following 

conditions C2 and C3. 
 

C2: Outgoing transitions of two different states ei and ej of TSS, generated from a same state  

       e of TS, are executed by two different protocol entities.  
 

C3: The sets of ingoing transitions of two different states ei and ej of TSS, generated from a  

       same state e of TS, are equal to the set of ingoing transitions of state e . 

 

e

T   =(E1, b)p1

T   =(E3, b) p3







T   =(E2, c)p2

t(p)


t(q)

e1

T   =(E1, b)p1

T   =(E3, b) p3







T   =(E2, c)p2
e2

t(p)



t(q)

t(p)

t(q)

 
                          4.a. State e in TS                                4.b. Transformation of e in TSS 

Figure 4. Example of transformation from SS to TSS 
 

Remarks : - if two states n1 and n2 of TSS are connected by a transition t(p) then |in(n1)| =   

                    |out(n2)| = 1 

                 - if TSSTS, then TSS is non deterministic.  

                 - If for every state e of TS,  |ou(e)|=1, then TSS=TS.  

The transformation of the specification SS of Figure 1 gives the specifications TS and TSS on Figure 5.  
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(A,1)
1

t(4)

221 2

32 4
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(B,4)
t(2)
(B,3)

t(2)

t(1) t(1)

(B,1)

t(5)

(C,2)

t(3)

t(3)

(C,4)

t(6)

t(6)

 
5.a. TS                                                    5.b. TSS 

Figure 5. Transformation of specification in Figure 1 

3.2.2. Rules  

From the sevice specification SS, the derivation procedure consists of five steps.  
 

Step 1 : SS is transformed into TSS 
 

Step 2 : From TSS, we generate GPS (global protocol specification) with the following rules : 
 

  - For a transition t(p):         n1
t(p)

n2  
 

    Case a : if in(n1)=out(n2),  the transition becomes : n1


n2                      
     
    Case b : if in(n1)={SAPa}≠out(n2)={SAPb},   

                                                 the transition  becomes: n1 n2
t (p)a

b

 
 

 where: - tb
a(p) means "message parameterized by  p is sent by PEa and then received by PEb ". 

                   -  represents a spontaneous transition. 
 

  - For a transition Tp : it remains unchanged 

Step 3 : For each PEi, we generate GPSi  from GPS by the following rules : 
 

   For a transition Tp=(E,a) :                                  n1 n2
T  =(E,a)p

 
 

     Case a : if a=i,  the transition becomes :          n1 n2
E

 
 

     Case b : if a≠i the transition  becomes:            n1 n2


            
 

      where  represents a spontaneous transition. 
 

   For a  transition tb
a(p) :                                                    n1 n2

t (p)a
b

 
 

     Case a : if a=i (then b≠i), the transition becomes :     n1 n2
s  (p)b

 
 

     Case b  : if b=i (then a≠i), the transition  becomes:    n1 n2
r  (p)a

            
 

     Case c  : if  a≠i  and  b≠i,  the transition  becomes:    n1 n2


            
 

      where sb(p) means " message parameterized by  p is sent to PEb ", 

         and  ra(p) means " message parameterized by p and coming from PEa is received"   
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Step 4 : Transitions  of the different GPSi are considered spontaneous and are removed by  projection 

for obtaining protocol specifications PSi . An algorithm for removing  is given in [BC79]. Intuitively, 

let  A be an automaton containing transitions  and specifying a system A, and let A be the automaton 

obtained by removal of   from A. If an external  observer can detect all transitions but , then  A is the 

specification of A as it is perceived by the observer.  
 

Step 5 : The obtained PSi are minimized, and are transformed into deterministic automata if they are 

non deterministic.  

For our example in Figure 5, we obtain the specifications in Figure 6: 

A

B

s (1)3

r (3)2 s (5)4

r (6)4

r (4)4

B

r (3)2

r (4)4

s (3)1

C

r (2)3

3s (3)

r (6)4r (1)1

r (3)2

s (2)2

B

s (2)4

r (6)4

r (5)1

B

C

s (6)1

r (5)1

r (2)3

s (4)1

3s (6)

r (5)1
r (2)3

 
            6.a. PS1                         6.b. PS2                6.c. PS3                        6.d. PS4 

                                            Figure 6. Obtained protocol specifications . 

We can prove that the unique obtained solution is semantically and syntactically  correct .  The 

semantics is correct means that the derived entities provide the service specified by  SS. Their syntax is 

correct because they are deadlock-free and livelock-free, and no unspecified reception errors are 

possible.   
 

4. Service  and protocol  specifications for real-time applications 
 

4.1. Service specification 
 

On a service specification with time requirements  (SST), each transition is defined by : 

- the three parameters presented in the previous section, 
- a  set  Cp of  time intervals, where p is the number identifying the transition .  

A transition is then defined by Tp=(E,a,Cp), and  the execution of Tp means execution by entity  PEa  of 

action E of the transition Tp. Let's consider for a state n of SST, its k ingoing transitions Tpi, and its m 

outgoing transitions Tqj (Figure 7). The representation of Figure 7 is used for defining the semantics of 

the sets Cqj of the outgoing transitions . Each Cqj contains as many time intervals as there are ingoing 

transitions on state n, i.e.,  it contains k intervals noted  Tpi,qj =[Tmipi,qj; Tmapi,qj]  (for i= 1, 2,  ..., k). 

