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Abstract

In this paper, we propose an incremental construction approach for distributed system specifications.

These specifications are structured as a parallel composition of subsystem specifications. The approach

consists of merging two specifications Sold and Sadded into a new specification Snew, such that Snew

extends Sold and Snew extends Sadded. Moreover, in the case of cyclic behaviors, Snew offers a choice

between behaviors of Sold and behaviors of Sadded, in a recursive manner. The derived specification

Snew has the same internal structure as Sold. Our approach is described in terms of Labelled Transition

Systems, and it is applicable for many specification languages.

1 Introduction

The design of a distributed system goes through many phases. The initial phase allows the capturing

of functional requirements in a specification with a high level of abstraction. This specification

describes the functionalities of the system, but not how to realize them. In the next phases, it is refined

into specifications with a lower level of abstraction where some design decisions are taken and a

structure is chosen. The specification obtained after each step should remain correct with respect to the

initial specification. The service specification and protocol specification for a given OSI layer are

typical examples of two different levels of abstraction [Viss 85].

The step-wise refinement approach allows the methodical production of a specification with a low

level of abstraction from a specification with a high level of abstraction. The distributed system

specification task, however,  still remain very complex, particularly when many functions have to be

handled simultaneously. A complementary approach to deal with this complexity is the divide-and-

conquer methodology. It consists of building specifications for the different features of the required

system independently and of combining them to obtain the desired specification. From another point
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of view, this approach allows the enrichment of a system specification by adding new behaviors

required by the user, such as adding a new functionality to a given telecommunication system.

The combination should preserve the semantics properties of each single specification. For instance,

the addition of a new function to a telephone system specification should not disturb the semantics

properties of the telephone system specification and the semantics properties of the new function. In

the context of distributed systems, preserving semantic properties may, for instance, mean that the

combined specification exhibits at least the behaviors of the original ones without introducing

additional failures for these behaviors. This is captured by the formal relation between specifications,

called extension, introduced in [Brin 86]. Informally, a specification S2 extends a specification S1, if

and only if, S2 allows any sequence of actions that S1 allows, and S2 can only refuse what S1 can

refuse, after a given sequence of actions allowed by S1.

Two specifications Sold and Sadded may be combined in different ways depending on the user

requirements. In this paper, we assume that Sold and Sadded have to be combined as alternative

behaviors. We propose an incremental specification approach, which consists of merging two

specifications Sold and Sadded into a specification Snew, such that Snew extends Sold and Snew extends

Sadded. Moreover, in the case of cyclic traces, Snew offers a choice between behaviors of Sold and

Sadded, in a recursive manner. We consider distributed system specifications, which may consist of a

parallel combination of subsystem specifications. The incremental specification approach preserves

such structure. Therefore, the designer does not have to redesign it. The approach for merging

structured specifications described in this paper, is based on the approach for merging monolithic

specifications described in [Khen 92].

The remainder of the paper is structured as follows. Section 2 introduces the labelled transition

systems model [Kell 76] and some definitions used in this paper. In Section 3, we summarize the

principle and properties of the approach for merging monolithic specifications. In Section 4, our

approach for merging structured specifications is described. In Section 5, it is compared to related

ones. In Section 6, we conclude.

2 Labelled Transition Systems

We view the specification of a distributed system and its subsystems as processes, which are

expressed by labelled transition systems (LTS for short). In this section, we introduce the LTS model

[Kell 76] and some definitions, such as the definition of a cyclic trace, a minimal cyclic trace, and the

definition of the extension relation [Brin 86].
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2.1 Definitions

An LTS is a graph in which nodes represent states, and edges, also called transitions, represent state

changes, labelled by actions occurring during the change of state. These actions may be observable or

not.

Definition 2.1 [Kell  76]

An LTS TS is a quadruple <S, L, T, So>, where

- S is a (countable) nonempty set of states.

- L is a (countable) set of observable actions.

- T: S x L " {τ} → S is a transition relation, where a transition from a state Si to state 

Sj by an action µ (µ ∈ L " {τ}) is denoted by Si−µ→Sj.

τ represents the internal, nonobservable action.

- So is the initial state of TS.

A finite LTS (FLTS for short) is an LTS in which S and L are finite. In the remainder of this paper, we

may refer to an LTS by its initial state and vice versa. We may also write act(TS), instead of L, to

denote the set of observable actions of TS. Some notations for LTSs are summarized in Table 1.

P−µ1...µn→Q ∃ Pi ( 0 ≤ i ≤ n) such that P = Po−µ1→P1...Pn-1−µn→Pn = Q
P−µ1... µn→  ∃ Q such that  P−µ1...µn→Q
P=ε⇒Q P ≡ Q or ∃ n ≥ 1 P−τn →Q 
P=a⇒Q ∃P1, P2 such that P=ε⇒P1−a→ P2=ε⇒Q
P=a1... an⇒Q ∃ Pi  (0 ≤ i ≤ n) such that P = Po=a1⇒P1=a1⇒..an⇒Pn = Q
P=σ⇒ ∃Q such that  P=σ⇒Q
P≠σ⇒ not (P=σ⇒)
Tr(P) {σ ∈ L* | P=σ⇒}
out(P, σ) {a ∈ L| σ.a ∈ Tr(P)}
initials(P) out(P, ε)
P after σ {Q | P=σ⇒Q}
Acc(P, σ) {X | ∃Q ∈ (P after σ), such that initials(Q) ⁄ X⁄  out(P, σ)}
where  µ,  µi ∈ L " {τ};  a, ai ∈ L;  P, Q, Pi, Qi represent states;  ε represents the empty trace;
σ = a1.a2... an, where "." denotes the concatenation of actions or sequence of actions (traces).

Table 1.  LTS notations

A trace, of a given state Si in the LTS TS, is a sequence of actions that TS can perform starting from

state Si. A cyclic trace in TS is a trace of the initial state So that reaches only the initial state So and the

states that can be reached by the empty trace from So. In other words, a cyclic trace always brings back

TS to its initial state. TS may then move to an other state by the nonobservable action τ.  A minimal

cyclic trace is a cyclic trace that is not prefixed by a nonempty cyclic trace.
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Definition 2.2 (Cyclic Trace)

Given an LTS TS = <S, L, T, So>, a trace σ is cyclic, iff

(So after σ) = {So} " S', where S' is such that ∀ Si ∈ S', So=ε⇒Si.

Definition 2.3 (Minimal Cyclic Trace)

Given an LTS TS = <S, L, T, So>,  σ is a minimal cyclic trace, iff

σ is a cyclic trace, and

™ σ' (≠ ε) and σ" (≠ ε) such that σ = σ'.σ" and σ' is cyclic trace in TS.

2.2 Operations on Labelled Transition Systems

The specification of a distributed system may be considered as a composition of its subsystem

specifications. Among the possible compositions, the parallel composition operator and the action

hiding operator are of special interest in this paper.  The parallel composition operator (B1 |{a1, ..., an}

B2) allows one to express the parallel execution of the behaviors B1 and B2. B1 and B2 synchronize

on actions in {a1, ..., an} and interleave with respect to other actions. The hiding operator allows the

hiding of actions, which then will be considered internal actions.  We write B\A to denote the hiding

of the actions in A in the behavior B. The inference rules for these operators are as follows (adapted

from [ISO 8807]).

