Incremental Construction Approach for Distributed System Specifications*

Ferhat Khendek and Gregor v. Bochmann
Département d'informatique et de recherche opérationnelle
Université de Montréal
C. P. 6128, Succ. A, Montréal, Que H3C 3J7, Canada
E-mail: \{khendek, bochmann\}@iro.umontreal.ca

Abstract

In this paper, we propose an incremental construction approach for distributed system specifications. These specifications are structured as a parallel composition of subsystem specifications. The approach consists of merging two specifications $S_{\text {old }}$ and $S_{\text {added }}$ into a new specification $S_{\text {new }}$, such that $S_{\text {new }}$ extends $S_{\text {old }}$ and $S_{\text {new }}$ extends $S_{\text {added }}$. Moreover, in the case of cyclic behaviors, $S_{\text {new }}$ offers a choice between behaviors of $\mathrm{S}_{\text {old }}$ and behaviors of $\mathrm{S}_{\text {added }}$, in a recursive manner. The derived specification $\mathrm{S}_{\text {new }}$ has the same internal structure as $\mathrm{S}_{\text {old }}$. Our approach is described in terms of Labelled Transition Systems, and it is applicable for many specification languages.

1 Introduction

The design of a distributed system goes through many phases. The initial phase allows the capturing of functional requirements in a specification with a high level of abstraction. This specification describes the functionalities of the system, but not how to realize them. In the next phases, it is refined into specifications with a lower level of abstraction where some design decisions are taken and a structure is chosen. The specification obtained after each step should remain correct with respect to the initial specification. The service specification and protocol specification for a given OSI layer are typical examples of two different levels of abstraction [Viss 85].

The step-wise refinement approach allows the methodical production of a specification with a low level of abstraction from a specification with a high level of abstraction. The distributed system specification task, however, still remain very complex, particularly when many functions have to be handled simultaneously. A complementary approach to deal with this complexity is the divide-andconquer methodology. It consists of building specifications for the different features of the required system independently and of combining them to obtain the desired specification. From another point

[^0]of view, this approach allows the enrichment of a system specification by adding new behaviors required by the user, such as adding a new functionality to a given telecommunication system.

The combination should preserve the semantics properties of each single specification. For instance, the addition of a new function to a telephone system specification should not disturb the semantics properties of the telephone system specification and the semantics properties of the new function. In the context of distributed systems, preserving semantic properties may, for instance, mean that the combined specification exhibits at least the behaviors of the original ones without introducing additional failures for these behaviors. This is captured by the formal relation between specifications, called extension, introduced in [Brin 86]. Informally, a specification S2 extends a specification S1, if and only if, S2 allows any sequence of actions that S1 allows, and S2 can only refuse what S1 can refuse, after a given sequence of actions allowed by S 1 .

Two specifications $S_{\text {old }}$ and $S_{\text {added }}$ may be combined in different ways depending on the user requirements. In this paper, we assume that $S_{\text {old }}$ and $S_{\text {added }}$ have to be combined as alternative behaviors. We propose an incremental specification approach, which consists of merging two specifications $S_{\text {old }}$ and $S_{\text {added }}$ into a specification $S_{\text {new }}$, such that $S_{\text {new }}$ extends $S_{\text {old }}$ and $S_{\text {new }}$ extends $S_{\text {added }}$. Moreover, in the case of cyclic traces, $S_{\text {new }}$ offers a choice between behaviors of $S_{\text {old }}$ and $\mathrm{S}_{\text {added }}$, in a recursive manner. We consider distributed system specifications, which may consist of a parallel combination of subsystem specifications. The incremental specification approach preserves such structure. Therefore, the designer does not have to redesign it. The approach for merging structured specifications described in this paper, is based on the approach for merging monolithic specifications described in [Khen 92].

The remainder of the paper is structured as follows. Section 2 introduces the labelled transition systems model [Kell 76] and some definitions used in this paper. In Section 3, we summarize the principle and properties of the approach for merging monolithic specifications. In Section 4, our approach for merging structured specifications is described. In Section 5, it is compared to related ones. In Section 6, we conclude.