The semantics of a Tpi,qj is the following:  
 

When state n is reached by  an ingoing  transition Tpi, then : 

  Condition 1 : if the transition Tqj  is executed, it must be executed in the time interval Tpi,qj   

                             after state n has been  reached. 
  Condition 2 : besides,  an outgoing   transition  among all the transitions  Tqj  (j = 1, 2, ... ,  

                        m)  must  inevitably be executed after state n is reached.   
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(E1, a1, C    )p1

(Ek, ak, C   ) pk

n

q1(F1, b1, C   ) 

qm(Fm, bm, C    )

T   =p1

T   =pk

T   =q1

T   =qm

 
 

Figure 7. Ingoing and outgoing transitions on a state in SST  
 

Example: let n be a state with one ingoing transition and two outgoing transitions (fig.8).  

 

 

T   =p1

T   =q1

T   =q2

(E1, a1, C    )p1

q1(F1, b1, C   ) 

q2(F2, b2, C    )

n

 
Figure 8. Example on the definition of the  semantics of time intervals 

 

Each of Cq1 and Cq2 contains  one interval , with Cq1={Tp1,q1} and Cq2={Tp1,q2}.  For example 

Tp1,q1=[1,3] and Tp1,q2=[2,5]. In this case, if Tq1 (resp. Tq2) is executed, it must be executed in the 

interval [1,3] (resp. [2,5]) after the execution of Tp1 (condition 1). Besides, if neither Tq1 nor Tq2 are 

executed in a time equal to 3  after  execution  of  Tp1,  then  Tq2  must inevitably be executed in the 

interval [3,5] after execution of Tp1 (condition 2). With this condition we have no deadlocks due to 

time constraints.  From this semantics, we deduce that if state n is the initial state  then the different 
intervals of each  Cqj are equal. In other words, for each j=1, 2,  ... , m ,  we have 

Tp1,qj=Tp2,qj=...=Tpk,qj .  
 

Remark: Tp  is a transition identified by  p, while  Tp,q is the time interval containing the delay between 

transitions Tp et Tq.  
 

4.2. Protocol specification for real-time applications 
 

 There are three types of transitions in a protocol specification PSTa. 
 

First type     :  execution of a service primitive is defined by  (E, Dp) where :  

                       - E is the name of the service primitive, 
                       - Dp is a set of intervals which represent temporal requirements and whose 

                         semantics is detailed in section 7 (steps 2 and 3). 
 

Second type :  sending a message to another protocol entity is defined by si(p){Sp,b}, where: 

                        - si(p) means  "message parameterized by p is sent by PEa to entity PEi" 

                        - Sp,b is an interval which represents a temporal requirement on si(p). It is  

                          defined in section 5.2. Its semantics is showed in section 7 (step 3).  
 

Third type    :  receiving a message is defined by ri(p). There is no time requirement in this type of  

transition  (fig. 13).  Time  requirements  in  types  one  and  two  are sufficient for 

respecting time requirements in the service .    
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5. Approach for the  problem of computing time requirements  (PCTR)  
 

5.1. Transforming SST into TSST 
 

 Before computing temporal requirements for protocol entities, the transformation presented in 

section 3.2 must be applied to the timed service specification SST for obtaining the specification TSST. 

The method for obtaining TSST from SST is similar to the method explained in section 3.2.1, if we 
replace transitions Tp=(E,a) by transitions Tp=(E,a,Cp). Therefore, outgoing transitions of a state e in  

TSST which is reachable by a transition t(p), are  executed by a same protocol entity.  

Example of Figure 1 is reconsidered for a real-time application (Fig. 9.a). After transformation, we 

obtain the non deterministic specification of Figure 9.b.  
T  = (A, 1, C  )  

T   = (B, 3, C  ) 

T   = (C, 2, C  )

T   = (C, 4, C  )

T1

T2

T4

T5

T63T

1

2

3 4

1 1

2 2

3 3

4T  = (B, 4, C  ) 4

5T   = (B, 1, C  ) 5

6 6

(B,4,C  )

(A,1,C  )

(B,3,C  ) (B,1,C  )

(C,2,C  ) (C,4,C  )

2

3

5

1

6

4

1

t(4)

221 2

32 4

31
t(2)

t(2)

t(1) t(1)

t(5)
t(3)

t(3)t(6)

t(6)

 
                              9.a. Specification SST                            9.b. Specification TSST 

Figure 9. Example of transformed real-time specification 
 

5.2. Approach for the problem  
 

 For computing time constraints for protocol entities, for every pair of  states n1 and n2 of TSST 

which are connected by  a transition t(p), we must consider the ingoing transition of n1 and all outgoing 
transitions of n2 (Fig.10). In a first time, we consider the case where out(n2)={SAPb}≠in(n1)={SAPa}. 

In other words, the protocol entity PEa (executing the ingoing transition of n1) is different than PEb 

(which executes the outgoing transitions of n2).   
 

T  =p

T   =(E1, b, C    )p1

T   =(Ek, b, C   ) pk

n2
(E, a,C  )p

p1

pk

n1
t(p)

 
Figure 10. Outgoing transitions on a state of TSST 

 

Let then  Tp be a transition in an entity PEa followed by several transitions Tpj, for j=1, 2, ..., k,  in PEb. 