Parallel composition: B1 |{a1, ..., an} B2

If B1−a→B1' and a { {a1, ..., an}, then B1 |{a1, ..., an} B2−a→B1' |{a1, ..., an} B2,

If B2−a→B2' and a { {a1, ..., an}, then B1 |{a1, ..., an} B2−a→B1 |{a1, ..., an} B2',

If B2−a→B2' and B1−a→B1' and a ∈ {a1, ..., an}, then B1 |{a1, ..., an} B2−a→B1' |{a1, ..., an} B2'.

Hiding operator: B\{a1, ..., am}

If B−a→B' and a { {a1, ..., am}, then  B\{a1, ..., am}−a→B'\{a1, ..., am},

If B−a→B' and a ∈ {a1, ..., am}, then  B\{a1, ..., am}−τ→B'\{a1, ..., am}.

2.3 The extension relation

Intuitively, different LTSs may describe the same observable behavior. Therefore different

equivalence relations have been defined based on the notion of observable behavior. They range from

the relatively coarse trace equivalence to the much finer strong bisimulation equivalence [DeNi 87].

However, for our considerations, one does not need equivalence relations, but rather ordering

relationships.  Among them, we note the reduction and extension relation as defined in [Brin 86].

These relations may serve different purposes during the specification life cycle. The extension relation

is most appropriate for our purpose of compatible enrichment of specifications. Informally, S2
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extends S1, if and only if, S2 allows any sequence of actions that S1 allows, and S2 can only refuse

what S1 can refuse, after a given sequence of actions allowed by S1.

Definition 2.4 [Brin 86]

S2 extends S1 (written S2 ext S1), iff

(a) Tr(S1) ⁄ Tr(S2), and

(b) ∀ σ ∈ Tr(S1) , ∀ A ⁄ L,

if  ¡ S2' such that  S2=σ⇒S2' and S2'≠a⇒ ,  ∀ a ∈ A,

then  ¡ S1' such that S1=σ⇒S1' and S1'≠a⇒ ,  ∀ a ∈ A.

3 Merging monolithic specifications

In this section, we consider monolithic specifications [Viss 88]. A monolithic specification has no

internal structure and is defined directly in terms of some allowed ordering of actions. A monolithic

specification is represented by a single LTS.

Given two LTSs, S1 and S2, we want to construct systematically an LTS S3,  such that S3 extends

S1, and S3 extends S2. Moreover, in the case of cyclic traces, S3 should offer a choice between

behaviors of S1 and behaviors of S2, in a recursive manner. Note that the usual choice operators

defined for LOTOS [ISO 8807] and CCS [Miln 89] for instance, do not allow such combination of

specifications as shown in Figure 1.

aτ τ

S1 S2 Choice(S1, S2)

a b

ba
τ

Figure 1. LOTOS, CCS choice operator

We assume that the LTSs are finite. Our FLTSs merging algorithm, called Merge, uses an intermediate

representation, the Acceptance Graphs (AGs for short).

Definition 3.1

An AG G is 5-tuple <Sg, L, Ac, Tg, Sgo>, where

- Sg is a (countable) nonempty set of states.

- L is a (countable) nonempty set of events.
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- Ac: Sg → P(P(L)) is a mapping from Sg to sets of subsets of L.

Ac(Sgi) is called the acceptance set of Sgi.

- Tg: Sg x L → Sg is a transition function, where a transition from

state Sgi to state Sgj by an action a (a ∈ L) is denoted by Sgi−a→Sgj.

- Sgo is the initial state of G.

The mappings Ac and Tg should satisfy the consistency constraints defined for Acceptance Trees in

[Henn 85]. A finite AG (FAG for short) is an AG in which Sg and L are finite. The LTS notations in

Table 1 remain valid for the AGs. A cyclic trace for an AG G = <Sg, L, Ac, Tg, Sgo>, is a trace of the

initial state Sgo that reaches the initial state Sgo. As for an LTS, a minimal cyclic trace for an AG is a

cyclic trace that is not prefixed by a nonempty cyclic trace. In the following, we define a relation AGR

between AGs and LTSs.

Definition 3.2

Given an AG G = <Sg, L, Ac, Tg, Sgo> and an  LTS S = <St, L, T, So>,  we note G = AGR(S), iff

- Tr(G) = Tr(S),

- ∀ σ ∈ Tr(S), if Sgo=σ⇒Sgi, then  Ac(Sgi) = Acc(So, σ),

- Any minimal cyclic trace in S is a minimal cyclic trace in G, and

- Any minimal cyclic trace in G is a minimal cyclic trace in S.

Given two FLTSs S1 = <St1, L1, T1, S1o> and S2 = <St2, L2, T2, S2o>, the algorithm Merge

consists, first, of transforming the FLTSs S1 and S2 into FAGs G1=<Sg1, L1, Ac1, Tg1, Sg1o> and

G2= <Sg2, L2, Ac2, Tg2, Sg2o>, respectively, such that Sg1 ( Sg2 = ¿ and G1 = AGR(S1) and G2 =

AGR(S2). The FAGs G1 and G2 are then merged by an FAG merging algorithm into the FAG G3 =

<Sg3, L1" L2, Ac3, Tg3, <Sg1o, Sg2o>>, which is transformed back to an FLTS S3 such that G3 =

AGR(S3).

The algorithm for the transformation of an FLTS to an FAG is similar to the "subset construction"

algorithm defined in [Aho 79]. The transformation of an FAG to an FLTS, in the last step, is the

converse transformation. This transformation eliminates the information redundancy concerning the

failure possibilities. The FLTS generated by this transformation is the canonical representative of a

class of testing equivalent LTSs with the same set of minimal cyclic traces. In the following, we

describe, informally,  the  FAG merging algorithm. A more formal treatment of these issues can be

found in [Khen 92].

A state Sgi in Sg3 may be either a tuple <Sg1i, Sg2j> consisting of state Sg1i from Sg1 and Sg2j from

Sg2 (as for the initial state <Sg1o, Sg2o>), or a simple state Sg1i from Sg1,  or a simple state Sg2j from
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Sg2. These states and the transitions which reach them are added by the FAG merging algorithm step by

step into Sg3 and Tg3, respectively, except for the two initial states Sg1o and Sg2o, each of these is

replaced by the initial state <Sg1o, Sg2o> of G3.

Initially, Sg3 contains only the initial state <Sg1o, Sg2o>. The definition of the transitions from state

<Sg1i, Sg2j> in Sg3 depends on the transitions from Sg1i in Sg1 and from Sg2j in Sg2. For instance, for

a given state <Sg1i, Sg2j>,  if there is a transition Sg1i−a→Sg1k in Tg1 and a transition Sg2j−a→Sg2m in

Tg2,  then the state <Sg1k, Sg2m> is added into Sg3 and the two transitions are combined into one

transition  <Sg1i, Sg2j>−a→<Sg1k, Sg2m> in Tg3. This is the situation when G1 and G2 have a common

trace from their initial state to Sg1k and Sg2m, respectively.