2 Labelled Transition Systems

We view the specification of a distributed system and its subsystems as processes, which are expressed by labelled transition systems (LTS for short). In this section, we introduce the LTS model [Kell 76] and some definitions, such as the definition of a cyclic trace, a minimal cyclic trace, and the definition of the extension relation [Brin 86].

2.1 Definitions

An LTS is a graph in which nodes represent states, and edges, also called transitions, represent state changes, labelled by actions occurring during the change of state. These actions may be observable or not.

Definition 2.1 [Kell 76]

An LTS TS is a quadruple $<\mathrm{S}, \mathrm{L}, \mathrm{T}, \mathrm{S}_{\mathrm{O}}>$, where

- S is a (countable) nonempty set of states.
- L is a (countable) set of observable actions.
- T: S x L $\quad\{\tau\} \rightarrow \mathrm{S}$ is a transition relation, where a transition from a state S_{i} to state
S_{j} by an action $\mu(\mu \in \mathrm{L} \quad\{\tau\})$ is denoted by $\mathrm{S}_{\mathrm{i}}-\mu \rightarrow \mathrm{S}_{\mathrm{j}}$.
τ represents the internal, nonobservable action.
- S_{O} is the initial state of TS.

A finite LTS (FLTS for short) is an LTS in which S and L are finite. In the remainder of this paper, we may refer to an LTS by its initial state and vice versa. We may also write act(TS), instead of L, to denote the set of observable actions of TS. Some notations for LTSs are summarized in Table 1.

```
\(\mathrm{P}-\mu_{1} \ldots \mu_{\mathrm{n}} \rightarrow \mathrm{Q} \quad \exists \mathrm{P}_{\mathrm{i}}(0 \leq \mathrm{i} \leq \mathrm{n})\) such that \(\mathrm{P}=\mathrm{P}_{\mathrm{O}}-\mu_{1} \rightarrow \mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}-1}-\mu_{\mathrm{n}} \rightarrow \mathrm{P}_{\mathrm{n}}=\mathrm{Q}\)
\(\mathrm{P}-\mu_{1} \ldots \mu_{\mathrm{n}} \rightarrow \quad \exists \mathrm{Q}\) such that \(\mathrm{P}-\mu_{1} \ldots \mu_{\mathrm{n}} \rightarrow \mathrm{Q}\)
\(\mathrm{P}=\varepsilon \Rightarrow \mathrm{Q} \quad \mathrm{P} \equiv \mathrm{Q}\) or \(\exists \mathrm{n} \geq 1 \mathrm{P}-\tau^{\mathrm{n}} \rightarrow \mathrm{Q}\)
\(\mathrm{P}=\mathrm{a} \Rightarrow \mathrm{Q} \quad \exists \mathrm{P}_{1}, \mathrm{P}_{2}\) such that \(\mathrm{P}=\varepsilon \Rightarrow \mathrm{P}_{1}-\mathrm{a} \rightarrow \mathrm{P}_{2}=\varepsilon \Rightarrow \mathrm{Q}\)
\(P=a_{1} \ldots a_{n} \Rightarrow Q \quad \exists P_{i}(0 \leq i \leq n)\) such that \(P=P_{0}=a_{1} \Rightarrow P_{1}=a_{1} \Rightarrow . . a_{n} \Rightarrow P_{n}=Q\)
\(\mathrm{P}=\sigma \Rightarrow \quad \exists \mathrm{Q}\) such that \(\mathrm{P}=\sigma \Rightarrow \mathrm{Q}\)
\(\mathrm{P} \neq \sigma \Rightarrow \quad \operatorname{not}(\mathrm{P}=\sigma \Rightarrow)\)
\(\operatorname{Tr}(\mathrm{P}) \quad\left\{\sigma \in \mathrm{L}^{*} \mid \mathrm{P}=\sigma \Rightarrow\right\}\)
\(\operatorname{out}(\mathrm{P}, \sigma) \quad\{\mathrm{a} \in \mathrm{L} \mid \sigma . \mathrm{a} \in \operatorname{Tr}(\mathrm{P})\}\)
initials \((\mathrm{P}) \quad \operatorname{out}(\mathrm{P}, \varepsilon)\)
P after \(\sigma \quad\{\mathrm{Q} \mid \mathrm{P}=\sigma \Rightarrow \mathrm{Q}\}\)
\(\operatorname{Acc}(\mathrm{P}, \sigma) \quad\{\mathrm{X} \mid \exists \mathrm{Q} \in(\mathrm{P}\) after \(\sigma)\), such that initials(Q) \(\quad \mathrm{X} \quad \operatorname{out}(\mathrm{P}, \sigma)\}\)
where \(\mu, \mu_{\mathrm{i}} \in \mathrm{L} \quad\{\tau\} ; \mathrm{a}_{\mathrm{a}}, \mathrm{a}_{\mathrm{i}} \in \mathrm{L} ; \mathrm{P}, \mathrm{Q}, \mathrm{P}_{\mathrm{i}}, \mathrm{Q}_{\mathrm{i}}\) represent states; \(\varepsilon\) represents the empty trace;
\(\sigma=\mathrm{a}_{1} \cdot \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{n}}\), where "." denotes the concatenation of actions or sequence of actions (traces).
```


