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Abstract 

Like software and hardware engineering, protocol engineering involves all 
the phases of the development of specifications and implementations of 
communication protocols. Like in the context of software and hardware, formal 
specification languages allow the automation of certain design, validation and 
implementation activities during these development phases. This paper gives an 
overview of protocol engineering and provides an short introduction to several 
languages that have been developed for the specification of communication 
protocols and services. Based on a simple example protocol which is specified in 
VHDL, Estelle, LOTOS and SDL, the characteristics of these different languages 
are discussed. The conclusions point to the similarities that exist among the 
languages and tools for system development related to hardware, software and 
protocols. 

1. Introduction 
The  orderly introduction of new communication protocols, for proprietary 

systems or Open Systems Interconnection (OSI) [Larm 88], requires a careful 
analysis of the proposed protocols and services, and much effort for the 
development and testing of protocol implementations. Much research effort has 
gone into improving the working methods for these activities. In this context, the 
use of formal specification languages for the specification of communication 
protocols and services has received much attention, since such languages allow a 
more systematic approach for protocol validation, implementation and testing, as 
compared to the traditional use of protocol specifications given in natural 
language.  

Similar concerns for the correctness of the proposed specifications and 
implementations occur in the areas of hardware and software development. 
Especially for hardware design, it is essential that the circuit layout of hardware 
components be designed correctly, since they cannot be changed after the 
manufacturing process. Different specification languages have been proposed for 
hardware design at the different levels of abstractions. The VHDL [VHDL 87] 
has been designed to cover several of these levels, and in particular the more 
abstract levels of hardware design which are in many respect similar in nature to 
software specifications.  
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The purpose of this paper is to give an overview of specification languages 
which are used during the protocol design and implementation process, and to 
show the similarities and differences that exist between these languages and 
VHDL. The paper also relates to the development process for communication 
protocols and the tools that can be used for the different activities of this process. 
The concerns of the development process of communication protocols are similar 
to those for the development of  hardware and software. 

The paper is structured as follows. Section 2 gives an overview of the protocol 
development process and presents several standardized formal description 
techniques and other languages that have been developed for the specification of 
communication protocols and services. In Section 3, a very simple protocol entity 
is presented as an example and described in several languages, including VHDL. 
Certain similarities and differences between these languages are discussed. 
Specific issues, such as inter-module communication and addressing, as well as 
support tools for validation, automatic implementation (synthesis), and testing 
are discussed in Section 5. The conclusions point to the similarities that exist 
among the languages and tools for system development related to hardware, 
software and protocols. 

2. Specification techniques for communication protocols 

2.1. Protocol engineering: An overview 
Communication protocols are the rules that govern the communication 

between the different components within a distributed computer system. In order 
to organize the complexity of these rules, they are usually partitioned into a 
hierarchical structure of protocol layers, as exemplified by the seven layers of the 
standardized OSI Reference Model.  

As they develop, protocols must be described for many purposes.  Early 
descriptions provide a reference for cooperation among designers of different 
parts of a protocol system.  The design must be checked for logical correctness. 
Then the protocol must be implemented, and if the protocol is in wide use, many 
different implementations may have to be checked for compliance with a 
standard. Although narrative descriptions and informal walk-throughs are 
invaluable elements of this process, painful experience has shown that by 
themselves they are inadequate. 

The informal techniques traditionally used to design and implement 
communication protocols have been largely successful, but have also yielded a 
disturbing number of errors or unexpected and undesirable behavior in most 
protocols. The use of a specification written in natural language gives the illusion 
of being easily understood, but leads to lengthy and informal specifications which 
often contain ambiguities and are difficult to check for completeness and 
correctness. The arguments for the use of formal specification methods in the 
general context of software engineering [Somm 89] apply also to protocols. 
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The following activities can be identified within the protocol engineering 
process.  They can be partially automated if a formal protocol specification is 
used [Boch 90g]. 

(a) Protocol design: The protocol specification is developed based on the 
communication service to be provided by the protocol. The protocol also depends 
on the underlying (existing) communication service; e.g. the protocol may have to 
recover from transmission errors or lost messages if the underlying service is 
unreliable.  The design process is largely based on intuition. 

(b) Protocol design validation: The protocol specification must be checked (1) 
for logical consistency, (2) to provide the requested communication service, and 
(3) to provide it with acceptable efficiency.  