Another case of this construction, if for a given state <Sg1i, Sg2j>,  there exists a transition Sg1i−
a→Sg1k in Tg1, with Sg1k≠ Sg1o, but  there is no transition labelled by a from Sg2j in Tg2, then the state

Sg1k is added into Sg3 and the transition Sg1i−a→Sg1k in Tg1 yields the transition <Sg1i, Sg2j>−
a→Sg1k in Tg3.  Reciprocally,  if there exists a transition Sg2j−a→Sg2m in Tg2, with Sg2m≠ Sg2o, but

there is no transition labelled by a from Sg1i in Tg1, then the state Sg2m is added into Sg3 and the

transition Sg2j−a→Sg2m in Tg2 yields the transition <Sg1i, Sg2j>−a→Sg2m in Tg3. In the case where

Sg1k = Sg1o (respectively Sg2m = Sg2o), instead of the transition <Sg1i, Sg2j>−a→Sg1o (respectively

<Sg1i, Sg2j>−a→Sg2m), the transition <Sg1i, Sg2j>−a→<Sg1o, Sg2o> is added into Tg3.

The transitions from a simple state in Sg3, like state Sg1k or Sg2m above, for instance, remain the same

as defined in G1 and G2, respectively. The states reached by these transitions are added into Sg3, except

for the two initial states Sg1o and Sg2o, each of these is replaced by the initial state <Sg1o, Sg2o> of G3.

The mapping Ac3 is defined as follows:  For every state Sgi in Sg3, we have:

- if  Sgi = <Sg1i, Sg2j>, then Ac3(Sgi) = {X1 " X2 | X1 ∈ Ac1(Sg1i) and X2 ∈ Ac2(Sg2j)},

- if  Sgi = Sg1i, with  Sg1i ∈ Sg1, then Ac3(Sgi ) = Ac1(Sg1i),

- if  Sgi = Sg2j, with  Sg2j ∈ Sg2, then Ac3(Sgi ) = Ac2(Sg2j).

Given the FLTSs S1, S2, the following propositions have been proved in [Khen 92] concerning the

FLTS S3 constructed by the algorithm Merge:

Proposition 1

S3 extends S1 and S3 extends S2.

Merge satisfies our first requirement as stated above in Proposition 1. However, the second

requirement about the recursive choice between behaviors of S1 and behaviors of S2, in the case of

cyclic behaviors in S1 and S2, is not always satisfied. This requirement may be satisfied, if all the
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cyclic traces in S1 and all the cyclic traces in S2 remain cyclic traces in S3. For that, all the minimal

cyclic traces in S1 and all the minimal cyclic traces in S2 should remain minimal cyclic traces in S3.

Unfortunately, there are some situations where a minimal cyclic trace in S1 (respectively S2) does not

remain a minimal cyclic trace in S3. This is the case, when a given trace σ is a minimal cyclic trace in

S1 (respectively S2), but σ is a noncyclic trace in S2 (respectively S1). After executing such a minimal

cyclic trace, S3 reaches a state, which is different from its initial state. Therefore, it does not offer

again a choice between the behaviors of S1 and the behaviors of S2. Figure 2 illustrates such kind of

situations. After performing a, which is a minimal cyclic trace in S1, S3 does not offer a choice

between behaviors in S1 and behaviors in S2, because the trace a belongs to S2 and it is not a cyclic

trace in S2. However, the minimal cyclic trace a.b in S2 remains minimal cyclic trace in S3. In

Proposition 2, we determined a sufficient condition, for which a minimal cyclic trace in S1

(respectively S2) remains a minimal cyclic trace in S3.

a

S1 S2 S3 = FLTS_merge (S1, S2)

a b aa b

Figure 2. Counterexample for the minimal cyclic traces

Proposition 2

- For any minimal cyclic trace σ in S1, if σ { Tr(S2) or σ is a cyclic trace in S2,

then σ is a minimal cyclic trace in S3.

- Reciprocally, for any minimal cyclic trace σ in S2.

Any trace of S3 is either a trace of S1, or a trace of S2, or results from the concatenation of traces of S1

and S2. The following proposition shows how a trace σ.a of S3 may be decomposed into its subtraces

in S1 and S2, when σ is a trace of S1 (respectively S2).

Proposition 3

∀ a ∈ L1 " L2, if σ ∈ Tr(S1) and σ.a ∈ Tr(S3),

then σ.a ∈ Tr(S1),    or  σ.a ∈ Tr(S2),   or

(∃ σ1, σ2 such that σ = σ1.σ2, S1=σ1⇒S1, S1=σ2⇒S1'≠a⇒, S2=σ2⇒S2'=a⇒).

Reciprocally, for σ ∈ Tr(S2) and σ.a ∈ Tr(S3).

4  Merging Structured Specifications
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In this section, we consider distributed system specifications, which consist of a parallel composition

of  subsystem specifications as shown in Figure 3. Such specifications have the following form: S =

(S1 |AS2) \ B,  where A and B represent sets of actions. The subsystem specifications S1 and S2 may

also have the same form as S and so on, until a level where the specifications have no structure and

are defined directly in terms of some allowed ordering of actions as monolithic specifications. These

specifications are called basic components, they may be nondeterministic, but are assumed to be finite.

For instance, these specifications are represented by the streaked boxes in Figure 3.

...

S1 S2

Figure 3. Structure of a Distributed System Specification

Given a distributed system specification Sold, which consists of a parallel composition of subsystem

specifications and so on until the basic components, and a specification Sadded, we want to construct a

specification Snew, such that Snew extends Sold, and Snew extends Sadded.  Snew should have the same

structure as Sold.  As for the merging of monolithic specifications, in the case of cyclic traces, Snew

should offer a choice between behaviors of Sold and behaviors of Sadded, in a recursive manner.

4.1 Identical Structure for Sold and Sadded

We assume that the specifications Sold and Sadded are both structured according to the form (S1 |AS2)\B

described above, and S1 and S2 are either basic components or again structured by parallel

composition. Moreover, we assume that Sold and Sadded have an identical structure. In other words,

the form of the expression Sold is identical to the form of the expression Sadded. To every subsystem

specification in Sold corresponds a subsystem specification in Sadded and vice versa. To every basic

component Ciold in Sold, corresponds a basic component Ciadded in Sadded and vice versa.

The following algorithm for merging structured specifications, called Structured_Merge, is recursive

over the structure of Sold and Sadded. It is based on the algorithm Merge, for merging monolithic

specifications, described in Section 3.

Merging Algorithm for Structured Specifications
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Structured_Merge(S1, S2) =

if  S1 = (S11 |A S12)\B, S2 = (S21 |C S22)\D,

then  (Structured_Merge(S11, S21) |(A"C) Structured_Merge(S12, S22)) \ (B"D)

else   Merge(S1, S2)  (*  S1 and S2 are basic components *)

Snew, obtained by Structured_Merge(Sold, Sadded), has a structure identical to the structure of Sold and

Sadded. As basic component, instead of Ciold or Ciadded, it has Cinew which results from the merging of

Ciold and Ciadded by the algorithm Merge.

Unfortunately, Snew does not always extend Sold and Sadded. The extension of the basic components

of Sold and Sadded is not sufficient to insure the extension of Sold and Sadded, respectively. Consider the

counterexample in Figure 4, where Sold = (C1old |{g1} C2old)\{g1}, Sadded = (C1added |{g2}

C2added)\{g2}. The structure of the specification Snew is identical to the structure of Sold and Sadded, but

Snew does neither extend Sold nor Sadded. Indeed, Sold never refuses the action b after trace a, whereas

Snew may refuse action b after trace a. The same observation holds for action c after trace a. The trace

a is common for C1old and C1added and it is followed by a hidden action g1 in C1old and g2 in C1added.