After Tp,  PEa must send a message to PEb (by sb(p) ). When PEb receives the message (by ra(p) ), it 

executes one of the k transitions Tpj ( for j=1, 2, ..., k).  The sequencing of events between Tp and Tpj is 

represented in function of time as in Figure 11.a.  
 

time axis  t j

t s t m tj r

s  (p)bTp r  (p)a Tpj

s  (p)b r  (p)a

PE PEa b

TpjTp

 
        11.a. Representation in function of time                               11.b. Representation by entity 

Figure 11. Representation of events between Tp and Tpj  
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The temporal requirements in the service impose that the time tj , between  executions of Tp and Tpj , 

belongs to Tp,pj=[Tmip,pj; Tmap,pj]. We suppose that we have a model of the reliable medium, i.e.,  the 

transit delay tm , in the medium, of a message sent by PEa and received by PEb, belongs to an interval 

Ma,b=[Mmia,b, Mmaa,b] which depends on PEa and PEb.  

The aim of temporal requirements derivation on protocol entities is the the following one.  

From requirements  tm Ma,b  and t j Tp,pj  ( for j= 1, 2, ...,  k),  we must derive constraints on ts  and t 
jr  ( for j= 1, 2, ...,  k) which ensure that temporal requirements  t j  Tp,pj   on the service  will be  

respected . These  derived constraints  are written in the form ts  Sp,b=[Smip,b ,Smap,b],  and tjr  R p,pj 

=[Rmip,pj , Rmap,pj ],  for j= 1, 2, ...,  k.  
 

Requirements on ts and tjr are temporal requirements on the protocol. In fact, ts is the delay between Tp 

and sb(p) which are executed in PEa, and tjr is the delay between ra(p) and Tpj which are executed in 

PEb (fig. 11.b).  
 

Remark : If  PEa=PEb, no message is sent. In this case we take ts=tm=0. So the derivation is trivial: 

tj=tjr, then Sp,b=[0;0], Ma.b=[0;0] and Rp,pj=Tp,pj . 
 

The following notations will also be used :  
 - Vmip,b et Vmap,b are parameters belonging to [0,1]. They are defined for a transition Tp  

   (executed by an entity PEa) and a protocol entity PEb (≠PEa) which executes transitions   

   consecutive to Tp. They are used to choose one solution among an infinite number of  

   solutions. If we obtain, as we will see later, for Sp,b=[Smip,b, Smap,b] the constraint   

   Smap,b[], we choose  Smap,b = +Vmap,b*(-). In the same manner, if we obtain  

   Smip,b [], we choose Smip,b =  + Vmip,b*(). 
 

 - Addition and subtraction of two intervals [a, b] and [c, d] are defined by  

   [a, b] + [c, d] = [a + c, b + d] ,   and  [a, b] - [c, d] = [a - c, b - d]. 
 

If we summarize, the entries of  PCTR  for protocol entities are :   
 - Tp,q and Ma,b for every pair of consecutive transitions Tp and Tq , respectively executed in  

    PEa and PEb (if PEa=PEb then Ma,b=[0;0]),   

 - Vmip,b and Vmap,b for every pair (Tp, PEb) where PEb, executes transitions which succeed to  

   Tp. Vmip,b and Vmap,b are used to choose a particular solution among an infinite number of  

    solutions. 
 

Solutions of PCTR  are : 
 - Sp,b for every transition Tp executed by an entity PEa and followed by transitions executed   

   in PEb≠PEa  (if PEb=PEa, we can take Sp,b=[0;0]),  

 - Rp,q for every pair of consecutive transitions Tp and Tq .   
 

We show in the next section 5.3 that there exist conditions on entries Tp,q and Ma,b of PCTR for the 

existence of solutions.   
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5.3. Condition for existence of solutions 
 

 For every two states n1 and n2 of TSST connected by  a transition t(p), we consider then the 
ingoing transition Tp of n1 (executed in PEa), and all outgoing transitions  Tpj , for i=1, 2, ... , k ,   

(executed in PEb) of n2  (fig. 10).  From Figure 11.a,  we can write :  

for  j= 1, 2, ..., k  :            tj  Tp,pj  implies   ts + tm + tjr   Tp,pj                            (1) 
  
As  tm  Ma,b=[Mmia,b, Mmaa,b], then  condition (1) implies :  
 

for  j= 1, 2, ..., k :            ts + Mmia,b  + tjr  ≥ Tmip,pj                                              (2) 
 

      ts + Mmaa,b + tjr  ≤ Tmap,pj                                              (3) 

Formulae (2) and (3) imply 
 

     for  j= 1, 2, ..., k :             Tmap,pj - Mmaa,b ≥ sup(Tmip,pj - Mmia,b; 0)                   (4) 

Condition (4) corresponds to one pair of states n1 and n2 of TSST which are connected by  a transition 

t(p). Therefore, for every pair of states n1 and n2 connected by a transition of type t(), the resolution of 

PCTR consists in : 

       - checking if condition (4) is respected  

       - if the checking is positive then : 
          * interval Sp,b is calculated (constraint on ts ),    

          * intervals Rp,pj , for j=1, 2, ... , k , are calculated (constraints on tjr ,  for j=1, 2, ... , k).   
 

5.4. Comparison with [KBD93]  approach   (old approach)   
 

 In [KBD93], the resolution of PCTR is done from the specification SST . In our improved approach, 

the resolution is done from the transformed specification TSST . Therefore, condition (4) with the old 

approach is more restricting than here. In fact, a condition C of existence from SST can be a 

conjunction of several conditions of existence from TSST, and then C is respected if all those 

conditions are respected. An example is given on Figure 12.  
 