(c) Implementation development: The protocol implementation must satisfy 
the rules of the protocol specification; the implementation environment and the 
user requirements provide additional constraints to be satisfied by the 
implementation. The implementation may be realized in hardware or software. 

(d) Conformance testing and implementation assessment: The purpose of 
conformance testing is to check that a protocol implementation conforms to the 
protocol specification, that is, that it satisfies all rules defined by the 
specification. This activity is especially important for interworking between 
independently developed implementations, as in the case of OSI standards. The 
testing of an implementation involves three sub-activities: (1) the selection of 
appropriate test cases, (2) the execution of the test cases on the implementation 
under test, and (3) the analysis of the results obtained during test execution. The 
sub-activities (1) and (3) use the protocol specification as a reference. 

2.2. Formal description techniques (FDT's)  
Many different formal description techniques have been proposed for the 

protocol engineering cycle, including finite state machines (FSM), Petri nets, 
formal grammars, high-level programming languages, process algebras, abstract 
data types, and temporal logic. The simpler models, such as FSM, Petri nets and 
formal grammars, were often extended by the addition of data parameters and 
attributes in order to naturally deal with certain properties of the protocols, such 
as sequence numbering and addressing [Boch 89g].  

With the beginning work on the standardization for Open Systems 
Interconnection (OSI), special working groups on "Formal Description 
Techniques" (FDT) were established within ISO and CCITT in the early eighties 
with the purpose of studying the possibility of using formal specifications for the 
definition of the OSI protocols and services. Their work led to the proposal of 
three languages, Estelle, LOTOS and SDL, which are further discussed below 
(for a tutorial introduction and further references, see [Budk 87], [Bolo 87] and 
[Beli 89], respectively). These languages are called formal description techniques, 
since care has been taken to define not only a formal syntax for the language, but 
also a formal semantics which defines the meaning, in a formal manner, of any 
valid specification. This is in contrast to most programming languages which 
have a formally defined syntax (for instance in BNF), but an informally defined 
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semantics. The formal semantics is essential for the construction of tools which 
are helpful for the validation of specifications or the development of 
implementations.  

While SDL had been developed within CCITT since the seventies for the 
description of switching systems, Estelle and LOTOS were developed within ISO 
for the specification of communication protocols and services. However, all these 
languages have potentially a much broader scope of applications. However, their 
effective use in the OSI area, so far, has been relatively slow. This may be partly 
explained by the competition between these three languages, which each have 
certain advantages, and by the difficulty many people have in learning a new 
language. 

In Estelle, a specification module is modelled by an extended FSM. The 
extensions are related to interaction parameters and additional state variables, 
and involve type definitions, expressions and statements of the Pascal 
programming language. In addition, certain "Estelle statements" cover aspects 
related to the creation of the overall system structure consisting in general of a 
hierarchy of module instances. Communication between modules takes place 
through the interaction points of the modules which have been interconnected by 
the parent module. Communication is asynchronous, that is, an output message 
is stored in an input queue of the receving module before it is processed. 

SDL, which has the longest history, is also based on an extended FSM model. 
For the data extensions, it uses the concept of abstract data types with the 
addition of a notation of program variables and data structures, similar to what 
is included in Estelle. However, the notation is not related to Pascal but to 
CHILL, the programming language recommended by CCITT. The communication 
is asynchronous and the destination process of an output message can be 
identified by various means, including process identifiers or  the names of 
channels or routes. Recently, the language has been extended to include certain 
features for object-oriented specifications [SDL 92]. 

LOTOS is based on an algebraic calculus for communicating systems (CCS 
[Miln 80])which includes the concept of finite state machines plus parallel 
processes which communicate through a rendezvous mechanism which allows the 
specification of rendezvous between two or more processes. Asynchronous 
communication can be modelled by introducing queues explicitely as data types. 
The interactions are associated with gates which can be passed as parameters to 
other processes participating in the inteactions. These gates play a role similar to 
the interaction points in Estelle. The data aspects are covered by an algebraic 
notation for abstract data types, called ACT ONE [Ehri 85], which is quite 
powerful, but would benefit from the introduction of certain abbreviated 
notations (see for instance [Boch 90a]) for the description of common data 
structures.  

