
Modeling and Formal Specification of the
Personal Communication Service

D. Desbiens, G.v. Bochmann, A. Das and J. Dargham
Departement d'RO, Universit6 de Montdal

CP 6128, Succursale A
Montdal, QuCbec, Canada, H3C 357

Abstract

Personal Communication Service is an evolving network
service concept being developed in order to provide
greater personal mobility, increased service fixibility and
customer control by eliminating the tight relationship
between terminal identity and subscriber identity. In this
paper, we present a model and a formal specification of the
Personal Communication Service obtained by the
application of an object-oriented system design
methodology and described using the executable object-
oriented specification language Model. The goal of
developing a specification for PCS is primarily to
introduce some structure and formalism in its description,
which has so far been done informally, and also to provide
a better understanding of its constituent elements and their
interrelationships. As Mondel is a executable specijicatwn
language, simulation was used to verzfy the basic
functionality defined in this specijicatwn of PCS.
Simulation using various scenarios also provided a means
of presenting the different concepts of PCS.

1: Introduction

Historically, telecommunication services have always
used terminal identification as a means of customer
identification. Eliminating the close relationship between
terminal identity and subscriber identity by the
introduction of a unique, network-independent
identification for each subscriber would permit greater
personal mobility, increased service flexibility and
customer control. The Personal Communication Service
(PCS) has been defined as a network service concept which
will enable subscribers to establish and receive calls for
different service types based on a single Subscriber
Number (SN), across multiple networks, from any arbitrary
network entry point with service access limited only by the
accesddestination network and terminal capabilities
[CCI'IT 89a-cl [Rgn 901.

This basic definition clearly shows that PCS is a

network concept which implies inter-networking. More
precisely, PCS can be seen as an inter-network service
where a subscriber can access its different services by any
arbitrary entry point of any sub-network integrated into the
PCS inter-network, limited only by access/destination sub-
network and terminal capabilities.

PCS is an evolving concept which is being discussed in
standardization committees and for which experimental
pilot systems are being developed. In this stage of its
development, it is important to well understand the
implication of the various design decisions and to validate
the resulting system designs. We think that formal models,
like the one described in this paper, can be useful for
improving the understanding of the problems and the
validation of the design decisions.

One of our goals for the development of a formal model
of PCS has been the introduction of structure and
formalism into the description of PCS, which has
previously only been described in the english language.
Such structure and formalism may provide a better
understanding of the constituent elements of PCS and their
interrelationships. The specification can also be used as a
form of structured documentation. As the specification has
been written in an executable specification language,
simulations can be performed to verify the basic
functionality defined. The simulation of various scenarios
also provides a better understanding of PCS and thus helps
in further refming its concepts.

The development of our PCS specification has been an
experiment in the application of an object-oriented design
methodology [Boch 923 and the use of a new object-
oriented specification language, called MONDEL [Boch
9011.

The PCS model presented in this paper attempts to
achieve a full representation of the service, with complete
abstraction of architecture, physical distribution, detailed
interfaces and implementation considerations. All aspects
regarding Intelligent Networks [AIN 911 [Homa 921 and
communication architecture are excluded from this model.
Thus, the resulting model provides the service view as
seen, in an abstract sense, by the PCS subscriber. It may be
considered to be the input to the network architecture and

756
6d.l .I

0743-166XJ93 $03.00 0 1993 IEEE

protocol designer. Since we are primarily interested in
obtaining a global view of PCS, details pertaining to
interworking among several FCS networks are omitted in
this paper.

The paper is organised as follows. In Section 2, we give
an overview of PCS. In Section 3, we fust give a brief
description of the design methodology. We then describe
the application of this methodology to the PCS example. In
Section 4, we give an overview of Mondel and different
specification styles. We also present in this section a
specification in Mondel of PCS and discuss the simulation
studies perfomed within the Mondel development
environment. We end with a few concluding remarks in
Section 5.

2: Overview of PCS

This section describes the environment in which PCS
[CCI" 89a-c] is developed and the services provided. It
also takes into account the architecture and implementation
issues that are requited to support the basic elements of the
services, in order to show their feasibility. The definition of
PCS used as framework in the present work relies mainly
on the UFT Service Description [CCI'IT 89a-cl enhanced
from discussion with the PCS team of Bell Northern
Research (BNR) at Montrdal.

2.1: The support environment of PCS

It is not our intention to describe the intelligent network
and how it provides a framework for the implementation of
PCS. This section takes in consideration the architecture
only to support the feasibility of the service elements of
PCS and to situate those aspects which we wish to study.
PCS relies heavily on the widespread penetration of digital
switching technology and on the availability of an
Intelligent Network architecture (IN) [AIN 911. Intelligent
Network is a telecommunication network service control
architecture, which allows database management for
distributed applications to realize some functions such as
tracking and service provisioning for mobile subscribers.
The main technical features that the IN architecture
introduces are:
- Network connection control intelligence at centralized

nodes. The process that provides the network connection
control intelligence is known as the Service Conml
Point (SCP).

