
1/5

Abstract

We have developed a new methodology for the architec-
tural modelling and high-level requirements specification
of business processes and information systems. To support
and validate our methodology, we have engineered the
Macrotec toolset. Macrotec currently allows for graphical
model specification, automatic graphical layout, logical
and performance analysis, and hierarchical decomposition.
To support this functionality, various tools were built or
integrated into Macrotec. Externally, integration is
achieved through a seamless user interface, and internally,
integration is furthered by one single data representation
scheme and a simple yet effective and extensible mecha-
nism for tool interaction. In this paper, we present our
methodology and focus on the CASE tool development
effort that led to Macrotec. Specifically, we discuss Macro-
tec’s requirements, design and implementation, and we
evaluate our development effort.

Keywords: Requirements Engineering, Business
Modelling, Information System, CASE Tool.

1 Introduction

In a joint research project, we have developed, in
cooperation with DMR Group Inc., a new methodol-
ogy for business modelling. Our approach combines
several concepts that have originally been developed
in separate contexts, such as entity-relationship mod-
elling of information, specialization and inheritance
in the sense of object-oriented languages, event anal-
ysis, and analysis of data (product) flow as well as
resource utilization. We have integrated these con-
cepts into a uniform modelling framework with a pre-
cise semantics for the dynamic aspects, which has

This research is part supported by research grants
from NSERC. Canada and by Macroscope Information
INC. (project managed by DMR Group Inc., Montréal).

The Macrotec Toolset for
CASE-based Business Modelling

Rudolf K. Keller* Richard Lajoie** Marianne Ozkan* Fayez Saba*
Xijin Shen** Tao Tao** Gregor v. Bochmann***

 * Centre de recherche informatique de Montréal (CRIM)
1801, McGill College, Suite 800, Montréal, PQ H3A 2N4, Canada, keller@crim.ca

** McGill University, Montréal, *** Université de Montréal

been defined through the formalism of Petri nets.
The resulting modelling approach [2] supports facil-

ities such as architectural views at different levels of
abstraction, and performance analysis, based on the
dynamic semantics mentioned above. In many ways, how-
ever, it goes beyond current approaches. For instance, it
explicitly supports inheritance and specialization, and it
includes an expressive set of relationships, yet small
enough to make them easy to use. Moreover, our approach
lends itself to automation, e.g., semi-automatic substitution
of model parts, various consistency checks, and flexible
animation (forward and backward).

In order to support and validate our approach, we
have developed the Macrotec1 toolset, a CASE tool which
will eventually support all facets of our methodology. In
this paper, we discuss its distinguishing features, the major
stages in its development and validation, and our experi-
ence which seems to be typical for CASE tool develop-
ment efforts in research environments.

First, we discuss the requirements for systems sup-
porting our methodology. Then, we detail the design con-
siderations behind Macrotec and provide a scenario of its
usage. Next, the implementation of Macrotec is described,
together with an evaluation of our development effort.
Finally, we present the current status and future research
directions of our project.

2 Toolset Requirements and
Existing Tools

In this section, we describe the functional requirements of
the Macrotec toolset. We then report on our evaluation of
existing tools against these requirements and detail the
tools we have integrated into Macrotec.

 The toolset must include:

• A tool for the graphical editing and validation of
models (i.e., their representation as annotated
graphs or networks), complemented with facili-

1. ‘‘Macrotec’’ is a contraction of the wordsMacroscope, our
project’s name, and architecture.

In Proceedings of the 6th International Workshop on Computer-Aided Software Engineering, pages
114-118, Singapore, July 1993.

ties for automatic graph layout.

• A dynamic analysis tool supporting both timed
animation and performance analysis. The anima-
tion engine (we use the terms ‘‘engine’’ and
‘‘tool’’ interchangeably) must graphically and
interactively simulate the execution of the model,
thus enabling visualization of the model compo-
nents’ interactions. Furthermore, it must support
forward and backward execution in order to
answer questions such as: What are the actions
that consume given inputs and in what order do
they occur? What are the outputs obtained? What
are the necessary intermediate actions to be per-
formed? What inputs are required for a specified
output? The performance analysis engine must
analytically generate quantitative results such as
action throughput, bottlenecks, resource utiliza-
tion and waiting time for actions. This way,
potential problems (for example, loops) may be
revealed, and the impact of modifications on the
system design may be more easily understood.