In contrast to the other FDT's, SDL was developed, right from the beginning, 
with an orientation towards a graphical representation. The language includes 
graphical elements for the FSM aspects of a process and the overall structure of a 
specification. The data aspects are only represented in the usual linear, program-
like form. In addition, a completely program-like form is also defined, called SDL-
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PR, which is mainly used for the exchange of specifications between different 
SDL support systems. A graphical representation for LOTOS has also been 
defined. 

2.3. Other specification languages 
The above discussion is limited to the standardized formal description 

techniques developed within ISO and CCITT. There are a number of other 
important specification methods and associated tools that have been used for 
protocol engineering. Many tools are based on Petri nets and their extensions. 
Several kinds of extended FSM languages have been used for large scale 
applications [Schu 80], [Holz 91], [Agga 83b]. The state of the art in protocol 
engineering is yearly discussed in the IFIP conferences FORTE [Diaz 92] and 
PSTV [Linn 92]. The specific issues related to protocol testing and verification is 
also discussed in the conferences IWPTS [Boch 93] and CAV [Boch 93v], 
respectively. 

In addition to the formal description techniques discussed above, the OSI 
standardization committees also use certain semi-formal languages (which have 
no formally defined semantics). In particular, a language called TTCN [Sari 92a] 
is used for describing conformance test cases, and the ASN.1 notation is used for 
describing the data structures of the protocol data units (messages) exchanged by 
the OSI application layer protocols [Neuf 92a]. This notation is associated with a 
coding scheme which defines the format in which these data units are exchanged 
over the communication medium. All the other languages mentioned above do not 
address this problem. 

In the context of application layer protocols, in particular for Open 
Distributed Processing and distributed systems management, certain forms of 
object-oriented specifications are being used which are based on extensions of 
ASN.1. Also the formal specification language Z [Spiv 92] has been  proposed, 
which is based on set theory and predicate calculus, and was originally developed 
for software specifications.  

3. Comparison of specification languages  
A comparison of the different specification languages shows that certain 

specification concepts can be found in most languages, although different 
syntactic constructs may be used for realizing them. We discuss in the following 
certain specification concepts and how they may be realized within the languages 
Estelle, LOTOS and SDL, as well as in VHDL. This comparison will be based on 
a simple example protocol module. Since the audience of this conference is most 
familiar with VHDL, the example will first be introduced informally and specified 
in VHDL. Then sketches of corresponding specifications in Estelle, SDL and 
LOTOS will be presented, and the representation of several general concepts in 
these different specifications will be discussed. 
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3.1. A simple protocol entity 
Communication protocols are introduced to obtain a more sophisticated 

communication service over a given, more basic, so-called "underlying" 
communication service. This leads to a system structure  as shown in Figure 3.1.  
A protocol entity communicates with another protocol entity  through the 
underlying service. It has two interfaces: the one with the underlying service, 
which is often called the "lower" interface, and the so-called "upper" interface 
through which the more sophisticated communication service is provided to the 
user.  

 

Figure 3.1: Communication system architectures with two protocol 
entities 
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Figure 3.2: Two structures of a protocol entity, simple_structure (a) and 
composed_structure (b) 

We consider in the following a very much simplified version of the OSI 
Transport protocol [Larm 88] (formal specifications of a more complete version of 
this protocol may be found in [Boch 90a]).  This protocol has the three phases of 
connection establishment, data transfer and disconnection. The protocol 
specification defines the possible interactions at the upper and lower service 
interfaces, the allowed sequences of interaction and the corresponding parameter 
values which may occur during these interaction sequences. The interactions at 
the upper service interface allow the user to request a new connection (Creq), to 
accept the confirmation of a connection (Cconf), accept a disconnection indication 
(Xind) or to send or receive data (Dreq or Dind, respectively). The Creq 
interaction has a parameter which represents the destination address of the 
requested connection. Also the Dreq and Dind interactions have a parameter 
which represents the data being transmitted. Figure 3.2(a) shows a diagram 
representing a protocol entity and its upper and lower interfaces. The upper 
interface is partitioned into two parts, one leading interactions from the user to 
the entity (called "US", for Upper Send) and one leading interactions from the 
entity to the user (called "UR", for Upper Receive). Similarly, the lower interface 
has the two components LS and LR. 
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The interactions at the lower service interface are of similar nature. 
However, for our example, we assume that the lower service is always in the data 
transfer phase. The protocol messages, also called protocol data units (PDU's) 
that are exchanged between the two protocol entities are sent in the form of 
coded data packets through the underlying communication service. A PDU called 
Connect Request (CR) represents a request for a new connection, a Connect 
Confirm is returned in order to confirm a requested connection, while a 
Disconnect Request (XR) requests a disconnection. User data is sent in so-called 
Data PDU's. Often the coding and decoding of these PDU's is confined to a 
specific component, as shown in Figure 3.2(b) where this component is called 
PDU_Map.   