The merging of C1old and C1added leads to a choice between the two hidden actions g1 and g2 after the

trace a, in C1new. The components C1new and C2new may, internally, choose to synchronize on action

g1 or g2, after a trace a, and offer only action b or only action c, respectively.

C1 oldC2 C2C1 C2C1old added newadded new

S S Sold added new

a

g2
g2

g2

c
g2

a

g1
g1

g2

g2

g1

b
g1

g2

c
g2

addedC1
addedC2 newC1 newC2

a

g1
g1

g1

b
g1

old oldC1 C2

a b
g1

a c
g2

a
g2

g1
b
c

Figure 4. Counterexample

In Theorem 1, we have stated sufficient conditions for Sold and Sadded such that Snew extends Sold and

Snew extends Sadded. We denote by HGold the set of hidden action names in Sold, and by HGadded the

set of  hidden action names in Sadded. The proof of Theorem 1 is given in the Appendix.

Theorem 1

Given  Sold in the form of a hierarchical structure with the basic components C1old, C2old, ..., Cnold,
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Sadded with an identical structure and the basic components C1added, C2added, ..., Cnadded, and

Snew = Structured_Merge(Sold, Sadded) as defined by the merging algorithm defined above,

we have that Snew  ext  Sold and Snew  ext  Sadded,  if the following conditions are satisfied:

(a) ∀i, i = 1,..., n, act(Ciold) ( HGadded = ¯, and act(Ciadded) ( HGold = ¯,

(b) ∀i, j, i ≠ j, (act(Ciold) " act(Ciadded)) ( (act(Cjold) " act(Cjadded)) ( (act(Sold) " act(Sadded)) = ¯,

(c) For x = old, added, ™ Cix and Cjx, such that for some g ∈ HGx, g ∈ Tr(Cix ) and g ∈ Tr( Cjx),

(d) ∀i, i = 1, ..., n,

1 -  ∀  σ ∈ Tr(Ciold) - {´}, ™ σ.g  ∈ Tr(Ciadded) with g ∈ HGadded,  and reciprocally,

2 -  ∀ a ∈ act(Sold), if a ∈ Tr(Ciold),  then ™ σ.a ∈ Tr(Ciadded), unless σ is cyclic in Ciadded,  and

reciprocally.

Condition (a) says that the names of hidden actions in Sadded should not conflict with the names of

observable or hidden actions in Sold. Reciprocally, the names of hidden actions in Sold should not

conflict with the names of observable or hidden actions in Sadded. Note that the names of the hidden

actions in both specifications are not important. These actions may be renamed without any observable

effect, in order to satisfy this condition.

Condition (b) says that there is no observable action of Sold and Sadded shared by two (or more) basic

components of Sold (respectively Sadded). A basic component Ciold in Sold may have common

observable actions only with the corresponding basic component Ciadded in Sadded, and reciprocally.

Consider the example in Figure 5, where C1old and C2added have the action a in common, but they are

not merged together. C1new = Merge(C1old, C1added), C2new = Merge(C2old, C2added),  C1new extends

C1old and C1added , and C2new extends C2old and C2added. The constructed specification Snew may

refuse action b or action c, after trace a, whereas Sold and Sadded never refuses b or c after a,

respectively. Snew does neither extend Sold nor Sadded. In order to prevent such situations, for each

observable action, we may assign a "place" and the components with common observable actions

have to be merged together, as stated by Condition (b).
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C1 oldC2 C2C1 C2C1old added newadded new

S S Sold added new

a

g2

g2

g2

c
g2

a

g1
g1

g2

c
g2

addedC1
addedC2

newC1 newC2

a

g1
g1

g1

b
g1

old oldC1 C2

a b
g1 ac

g2
a

g2

g1
b

c a

g1

b
g1

a

g2
g2

Figure 5. An illustration for Condition (b)

Condition (c) states that Sold and Sadded should not be able to perform an action from HGold or from

HGadded, respectively, before interacting with the environment.  Consider the example in Figure 6,

C1new = Merge(C1old, C1added), C2new = Merge(C2old, C2added),  C1new extends C1old and C1added, and

C2new extends C2old and C2added. However Snew does not extend Sadded. After an internal move by

executing the hidden action g1, it refuses the action a, whereas Sadded never refuses action a after an

empty trace.

C1 oldC2 C2C1 C2C1old added newadded new

S S Sold added new

a

g2

g2

g2

c
g2

g1

d
g1

a

g2
g2

addedC1
addedC2

newC1 newC2

d

g1

g1

g1

b
g1

old oldC1 C2

d b
g1

a c
g2 a

g2

g1
b
c

g1

b
g1

g2

c
g2

d

Figure 6. An illustration for Condition (c)

Condition (d-1) prevents from any new nondeterminism which may be introduced by the hidden

actions in HGadded with respect to behavior in Sold and reciprocally, as shown in Figure 4. For a given

pair of basic components Ciold and Ciadded, a common trace σ (≠ ´) should not be followed by hidden

actions from HGold or HGadded.
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Condition (d-2) is introduced in order to prevent situations similar to the one shown in Figure 7.

Assume that Sold =  (C1old |{g1, g2} C2old)\{g1, g2} and Sadded = (C1added |¿ stop)\¿. The merging

algorithm for structured specifications leads to Snew =  (C1new |{g1, g2} C2new) \{g1, g2}, where

C1new is shown in Figure 7 and C2new = C2old. We have C1new ext C1old and C1new ext C1added as

well as C2new ext C2old and C2new ext C2added. However, Snew does not extend Sold. For instance,

after the trace f.a.b.c, Snew may refuse to perform action d, whereas Sold never refuses to perform

action d after trace f.a.b.c. This is due to the fact that we have two traces σ1 = a.g1.b and σ2 = a.g2.b

in C1old, such that σ1 ≠ σ2, σ1\HGold = σ2\HGold, σ1 is cyclic, σ2 is not cyclic,  σ2.c is a trace in

C1old, and c is a trace in C1added.  It is possible to prevent such situations with a weaker condition than

Condition (d-2) as explained in this example. However the verification of such conditions may be

complex, whereas Condition (d-2) can be checked very easily.

C1 C2

a

g1 g2

b

d

b
f

g1 g2

old added C1

a

g1 g2

b

d

b

new

c

e

old C1

c

e

cc

Figure 7. Illustration for Condition (d-2).

Theorem 2 states that under certain conditions on the basic components of Sold and Sadded, a minimal

cyclic trace σ in Sold (respectively Sadded) remains cyclic in Snew. Therefore, after performing σ, Snew

reaches its initial state, and offers again a choice between behaviors in Sold and behaviors in Sadded.

The proof of Theorem 2 is given in the Appendix.

Theorem 2

Given specifications Sold, Sadded, and Snew as in Theorem 1, and

assume that the conditions of Theorem 1 are satisfied,  we have

- For any minimal cyclic trace σ in Sold,  if for i = 1,..., n, σi is a minimal cyclic trace in Ciold and (σi

{ Tr(Ciadded) or σi is a cyclic trace in Ciadded)),  where σi represents the sequence of actions

performed by Ciold, when Sold performs the trace σ,    then σ is a cyclic trace in Snew.