T =(B,1,{T   })2 1,2

T =(C,2,{T   })3 1,3

T =(A,1,{T   ;T   })1 2,1

1

t(1)

21

3,1

t(1)

t(2)

t(3)

T =(A,1,{T   ;T   })1 2,1 3,1

T =(B,1,{T   })2 1,2

T =(C,2,{T   })3 1,3

1 2

4

5

3

 
                                   12.a. SST                                        12.b. TSST       

Figure 12. Example for comparing conditions for existence of solutions 
 

From SST, a condition corresponds to :  

   - a state e of SST, 

   - one of the ingoing transitions of e, 

   - all outgoing transitions of e. 
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We have then three conditions of existence (i, j, and k), which are the following.  
 

  - for state 1 and ingoing transition T2 :  Tma2,1  ≥ Tmi2,1                                                      (i) 

  - for state 1 and ingoing transition T3 :  Tma3,1 - Mma2,1 ≥ sup(Tmi3,1- Mmi2,1 ; 0)            (j) 

  - for state 2 and ingoing transition T1 :  Tma1,2  ≥ Tmi1,2                                                    (k1)  

                                                               :  Tma1,3 - Mma1,2  ≥ sup(Tmi1,3- Mmi1,2 ; 0)         (k2) 

where :  
  (i)    is a condition on temporal requirements between T2 and T1  

  (j)    is a condition on temporal requirements between T3 and T1  

  (k1) is a condition on temporal requirements between T1 and T2  

  (k2) is a condition on temporal requirements between T1 and T3  

  and condition (k) is the conjunction of (k1) and (k2).  

If for instance only (k2) is not respected, then condition (k) is not respected, and we consider with 
approach in [KBD93] that the temporal requirements cannot be respected for transitions T2 and T3 

(which succeed to T1). . The last assumption is too restricting, because in reality only temporal 

requirements between executions of T1 and T3 cannot be respected (because k2 is not respected).  
 

With the improved approach,the restriction does not exist. In fact, from TSST there are four 

independent conditions (i, j, k1, and k2). If only (k2) is not respected, only temporal requirements  
between T1 and T3, are considered impossible to respect.  

 

The new approach has then a second advantage. Besides minimizing the number of messages, 

sometimes we can have solutions for PCTR from TSST when there are not from SST.  
 

6. Resolution of PCTR 
 

 For resolving PCTR, we consider the three following cases :  
 

Static case                  :  messages transmitted by  the protocol entities contain no temporal  

                                       information , 

First dynamic case     :  the PE put a temporal information in messages they send,  

Second dynamic case :  besides the temporal information put by the PE,  the medium  adds a second 

temporal information in the message. This information is an estimation of the transit delay of the 

message in the medium. This third case is processed in detail in section 6.3, the receiving entity can 

have a good temporal information without using a global clock. 
 

6.1. Static case 
 

 This case is static because the intervals Sp,b and Rp,pj are constant. When an entity PEa executes a 

transition Tp and decides to send a message to entity PEb, the time ts, between execution of Tp and 

transmission of the message, belongs to a constant interval Sp,b.  When PEb receives the message from 

PEa, it can execute a transition Tpj, among the k possible transitions (for i=1, 2, ... , k ), in a time tjr 

belonging to a constant interval Rp,pj . The latter depends on Tp,pj - Ma,b - Sp,b .  
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If  Sp,b  and  Rp,pj  are such that condition (1) is respected for every ts  Sp,b  and tjr  Rp,pj and tm  

Ma,b, then it is equivalent to have :  

     for  j= 1, 2, ..., k :     Sp,b + Ma,b + Rp,pj   Tp,pj                                        (5)  
 

that is to say :  for  j= 1, 2, ..., k :     Smip,b  + Mmia,b  + Rmip,pj  ≥ Tmip,pj                        (6) 
 

            Smap,b + Mmaa,b+ Rmap,pj  ≤ Tmap,pj                         (7) 
Resolution : 

  Condition  (7) implies :       Smap,b   [0;  minj=1 to k (Tmap,pj - Mmaa,b)]             (8) 

  then (6) and (7) imply  :        Smip,b   [sup(U, 0); Smap,b ]                                    (9) 
 

  with  U =  maxj=1 to k (Smap,b  + (Mmaa,b - Mmia,b) - (Tmap,pj - Tmip,pj))              (10) 
 

By using parameters Vmap,b   and Vmip,b , we choose a particular solution for Smap,b and Smip,b which 

respects (8) and (9).  We have then :  
                                      Smap,b = Vmap*minj=1 to k (Tmap,pj - Mmaa,b )                           (11) 

 

                                       Smip,b =  sup(U, 0) + (Smap,b - sup(U, 0))*Vmip,b                      (12) 
 

We choose afterwards the less restrictive solutions on  Rp,pj=[Rmip,pj; Rmap,pj]  respecting   (6) and (7). 

We have then : 
 

         for  j= 1, 2, ..., k :      Rmap,pj  = Tmap,pj - Mmaa,b - Smap,b                         (13)  
 

                                                    Rmip,pj  = sup(Tmip,pj - Mmia,b- Smip,b; 0)                (14) 
 

 We can easily check that the obtained service is  included in  the desired  service  (safety).  
It is better to choose Vmap,b as small as possible and Vmip,b as big as possible. This implies to have 

Smap,b and Smip,b as small and close as possible. Rmap,pj and Rmip,pj will be then the less constrained as 

possible, and the receiving entities will have as much time as possible to provide the service. 
 