• A substitution tool supporting multi-level model-
ling. This tool must provide mechanisms for the
decomposition and abstraction of network parts

Figure 1 :Macrotec Toolset: Overall architecture

Core
Representation

Substitution
Tool

Animation
Tool

Performance

GXF+
Representation

Automatic
Layout ToolAnal. Tool

Mapper

Database

Modelling
Tool

Transformer 1 Transformer2

User Interface and Control

into sub-nets and super-nets, describing, respec-
tively, lower and higher levels of abstraction.
Obviously, these mechanisms should preserve
visual and behavioral consistency between differ-
ent-level nets in respect to their adjacent nodes.

• Facilities for data exchange and evolutionary
design, namely, a state-of-the-art database, and a
standard data exchange format.

Given this extensive list of requirements, we strove
for using existing tools and thus conducted an evaluation.
In what follows, we describe our principal findings.

Most existing modelling tools are based on one of
the following models: data-flow, entity-relationship,
object-oriented or Petri net model. Our methodology does
not exclusively support these underlying models but rather
merges their main concepts into one coherent approach.

The dynamic analysis and substitution tools we
evaluated includeDesignCPN, Eval, GSPN, MetaDesign,
RDD100, SPNP, Voltaire [6] and Franck’s system [3].
None of them did meet the above requirements, providing
only insufficient support for one or many of the following
criteria: timed dynamic analysis, backward animation,
automatic performance analysis results generation, inte-
grated view of static and dynamic modelling, concurrency

2/5

and parallelism, data exchange and model evolution, hier-
archical models, and finally multi-level validation.

These tools offer, at best, partial solutions to our
requirements. Thus, we decided to develop an integrated
toolset based on existing tools and on tools built from
scratch. Figure 1 depicts the different tools involved in the
resulting Macrotec toolset. We have integrated theSPNP
performance analysis tool [10] and an automatic graphic
layout package being developed at the University of Tor-
onto [7]. The modelling, animation and substitution tools
[4] were all developed by our group.

3 Design of the Macrotec Tool-
set

The design of the Macrotec toolset was driven by three
major considerations: internal and external integration, and
extensibility. We felt that these guiding principles would be
essential to our design, if Macrotec was to support all of
the functionality mentioned in the previous section, and
possibly more in the future.

Internally, thecore representation is the heart of
Macrotec (see figure 1). All information to and from the
user interface is, after manipulation by the various tools,
managed in the core representation. Internal integration in
Macrotec is furthered by the underlying storage facility,
the Gemstone system2, an object-oriented database allow-
ing the storage and retrieval of the core representation, and
supporting simple versioning.

In Macrotec, there are two categories of tools. The
first category consists of tools that manipulate graph layout
data. Such tools store their data in theGXF+ representa-
tion. GXF+ is our customized version ofGXF, a standard-
ized graph exchange format [7]. Supporting GXF+/GXF
allows us to easily exchange data with other, special-pur-
pose, GXF-based systems such as the automatic layout
tools being developed at the University of Toronto. Non-
GXF+-based systems require data transformation pro-
grams. For instance, integrating our substitution tool
(implemented before adopting the GXF+ standard)
required the development of theTransformer2 program.

Tools belonging to the second category manipulate
the model data unrelated to the graph representation. In
case these tools are part of the Macrotec process, e.g., the
animation tool, they interact with the core directly. Other-
wise, a data transfer program to and from the core is
required. For instance, the performance analysis tool, run-
ning as a separate process, interacts with the main Macro-
tec process viaTransformer1. Mapping of the core into the
GXF+ representation and vice versa is carried out by the
Mapper component.