Table 1. LTS notations

A trace, of a given state S_{i} in the LTS TS, is a sequence of actions that TS can perform starting from state S_{i}. A cyclic trace in TS is a trace of the initial state S_{0} that reaches only the initial state S_{0} and the states that can be reached by the empty trace from S_{o}. In other words, a cyclic trace always brings back TS to its initial state. TS may then move to an other state by the nonobservable action τ. A minimal cyclic trace is a cyclic trace that is not prefixed by a nonempty cyclic trace.

Definition 2.2 (Cyclic Trace)

Given an LTS TS $=<\mathrm{S}, \mathrm{L}, \mathrm{T}, \mathrm{S}_{\mathrm{o}}>$, a trace σ is cyclic, iff
$\left(\mathrm{S}_{\mathrm{o}}\right.$ after $\left.\sigma\right)=\left\{\mathrm{S}_{\mathrm{o}}\right\} \quad \mathrm{S}^{\prime}$, where S^{\prime} is such that $\forall \mathrm{S}_{\mathrm{i}} \in \mathrm{S}^{\prime}, \mathrm{S}_{\mathrm{o}}=\varepsilon \Rightarrow \mathrm{S}_{\mathrm{i}}$.

Definition 2.3 (Minimal Cyclic Trace)

Given an LTS TS $=<\mathrm{S}, \mathrm{L}, \mathrm{T}, \mathrm{S}_{\mathrm{O}}>, \sigma$ is a minimal cyclic trace, iff
σ is a cyclic trace, and
$\sigma^{\prime}(\neq \varepsilon)$ and $\sigma^{\prime \prime}(\neq \varepsilon)$ such that $\sigma=\sigma^{\prime} . \sigma^{\prime \prime}$ and σ^{\prime} is cyclic trace in TS.

2.2 Operations on Labelled Transition Systems

The specification of a distributed system may be considered as a composition of its subsystem specifications. Among the possible compositions, the parallel composition operator and the action hiding operator are of special interest in this paper. The parallel composition operator ($\mathrm{B} 1 I_{\{a 1, \ldots, a n\}}$ B 2) allows one to express the parallel execution of the behaviors B1 and B2. B1 and B2 synchronize on actions in $\{\mathrm{a} 1, \ldots, \mathrm{an}\}$ and interleave with respect to other actions. The hiding operator allows the hiding of actions, which then will be considered internal actions. We write $\mathrm{B} \backslash \mathrm{A}$ to denote the hiding of the actions in A in the behavior B. The inference rules for these operators are as follows (adapted from [ISO 8807]).