6.2. First dynamic case 
 

 This case is dynamic because the receiving PEb calculates dynamically the interval Rp,pj, when it 

receives the message from PEa. In fact, after execution of Tp,  PEa sends to PEb a message with 

information ts.  And PEb calculates Rp,pj , in function of ts and of Xp,pj =Tp,pj - Ma,b.   
 

Resolution:  
 

  formula (3) implies   ts + Mmaa,b ≤ Tmap,pj . If Sp,b=[Smip,b;Smap,b] is an interval always containing  ts 

then we have the condition (8) as in the static case: 
 

Smap,b   [0;  minj=1 to k (Tmap,pj - Mmaa,b )]                     (8) 
      
And  Smip,b is less constrained than in the static case :  
 

                                         Smip,b   [0 ; Smap,b ]                                                        (15) 
 



                                                                                                                                                          

page 13 

As in the static case , a particular solution is chosen by using parameters Vmap,b  and Vmip,b  : 
  

                                          Smap,b = Vmap,b*minj=1 to k (Tmap,pj - Mmaa,b )                     (11) 
 

                                          Smip,b =   Smap,b*Vmip,b                                                           (16) 

 If  ts , which belongs to [ Smip,b; Smap,b ] ,  is the delay when the message is sent after  execution of Tp, 

the receiving entity knows it and can choose : 
  

                for  j= 1, 2, ..., k :    Rmap,pj  (ts) = Tmap,pj - Mmaa,b - ts                              (17)  
 

                                          Rmip,pj  (ts) = sup( Tmip,pj - Mmia,b - ts;  0)                 (18) 
 

 We can easily check that the provided service is included in the desired service. With the 
information ts, the receiving entity  PEb will use the time allocated to it to provide the service more 

efficiently then in the static case.  In fact, time interval Rp,pj(ts) ( (17) and (18) ) is less restricting than 

interval Rp,pj  ( (13) and (14) ), because Rp,pj is strictly included in Rp,pj(ts). Intuitively, in dynamic 

case the receiving entity PEb has a more accurate information about when Tp has been executed by 

PEa. In the static case, it has to suppose the "worst" cases for the time ts . Therefore, sometimes in static 

case it has to "hurry up", when in dynamic case it has not to.  
 

6.3. Second dynamic case 
 

 In this case, PEb receives the message with informations ts and tm, and it calculates dynamically 

the interval Rp,pj , in function of these two informations  and of Tp,pj.  
 

Resolution : 
 

Sp,b = [Smip,b ; Smap,b]  is resolved as in section 6.2 ( (11) and (16) ).  Rmap,pj  and Rmip,pj  are calculted 

dynamically by PEb with the following formulae : 
 

             for  j= 1, 2, ..., k :        Rmap,pj (ts, tm) = Tmap,pj - ts - tm                                   (19)  
 

                                                  Rmip,pj (ts, tm) = sup( Tmip,pj - ts - tm;  0)                      (20) 
 

We can check that the desired service is respected (safety) by the protocol. With information tm, the 

receiving entity PEb uses more efficiently the time allocated to it to provide the service. In fact, Rp,pj(ts)   

( (17)  and (18) )  is strictly included in  Rp,pj(ts, tm)  ( (19) and (20) ).   
 

6.4. Comparison with [KBD93]  approach 
  

 Temporal requirements on protocol obtained with [KBD93] approach are more restricting than 
those derived with our improved approach. In fact, intervals containing Smap,b and Smip,b ((8), (9) and 

(15) ) are bigger than or equal to those obtained in [KBD93]. With the improved approach, Sp,c and Rp,pj  

are independent when Tpj is  executed by PEb≠PEc.  
 

If we recapitulate, advantages of the approach here are :  
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  - the number of exchanged messages is minimized, 

  - conditions for existence of solutions are less strong, 

  - derived temporal requirements are less restricting. 
 

6.5. Transit delay in the medium  
 

 In the second dynamic case, time tm  is not an accurate value. It is an estimation of the  transit 

delay in the medium. In fact,  if the  message  goes  through  many  nodes  before reaching  its  
destination, tm comprises estimations of  : 

  *  transmission and propagation delays between the different adjacent nodes,  

  *  the time passed in the nodes (processing and especially waiting in queues) . 
 

For these reasons, positive parameters   and  can be added in formulae (19) and (20) which become :  
 

                 for  j= 1, 2, ..., k :           Rmap,pj (ts, tm) = Tmap,pj - tm - ts -                            (21)  

                                                 Rmip,pj (ts, tm) = sup( Tmip,pj - tm - ts + ;  0)            (22) 
 

This is equivalent to estimate the transit delay in the interval  [ tm -  ; tm + ] . 

7. Deriving protocol  for real-time applications  
 

 The first step for deriving protocol is to transform the service specification SST into an equivalent 

specification TSST (Transformed SST). The derivation procedure consists then of five steps. 
 

Step 1 : The service specification SST is transformed into the equivalent TSST 
 

Step 2 : From the specification TSST,  we generate GPST defined  below. 

   - For a transition Tp=(E,a,Cp) :      n1 n2
T  =(E,a,C  )p p

 

      It becomes                            :      n1 n2
(E,a,D  )p

 
 

   - For a transition t(p):         n1
t(p)

n2  
 

    Case a : if in(n1)=out(n2),  the transition becomes  :     n1


n2                      
     
    Case b : if in(n1)={SAPa}≠out(n2)={SAPb},   

                                                 the transition  becomes:    n1 n2
t (p){S    }a

b p,b
 

  where : 

  - tb
a(p) means "message parameterized by  p is sent by PEa and then received by PEb ",  

  - Sp,b is an interval defined in section 5.2,  

  - Dp is the set of intervals : 

    * Rpi,p                    in the static case,  

    * Xpi,p=Tpi,p-Mbi,a in the first dynamic case, where PEbi is the entity which executes a transition Tpi,  
    * Tpi,p                     in the second dynamic case. Then Dp=Cp .  
   