2. Gemstone is a registered trademark of Servio Corporation.

By external integration we mean that the user’s
interactions with all the tools and facilities of Macrotec are
as uniform and comfortable as possible. This is achieved
by having the user interact with the system via one single
base window, giving him or her access to the complete
functionality of the system and allowing for easy switching
between the different tools. User interface prototyping and
software reuse at the design level were instrumental in
accomplishing this type of integration.

Extensibility in Macrotec is furthered by a loosely
coupled yet efficient architecture. Since the different tools,
while running in parallel, do not interact with each other,
Macrotec’s control component can be kept quite simple. It
synchronizes tools, transmits external events to the tools,
and controls access to the core representation, using the
inter-process communication mechanisms provided by
Unix. In terms of Meyer’s categorization [8], our approach
to integration and extensibility is a blend of the shared file
system and the simple database approach.

4 Using Macrotec

One typical application domain of Macrotec is the model-
ling of enterprise information systems for prescriptive
usage. In this section, we provide a scenario of this kind of
modelling. We modelled, as an example, a delivery system
with products being ordered, transported and finally deliv-
ered to their destination.

Figure 2 shows the base window through which the
user has access to the full functionality of Macrotec. The
window consists of three distinct areas: the menu bar
which gives access to the animation, performance analysis,
substitution and automatic layout tools; the palette in
which the user may select an icon for editing actions,
places, relations and their attribute values (our models’
building blocks); and the drawing area in which the user
may display and edit the network. In figure 2, the user has
loaded a network, possibly reusing a template or parts of
an existing model. The user may edit and refine the net-
work, adopting a top-down or bottom-up approach by
respectively decomposing or abstracting parts of the net-
work. The built-in validation component of the modelling
tool makes sure that the different levels of the network are
consistent.

The animation engine is triggered through the base
window via the pull-down menu shown in figure 2. The
graphical execution of the model may be performed at
user-specified hierarchical levels, allowing for partial
model assessments and permitting the user to define a con-
figuration that corresponds to his or her mental model of
the system.

 Performance analysis generates quantitative results
on model behavior. For example, a comparatively low

3/5

action throughput and average number of entities in an
action’s input place (‘‘low’’ might have a different signifi-
cance depending on the network architecture) may confirm
a bottleneck that has already become apparent during ani-
mation. In light of these results, the user may increase the
number of over-strained resources to smoothen execution
(in our example, we could increase the number of
‘‘Trucks’’, if the action ‘‘Transport’’ had low throughput).
Similar to methodologies and tools in related domains [9],
the user may prototype the model. He or she might run, in
an iterative way, animation and performance analysis, until
the appropriate attribute values and configuration for a
desired model behavior are found.

5 Implementation and Evalua-
tion of Development Effort

Macrotec is a Unix-based system developed mostly in C++
(minor parts were written in C), running under SunWin-
dows, NeWS, and the X11 window system. Its user inter-
face has been implemented with theET++ application
framework [11]; as database we are using Gemstone. To
date, we have invested more than four person years in its
development.

The data transformation programs required to inte-
grate external tools into Macrotec are an indicator for the
extensibility of the system. According to our experience,
transformation programs dealing with the GXF+ represen-
tation tend to be considerably longer (4:1 ratio in lines of
code) and more complicated than the ones interacting with
the core representation. However, this will not be a severe
limitation, since future Macrotec extensions will most
likely require a transformation of type Transformer1. We
do not see the need for further graph manipulation tools,
and hence transformations of type Transformer2 will not
be required.

We have adopted an object-oriented development
approach that has provided significant productivity and
quality gains. For instance, our user interface software is
highly flexible and reusable, in part due to the use of
ET++. ET++ is a powerful, object-oriented class library
integrating user interface building blocks with high-level
application framework components. The usually steep
learning curve for such application frameworks has been
alleviated by the use of some powerful C++ development
tools, most notably, theSniff tool [1]. Another benefit of
the object-oriented approach in Macrotec is the use of
Gemstone together with its C++ interface which has led to
an efficient database interface.