Parallel composition: B1 $\left.\right|_{\{a 1, \ldots, \text { an }}$ B2
If $\mathrm{B} 1-\mathrm{a} \rightarrow \mathrm{B} 1^{\prime}$ and $\mathrm{a} \quad\left\{\mathrm{a} 1, \ldots\right.$, an\}, then $\left.\mathrm{B} 1\right|_{\{a 1, \ldots, a n\}} \mathrm{B} 2-\left.a \rightarrow \mathrm{~B} 1^{\prime}\right|_{\{a 1, \ldots, a n\}} \mathrm{B} 2$,
If $\mathrm{B} 2-\mathrm{a} \rightarrow \mathrm{B} 2^{\prime}$ and $\mathrm{a} \quad\left\{\mathrm{a} 1, \ldots\right.$, an\}, then $\left.\mathrm{B} 1\right|_{\{a 1, \ldots, \text { an\} }} \mathrm{B} 2-\left.\mathrm{a} \rightarrow \mathrm{B} 1\right|_{\{a 1, \ldots, \text { an }\}} \mathrm{B}^{\prime}$,
If $B 2-a \rightarrow B 2^{\prime}$ and $B 1-a \rightarrow B 1^{\prime}$ and $a \in\left\{a 1, \ldots\right.$, an\}, then $\left.B 1\right|_{\{a 1, \ldots, \text { an }\}} B 2-\left.a \rightarrow B 1^{\prime}\right|_{\{a 1, \ldots, \text { an }} B 2^{\prime}$.

Hiding operator: $\mathrm{B} \backslash\{\mathrm{a} 1, \ldots, \mathrm{am}\}$
If $B-a \rightarrow B^{\prime}$ and $a \quad\{a 1, \ldots, a m\}$, then $B \backslash\{a 1, \ldots, a m\}-a \rightarrow B^{\prime} \backslash\{a 1, \ldots, a m\}$,
If $B-a \rightarrow B^{\prime}$ and $a \in\{a 1, \ldots, a m\}$, then $B \backslash\{a 1, \ldots, a m\}-\tau \rightarrow B^{\prime} \backslash\{a 1, \ldots, a m\}$.

2.3 The extension relation

Intuitively, different LTSs may describe the same observable behavior. Therefore different equivalence relations have been defined based on the notion of observable behavior. They range from the relatively coarse trace equivalence to the much finer strong bisimulation equivalence [DeNi 87]. However, for our considerations, one does not need equivalence relations, but rather ordering relationships. Among them, we note the reduction and extension relation as defined in [Brin 86]. These relations may serve different purposes during the specification life cycle. The extension relation is most appropriate for our purpose of compatible enrichment of specifications. Informally, S2
extends $S 1$, if and only if, $S 2$ allows any sequence of actions that $S 1$ allows, and $S 2$ can only refuse what S 1 can refuse, after a given sequence of actions allowed by S 1 .

Definition 2.4 [Brin 86]

S2 extends S1 (written S2 ext S1), iff
(a) $\operatorname{Tr}(\mathrm{S} 1) \quad \operatorname{Tr}(\mathrm{S} 2)$, and
(b) $\forall \sigma \in \operatorname{Tr}(\mathrm{S} 1), \forall \mathrm{A} \quad \mathrm{L}$,
if $\quad \mathrm{S} 2^{\prime}$ such that $\mathrm{S} 2=\sigma \Rightarrow \mathrm{S} 2^{\prime}$ and $\mathrm{S}^{\prime} \neq \mathrm{a} \Rightarrow, \forall \mathrm{a} \in \mathrm{A}$,
then $\quad S 1^{\prime}$ such that $\mathrm{S} 1=\sigma \Rightarrow \mathrm{S}^{\prime}$ and $\mathrm{Si}^{\prime} \neq \mathrm{a} \Rightarrow, \forall \mathrm{a} \in \mathrm{A}$.

3 Merging monolithic specifications

In this section, we consider monolithic specifications [Viss 88]. A monolithic specification has no internal structure and is defined directly in terms of some allowed ordering of actions. A monolithic specification is represented by a single LTS.

Given two LTSs, S1 and S2, we want to construct systematically an LTS S3, such that S3 extends S1, and S3 extends S2. Moreover, in the case of cyclic traces, S3 should offer a choice between behaviors of S 1 and behaviors of S 2 , in a recursive manner. Note that the usual choice operators defined for LOTOS [ISO 8807] and CCS [Miln 89] for instance, do not allow such combination of specifications as shown in Figure 1.

Figure 1. LOTOS, CCS choice operator

We assume that the LTSs are finite. Our FLTSs merging algorithm, called Merge, uses an intermediate representation, the Acceptance Graphs (AGs for short).