  -  represents a spontaneous transition, 
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  - Tpi are transitions which precede Tp in SST.  
   

In fact :  
   - In the static case, PEa must know the constant interval Rpi,p  (by formulae (13) and  (14)) ,  

     for  executing  Tp after transition Tpi , 
  

   - In the first dynamic case,  PEa must know the constant  interval  Xpi,p = Tpi,p - Mbi,a (and parameter 

ts if PEbi≠PEa), for calculating dynamically Rpi,p (by formulae (17) and (18)) and for  executing  

Tp after transition Tpi , 
 

   - In the second dynamic case, PEa must know the constant interval Tpi,p  (and parameters ts and  tm  if 

PEbi≠PEa), for calculating dynamically Rpi,p  (by formulae (19) and (20)) and for executing Tp after 

transition Tpi . 
 
 

Remark : Intervals in Dp have not the same semantics in the three cases. In the static case,  Rpi,p are 

constant temporal requirements, while in the two other cases, Xpi,p and Tpi,p are constant intervals used 

for dynamic calculation of the time requirements on Tp when it succeeds to transition Tpi  in SST.  
 

The complexity of the algorithm for generating GPST  is in   O(n*e*s)  with : 

  - n : number of states of TSST, 

  - e : maximum number of ingoing transitions by state in TSST,   

  - s : maximum number of outgoing transitions by state in TSST. 
 
Step 3 :  For each PEi we generate GPSTi from GPST by the following rules : 
 

  - For a  transition tb
a(p){Sp,b} :                                      n1 n2

t (p){S    }a
b p,b

 
 

    Case a : if a=i (then b≠i), the transition becomes :      

                   - in the static case :                                       
s (p){S    }

n1 n2p,bb
 

                            - in the two dynamic cases :                         n1 n2
s  (p,t  ){S    }p,bb s

 
 

    Case b  : if b=i (then a≠i), the transition  becomes: 

                  - in the static case :                                         n1 n2
r  (p)a

  

                  - in the first dynamic case :                            n1 n2
r  (p, t  )a s

           

                           - in the second dynamic case :                       n1 n2
r  (p, t  , t   )a s m

 

     Case c  : if  a≠i  and  b≠i,  the transition  becomes:    n1 n2


            
 

      where : 
         - sb(K) means " message parameterized by  K is sent to PEb ", 

         - sb(K){Sp,b} means that sb(K) is executed after Tp in a time belonging to Sp,b. 

           See sections 6.1 to 6.3 for calculation of Sp,b. 

         - ra(K) means " message parameterized by K and coming from PEa is received"   
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  - For a transition Tp=(E,a,Dp) :                          n1 n2
(E,a,D  )p

 
 

    Case a : if a=i,  the transition becomes :          n1 n2
(E,D )p

 
 

    Case b : if a≠i the transition  becomes:            n1 n2


            
 

     where :  

      -  represents a spontaneous transition, 

        - (E,Dp) in GPSTi  means : for every transition Tpi =(Ei,bi,Cpi ) preceding Tp=(E,a,Cp) in  SST, Tp  

must be executed in a time belonging to the interval Rpi,p , after execution of :  

          > Tpi  executed by PEbi=PEa , 

          > rbi(pi, ...) if Tpi is executed by PEbi≠PEa . 
 

        * in the static case : the constant interval Rpi,p belongs to Dp.  See section 6.1 for calculating Rpi,p.  
 

        * in the first dynamic case : Rpi,p is calculated dynamically in function of the constant  interval   

Xpi,p= Tpi,p - Mbi,a and of ts (ts=0 if PEbi=PEa), where Xpi,p belongs to Dp.  See section 6.2 for  

calculating Rpi,p.  
 

         * in the second dynamic case : Rpi,p is calculated dynamically in function of the constant  interval 

Tpi,p, of  ts  and of  tm (ts=tm=0 if PEbi=PEa),  where Tpi,p belongs  to Dp . See  section  6.3  for  

             calculating Rpi,p.  
    

Step 4: The transitions  are considered spontaneous and are removed by projection (see also section 
3.2.2). We obtain then timed protocol specifications  for each PEi. 

 

Step 5 : The obtained specifications are minimized, and transformed into deterministic automata PSTi 

if they are non deterministic.  
 

8. Examples  
 

8.1. Example 1  
 

 We consider example of Figure 9. This example is also  in [KBD93] with the old approach. We 
have  C1 = {T4,1},   C2 = {T1,2 ; T3,2 ; T6,2} ,   C3 = {T2,3},  C4 = {T2,4},   C5 = {T1,5 ; T3,5 ; T6,5} ,   

C6 ={T5,6}.   

For instance T4,1=[3, 6],  T1,2 =[5,10],  T3,2=[4,8],  T6,2=[4,10] , T2,3=[3,8] ,  T2,4=[4,9] ,  T1,5=[1,3] ,  

T3,5=[4,8] ,  T6,5=[3,8] ,  T5,6=[4,10]. And we choose for instance the medium Mu,v=[2,4] for every  

(u,v), and at last  Vmap,a=Vmip,a=0.5  for (p,a){(1,3);(2,2);(2,4);(3,1);(3,3);(4,1);(5,4);(6,1);(6,3)}. 
 