Figure 3.3 shows a state diagram which defines the order of interaction of a 
protocol entity during a connection establishment phase for the case that the 
connection is initiated by its local user (dark transitions) and for the case that the 
connection is initiated at the other side (pointed transitions). 

     

Closed Open

WaitCreq/CR

XR/Xind

CC/Cconf

CR/Cind Cresp/CC

Xreq/XR

Wait
local

 

Figure 3.3: State diagram showing behavior of protocol entity 

3.2. Protocol specification in VHDL and other languages 
A specification in VHDL of the protocol entity described in Section 3.1 is 

shown in Figure 3.4(a). The figure contains a VHDL entity definition which 
corresponds to what is shown in Figure 3.2. The behavior of the protocol entity 
could be defined in different specification styles. If a decomposition into two 
components, as shown in Figure 3.2(b) is desired, the VHDL architecture 
definition called composed_structure could be adopted (note that the behaviors of 
the components Map_behavior and AP_behavior are not defined here). In the case 
that a monolitic specification, as shown in Figure 3.2(a) is desired, the VHDL 
architecture (and behavior) called simple_structure could be adopted.  

A similar specification of the protocol entity in Estelle is shown in Figure 
3.4(b). One main difference is the fact that the interactions between different 
modules in Estelle (and in SDL) is through message passing and unlimited input 
queues. An interface is modelled in Estelle by a so-called channel which allows 
for 
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type U_serv_pr is (Creq, Cconf, Xind, Dreq, Dind); 
type options_type is (high, low); 
... 
U_interf is record  -- upper service interface 
 primitive : U_serv_pr; 
 opt : options_type; 
 data : data_type 
 ...  end record; 
type L_interf is ... 
 
entity protocol_entity  is  -- protocol entity 
port  ( US: in U_interf; LR: in L_interf; 

 UR: out U_interf;  LS: out 
L_interf ); 

end protocol; 
 

architecture simple_structure of protocol_entity  is 

    -- behavior in terms of an FSM 
begin  
type State_type is (Closed, Waitx, Openx, ... ); 
signal State : State_type := Closed; 
signal options : options_type; 
process begin  
       wait on LR'transaction, US'transaction; 
case State is  
   when Closed =>  
       if US'active and US#primitive = Creq then  
 State <= Waitx; options <= US#opt;  
 LS <= (primitive => Dreq, 
      data => encode_CR(US#dest, US#opt); 
       else ... end if; 
   when Waitx => ... 
   end case; 
end process; 
end simple_structure; 
 
architecture composed_structure of protocol_entity  
      is      -- composition of two components 
type PDU's is record ... 
signal send, receive : PDUs; 
component PDU_Map 
 port  ( LS: in L_interf; 
  LR: out L_interf; 
  PDU_S: out PDUs; 
  PDU_R: in PDUs  ); 
 end component; 
component AP ... 
 
for all : PDU_Map use entity PDU_Map  
   (Map_behavior); 
for all : AP use entity AP (AP_behavior); 
begin 
m: PDU_Map port map (LS, LR, send, receive); 
ap: AP port map (US, UR, send, receive); 

end composed_structure; 
Figure 3.4 (a): Example in VHDL 
 
type options_type is (high, low); 
... 
channel U_interf (user, provider) =  
by user:  Creq (opt : options_type; dest : ...); 
  Dreq (data: data_type); 
   ... 
by  provider: Cconf (opt : options_type); 
            Dind;   
        ... 
end; 
 
channel L_interf (user, provider) = ... 
 