- Network process which provides switching services and
functions to provide enhanced services to the subscriber.
This process is known as the Service Switching Point
(SSP).
The IN architecture implies the use of standard

communication architecture, such as Open System
Interconnections (OS0 and Common Channel Signalling

no.7 (CCS7). to realize the signalrig between the different
elements composing the distributed systems.

2.2: Basic PCS concepts

The Personal Communication Service (PCS) can be
defined as a network service concept which will enable
subscribers to establish and receive calls for different
service types based on a single Subscriber Number (SN),
across multiple networks, from any arbitrary network entry
point, and with service access limited only by access/
destination network and terminal capabilities.

Based on this basic definition of FCS, it is clear that it is
a network concept which implies inter-networking. More
precisely, PCS can be seen as an inter-network service
where a subscriber can access its different services by any
arbiaary entry point of any subnetwork integrated into the
PCS inter-network, limited only by accesddestination sub-
network and terminal capabilities.

Note: In what follows, the term network will be
employed to refer to the PCS inter-network. The term sub-
network will be employed to refer to a particular network
which is an integrated part of the FCS inter-network.

The major attributes of PCS are as follow :
- The service capabilities of a subscriber are associated

with the subscriber identity (the Subscriber Number),
rather than the physical address of a terminal. This
removes the dependency between the terminal and the
subscriber.
- A subscriber subscribes to the services offered by a
specific sub-network. He has to specify which type of
services he wants to subscribe to among the particular
services offered by the network, and may specify
particular parameters for each service type hdshe
subscribes to. These specifications form the Subscriber
Feature Profile.

- The subscriber has a direct control on his feature profile.
- For each service type, the subscriber can specify location

characteristics for default destinations, and also for
temporary destinations.

- The subscriber can access any of the services subscribed
to, from any sub-network in the PCS inter-network,
limited only by the capabWes of the sub-network/
terminal access/destination.

- All terminal devices like telephones and handsets are
owned by PCS subscribers or by the network operator.
These owners are responsible for what is done on their
terminal devices, in terms of that they are billed for the
services accessed by the use of their terminal when
nobody explicitly identifies themselves. Then, the model
will allow some kind of control for the owner for his
terminal devices.
The characteristics of PCS involve a certain

6d.l.2
757

management of the subscriber communication
environment. This environment has to be defined in terms
of the subscriber service profile, the service type accessed,
physical address localization, access terminal identity/
typekapabilities and sub-network identity/type/
capabilities.

These elements of the Subscriber environment can be
divided into two major groups:
- The service characteristics, relating to the service type
accessed and the subscriber service profile.
- The location characteristics, relating to network port,
terminal identity/type/capabiities, sub-network identity/
type/capabilities, network operator identity/capabilities
and service provider identity/capab~ties.
The communication environment information will be

located in the network. This implies that the FCS network
is an "intelligent network", it has the capability to access
different databases which store the necessary information.
m e network databases would provide all the information
regarding the communication environment required to
make the call, such as :
- the destination for the call in terms of the sub-network

- accesddestination terminal capabilities: type, access

- access/destination sub-network capabilities: type, network

- the service type concerning the call, and
- the service profile of the called/calling party.

A certain controller in the network will use this
information to address the call and to adjust the service
profile of the call to the capabilities/restrictions on the
access/destination network and terminal, and to the called
party service profile.

identity, the terminal identity and the network port,

medium, bit rate, terminal, protocol,

protocol, service capabilities, service provider,

23: The PCS functionalities

When a subscriber wants to invoke ITS, he/she has first
to identify himself. This will be done by (1) identifying the
service accessed. by first invoking PCS, and then
identifying the service type to be used, (2) providing his
Subscriber Number , and (3) providing a Personal
Identification Number (PIN some kind of password to
ensure access security of his service).

After the identification phase, the subscriber can invoke
the PCS functions which permit the subscriber
- to make calls based on either Subscriber Number or

- to receive calls addressed to its Subscriber Number,
- to use an arbitrary terminal to access his personal service

- to indicate where he wants to receive his incoming calls
for different services,

Telephone Number,

for a short period or a longer period of time,

- to have control on his Subscriber Feature Profde,
- if he owns a terminal device, to control the feature profile
of this device.