Definition 3.1

An AG G is 5-tuple $<\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{Sg}_{\mathrm{o}}>$, where

- Sg is a (countable) nonempty set of states.
- L is a (countable) nonempty set of events.
- Ac: $\mathrm{Sg} \rightarrow P(P(\mathrm{~L}))$ is a mapping from Sg to sets of subsets of L . $\mathrm{Ac}\left(\mathrm{Sg}_{\mathrm{i}}\right)$ is called the acceptance set of Sg_{i}.
- $\mathrm{Tg}: \mathrm{Sg} \times \mathrm{L} \rightarrow \mathrm{Sg}$ is a transition function, where a transition from state Sg_{i} to state Sg_{j} by an action a $(\mathrm{a} \in \mathrm{L})$ is denoted by $\mathrm{Sg}_{\mathrm{i}}-\mathrm{a} \rightarrow \mathrm{Sg}_{\mathrm{j}}$.
- Sg_{o} is the initial state of G .

The mappings Ac and Tg should satisfy the consistency constraints defined for Acceptance Trees in [Henn 85]. A finite AG (FAG for short) is an AG in which $S g$ and L are finite. The LTS notations in Table 1 remain valid for the AGs. A cyclic trace for an $\mathrm{AGG}=\left\langle\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{Sg}_{\mathrm{o}}\right\rangle$, is a trace of the initial state Sg_{0} that reaches the initial state Sg_{0}. As for an LTS, a minimal cyclic trace for an AG is a cyclic trace that is not prefixed by a nonempty cyclic trace. In the following, we define a relation AGR between AGs and LTSs.

Definition 3.2

Given an $\mathrm{AGG}=<\mathrm{Sg}, \mathrm{L}, \mathrm{Ac}, \mathrm{Tg}, \mathrm{Sg}_{\mathrm{o}}>$ and an $\mathrm{LTS} \mathrm{S}=<\mathrm{St}, \mathrm{L}, \mathrm{T}, \mathrm{S}_{\mathrm{o}}>$, we note $\mathrm{G}=\mathrm{AGR}(\mathrm{S})$, iff
$-\operatorname{Tr}(\mathrm{G})=\operatorname{Tr}(\mathrm{S})$,
$-\forall \sigma \in \operatorname{Tr}(\mathrm{S})$, if $\mathrm{Sg}_{\mathrm{o}}=\sigma \Rightarrow \mathrm{Sg}_{\mathrm{i}}$, then $\operatorname{Ac}\left(\mathrm{Sg}_{\mathrm{i}}\right)=\operatorname{Acc}\left(\mathrm{S}_{\mathrm{o}}, \sigma\right)$,

- Any minimal cyclic trace in S is a minimal cyclic trace in G, and
- Any minimal cyclic trace in G is a minimal cyclic trace in S .

Given two FLTSs $\mathrm{S} 1=<\mathrm{St} 1, \mathrm{~L} 1, \mathrm{~T} 1, \mathrm{~S} 1_{\mathrm{o}}>$ and $\mathrm{S} 2=<\mathrm{St} 2, \mathrm{~L} 2, \mathrm{~T} 2, \mathrm{~S} 2_{\mathrm{o}}>$, the algorithm Merge consists, first, of transforming the FLTSs S_{1} and S 2 into $\mathrm{FAGs} \mathrm{G} 1=<\mathrm{Sg} 1, \mathrm{~L} 1, \mathrm{Ac} 1, \mathrm{Tg} 1, \mathrm{Sg} 1_{\mathrm{o}}>$ and $\mathrm{G} 2=<\mathrm{Sg} 2, \mathrm{~L} 2, \mathrm{Ac} 2, \mathrm{Tg} 2, \mathrm{Sg}_{\mathrm{o}}>$, respectively, such that $\mathrm{Sg} 1 \quad \mathrm{Sg} 2=\varnothing$ and $\mathrm{G} 1=\mathrm{AGR}(\mathrm{S} 1)$ and $\mathrm{G} 2=$ AGR(S2). The FAGs G1 and G2 are then merged by an FAG merging algorithm into the FAG G3 = $<\operatorname{Sg} 3$, L1 L2, Ac3, $\mathrm{Tg} 3,<\operatorname{Sg} 1_{0}, \operatorname{Sg} 2_{0} \gg$, which is transformed back to an FLTS S3 such that $\mathrm{G} 3=$ AGR(S3).