- Reciprocally, for any minimal cyclic trace σ in Sadded.
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Example

In the following, we will illustrate our approach by an example. We use variations of the Daemon

game [ISO 8807]. We assume a simple game description, noted "Simple Daemon Game" (SDG for

short). The player may insert a coin,  start the game, probe the system, then he randomly loses or

wins. The inserted coin may be refused, the user has to recollect his coin and insert it again until

accepted by the system before he can start the game. We have, arbitrarily, structured this system as

follows: SDG = (P1 |{g1} P2)\{g1}.  The processes P1 and P2 synchronize through action g1.  The

structure of SDG and the processes P1 and P2 are drawn in Figure 8.

Coin

g1

Recollect

P1

g1

τ

Lose Win

g1

P2

g1

τ τ

P1 P2

SDG

Start_G
Probe

g1

Coin

g1
Probe
Win
Lose

Start_G

Recollect

Figure 8. Simple Daemon Game Description

Assume that we want to enrich the specification above, in order to describe a new system (

"Combined Game", or CG for short), where the player can play, alternatively, the simple game and a

sophisticated game, called "Jackpot Daemon Game". As for the "Simple Daemon Game", the player

has to insert a coin before starting the game. This coins may be refused. Once the coin has been

accepted, the player can start the game,  probe, then he randomly loses or wins. If he wins, the game

continues. He can probe again, then he randomly loses or get the "Jackpot".  The specification of this

sophisticated game is given as follows: JDG =  (P3 |{g2} P4)\{g2}. The structure of this specification

is identical to the structure of SDG. The structure of JDG and the processes P3 and P4 are drawn in

Figure 9.

These specifications (games) have many interactions in common. SDG and JDG satisfy the sufficient

conditions of Theorem 1. Applying the algorithm Structured_Merge leads to: CG =  (P13 |{g1,

g2}P24)\{g1, g2}, where P13 and P24 are described in Figure 10. P13 results from the merging of P1

and P3 by the algorithm Merge. P24 results from the merging of  P2 and P4 by the algorithm Merge.

The processes P1, P2,  P3, and P4 are assumed to be basic components. By construction, we have

P13 ext P1, P13 ext P3, P24 ext P2, P24 ext P4, CG ext DG and CG ext JDG. In this example, it is

easy to verify that each minimal cyclic trace in SDG (respectively JDG) remains cyclic in CG
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(Theorem 2). Therefore, CG describes a new system where the user may always alternate between the

"Simple Daemon Game" and the "Jackpot Daemon Game".

Coin
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g2

g2

P3

g2

Lose

Jackpot
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τ τ
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τ Start_J
Probe
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Probe
Win
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Figure 9. Jackpot Daemon Game Description
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Figure 10. Combined Game Description
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4.2 Nonidentical Structure for Sold and Sadded

We assume now that the specifications Sold and Sadded are constructed through the combination of the

parallel and hiding operators as previously, but their structures are not identical.  For instance, the

structures of Sold = (C1old |A C2old) \B and Sadded = (S1added |C C3added) \D where S1added = (C1added |E
C2added)\F, are not identical. There is no one to one correspondence between the subexpressions of

Sold and the subexpressions of Sadded. Before applying the merging algorithm Structured_Merge, Sold

and Sadded are transformed into strongly bisimilar specifications Sold' and Sadded', respectively, such

that the structures of Sold' and Sadded' are identical. This transformation may be done by the procedure

Transform described below. This procedure is given in a style similar to a Prolog program. In order to

determine Sold' and Sadded', it may be called by Transform(Sold, Sadded, Sold', Sadded'). Procedure

Transform consists of 4 rules applicable to the different forms of the expressions to be transformed.

Transform((S11 |A S12)\ B,  (S21 |C S22) \D,  (S11' |A S12')\ B,  (S21' |C S22')\D) =

Transform (S11, S21, S11', S21') , Transform (S12, S22, S12', S22').

Transform(S1,  (S21 |C S22) \D,  (S11' |¿ S12'),  (S21' |C S22')\D) =

Transform (S1, S21, S11', S21') , Transform (stop, S22, S12', S22').

Transform((S11 |A S12)\ B, S2,  (S11' |A S12')\ B,  (S21' |¿  S22')) =

Transform (S11, S2, S11', S21') , Transform (S12, stop, S12', S22').

Transform(S1, S2,  S1,  S2).

Note that we have introduced a dummy process stop, which is a process that does nothing [ISO

8807]. Sold' (respectively Sadded') is strongly bisimilar to Sold (respectively Sadded). It is deduced from

the fact that  S ~ (S |¿ stop), and (S1 |A S2)\B ~  (S1'|A S2)\B if S1 ~ S1' [Miln 89]. Sold' and Sadded'

are merged into Snew, using the algorithm Structured_Merge introduced in the previous subsection. If

the sufficient conditions of Theorem 1 are satisfied by Sold' and Sadded',  then Snew ext Sold' and

Sadded'.  Since Sold' (respectively Sadded') is strongly bisimilar to Sold (respectively Sadded), it follows

that Snew ext Sold and Sadded. Same observation for Theorem 2.

4.3 Discussion

(a) Avoiding the conditions of Theorem 1: Note that, whenever the sufficient conditions of

Theorem 1 are not satisfied by the basic components of Sold and Sadded, we may consider the

processes at the next higher level as monolithic and apply algorithm Merge to them. The internal

structure of such processes will be lost and we will have to redesign it after the merging.

(b) Extra behavior: In the merging of structured specifications, Snew may contain certain extra

behaviors allowed neither by Sold nor by Sadded. This kind of side effect happens when alternative
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behaviors from Sold and Sadded involve different components. In this case, these alternative behaviors

may be interleaved as shown by the example in Figure 11, in which Sold = (C1old |{g1} C2old)\{g1},

Sadded = (C1added |{g2} C2added)\{g2}, C1new = Merge(C1old, C1added), C2new = Merge(C2old, C2added),

and Snew = (C1new |{g1, g2} C2new)\{g1, g2}. Snew extends Sold and Snew extends Sadded.  However

Snew allows more than what is allowed by Sold and Sadded, such as the sequences of actions a.c or c.a.

c

g2
g2

g2

d
g2

g1

b
g1

c

g2

addedC1 addedC2 newC1 newC2

a

g1
g1

g1

b
g1

old oldC1 C2

g2

a

g1
g1

g2

g2
d

Figure 11. Extra behaviors

(c) Improved procedure Transform: An improved procedure Transform may be used, in order

to produce,  Sold' and Sadded', which satisfy, systematically, Condition (b) of Theorem 1. Using this

improved procedure, if, for instance, S11 and S22 have some observable actions from (act(Sold) "

act(Sadded)) in common, and S11 and S21 do not have observable actions in common, then S11 is

associated with S22,  instead of S21, for further transformations, and the expression (S21' |C S22')\D

is changed to (S22'|C S21')\D. Note that it may happen that S11 has common observable actions with

S21 and with S22. In this case, the specifications Sold' and Sadded' produced by the procedure

Transform described in the previous subsection do not satisfy Condition (b) of Theorem 1. The

improved procedure Transform will not be able to transform Sold and Sadded, because of this

"incompatible distribution" of observable actions. The specification Sadded should be redesigned using,

for instance, the functionality decomposition algorithm described in [Lang 90]. Using this algorithm,

the distribution of the common observable actions over the subexpressions of Sadded should be guided

by the distribution of these actions in Sold. The observable actions of Sadded, which do not belong to

Sold, can be distributed randomly. Such an algorithm can also be used, if Sold is given according to

the form (S1 |AS2)\B, but Sadded is given in a high level form, as a monolithic specification, for

instance.