3: Modeling PCS

3.1: Overview of design methodology

Even though the success of a design still relies on
human experrise in the application domain, a design
methodology provides some simple, efficient means to
structure the process leading from an informal and
incomplete definition to a formal specification. Our
methodology is based on the object paradigm Pooc 861
[Cham 921. The idea sustained by the methodology is to
describe the application as a composition of objects with
relationships between them, interacting together to realize
some functions. This methodology could be applied to any
object-oriented project modelisation, using any object-
oriented language. It provides a means to organize and
structure the specification development process and to
check the consistency of the model. It promotes an efficient
and easy re-use of specifications and software items
common to different specifications by providing data
abstraction.

Our design methodology [Boch 921 consists of a
preliminary step and three modeling steps.
During the preliminary step we define the problem. The
problem is defined in this step by analyzing and
determining the requirements. This can be simply done
through discussion with people that know the problem and
will use the software under construction. The result of this
activity must be expressed in a language or notation that
can be understood both by the analyst and the users such
that they come to an agreement with what has to be done.
Step 1 results in a conceptual model of the domain
structure. This model shows the classes of objects, the
inheritance relationships, the structure of the objects, their
attributes and the relations among objects classes. The
conceptual model is represented graphically using entity-
relationships diagrams [Chen 761, which are extended to
show the inheritance relationships.

At Step 2, operations are identified and allocated to the
classes of objects. Sources of operations are functions
required and identified during the preliminary step. In
accordance with the object orientation, operations are
allocated such that every object encapsulates all the
operations required to modify and access its internal
structure. At this stage, parameters and results of
operations may also be determined. Some functions may
also uncover some new objects which must be integrated
into the application domain.

It is in Step 3 that the behaviors of the objects are

6d.l.3
758

defina, these behaviors determine the semantics of the
operations and the conditions related to their execution.
This step leads, in general, to a better understanding of the
problem as well as to new classes of objects, new relations
and new operations. These new elements have to be
integrated in the model obtained during the previous
activities. This methodology is therefore iterative and the
design activities of the different steps are not isolated from
each other.

Note that this modeling process starts by describing
aspects which are rather static, e.g. the classes of objects.
Then, we gradually integrate in the model the dynamic
aspects. First by describing the interfaces of the objects (i.e.
the operations) then by specifying their intemal aspects
(i.e. the meaning of the Operations). Objects are relatively
independent of each other in terms of the actual algorithms
selected for implementing the operations. This implies that
the algorithms are easier to modify and maintain.

In the following subsections, these four steps of the
methodology are applied to obtain a formal model for PCS .
A more complete description can be found in [Desb 921.

Concerning the preliminary step, most of the
information has already been described in section 2 of this
paper. We delimit the scope of the model by considering
only a global view in which a full representation of the
service is taken into account, with complete abstraction of
architecture, interface and implementation considerations.
All aspects regarding Intelligent Networks and
communication architecture are excluded kom this model.
Those aspects pertaining to interworking of PCS networks
are also omitted.

3.2: Design step 1: definition of the domain

This step can be decomposed into two substeps: (1)
identification of the entities of interest and their attributes,
and (2) identification of the various relationships that exist
among these entities. For the global PCS specification we
have identified the the entities and relationships D s b 921.
A subset of these entities and relationships is described in
the following:

3.2.1: Entities

Subscriber: This class represents the physical
subscribers. This class is inherited from the generic User
class and is refined by the fact that it is the entity to which
we recognize the access to PCS by giving it, and
associating with it, a Subscriber Number.

Subscriber Number (SN): This class describes the
network identifiers of the subscriber. An identifier
uniquely identifies the subscriber in the PCS network. This
is the primary key in the PCS system used to manage the
subscriber services, therefore many relations depend on it.

(Note: Just as the telephone number was doing earlier this
entity represents the public address of the subscriber. The
value of the Subscriber Number is unique).

Personal Identification Number (PIN): The subscriber
number being part of the public domain, this entity class
has a subscriber service access security purpose. It can be
seen as a password to pv ide access security to the service.

Service Type (ST): The purpose of this entity class
represents the different types of service that can be used
independently in the telecommunication context and have
to be addressed independently to receive or make calls. In
the PCS context "Service" is intended to identify the
application context of the call. Examples of application
context are: telephony, facsimile, data, ISDN, etc. (Note :
This class plays a part in addressing. A Subscriber Number
may be located far receiving calls in different locations, for
different types of service. A Subscriber Number cannot be
located in more than one location for the same Service
Type for receiving calls.)

Subscriber Feature Profile (SFP): This entity class
represents the Featw Profile of a subscriber. It is intended
to specify the general subscription information of a PCS
subscriber as its billing address, and the different feature
parameters of its subscription, such as call screening
parameters.

Default Feature Profile (DFP): This entity class has the
intent of providing some access and utilization control of
the network port to the owner of the network port. For
example, the owner may restrict the access to the network
port he owns to certain persons only, on certain specific
hours only, or he may prohibit long distance calls.