The derived protocol specifications  are represented below (Figure 13).  
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1
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s (1){S   }3 1,3

s (5){S   }4 5,4

1

2

3 4 5 6

 
            13.a. PST1                     13.b. PST2      13.c. PST3                         13.d. PST4 
 

Figure 13. First example of protocol specifications with time requirements 
 

 With D1={R4,1}, D2={R1,2; R3,2; R6,2}, D3={R2,3}, D4={R2,4}, D5={R1,5; R3,5; R6,5}, D6={R5,6} .  
 

Remark: Synthesized protocol specifications can contain redundant temporal requirements. For 
example on Figure 13.a, D5={R1,5; R3,5; R6,5}. But for transition  (B,D5) from state 2, only R1,5 is 

necessary. And for transition (B,D5) from state 4, only  R3,5 and R6,5  are necessary.  
 

R1,5 contains the delay between executions of (A,D1) and  (B,D5),  

R3,5 contains the delay between executions of  r2(3)    and  (B,D5),  

R6,5 contains the delay between executions of  r4(6)    and  (B,D5),  

From formulae  (11), (12), (13) and  (14), we calculate : 
 

    S1,3 = [1.5; 3]         R1,2  = [1.5; 3]                               S3,3 = [1; 2]            R3,2  = [1; 2]        

                                    R1,5  = [1; 3]                                  S4,1 = [0.5; 1]         R4,1  = [0.5; 1]   

    S2,2 = [1; 2]            R2,3  = [0; 2]                                   S5,4 = [1.5; 3]         R5,6  = [0.5; 3]  

    S2,4 = [1.25; 2.5]    R2,4  = [0.75; 2.5]                           S6,1 = [1; 2]            R6,5  = [0 ; 2]  

    S3,1 = [1; 2]            R3,5  = [1; 2]                                   S6,3 = [1.5; 2]         R6,2= [0.5; 3]  
 
8.2. Example 2 
 

 This example also is in [KBD93] with the old approach. Two protocol entities PE1 and PE2 must 

communicate in a connected mode. To reduce calculations, we do the following hypotheses :  
  - connection and disconnection are done by PE1 , 

  - the provider of service in PE2 cannot refuse a connection , 

  - data transfer is done from PE1 to PE2 ,  

  - PE1 sends a new data only if the preceeding has been received by PE2 . 
 

The executed events are noted TC.rqt, TC.ind, TC.rsp, TC.cnf, TD.rqt, TD.ind, TDt.rqt and TDt.ind . 

TC, TD and TDt are respectively abbreviations of T-connect, T-disconnect and T-data. And rqt, ind, rsp 

and cnf are respectively abbreviations of request, indication, response and confirm. A formal 

representation of service with time requirements is represented on Figure 14, it is inspired by the 

protocol of the transport layer classe 0 ( [Ta90], that is why  primitives have names beginning by letter 

T). We have T1=(TC.rqt,1,C1), T2=(TC.ind,1,C2), T3=(TC.ind,2,C3), T4=(TD.rqt,2,C4), 

T5=(TD.ind,1,C5), T6=(TC.rsp,2,C6), T7=(TC.cnf,1,C7), T8=(TDt.rqt,1,C8), T9=(TDt.ind,2,C9), 

T10=(TD.rqt,1,C10), T11=(TD.rqt,1,C11), T12=(TD.ind,2,C12). Where C1={T2,1, T5,1, T12,1}, C2={T1,2}, 
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C3={T1,3}, C4={T3,4}, C5={T4,5}, C6={T3,6}, C7={T6,7}, C8={T7,8, T9,8}, C9={T8,9}, C10={T7,10, T9,10}, 

C11={T8,11}, C12={T10,12, T11,12}. 

T1
T2

T4

T5

T6 T7

3T

1

2

34 5 6
T8

7
T9

T10
T11

T12

 
Figure 14. Formal specification of the desired service with two communicating entities  

On Figure 14: 
   - T1 to T7  correspond to connection set-up phase. If the connection is accepted, state 6 is  reached.  

   - T8 to T9 represent data transfer phase,  

   - T10 to T12 specify the disconnection phase.   
 

  Let's take for instance T2,1=T5,1=T12,1=[3,6], T1,2=[1,2], T1,3=[3,7], T3,4=[1,2], T4,5=[2,5], T3,6=[2,3], 

T6,7=[4,7],  T7,8=[1,3], T9,8=[2,6], T8,9=[3,6], T9,10=[2,5], T8,11=[0,2], T10,12=T11,12=[3,6]. Let's also take 

the medium Mu,v=[2,4] for every (u,v), and finally  parameters Vma
p,b

=Vmi
p,b= 0.5 for every p=1, 4, 6, 

and 8 to 12.  

The derived protocol specifications with time requirements are represented on Figures 15 and 16, with 

D1={R2,1, R5,1, R12,1}, D2={R1,2}, D3={R1,3}, D4={R3,4}, D5={R4,5}, D6={R3,6}, D7={R6,7}, D8={R7,8, 

R9,8}, D9={R8,9}, D10={R7,10, R9,10}, D11={R8,11}, D12={R10,12, R11,12}. 
 