 
 
module protocol_entity systemactivity; 
   ip  U: U_interf (provider); L: L_interf 
(user); 
end; 
 
body simple_structure for protocol_entity; 
var opt : options_type; 
 State Closed, Wait, Open, ...; 
trans  -- a transition 
 from Closed when US.Creq  -- input 
 to Wait -- new state  
 begin  
     options := opt; 
     output LS.Dreq (encode_CR(dest, opt)) 
  end 
trans ... 
end; 
 
 
body composed_structure for protocol_entity; 
channel PDUs (A, B) =  
    by A, B:    CR (opt: options_type; dest : ...); 
         CC (...);   
          ... 
    end; 
module PDU_Map systemactivity; 
 ip  L_service: L_interf (user); 
  send_receive: PDUs (provider); 
 end; 
module AP systemactivity; ... 
modvar m: PDU_Map;  
 ap: AP 
initialize begin 
 init m with Map_behavior; 
 init ap with AP_behavior; 
 attach m.L_service to L;  
 attach ap.U_service to U; 
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 connect m.send_receive to 
ap.send_receive; 
end; 
 
Figure 3.4 (b): Example in Estelle

 

 

Figure 3.4 (c): Example in 
SDL 
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type options_type is   
         * abbreviated notation *) 
 EitherOf ligh, low endtype; 
type Creq is  (* abbreviated notation *) 
    Tuple make_Creq     comp 
    opt : options_type, 
    dest : ...    endtype 
type Cconf is ... 
process protocol_entity  

 [US, LS, UR, LR]: noexit :=        

    (* this is the simple_structure version *) 

    Closed [US, LS, UR, LR ]   -- initial state 
where 
process Closed [US, LS, UR, LR ] : noexit :=  
       US ? x: Creq;  
       LS ! Dreq (encode_CR (dest(x), opt(x));  
       Wait [US, LS, UR, LR ] (opt(x)) 
    []  ... (* error cases *)   
endproc 

process Wait  
           [US, LS, UR, LR ] (o : options_type)   
 ... 
 endproc 
process Open ... 
 endproc 
 
process protocol_entity  
             [US, LS, UR, LR]: noexit :=       
  (* this is the composed_structure version *) 
hide PDU_S, PDU_R in  
PDU_Map [LS, LR, PDU_S, PDU_R ]  
       |[PDU_S, PDU_R]|  
      AP [US, UR, PDU_S, PDU_R]  
where  
    process PDU_Map 
        [LS, LR, PDU_S, PDU_R ] : noexit := ... 
    process AP   
       [US, UR, PDU_S, PDU_R]  : noexit := ... 
endproc 

 

Figure 3.4 (d): Example in LOTOS 

 

message transmission in both directions; the type of messages transmitted in 
each direction are declared in an Estelle channel definition. For instance, a single 
interaction point, called U, with an associated channel type U_interf represents 
the upper service interface of the protocol entity, and this entity plays the role of 
the provider, as indicated in the declaration of the interaction point. 

A corresponding specification in SDL is shown in Figure 3.4(c). It is very 
similar to the one in Estelle, although a graphic representation provided by SDL 
has a very different "look". We note that the textual content of the graphical 
symbols in SDL are often written in an informal language, such as english. This 
is the case for the text "Dreq with CR" in the output symbol in the transition 
shown in the protocol behavior. The other textual information in the example 
have a formal meaning defined by the language. 

Finally, Figure 3.4(d) shows a corresponding specification written in LOTOS. 
In the case of LOTOS, there is no syntactic separation between the definition of 
the interface of a process and its behavior, as in Estelle and VHDL. Therefore two 
separate specifications of the protocol entity are given, one with a behavior 
corresponding to the simple structure, and one with a decomposition into the sub-
processes PDU_Map and AP, as shown in Figure 3.2(b). 

3.3.  Modules and step-wise refinement 
The modular structure of specifications and the possibilities for multiple 

versions and step-wise refinement are similar in all these languages. The 
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following table shows the names of corresponding concepts in these different 
languages.  

VHDL      Estelle     SDL     LOTOS    

entity      module     block (or process)   process (ignoring behavior)  

architecture     body     process     process with behavior  

port      interac. point --     gate  

signal/port map   channel     channel / route     gate parameter passing 

In each case a system consists of a certain number of "modules" which 
interact with one another and have a certain externally visible behavior which is 
realized through some internal processing. In the case of SDL, there are two 
notions: a block and its subblocks are used to statically decompose the system 
into parts; the behavior of a non-decomposed block is defined in terms of one or 
several processes that are included in the block and which have a behavior 
defined as an extended FSM.  