Network Port (NP) : This entity class represents a
physical network access.The network port is identified by
a physical address. It identifies uniquely a physical
network access point. The physical network access point
may be a line card in the case of a wired sub-network. As
the PCS subscribers will have to address the physical
location where they want to relocate their services, they
will have to use a public identification of the Network Port;
thus in the context of PCS, the Network Port will be
identified as the actual public identification of the physical
network end point : the "telephone number". (Note : This is
an imporrant entity in the PCS system; many relations
depend on it. For the network, this is the entity for physical
location addressing.)

32.2: Relationships

A relationship is a perceived association between
entities in the domain. This information will allow some
domain semantics. A relationship may be understood as a
set of n-tuple grouped under a common meaning, where
each n-tuple links n entities by this meaning. An instance
of a relationship class is an object, thus a relationship has

6d.l.4
759

7

L

Service Type

Subscriber

Sub-Network

Number owner

Subscriber Default
Feature Feature
Profile \ ... - - ---~

..............
, I 7 1 : entity

< > -b : relationship
~IIW : inheritance

-
:

.--------;rr" -------.
I Feature
: Profile Subscriber
e------------------,

Fig. 1 : Partial entity-relationship diagram of PCS

attributes and a behavior. The attributes are mainly the
different entities which are implied in the relationship,
however some attributes may represent specific
characteristics of the relation, (e.g. the time duration of an
incall location of a subscriber onto a network port). For the
PCS application, the following key relationships have been
identified. They are shown on the diagram of Figure 1.

Authentication : The Authentication relation links all
components involved in the authentication of the
subscriber. Thus, given a SN, the network can check the
PIN in order to authenticate the subscriber who will in fact
be billed for all services used after authentication (see
Figure 1). Note that a subscriber can have several SNs and
to each SN corresponds exactly one PIN.

Owner : This relationship represents the identification
of the subscriber who possesses a particular Network Port.
By default, he is responsible for the Network Port he owns.
This means that, he is the one who will be billed for al l
services used on this Network Pork without prior
authentication. The owner exercises a certain control on
the utilisation of the Network Port via the entity Default
Feature Profile which defines the service available to users
without prior authentication. He can also restrict the range
of services that are available with authentication; for
instance, the relocalization of incoming calls can be
restricted or prohibitted.

Home Location : This relationship represents the default
location for routing incoming calls of a subscriber for a
particular Service Type (e.g. a user may be located for
reception of a voice call on Network Port A, whereas
reception of a fax call may be located at Network Port B,
both calls could occur simultaneously).

Incall Location : This relationship represents the current
location where incoming calls must be routed. There
always exists an incall location for a subscriber and is
dynamic. During an incall session the incall location of the
subscriber is the one specified for the incall session

otherwise it is the one specified by the home location.
(Note : An arbitrary number of subscribers can be located
at a given Network Port and a given Service Type. Also, a
subscriber should be located at exactly one Network Port
for a particular Service Type at any given moment.)

Outcall Responsible : This relationship represents the
subscriber responsible for the utilisation of the services
provided at a given Network Port, if these services are used
without prior identification(e.g. subscriber A could be
responsible for all voice services, and subscriber B for all
calls related to fax services). There always exists an outcall
responsible for a network port and can be dynamically
reassigned. During an outcall session the outcall
responsible of the network port is the one specified for the
outcall session otherwise it is the one specified by the
owner relation. (Note: At all times, responsibility for the
use of services of a particular Service Type at a given
Network Port should lie with exactly one subscriber.
However, the same subscriber can be responsible for a
particular Service Type for any number of Network Ports.)

The diagram of Figure 1 shows the PCS entities and
relationships. Entity classes are represented by rectangles.
An inheritance relation between two entity classes is
represented by a dashed mow from the subclass to the
superclass. For instance, the "Feature Profile" class is
specialized, using inheritance, into two subclasses, namely
"Subscriber Feature Profile" and "Default Feature Profile".
In the diagram, we represent classes of relationships (i.e.
relations) between objects by angled brackets. For
instance, there are the classes of objects "Subscriber
Number" , "Service Type" and "Network Port" which are
linked together by a relation named "owner".

The aspects related to the ownership and access control
of a Network Port (modeled by the Default Feature Profrle
entity and the <owner> relationship) repsent new insight
of interest for PCS. They have not yet been addressed by
the standard bodies. It presents a security aspect which

6d.l.5
760

could be interesting even outside the scope of PCS.

33: Design step 2: identification of operations

The aim of the specification is to stress the basic
characteristics of PCS. Consequently, the functionality
gives emphis to personal mobility. The definition of the
PCS functionality relies mainly on the UPT Service
Description [CCI'IT 89a-c] enhand from discussion with
the PCS team of Bell Northern Research (BNR) at
Montreal.