                           

1

(TC.rqt,D )1

(TC.cnf,D )7

(TC.ind,D )2

r  (12)2

(TDt.rqt,D )8

(TD.ind,D )5

s (1){S   }2 1,2 (TD.rqt,D  )10

(TD.rqt,D  )11

r  (9)2

r  (4)2

s (8){S   }2 8,2

s (10){S    }2 10,2

s (11){S    }2 11,2

r  (6)2

 
  Figure 15. Protocol specification for the communicating entity  PE1 

1

s (4){S   }1 4,1

r  (1)1

r  (10)1

r  (8)1

r  (11)1

s (6){S   }1 6,1

s (9){S   }1 9,1

s (12){S    }1 12,1 (TD.ind,D  )12

(TC.ind,D )3

(TD.rqt,D  )4 (TC.rsp,D )6

(TDt.ind,D )9

 
Figure 16. Protocol specification for the communicating entity  PE2 
 

From formulae (11), (12), (13) and (14) we calculate:    
                                    R1,2  = [1; 2]  

    S1,2 = [0.75; 1.5] ,  R1,3  = [0.25; 1.5] ;       R2,1  = [3; 6]  ,   R3,4 = [1; 2]  ,   R3,6 = [2; 3]   ; 

    S4,1 = [0.25; 0.5] ,  R4,5  = [0; 0.5]      ;       R5,1  = [3; 6]   ;  

    S6,1= [1; 1.5]       ,  R6,7  = [1; 1.5]      ;       R7,8  = [1; 3]  ,   R7,10 = [1; 3]     ; 

    S8,2 = [0.5; 1]      ,  R8,9  = [0.5; 1]      ;       R8,11  = [0; 2]    ; 

    S9,1= [0.25; 0.5]  ,  R9,8 = [0; 1.5] ,  R9,10 = [0; 0.5]   ;   S10,2 = [0.5; 1]    ,   R10,12 = [0.5; 1]  ;        

    S11,2= [0.5; 1]     ,   R11,12 = [0.5; 1]   ;                           S12,1 = [0.5; 1]    ,   R12,1= [0.5; 1]  .       
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9. Deriving protocol with unreliable medium 
 

9.1 Approach 
 

 When the medium is  not   reliable,   two  general   approaches   are  thinkable.   The  first  
one consists of modifying the protocol entities PEi obtained for reliable medium ([CL88]). The second, 

which is the one we have adopted, consists of inserting a new module Mi between each PEi and the 

medium (fig.17.).  

Reliable Medium

PE1

SAP1

PE 2

SAP2

PE n

SAPn

...

...

...

Unreliable Medium

...

...
PE1
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PE 2
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                             17.a. Realiable medium                   17.b. Unreliable medium with modules 

Figure 17. Addition of modules for an unreliable medium 
 

The aim of each module Mi is to hide as much as possible the unreliability of the medium. The ideal 

would be that the unreliable medium combined with modules Mi is equivalent to a reliable medium. 

But in reality, it is not always possible. 
 

9.2. Classical  examples  
 

9.2.1. Transport Layer  ([Ta90]) 
 

 If the medium is made up of the three basic layers (physical, data linker and network), the added 
modules Mi can be the transport layer. If for instance the network is unreliable and generates N-Reset, 

then the transport protocol is of class 4. For the protocol entities, the transport service is then a reliable 

medium.  

9.2.2. "Alternating bit" protocol  ([MB83]) 
 

 If the medium can loose or garble messages, the modules Mi can for instance be the "alternating 

bit" protocol. On Figure 18, there is an example of two communicating entities PE1 and PE2. Here, for 

simplicity, PE1 is a sender and PE2 is a receiver.  
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Figure 18. Alternating bit for an unreliable medium 
 

si and ri (i=0, 1) represent respectively the sending and receiving of an information frame which 

contains the last data block submitted by the user  and the "alternating bit". Similarly, the operations 
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sacki and racki  are the sending and receiving of an acknowledge frame which contains only a single 

bit. The operations re and and racke are a reception of a frame in error.  
Specifications of the unreliable medium,  of the sender (M1) and of the receiver (M2) are given in 

[MB83], respectively on Figures 10.a, 10.b and 10.f.  
 

10.  Conclusion 
 

  A method for deriving protocol for real-time applications is proposed in [KBD93]. In this paper, we 

improve and extend this method. We improve it by minimizing the number of exchanged messages. 

Consequences of this improvement are : 
 

  - conditions for existence of solutions are less strong. In some cases,  approach in [KBD93] does not 

derive a protocol which respects a desired service, when the improved  approach gives a solution.   

  - temporal requirements on derived protocols are less strong.  
 

Extension of [KBD93] is done by considering an unreliable medium. 
 

As in [KBD93], the time requirements can be calculated statically or dynamically. In the dynamic case, a 

method for exchanging complete temporal informations between entities is proposed. In this case, 

synchronization of local clocks is not necessary, so a global clock is not necessary. It is possible 

because exchanged informations are not absolute, but relative. The dynamic case is interesting because 

the receiving protocol entities use more efficiently the time  allocated to them to provide the service. In 

this paper, we give the same examples (sections 8) than those in [KBD93], but the derived protocols are 

not the same. Let's notice that the proposed algorithm can be useful in other areas than 

telecommunications (robotics ...) where several systems interact with each other to perform tasks in 

bounded delays.  But there is a restriction : tasks are not concurrent.  
 

At the present time, we are working for the two following improvements  ([KBD94]):   

 - considering concurrent tasks , 

 - considering time requirements between events which are not consecutive.  
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