(d) Substitution of a system component: The sufficient conditions in Theorem 1 may be

adapted as sufficient conditions for the substitution of a component X in a system SYS by a component

Y, with the confidence that the new system SYS' obtained by this substitution satisfies SYS' ext SYS, if

Y ext X.  For this purpose, we assume that SYS consists of a parallel composition of subsystem

specifications and so on until the basic components, X is a basic component in SYS, and Y may be

written as Y = Merge(X, X') with a certain X'. SYS represents Sold. X' represents Sadded, which is

transformed by the procedure Transform described in the previous subsection into Sadded'. Sadded' is



1 8

strongly bisimilar to Sadded and for each basic component Z ≠ X in Sold corresponds a basic component

Z' = stop in Sadded'. To the basic component X in Sold corresponds the basic component X' in Sadded'.

Snew obtained by merging Sold and Sadded' using the algorithm Structured_Merge represents SYS'.

Therefore, SYS' extends SYS if the conditions in Theorem 1 are satisfied.

5.  Related Work

In [Ichi 90], the problem of incremental specification in the LOTOS language is approached in the

following way: Given the processes Bold = C[B1] and Badded, deduce Bnew = C[B2], such that Bnew

ext Bold,  Bnew ext Badded and B2 ext B1. C[] represents a process expression context.

A new LOTOS operator &, called specification merging operator, is introduced and the corresponding

inference rules are defined. This approach is restricted to specification behaviors without the internal

action τ. B1&B2 defines a behavior, which is supposed to be an extension of B1 and B2.

Unfortunately, this is not always the case, as shown by the counterexample of Figure 12. B1 never

refuses the action c after trace a.b, whereas B1&B2 may refuse the action c after trace a.b.  Moreover,

B1&B2 is not able to behave, alternatively, as B1 and B2, in a recursive manner. B1&B2 describes a

behavior where the environment has to choose behavior B1 or behavior B2 once and for all.

a

b

c

a

B1

a

b

B2

a

b

a

b

B17B2

dc
d d

Figure 12. Counterexample for Ichikawa et al. approach

There is no systematic approach to deduce Bnew from Bold and Badded with considerations of the

structure of these specifications. They considered the basic LOTOS operators and investigated their

properties w. r. t. the extension relation. The combination of the hiding operator (hide G in B) and the

parallel operator (B1 |[G]| B2) was not considered formally. We note that Proposition 2 in [Ichi 90],

which states that (B3 |[G]| B2) ext (B1 |[G]| B2), if B3 ext B1 and out(B3) ( out(B2) ⁄  G, does not

hold. We may consider the following counterexample:

B1 = a ; b ; stop

B2 = a ; c ; b; stop

B3 = a ; (b ; stop [] c ; stop)

G = {a , b}
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It is clear that  B3 ext B1 and (out(B3) ( out(B2)) ⁄ G,  but B3|[a, b]|B2 does not extend B1|[a, b]|B2.

In [Rudk 91] the notion of inheritance is defined for LOTOS. It is seen as an incremental modification

technique. A corresponding operator is introduced and denoted by "&".  This operator is defined such

that if s = t & m , then s extends t  and any recursive call in t or m is redirected to s. However strong

restrictions are imposed on t and m, such that m should be stable (no internal transition as first event),

the initial events of m should be unique and distinct from initial events of t, and so on. There is no

requirement such that s should also extend m, and no considerations to the structure of t or how this

modification m is propagated to the processes in t.

6. Conclusion

In this paper, we have proposed an incremental construction approach for distributed system

specifications. Given two specifications Sold and Sadded, we construct a specification Snew, which

extends Sold and Sadded, if some sufficient conditions stated in Theorem 1 are satisfied. Snew has the

same structure as Sold. Therefore the designer will not have to redesign this structure. In the case of

cyclic behaviors of Sold and Sadded, provided that certain sufficient conditions stated in Theorem 2 are

satisfied,  Snew offers a choice between behaviors in Sold and Sadded, in a recursive manner. Note that

in the case of merging monolithic specifications, the more simple propositions 1 and  2 of section 3

apply.

The labelled transition systems model is the underlying semantical model for many specification

languages, such as, LOTOS [ISO 8807], CCS [Miln 89]. Therefore, the approach described in this

paper is applicable for specifications written in these languages.

The proposed incremental specification approach is useful for dealing with multiple-function

specifications. Instead of handling all the functions simultaneously, it allows one to focus on one

function at a time for the design and verification. The merging approach will derive, whenever

possible, the required combined specification. From another point of view, it allows one to extend

existing specifications with new behaviors required by the user.

The approach proposed in this paper may promote the reusability of specifications. Once a function

specification has been constructed and verified, for example, it may be used in many system

specifications where it is required.
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In this paper, we determined sufficient conditions, for which  the combined specification Snew extends

the specifications Sold and Sadded. As future work, it will be interesting to study the necessity of each

condition. More complex applications of our approach are also expected.
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Appendix

For the needs of the proofs in this appendix, we use the following notations:

act(σ) : the set of action names in trace σ,

σ\X: the projection of σ to act(σ) - X,

Comp(old, σ1, σ2, ..., σn) :  represents the set of possible traces obtained by composition of σ1, σ2,

..., σn in Sold structure with the hidden gates of Sold.

Comp(new, σ1, σ2, ..., σn) :  represents the set of possible traces obtained by composition of σ1,

σ2, ..., σn in Snew structure (which is the same than Sold structure) with the hidden gates of Snew.

Proof of Theorem 1

We will prove that Snew ext Sold. The proof for Snew ext Sadded is very similar.

a - First, we have to prove that any trace  σ of Sold is also a trace of Snew:

let σ ∈ Tr(Sold), it implies that ¡ σiσ ∈ Tr(Ciold), for i = 1, ..., n, such that σ ∈ Comp(old, σ1σ,

σ2σ, ..., σnσ). From Proposition 1, we have  Cinew  ext  Ciold. It follows that, for i = 1, .., n , σiσ ∈
Tr(Cinew). By Condition (a),  we deduce that σ ∈ Comp(new, σ1σ, σ2σ, ..., σnσ). Therefore,  σ ∈
Tr(Snew).

b - In a second step, we have to prove that Snew will not block where Sold does not block:

We have to prove that  ∀ σ ∈ Tr(Sold) and  A ⁄ act(Sold),

if ¡ Snew',  such that Snew =σ⇒Snew' ≠a⇒,  ∀ a ∈ Α,
then ¡ Sold' such that Sold =σ⇒Sold' ≠a⇒,  ∀ a ∈ Α,
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Let σ ∈ Tr(Sold),  A ⁄ act(Sold) and Snew' such that  Snew=σ⇒Snew'≠a⇒, ∀ a ∈ Α,

it implies ¡ σ iσ ∈ Tr(Cinew), and Cinew' for i = 1,...,n, such that σ ∈ Comp(new, σ1σ ,

σ2σ,...,σnσ) and Cinew=σiσ⇒Cinew'≠a⇒, ∀ a ∈ Α, since A ⁄ act(Sold) and act(Sold) ( (HGold "

HGadded) = ¯.