The algorithm for the transformation of an FLTS to an FAG is similar to the "subset construction" algorithm defined in [Aho 79]. The transformation of an FAG to an FLTS, in the last step, is the converse transformation. This transformation eliminates the information redundancy concerning the failure possibilities. The FLTS generated by this transformation is the canonical representative of a class of testing equivalent LTSs with the same set of minimal cyclic traces. In the following, we describe, informally, the FAG merging algorithm. A more formal treatment of these issues can be found in [Khen 92].

A state Sg_{i} in Sg 3 may be either a tuple $<\mathrm{Sg}_{1}, \mathrm{Sg}_{2}>$ consisting of state Sg_{1} from Sg_{1} and Sg_{j} from Sg 2 (as for the initial state $<\operatorname{Sg}_{1}, S g 2_{0}>$), or a simple state $\operatorname{Sg} 1_{\mathrm{i}}$ from Sg 1 , or a simple state Sg_{j} from

Sg 2 . These states and the transitions which reach them are added by the FAG merging algorithm step by step into Sg 3 and Tg 3 , respectively, except for the two initial states $\mathrm{Sg} 1_{\mathrm{o}}$ and $\mathrm{Sg} 2_{0}$, each of these is replaced by the initial state $\left\langle\operatorname{Sg} 1_{0}, S 2_{2}>\right.$ of G 3 .

Initially, Sg 3 contains only the initial state $<\mathrm{Sg} 1_{0}, \mathrm{Sg} 2_{0}>$. The definition of the transitions from state $<\mathrm{Sg}_{1}, \mathrm{Sg}_{2}>$ in Sg 3 depends on the transitions from Sg_{1} in Sg 1 and from Sg_{2} in Sg 2 . For instance, for a given state $<\operatorname{Sg}_{1}, \operatorname{Sg}_{2}>$, if there is a transition $\operatorname{Sg}_{1}-\mathrm{a} \rightarrow \mathrm{Sg}_{1}$ in Tg 1 and a transition $\mathrm{Sg}_{2}-\mathrm{a} \rightarrow \mathrm{Sg}_{2} \mathrm{~m}$ in Tg 2 , then the state $\left\langle\mathrm{Sg}_{1}, \mathrm{Sg}_{2} \mathrm{~m}_{\mathrm{m}}>\right.$ is added into Sg 3 and the two transitions are combined into one transition $<\operatorname{Sg}_{1}, \mathrm{Sg}_{2}>\mathrm{a} \rightarrow<\mathrm{Sg}_{1}, \mathrm{Sg}_{\mathrm{m}}>$ in Tg 3 . This is the situation when G 1 and G 2 have a common trace from their initial state to Sg_{k} and $\mathrm{Sg}_{2} \mathrm{~m}$, respectively.