It is important to note that the modules in Estelle and the processes in SDL 
and LOTOS can be dynamically created during the execution of the system. 
Therefore these languages can be used to describe systems with an evolving 
structure. Dynamic structures are not possible within VHDL. 

The interconnection between the different "modules" of a system is specified 
by using of a "port" (interaction point in Estelle, gate in LOTOS) which is declared 
within the connected "module". In VHDL and LOTOS, the interconnection of 
ports is specified by the identification of the "port" names with the effective 
parameters (signals or ports in VHDL, gates in LOTOS) that are provided during 
module instantiation. In Estelle and SDL, two "ports" of different "modules" are 
explicitly interconnected by an instance of a channel which is established 
between them (SDL distinguishes between channels interconnecting blocks ,and 
routes interconnecting processes); only two-way connections are possible. 

It is noted that similar concepts are also supported by many high-level 
programming languages, as for instance ADA. 

3.4. State variables and transitions  
In specification languages based on the extended FSM model, such as Estelle 

and SDL, each module that is defined by an explicit behavior contains usually a 
STATE variable indicating the present major state of the module and certain 
additional state variables that store other state information (for instance, the opt 
variable in the example). This is similar to the internal signals declared within 
VHDL architectures. The situation is different for LOTOS which is more 
functional in nature. State information is usually carried by process parameters, 
which are initialized when the process is instantiated and cannot be changed. An 
example is the parameter o, representing the options, of the process Wait.  

We note that a process in LOTOS is not a "process" in the usual sense. It may 
represent a module, as in the case of the protocol_entity process, or a state of a 
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process, as in the case of the Closed or Wait processes which are declared within 
the protocol_entity.  

The notion of a "state transition" is an important concept in protocol 
specifications. It represents an amount of processing which is either initiated by 
the reception of an input or internally depending on the state of the module (so-
called "spontaneous transition"). In state transition diagrams, such as Figure 3.3, 
a transition is represented by an arrow labelled by the input and any produced 
output. In Estelle and SDL, each module executes one transition at a time, and 
the transitions are syntactically identified. In LOTOS, each rendezvous is a 
transition in the sense of the semantics of the language. We note that the 
specification style used in our example associates a process with each arrow in 
the transition diagram of Figure 3.3.  

3.5. Data structures and types 
The facilities for data type definitions are similar in nature for VHDL, 

Estelle, and SDL. The are a number of predefined, primitive data types, such as 
integers, a facility for user-defined enumeration types, and a number of type 
constructors, such as arrays, records. These concepts are quite standard in most 
programming languages. The notation ASN.1 mentioned in Section 2.3 is also of 
similar nature. 

It is noted, however, that the possibility of declaring types of interactions 
associated with channels in Estelle and SDL leads to a different structure of the 
declarations related to the module interfaces, as compared with the structure of 
VHDL which is based on shared interface variables (ports) with a fixed record 
structure. In the example above, for instance, the U_interf structure has a 
element for each of the parameters which may be associated with any kind of 
service primitive exchanged over the interface. In Estelle, on the other hand, 
these elements are associated directly with the different kinds of primitives, 
which provides more information. LOTOS does not use static type checking for 
the parameters of rendezvous interactions. Type checking is performed at 
execution time. For instance, the first interaction "US ? x: Creq; " of the process 
Closed implies that the interaction has a single parameter, called x, which must 
be of type Creq.  

The data type facilities of LOTOS are quite different. An algebraic 
specification language for abstract data types (ACT ONE) is used for this 
purpose. It is quite powerful, but lacks convenient notations for specifying such 
data structures as enumeration types, arrays and records. In the example above, 
an abbreviated notation [Boch 90a] has been used for this purpose. Extensions of 
the language for this purpose are under discussion. 
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4.  Specific issues 

4.1.  Inter-module communications 
The inter-module communication primitives provided by a specification 

language have a strong impact on the nature and style of specifications that may 
be defined with the language. VHDL uses the notion of values which are carried 
by signals and ports. This is the natural communication primitive of hardware 
circuits. However, in the software area, other communication primitives are often 
used such as message passing, communication through shared variables and 
some synchronization primitives, (remote) procedure calls, or rendezvous 
communication, such as in LOTOS. We note that VHDL signals and ports have 
some similarity with shared variables, with a well-defined discipline of read and 
write access enforced through the declaration of in and out parameters. 