First, we have to prove that σiσ ∈ Tr(Ciold),  for i = 1, ..., n.

We distinguish two cases:

b - 1:  σ  = ´́́́

From Proposition 3, we deduce that, for a given a ∈ (act(Ciold) " act(Ciadded)), if a ∈ Tr(Cinew), then

a ∈ Tr(Ciold) or a ∈ Tr(Ciadded). By Condition (c) which states that Sold (Sadded) should not be able to

perform an action from HGold (HGadded) before interacting with the environment. By Condition (a),

act(Ciold) ( HGadded = ¿ and act(Ciadded) ( HGold = ¿, for i = 1, ..., n. It follows that ™ Cinew and

Cjnew, with i≠j, such for some g ∈ (HGold " HGadded), g ∈ Tr(Cinew ) and g ∈ Tr( Cjnew). It follows

that Snew is not able to perform an action from (HGold " HGadded) before interacting with the

environment. We deduce that σiσ = ´ and σiσ ∈ Tr(Ciold), for i = 1, ..., n.

b - 2: σ  ≠ ´́́́

From (b-1) above, we know that Snew is not able to perform an action from (HGold " HGadded) before

interacting with the environment. Therefore, σ = a.σ' with a ∈ act(Sold) and ¡ σlσ ∈ Tr(Clnew), such

that  σlσ = a.σl'.

Now, assume that ¡ σkσ ∈ Tr(Cknew), but  σkσ { Tr(Ckold). More specifically, σkσ can be written

in the form of σk'.µ.σk'', with σk' ∈ Tr(Ckold), but σk'.µ { Tr(Ckold). µ may be an action from

HGold, or from HGadded, or an observable action from act(Sold).

We distinguish two sub-cases:

b - 2 - 1:  σ k' = ´́́́

b - 2 - 1 - 1:  µ ∈ HG old

We have µ ∈ Tr(Cknew), with µ ∈ HGold. From Proposition 3, we deduce that µ ∈ Tr(Ckold) or µ ∈
Tr(Ckadded), since Cknew results from the merging of Ckold and Ckadded by the algorithm Merge. By

Condition (a), act(Ckadded) ( HGold = ¯, it follows that µ { Tr(Ckadded). We have µ ∈ Tr(Ckold),

which contradicts our hypothesis above. Consequently, ™ σkσ ∈ Tr(Cknew), such that σkσ {

Tr(Ckold).
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b - 2 - 1 - 2: µ ∈ act(Sold) (µ is an observable action)

By Proposition 3,  we deduce again that µ ∈ Tr(Ckold) or µ ∈ Tr(Ckadded). Assume that µ {
Tr(Ckold), and µ ∈ Tr(Ckadded). We have σ ∈ Tr(Sold), it follows that ¡ σkold ∈ Tr(Ckold), such that

σkold = s.µ.t, because of the distribution of observable actions over the basic components of Sold and

Sadded expressed by Condition (b). We have µ ∈ Tr(Ckadded) and s.µ ∈ Tr(Ckold), by Condition (d-2),

it follows that Ckold=s⇒Ckold and Ckold=µ⇒. It follows that µ ∈ Tr(Ckold), which contradicts our

assumption. Consequently, µ ∈ Tr(Ckold), which contradicts our original hypothesis. Therefore, ™

σkσ ∈ Tr(Cknew), such that σkσ { Tr(Ckold).

b - 2 - 1 - 3:  µ ∈ HGadded

We deduce that ¡ σmσ ∈ Tr(Cmnew), such that σmσ = σm'.µ.σm''. From (b-1) above, we know

that Snew is not able to perform an action from (HGold " HGadded) before interacting with the

environment. In other words, we know that ™ Cinew and Cjnew, with i≠j, such for some g ∈ (HGold

" HGadded), g ∈ Tr(Cinew ) and g ∈ Tr( Cjnew).  It follows that  σm' ≠ ´.

We distinguish two cases, σm'∈ Tr(Cmold) and σm'{ Tr(Cmold):

- σm'∈ Tr(Cmold): we have σm'.µ ∈ Tr(Cmnew), but σm'.µ { Tr(Cmold), since µ ∈ HGadded. By

Condition (d-1), we also have σm'.µ {  Tr(Cmadded). By Proposition 3, it follows that σm'=

σm1'.σm2' with Cmold=σm1'⇒Cmold, Cmold=σm2'⇒Cmold',  Cmadded=σm2'⇒Cmadded' and

Cmadded'=µ⇒.  If  σm2'≠ ´, we have σm2'(≠ ´) ∈ Tr(Cmold) and σm2'.µ Tr(Cmadded), which is in

contradiction with Condition (d-1). If σm2'= ´, we have µ ∈ Tr(Cmadded). We also have µ ∈
Tr(Cknew), by Proposition 3, it follows  that µ ∈ Tr(Ckadded), since µ { Tr(Ckold). This is in

contradiction with Condition (c). We have reached a contradiction again, it follows that µ { HGadded.

- σm'{  Tr(Cmold): we deduce that σm'= s.µ '.t, where s ∈ Tr(Cmold), but s.µ '{  Tr(Cmold).

Depending on s and µ ', we proceed recursively.  In the case where µ '{ HGadded, we reach,

immediately, a contradiction as shown in the other subcases. In the case of  µ'∈ HGadded, we proceed

recursively, until σlσ = a.µ*.σl'' with a ∈ Tr(Clold), but a.µ* { Tr(Clold). Since σ ∈ Tr(Sold),

Condition (c) states that Sold is not able to perform an action g from HGold before interacting with the

environment and Condition (b) for the distribution of observable actions over the basic components of

Sold and Sadded, it follows that ¡ σlold ∈ Tr(Clold), such that σlold = a.σlold'. If  µ* ∈ HGold, or µ* ∈
act(Sold), it is solved in the subcases (b-2-2-1) and (b-2-2-2) and we reach in both cases a

contradiction. If µ* ∈ HGadded, by Condition (d-1),  a.µ* { Tr(Cladded). We have  a.µ* ∈ Tr(Clnew),

a ∈ Tr(Clold),  a.µ* { Tr(Clold)�and a. µ* { Tr(Cladded), by Proposition 3, it follows Ciold=a⇒Ciold

and µ* ∈ Tr(Cladded). This is in Contradiction with Condition (c), because we have µ* ∈ Tr(Ckadded)
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and µ* ∈ Tr(Cladded). Recursively, each assumption is contradicted until the first one: µ ∈ HGadded.