At this stage we allocate operations to objects. To
achieve the identification of the set of operations supported
by each object of the domain, the functionality of the
application has to be fmt defined. Thus this step deals
primarily with the functional defmition of the application.
The different tasks involved in this step are: (1) definition
of the functions of the application, and (2) definition of the
role of each object (i.e. definition of the set of actions that
have to be done by each object in order to provide each
function).

Personal mobility is provided by allowing the PCS
subscribers to receive/make their calls at any arbitrary
network port. The main PCS functions allow the
subscribers to specify where they currently want to receive/
make their calls for a fuced period of time. The subscribers
are able to relocate themselves for incoming calls and for

For example, the process of defming tbe functions
related to the outcall relocation of a subscriber is detailed
in the following subsections (a discussion of the other
functions can be found in @ksb 921).

outgoing calls.

33.1: Example of a function definition

The outcall relocation allows a subscriber to use a
network port as his own. The subscriber is billed for all
telecommunication services used at the network port for
the time of the outcall relocation. Three function groups
have been identified in the context of outcall relocation:

The outcall session allows the subscriber to take
possession of a network port for a certain service type. An
outcall session is started by invoking a specific PCS
function (start-outcall-session) and is stopped by
invoking a specific PCS function (
terminate-outcall-session), or can stop automatically at
the expiration of a time-out defined at the invocation of the
session. When the outcall session is terminated, the owner
of the port rakes possession of tbe network port. The owner
of a network port is responsible for it by default. A
subscriber may engage in any number of outcall session
simultaneously, however only one outcall session may be
active on a network port at any time.

The outcall series allows the subscriber to take

possession of a network port for a certain service type for a
duration limited to the activation of the network port on
which it takes place (e.g. the time a phone is off the hook in
the case of a conventional phone). An outcall series is
initiate by invoking a specific PCS function (do-series).
The outcall series overrides the outcall session during its
activation. The outcall series is similar to the existing
calling card service.

The abort outcall session allows the owner of a network
port to abort any outcall session taking place on the
network port he owns. An abort outcall session is done by
invoking a specific PCS function (
terminate-other-outcall-session).

33.2: Definition of the role of each object

As the specification describes a service, the most
important objects of the model are the subscriber, who uses
the service, and the network port, which provides it.

The role of the subscriber is to model the correct
behavior of a real PCS subscriber. The subscriber provides
a high level interface in order to perform the specific PCS
functions identified in the previous section. The
subscriber's interface is the point of interaction for
simulation. The subscriber can be asked to start an outcall
session, to terminate an outcall session, to do a series of
calls, or to terminate another outcall session.

These operations of the Subscriber (related to the outcall
relocation), and their parameters, can be described as
follows :
Start-Outcall-Session
(Np : string; {the Network Port of interaction]

authentication]
Sn : string; {the identification of the callinguser for the

Pin : string; {Personal Identification Number]
Action_" : string; { the Network Port involved for this

Service-Type : string; { the service type concemed]
Duration : integer; {The duration of the session])

operation]

Terminate-OutcallSession
(Np : string; {the Network Port of interaction)

authentication]
Sn : string; {the identification of the callinguser for the

Pin : string; { The Pin for authentication]
Action-Np : string; (The NP implied in operation)
Service-Type : string; { the service type concemed 1);

Do-Series
(Np : string; {the Network Port of interaction]

Sn : string; { identification of the calling user]
Pin : string; {Personal Identification Number)
Service-Type : string; { the service type concemed] 1;

6d.l.6
761

,

Terminate-~er-Outcall-Session
(Np : string; {the Network Port of interaction)

Sn : string; {the identification of the calling user)
Pin : string; {Personal Identification Number)
{ The Sn authenticated has to be the owner of the
Action-Port)

Service-Type : string {the service type concerned))

The role of the network port is to represent the
interaction between the subscriber and the PCS application.
The behavior of the PCS application is represented by the
network port because the specification is aimed at
modeling the PCS service. The network port allows the
subscriber to activate it or deactivate it (by the specific
operation off-hook and on-hook) and to signal the
different codes specific to PCS, such as Signal-PCS-Code
to signal that he wants to invoke the PCS application, or
signal-staroutcall-session to signal that he wants to start
an outcall session. The signaling is represented in an
abstract manner by operations because the interactions
with the subscriber in an implementation of PCS may be
carried out in different ways (by pressing a specific series
of digits on a pulse tone phone set, by voice recognition, or
any other sophisticated user interaction technology)

These operations of the Network Port (related to outcall
relocation), and their parameters, can be described as
follows :

Off-Hook(user : User);
On-Hook;
Signal-Pcs-Code;
Signal-Authentication(SnValue, PinValue : string);
Signal-Start-Session-Outcall