For the specification of reactive systems, there are basically two 
complementary paradigms for defining inter-module communication: events and 
shared variables. A translation from one paradigm to the other is possible by 
noting that an event implies certain changes of variable values, or that the 
change of a variable value represents an event. VHDL uses the variable 
paradigm, although the notion of "Signal'transaction", as used in the example of 
Section 3, allows the event paradigm. The FDT's discussed in Section 2.2 use the 
event paradigm.  

In the case of LOTOS, a rendezvous is an event in which several processes 
participate, and each process may restrict the range of the values of the 
interaction parameters that may occur, and which are visible to all participating 
processes. This leads to the possibility of defining a single rendezvous during 
which the value of one parameter is determined by one process and read by the 
other, and the value of another parameter is determined by the latter and read 
by the former. The constraints imposed on a third parameter may leave several 
possible values, one of which will be chosen (non-deterministically) during the 
execution of the rendezvous. Each execution of a rendezvous represents a state 
transition of the system. 

In the case of Estelle and SDL, the communication is by asynchronous 
message passing where messages are stored in an input queue before being 
processed by the destination module. A state transition of the system corresponds 
to the processing of an input by a given module, including possibly changes to its 
local variables and the production of output messages. We note, however, that 
different extended FSM models may be defined which support synchronous 
communication [Agga 83b], [Merl 83].  

The synchronous nature of the communication in VHDL and LOTOS makes 
these languages more suitable for describing module interactions at a high-level 
of abstraction, as compared with Estelle and SDL. For the description of a service 
interface, such as represented by the pair of ports US and UR shown in Figure 
3.2 for example, the use of asynchronous message passing may lead to the 
occurrence of cross-over of messages in the queues associated with the interface. 
This introduces complications that are not relevant at a high level of abstraction 
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(for more details, see for instance [Boch 90a]). These complications do not occur 
with synchronous communication. However, they are a typical implementation 
issue, and may have to be dealt with if the implementation of the interface is 
based on an underlying message passing communication service.  

From another point of view, the event-oriented paradigm used in the VHDL 
specification of Section 3 has many similarities with the message passing 
paradigm used with Estelle and SDL. In the case that an asynchronous hardware 
design is used, there will be at most one "unprocessed" event at any given 
interface at any time. This situation may be directly translated into an Estelle or 
SDL specification which has, at any given time, at most one message in the two 
queues (one in each direction) associated with a given interface.  

Different specification styles have been discussed for LOTOS specifications 
[Viss 88]. One of these styles, the so-called constraint-oriented style, is based on 
the rendezvous communication of LOTOS and allows the separate description of 
different constraints on the temporal ordering of events and their parameter 
values. In this context, it is important to note that specifications may be non-
deterministic in respect to the output produced for a given input and in respect to 
the state reached after a given sequence of interactions. 

It is interesting to note that different communication paradigms may be used 
with object-oriented specifications. While certain object-oriented languages 
assume that objects communicate by asynchronous message passing, most object-
oriented programming languages use procedure calls (with return parameters) as 
the basic communication primitives. A more general rendezvous communication 
primitive is used, for instance, in the experimental language Mondel [Boch 90l]. 
A further generalization of rendezvous communication, in the context of object-
oriented entity-relationship modelling has been discussed in [Boch 93b].  

4.2.  Module addressing 
In VHDL, where the interconnection structure of modules is static, 

addressing is not a big issue since it is determined by the static interconnection 
structure of the system specification. In the case of dynamic system structures, 
as supported by most software specification languages, including the FDT's 
discussed in Section 2.2, module addressing is not trivial. The basic 
interconnection structures of Estelle, SDL and LOTOS are similar in nature as 
those of VHDL, except that they may be created dynamically.  

In object-oriented languages, a given object usually addresses another object 
by its (unique) identifier. It is therefore necessary that the former "knows" the 
latter, which is sometimes called an "acquaintance", before it initiates any 
communication. This kind of addressing is supported by SDL.  