Consequently, we can not have µ ∈ HGadded.

b - 2 - 2: σ k' ≠ ´́́́

b - 2 - 2 - 1:  µ ∈ HGold

We have σk'.µ ∈ Tr(Cknew),  σk' ∈ Tr(Ckold), and µ ∈ HGold. By Condition (a), we have

act(Ckadded) ( HGold = ¯. We deduce that σk'.µ {  Tr(Ckadded), and ™ σk1'.σk2' such that

σ k '=σ k1'.σ k2', Ckold= σ k1'⇒ C kold, Ckold= σ k2'⇒ C kold', Ckadded= σ k2'⇒ C kadded' and

Ckadded'=µ⇒. By Proposition 3, it follows that σk'.µ ∈ Tr(Ckold), which is in contradiction with our

hypothesis. Consequently ™ σkσ ∈ Tr(Cknew), such that σkσ { Tr(Ckold).

b - 2 - 2 - 2: µ ∈ act(Sold):

σk'.µ ∈ Tr(Cknew), σk' ∈ Tr(Ckold): By Proposition 3, we have  σk'.µ ∈ Tr(Ckold), or  σk'.µ ∈
Tr(Ckadded), or ¡ σk1'.σk2' such that σk'=σk1'.σk2',  Ckold=σk1'⇒Ckold, Ckold=σk2'⇒Ckold',

Ckadded=σk2'⇒Ckadded' and  Ckadded'=µ⇒.

- σk'.µ ∈ Tr(Ckadded): we deduce that act(σk') ( (HGold " HGadded) = ¯, because σk' ∈ Tr(Ckold),

act(Ckadded) ( HGold = ¯ and act(Ckold) ( HGadded = ¯ (Condition (a)). We write  σk' = a1.a2...an,

with ai ∈ act(Sold), for i = 1, ..., n. Because of Condition (b), for the distribution of actions over the

basic components of Sold and Sadded, and the fact that  σ ∈ Tr(Sold), it follows that ¡ σkold ∈
Tr(Ckold) such that σkold  = σkold'.σk1old", where σkold'\ HGold = σk'.µ = a1.a2...an.µ. If σkold'=

a1. σkold''' with σkold'''\ HGold = a2...an.µ, then σkold''' = a2...an.µ,  because of Condition (d-1),

we can not have hidden actions (from HGold) in σkold'''. It follows that σk'.µ ∈ Tr(Ckold). If σkold'=

σk1old'.a1. σk2old' with σk2old'\ HGold = a2...an.µ, σk1old'\ HGold = ´, σk1old' ≠ ´ and σk1old' is

not cyclic in Ckold, we are in contradiction with Condition (d-2). If σkold'=  σk1old'.a1. σk2old' with

σk2old'\ HGold = a2...an.µ, σk1old'\ HGold = ´, σk1old' ≠ ´ and σk1old' is cyclic in Ckold, it follows

that a1. σk2old'∈ Tr(Ckold). Because of Condition (d-1), we can not have hidden actions (from HGold)

in σk2old' and σk2old' = a2...an.µ. It follows that σk'.µ ∈ Tr(Ckold), which is in contradiction with

our hypothesis.

- σk'.µ{ Tr(Ckadded): it follows that σk'= σk1'.σk2' with Ckold=σk1'⇒Ckold, Ckold=σk2'⇒Ckold',

Ckadded=σk2'⇒Ckadded' and  Ckadded'=µ⇒. As above, by Condition (b) for the distribution of actions

over the basic components of Sold and Sadded, and the fact that  σ ∈ Tr(Sold), it follows that ¡ σkold ∈
Tr(Ckold) such that σkold = s.µ.σk1old ''. if σk2' = ´, σk' = σk1'. By Condition (d-2),  s is cyclic in

Ckold and Ckold=µ⇒. It follows that  Ckold=σk'⇒Ckold and Ckold=µ⇒. We have deduced that

σk'.µ ∈ Tr(Ckold), which is in contradiction with our hypothesis. If σk2' ≠ ´,  then σk2' =
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a1.a2...an, with ai ∈ act(Sold), for i = 1, ..., n, since σk2' is a common trace for Ckold and Ckadded. It

follows that s = s1.a1.s2.µ.σk1old , such that s1\HGold = σk1'\HGold   and s2\HGold = a2...an. We

have  Ckadded=a1⇒,   and s1.a1 ∈ Tr(Ckold), by Condition (d-2), it follows that  s1 is cyclic in Ckold

and a1 ∈ Tr(Ckold). We have a1.s2\HGold.µ.= a1.a2...an.µ. By Condition (d-1), we can not have

hidden action (from HGold) in s2. It follows that s2 = a2...an. We have Ckold=σk1'⇒Ckold, and

σk2'.µ ∈ Tr(Ckold), it follows that σk'.µ ∈ Tr(Ckold), which is in contradiction with our hypothesis.

b - 2 - 2 - 3: µ ∈ HGadded

We have σk'∈ Tr(Ckold) and σk'≠´.  By Condition (d-1), we deduce that σk'.µ { Tr(Ckadded).  We

have σk' ∈ Tr(Ckold), σk'.µ {  Tr(Ckold), σk'.µ {  Tr(Ckadded) and σk'.µ ∈ Tr(Cknew). By

Proposition 3, it follows that ¡σk'= σk1'.σk2' with Ckold=σk1'⇒Ckold, Ckold=σk2'⇒Ckold',

Ckadded=σk2'⇒Ckadded' and  Ckadded'=µ⇒.  If  σk2'≠ ´, we have σk2'(≠ ´) ∈ Tr(Ckold) and σk2'.µ
Tr(Ckadded), we have reached a contradiction with Condition (d-1). If σk2'= ´,  it follows that µ ∈
Tr(Ckadded) and ¡ σmσ ∈ Tr(Cmnew), such that σmσ = σm'.µ.σm''. Now, we are in the same

situation as case b - 2 - 1 - 3, which is solved recursively and reaches a contradiction in all cases. We

can not have µ ∈ HGadded.

Consequently ™ σkσ ∈ Tr(Cknew), such that σkσ { Tr(Ckold).

By the algorithm Merge (Proposition 1), we have Cinew  ext  Ciold, for i = 1, ..., n.

It follows that, for i = 1, ..., n,  ∀ σi ∈ Tr(Ciold) and  A ⁄ act(Sold),

if ¡ Cinew',  such that Cinew =σi⇒Cinew' ≠a⇒,  ∀ a ∈ Α,
then ¡ Ciold' such that Ciold =σi⇒Ciold' ≠a⇒,  ∀ a ∈ Α,
σ ∈ Comp(new, σ1σ, ..., σnσ) and for i = 1, ..., n, σiσ ∈ Tr(Ciold), we deduce that σ ∈ Comp(old,

σ1σ, ..., σnσ). Since ¡ Ciold' such that Ciold =σiσ⇒Ciold' ≠a⇒,  ∀ a ∈ Α,  for i =1 , ..., n, it

follows that ¡ Sold' such that Sold =σ⇒Sold' ≠a⇒,  ∀ a ∈ A.

Proof of Theorem 2

Consider σ ∈ Tr(Sold), such that σ is a minimal cyclic trace in Sold.  It follows that, for i = 1, ..., n,

¡ σi ∈ Tr(Ciold) such that σ ∈ Comp(old, σ1, σ2, ..., σn). Assume that for i = 1, ..., n, σi is a

minimal cyclic trace in Ciold, and (σi { Tr(Ciadded) or σi is a cyclic trace in Ciadded). From Proposition

2, it follows that, for i = 1, ..., n, σi is a minimal cyclic trace in Cinew. By  Condition (a) of Theorem

1, we know that  σ ∈ Comp(new, σ1, σ2, ..., σn). Since the initial state of the structured

specification Snew is composed by the initial states of all its components, we deduce that  σ is a cyclic

trace in Snew.
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The proof for the second part of the theorem is similar.