(NpValue : string; StValue : string; Duration : integer);
Signal-Terminate-Session-Outcall

(NpValue : string; StValue : string);
Signal-Terminate-Other-Session-Outcall

(S tValue : string);
Signal-Star&-Series(StValue : string):
Dial-Series(SnValue : string);
Signal-Continu;

3.5 :Design step 3: definition of behavior

This last step consists of describing precisely the
meaning of each operation. An operation may have a
different meaning (thus lead to a different behavior) in
regards to the contexts of the global behavior of the object
when it is invoked. The behavior of an object is seen as the
set of actions related to each operation in regards to each
context in which the object can be. One of the possible
conceptual tools for modeling this behavior are state-

transition diagrams where each context of the object is a
state and each action is a transition.

An object may assume different functions
simultaneously, for instance a user may be participating in
an incall session, an outcall session and also initiating a
call, simultaneously. The behavior of an object may be
partitioned into several parts where each part represents the
behavior associated to a given function. 'he behavior
related to a particular function can be modeled by an
appropriate finite state machine. The behavior of an object
can be viewed as the composite behavior of the automata
representing the various functions running concurrently.

For instance in the PCS specification, the behavior of a
subscriber is expressed as the composition of seven parallel
automata, each one related to a PCS function assumed by a
subscriber.

w e 1
Outcall-Session-Idle;

and Incall-Session-Idle;
and Series-Idle;
and Outcall-Session-AborC
and Incall-Session-AborC
and Call-Idle;
and Response-Idle;

end;
Figure 2 presents the finite state machine which

describes the behavior of the subscriber related to the
Outcall-Session function. In the state
Outcall-Session-Idle, the subscriber may star an outcall
session. Starting an outcall session involves several
operations invoked on other objects of the PCS system. The
subscriber will activate the network port (Off-Hook
signal), validate its personal security code and signal the
new outcall session parameters. This implies the creation
of a new instance of the "outcall responsible" relationship
shown in Figure 1. After the execution of this operation, the
subscriber is considered to be involved in an outcall
session, represented by the Outcall-Session-Active state.
In this state, the only operation available is the termination
of the session, which again involves similar operations on
the other objects of the system.

Transition diagrams. such as the one above, are useful
for defining the temporal order of interaction, but do not
express all aspects of object behavior. In particular, the
values of the operation paramem are not considered and
the effect of operations on object instances in the system
are not addressed (e.g. the creation of new relationships as
discussed above). For the PCS specification considered in
this paper, we have used the Mondel specification language
for this purpose. The use of this language for the

6d.l.7
762

description of the PCS example is described in Section 4.2.

+Off-Hook +Off-Hook
+SignaLPcs-Code +Signal-Pcs-Code
+Signal-Authenti +Signal-Authenti
+Signal-Start-Out +Signal-Terminate-Out
+On-Hook +On-Hook

Figure 2 : Finite State Machine description of
the subscriber's outcall session

4: A PCS specification written in MONDEL

4.1: Overview of MONDEL

Mondel [Boch 9011 is an Object-Oriented specification
language with certain particular features, such as multiple
inheritance, type checking, rendez-vous communication
between objects and the possibility of concurrent activities
performed by a single object. It is an executable object-
oriented specification language with a formally defined
semantics. The purpose of its development was the
modelisation and specification of applications from the
distributed systems domain.

A Mondel specification is basically composed of a set of
objects interacting together. Each object composing the
specification can be seen as an independent parallel process
communicating with other objects by a rendez-vous
mechanism. The communication re&z-vous is an
operation call on an object which offers it. The operation
will be executed when the caller object accepts to execute
it. The caller object is blocked at the rendez-vous point
until the called object releases it.

4.2: Different specification styles

A specification may be written at a more or less abstract
level depending on the goal of the Specification. A
specification may be intended for the expression of a
design and for its validation, for the verification of certain
properties of a system, for the generation of an
implementation, for the derivation of test cases for the
validation of implementations, or for all of these purposes
[Bo& Wg]. Two basic approaches to behavior definition
are assertional and algorithmic. Both of them are supported
in Mondel; the statements of the language support the
algorithmic style, while the assertional styte, which is
useful for verification purposes, is supported through

special features such as the ASSERT statement and
invariants.
Our PCS specification has been written with the aim of

expressing the design of PCS as a service and its validation
by executing the specification. We used an algorithmic
approach with a state-oriented style. Each state is
represented by a Mondel procedure which defines the
behavior of the object in the given state. The overall
structure of the PCS specification may be considered
resource-oriented in as far as each object of the system
represents a "resource".

4.3: FSM-oriented specification style and PCS
example

This section gives a description of the subscriber's
behavior for the function Outcall-Session in Mondel. The
behavior specification is included in the class definition of
the subscriber type. which is given below. This type
definition includes first the declaration of the object
attributes, in this case the name of the subscriber, and of the
operations which take the same form as given in Section
3.3.2.