Figure 2 :Sample modelDelivery System with animation and performance analysis attributes

Products

Order forms

Ordered products

Order Processing

Shipment requestScheduling

Scheduled
shipment
request

Shipment preparationProducts ready for transportation

Products at destination

Delivery

Shipment schedule

Transport

CR:1

CH

CO:1

CO:1

CH:1 CR:1

CO:1

CH:1

CO:1

CR:1

CO:1

:140

5

0

0

00

0

0

d:1:5

e:10

e:5

e:50

i:1
Trucks

10

CO:1

4/5

To prototype the user interface of Macrotec, we ran
several user interface development cycles, using tools such
asHyperCard andChiron-1 [5]. We tried to integrate into
the Macrotec user interface the ‘‘best’’ user interface fea-
tures we found in other advanced tools (cf.[6]).

As our system evolves, with new external tools
requiring integration, we will be in a better position to
determine how easily our system can be adapted and hence
whether or not our design and guiding principles are
indeed sound.

6 Status and Future Work

A prototype version of the Macrotec toolset has recently
been completed. Preliminary experience indicates that the
prototype efficiently and effectively supports our method-
ology. In the current version, backward animation and
model substitution are not yet fully supported. We intend
to further validate our methodology and toolset by apply-
ing it to large examples and by using it with evolving sys-
tems. Further plans include customizability at the
presentation level, the addition of a model documentation
and elicitation component, and navigation aids for substi-
tution hierarchies.

Acknowledgment: We appreciate the contributions
and suggestions provided by our other colleagues in the
Macroscope project.

References

[1] Walter R. Bischofberger. Sniff - a pragmatic
approach to a C++ programming environment. In
Usenix C++ Conference, Portland, OR, August
1992.

[2] G. v. Bochmann, A. Debaque, R. Dssouli, A. Jaoua,
R. Keller, N. Rico, and F. Saba. A method for
architectural modelling and dynamic analysis of
information systems and business processes.
Technical Report CRIM-92/12/10, Centre de
recherche informatique de Montréal (CRIM),
Montreal, December 1992.

[3] Ulrich Frank. Designing procedures within an
object-oriented enterprise model. InProceedings of
the Third International Working Conference on
Dynamic Modelling of Information Systems, pages
365–385, Noordwijkerhout, The Netherlands, June
1992.

[4] A. Jaoua, J.M. Beaulieu, N. Belkiter, A.-C.
Debaque, J. Desharnais, R. Lelouche, T. Monkam,
and M. Reging. Rectangular decomposition of
object-oriented software architectures. Technical

report, Laval University, Québec, June 1992.

[5] Rudolf K. Keller, Mary Cameron, Richard N.
Taylor, and Dennis B. Troup. User interface
development and software environments: The
Chiron-1 system. InProceedings of the Thirteenth
International Conference on Software Engineering,
pages 208–218, Austin, TX, May 1991.

[6] Rudolf K. Keller, Marianne Ozkan, and Nathalie
Rico. Comparaison fonctionelle des outils de
simulation. Technical Report Tig-92-4, Centre de
recherche informatique de Montréal (CRIM),
Montreal, July 1992.

[7] Alberto O. Mendelzon, Frank Ch. Eigler, and
Emmanuel G. Noik. GXF: A graph exchange
format. Technical report, University of Toronto,
Toronto, July 1992.

[8] Scott Meyers. Difficulties in integrating multiview
development systems.IEEE Software, 8(1):49–57,
January 1991.

[9] Bran Selic, Garth Gullekson, Jim McGee, and Ian
Engelberg. ROOM: An object-oriented
methodology for developing real-time systems. In
Proceedings of the Fifth International Workshop on
Computer-Aided Software Engineering, pages 230–
240, Montreal, Canada, July 1992.

[10] K. S. Trivedi, J. K. Muppula, S. P. Woolet, and B.R.
Haverkort. Composite performance and
dependability analysis.Performance Evaluation,
14(3-1):197–215, 1992.

[11] Andre Weinand, Erich Gamma, and Rudolf Marty.
Design and implementation of ET++, a seamless
object-oriented application framework.Structured
Programming, 10(2):63–87, 1989.

5/5