In order to allow for the possibility of communication with objects that are 
not "known", certain languages provide for an "if-exists ... such that ..." construct 
which returns the identity of an object with the specified properties, if it exists. 
This kind of addressing is supported by Estelle, Mondel, and to some extent by 
LOTOS.  
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4.3. Tools and methods for protocol eningeering 
The principal activities during the protocol engineering process were 

identified in Section 2.1 as: protocol design, design validation, implementation 
development, and conformance testing and implementation assessment. Research 
during the last 15 years has resulted in many methods and tools that can be 
helpful for performing these activities. An overview of these activities and 
methods can be found for instance in [Boch 90g], [Boch 89g]. Surveys on the 
associated tools can be found in [Boch 87c], [Lour 92]. 

Among these methods and tools, certain seem to be of direct interest to the 
hardware design community, such as the work on test suite development based 
on FSM specifications (see for instance [Fuji 91a]) or extended FSM models, and 
the work on equivalent transformations of high-level specifications which have 
been done in the context of implementation development from LOTOS 
specifications. 

4.4.  Critical comparison of languages 
A comparative evaluation of the three FDT's Estelle, LOTOS, SDL is difficult 

to do. The following subjective statements address some of the issues: It seems 
that Estelle and SDL have the advantage of using well-known concepts of FSM 
and programming languages which make the initial understanding of the 
languages easier. The graphics aspects of SDL are also hepful in this respect. On 
the other hand, LOTOS has relatively few, but powerful language constructs 
which makes the learning of the complete language easier.  

Implementation in software or hardware are usually obtained though a 
process of step-wise refinement which leads from specifications of requirements, 
possibly through several stages of design or implementation specifications, to the 
final product. An important attribute of a specification language is its ability to 
express abstract specifications which can be used as requirement or design 
specification without implying any design or implementation choices which would 
be left open at that stage. 

The following properties of LOTOS make it particularly suitable for writing 
abstract specifications: multi-way synchronous communication, the possibility to 
write constraint-oriented specifications, and a process structure without an 
implementation model. On the other hand, these same properties also make it 
more difficult to generate implementations from LOTOS specifications, as 
compared to specifications written in Estelle or SDL.  

5. Conclusions 
The activities in the protocol engineering process are basically similar to 

those of the software engineering process or the process of hardware design. At 
each level of the step-wise refinement process which leads from the requirement 
specification to the implementation, the process includes the generation of a more 
detailed description, and its validation against the more abstract reference 
specification and against internal consistency conditions. Formal specifications 
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are useful for facilitating the partial automation of these activities, either 
through the automatic generation of the detailed specification, or by providing 
tools which help for the validation of a manually generated detailed specification 
either through logical verification or through systematic testing.  

In the area of protocol engineering many different languages have been used 
for formally describing protocols. More recently, three languages, called Formal 
Description Techniques, have been standardized by ISO and CCITT for the 
description of communication protocols and services. While there are certain 
important differences between these languages, as well as with VHDL or high-
level programming languages, there are many similarities between these 
different languages, as demonstrated by the example given in Section 3. One of 
the main differences relates to the primitives supported by the languages for 
communication between different system modules.  

Communication protocols are important at very different levels of system 
designs. They play an important role at hardware interfaces, possibly on a single 
chip between different logical modules; they also play a key role in the 
construction of communication networks, and they are essential for the correct 
operation of distributed computer applications. While in the first case, their 
implementation is necessarily in hardware, the implementation of distributed 
applications is usually in software. The characteristics of protocols may be 
related to the presence of parallel processes within the system structure. This 
makes protocol engineering different from software engineering, which has 
traditionally been mainly concerned with sequential programing applications. In 
the same line of thought, there seems to be also much similarity between 
communication protocols and distributed real-time applications and embedded 
systems, such as system management or process control.  

 Given this context, we believe that it is important to note the similarities of 
hardware, software and protocol engineering. In fact, such a joint approach 
seems to be the only reasonable one for applications where it is not clear from the 
beginning which part of the system will be implemented in hardware and which 
part in software. A typical area of application seems to be protocols for high-
speed networking. The specification language used in such a context should be 
naturally related to the modular structures of hardware and software and allow 
for behavior descriptions that are naturally translated into hardware or software 
implementations. Clearly, it would also be desirable to have an integrated tools 
environment which provide for automation of most of the development activities.  

Maybe a closer collaboration between the experts in hardware, software and 
protocol engineering will lead in the future to such an integrated system 
development framework.  
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