In this example, we show only two functions in parallel:
OutcaIl-Session and Incall-Session. In the behavior
definition, they are represented by tbei respective initial
state, e.g. OutcallSession-Idle. The behavior in the
Outcall-Session-Idle state is defined by the procedure of
the same name, which specifies a single possible transition
which starts with the acceptance of the
Start-Outcall-Session operation. The execution of this
operation implies a number of operations to be executed on
the associated network port (np). The execution of the
Signal-Start-Session-Outcall operation implies the update
of the "outcall responsible" relation shown in Figure 1 as
defined in the definition of this operation in the behavior of
the Network Port object type (not shown here).

The keyword "return" indicates the end of the operation.
It is followed by the invocation of the procedure
Outcall-Session-Active, which represents the new state of
the Outcall-Session function. This new state is invoked in
parallel with another instance of the OutcallSession
function, which is still in its initial "Idle" state for the case
that the subscriber wants to start another Outcall-Session
function, possibly for another service type.

type Subscriber = persistent with

operation
*** see Section 3.3.2 ***
behavior
(two different "state machines" are executed in parallel)
parallel

name : string;

Outcall-Session-Idle;

6d.l.8 763

and IncallSession-Idle
end;

where
procedure Outcall-Session-Idle =
(being in the Idle state the possible transaction is
Star-Outcall-Session)

-Pt
Start-Outcall-Session
(The input parameters are Np, Sn, Pin. Action-Np,
Service-Type, Duration)

do
define np = valid-np(Np) in
np!Off-Hook(self);
np! Signal-Pcs-Code;
np! signal-Authentication(Sn,Pin) ;
np!Signal-Star-Session-Outcall

np ! On-Hook ;
return;

(Action-Np,Service-Type, Duration);

end
(after this interaction the next state is
Outcall-Session-Active)
parallel

OutcallSession-Idle ;
and Outcall-Session-Active

end; (parallel]
(Action-Np, Service-Type, Sn);

endproc Outcall-Session-Idle

procedure Outcall-Session-Active(concem-np,

(being in the active state the possible transaction i s
Terminate-Outcall-Session)

concern-st, concem-sn : string) =

accept
Terminate-Outcall-Session
(The input parameters are Np, Sn, Pin, Action-Np.
Service-Type)

(triggered only if it is the same parameters as for the
start-outcall-session)

provided concem-np = Action-Np and
concem-sn = Sn and
concem-st = Service-Type

do
define np = valid-np(Np) in

np!Off-Hook(self);
np!Signal-Pcs-Code;
np!signal-Authentication(Sn,Pin);
np !Signal-Terminate-Session-Outcall

np !On-Hook;
return;

(Action-Np,Service-Type);

end; (accept)
endproc -Outcall-Session-Active

(procedure to validate the existence of the network port)
procedure valid-np(Np-Value:string): NP =

ifexist np : NP suchthat np.value = NpValue then

else
retum np;

writeln "inexistant -np";
abort;

endproc valid-np
endtype Subscriber

end;

4.4: Simulation of the model

In order to exercise the PCS specification, we have used
a specification development environment [Boch 9011 which
includes the following tools: A syntax analyzer verifies the
context-& syntax of a specification. A compiler verifies
the static semantics of a specification and generates an
intermediate Prolog representation. An interpreter uses this
representation and permits the simulation of the
specification. A verifier generates a reduced reachability
graph of the specification, if the specification satisfies
certain restrictions which ensure a finite reachability graph.
The states of this graph correspond to al l possible states
which the system may reach, and is the basis for exhaustive
validation for the absense of deadlocks and undesirable
loops and the satisfaction of assertions and invariants [Barb
911.

The PCS specification has been simulated with two
objectives: for the validation of the specification and for
demonstration. For validation, a simulator object has been
defined which allows the user to interactively guide the
execution of the various PCS operations of the subscriber
in an arbitrary order with arbirrary parameters. The system
specification includes an initial behavior which initializes a
small FCS system creating a certain number of PCS objects
(of the types shown in Figure l), and which then initializes
the simulator object which waits for simulation requests
from the user. This kind of simulation environment was
used to validate the FCS specification through executing a
large number of different scenarios.

For the purpose of a demonstration, a predefined
scenario was defined as the behavior of a demo-simulator.
The system including this simulator automatically executes
the scenarios when the interpreter starts the automatic
execution of the specification. Appropriate messages on
the meen show the advancement of the scenario.

5: Conclusions

The PCS model has been developed in collaboration
with, and for the needs of the PCS team of Bell Northern
Research (BNR) at Mont.real.The modeling of the PCS

6d.l.9
764

service using the methodology presented in the previous
sections and the formal description technique Mondel has
been useful for the BNR team in increasing the
understanding of PCS elements and their interworking. The
PCS modeling experience shows that the use of the
methodology and simulation provides means to improve
the understanding of complex, stil l yet vaguely defined
applications.

The methodology has helped structure the process of
specifying PCS by allowing to adapt the level of
specification to the specifier's needs. Tbe documentation of
the methodology and the Mondel specification have
facilitated the transfer of knowledge. Mondel has been
perceived as an easily readable language.

The ability to simulate service scenarios has provided
the detection of some service discrepencies in the fast
definition of PCS functionality. The simulation has also
been useful in communicating the PCS service framework
in an easily understood form to the different groups
involved in various aspects of PCS in BNR.

The modelisation provided new insight of interest for
PCS regarding aspects related to the ownership and access
control of a Network Port. These aspects have not yet been
addressed by the standad bodies.

Presently we are working on an extension of the PCS
specification which models the interworking aspects of
PCS. While in the overall service specification presented in
this paper the physical location of objects has been
completely ignored, except for the association of users with
Network Ports, in this extended version of PCS, we must
consider the association of the PCS objects shown in
Figure 1 with the different PCS subnetworks and the
physical databases contained in these networks. Such a
distributed model of PCS will allow the modelling of
various interworking approaches and protocols to be
explored.

Acknowledgements: We would like to thank Louis
Gagnon from BNR for many discussions and input which
lead to the PCS specification described here. The
development of the PCS specification described in this
paper was part of a joint research project by the Computer
Research Institute of Montreal (CRIM) and Bell-Northern-
Research. We thank the project team, in particular Michel
Barbeau, Aiwa Liu, and Louis Lecomte, for their support.

References:
911

[Barb 911

Bellcore, Advanced Intelligent Network (AIN)
Release 1 Switching Systems Generic Requirements,
TA-NWT-001123, Issue 1, May 1991.

M. Barbeau and G.v. Bochmann, Formal
Specification and Formal Verification of Object-
Oriented Specifications Based on the Colored Petri
Net Model, Publication #784, Wpartement d'IRO,

Universit6 de Montreal, August 1991.

[Boch 9Ogl G. v. Bochmann, Protocol Specification for OSI,
Computer Networks and ISDN Systems, April
1990.

G. v. Bochmann, M. Barbeau, M. k a d i , L.
h m t e . P. Mondain-Monval and N. Williams,
Mondel : An Object-Oriented Specification
Language, submitted for publication.

G. v. Bochmann and e. al., System specification
with MONDEL and relation with other
formalisms, Progress Report No. 13 for CRIMl
BNR project, June 1990.

[Boch 9011

[Boch 9Oz]

[Boch 92p] 0. v. Bochmann, S. Poirier and P. Mondain-Monval,
Object-oriented design for distributed systems and
OS1 standards, Proc. of IFIP Int. Conf. on Upper
Layer Protocols, Architectures and Applications,
Vancouver, May 1992.

[Booch 861 G. Bow, Object-Oriented Development, IEEETSE,

[CCI'lT 89a] CCIlT, Universal Personal Telecommunications
Definition and Attributes, COMxVm D.130, June
1989.

February 1986

[CCI'IT 89b] CCIlT. Network Elements to support Universal
Personal Telecommunications, COM XWI
D.131, June 1989.

[CCI'IT 89cl CCI", Universal Personal Telecommunications

[Cham 921

[Chen 761

[Desb 921

(UPT) : A Framework For Describing UPT Data
(Tbe Network Service Database), COM XVIII
D.132, June 1989.

Dennis de Champeaux and Penelope Faure, A
Comparative Study of Object-Oriented Analysis
Methods, Journal of Object-Oriented Programming,

P.P. Chen, The Entity-Relationshipmodel - Toward
a unified view of data, ACM Trans. on Database

D. Desbiens, Modelisation and Specification of the
Personal Telecommunications Services, Msc Thesis,
Universit6 de MontrW, 1992.

March 1992, pp 21-33

System, Vol. 1,No. 1, March 1976, pp.9-36.

[Homa 921 J. Homa and S. Harris, Intelligent Network

[IS0 88bl

[IS0 891

[W g n 901

Requirements for Personal Communications
Services, IEEE Communication Magazine, February
1992, pp. 70-76

[SO, Information Processing Systems -Open Systems
Interconnection - LOTOS - A Formal Description
Technique Based on The Temporal Ordering of
Observational Behavior, IS 8807,1988

ISO, DIS 9595 Common Management Information
Service Definition, 1989.

J. R6gnier. W.H. Cameron, Personal
Communications Services-The New Pots,
Globecom 90, San Diego, December 1990.

6d.l.10
765