Another case of this construction, if for a given state $<\operatorname{Sg}_{1}, \operatorname{Sg}_{2}>$, there exists a transition $\operatorname{Sg} 1_{1}-$ $a \rightarrow \operatorname{Sg} 1_{k}$ in $T g 1$, with $\operatorname{Sg}_{\mathrm{k}} \neq \operatorname{Sg} 1_{\mathrm{o}}$, but there is no transition labelled by a from $\operatorname{Sg} 2_{\mathrm{j}}$ in Tg 2 , then the state $\operatorname{Sg} 1_{\mathrm{k}}$ is added into Sg 3 and the transition $\mathrm{Sg}_{1_{i}-\mathrm{a}} \rightarrow \mathrm{Sg}_{\mathrm{k}}$ in Tg 1 yields the transition $\left\langle\mathrm{Sg}_{1}, \mathrm{Sg}_{\mathrm{j}}\right\rangle-$ $\mathrm{a} \rightarrow \mathrm{Sg}_{1_{\mathrm{k}}}$ in Tg 3 . Reciprocally, if there exists a transition $\mathrm{Sg}_{2}-\mathrm{a} \rightarrow \mathrm{Sg}_{2}{ }_{\mathrm{m}}$ in Tg 2 , with $\mathrm{Sg}_{2}{ }_{\mathrm{m}} \neq \mathrm{Sg} 2_{\mathrm{o}}$, but there is no transition labelled by a from Sg_{1} in Tg 1 , then the state $\mathrm{Sg}_{2} \mathrm{~m}$ is added into Sg 3 and the transition $\mathrm{Sg}_{2}{ }_{\mathrm{j}}-\mathrm{a} \rightarrow \mathrm{Sg}_{2} \mathrm{~m}$ in Tg 2 yields the transition $\left\langle\mathrm{Sg}_{1}, \mathrm{Sg}_{\mathrm{j}}\right\rangle-\mathrm{a} \rightarrow \mathrm{Sg}_{2} \mathrm{~m}_{\mathrm{m}}$ in Tg 3 . In the case where $\operatorname{Sg} 1_{k}=\operatorname{Sg} 1_{0}$ (respectively $\operatorname{Sg} 2_{m}=\operatorname{Sg} 2_{0}$), instead of the transition $\left\langle\operatorname{Sg} 1_{i}, \operatorname{Sg} 2_{j}\right\rangle-a \rightarrow \operatorname{Sg} 1_{\mathrm{O}}$ (respectively $<\operatorname{Sg}_{1}, \mathrm{Sg}_{2}>-\mathrm{a} \rightarrow \mathrm{Sg}_{2} \mathrm{~m}$), the transition $\left\langle\mathrm{Sg}_{1}, \mathrm{Sg}_{\mathrm{j}}>-\mathrm{a} \rightarrow\left\langle\mathrm{Sg}_{1_{\mathrm{o}}}, \mathrm{Sg}_{2_{0}}>\right.\right.$ is added into Tg 3 .

The transitions from a simple state in Sg 3 , like state Sg_{k} or $\mathrm{Sg} 2_{\mathrm{m}}$ above, for instance, remain the same as defined in G1 and G2, respectively. The states reached by these transitions are added into Sg 3 , except for the two initial states $\operatorname{Sg} 1_{\mathrm{o}}$ and Sg_{2}, each of these is replaced by the initial state $<\operatorname{Sg} 1_{\mathrm{o}}, S g 2_{0}>$ of G 3 .

The mapping Ac3 is defined as follows: For every state Sg_{i} in Sg 3 , we have:

- if $\mathrm{Sg}_{\mathrm{i}}=\left\langle\operatorname{Sg}_{1}, \mathrm{Sg}_{2}>\right.$, then $\operatorname{Ac} 3\left(\mathrm{Sg}_{\mathrm{i}}\right)=\left\{\mathrm{X} 1 \quad \mathrm{X} 2 \mid \mathrm{X} 1 \in \operatorname{Ac} 1\left(\operatorname{Sg}_{1}\right)\right.$ and $\left.\mathrm{X} 2 \in \operatorname{Ac} 2\left(\mathrm{Sg}_{2}\right)\right\}$,
- if $\mathrm{Sg}_{\mathrm{i}}=\operatorname{Sg} 1_{\mathrm{i}}$, with $\mathrm{Sg}_{\mathrm{i}} \in \operatorname{Sg} 1$, then $\operatorname{Ac} 3\left(\mathrm{Sg}_{\mathrm{i}}\right)=\operatorname{Ac} 1\left(\mathrm{Sg}_{\mathrm{i}}\right)$,
- if $\mathrm{Sg}_{\mathrm{i}}=\mathrm{Sg} 2_{\mathrm{j}}$, with $\mathrm{Sg}_{\mathrm{j}} \in \operatorname{Sg} 2$, then $\operatorname{Ac} 3\left(\mathrm{Sg}_{\mathrm{i}}\right)=\operatorname{Ac} 2\left(\mathrm{Sg}_{\mathrm{j}}\right)$.

Given the FLTSs S1, S2, the following propositions have been proved in [Khen 92] concerning the FLTS S3 constructed by the algorithm Merge:

Proposition 1

S3 extends S1 and S3 extends S2.

Merge satisfies our first requirement as stated above in Proposition 1. However, the second requirement about the recursive choice between behaviors of S_{1} and behaviors of $S 2$, in the case of cyclic behaviors in S 1 and S 2 , is not always satisfied. This requirement may be satisfied, if all the
cyclic traces in S 1 and all the cyclic traces in S 2 remain cyclic traces in S . For that, all the minimal cyclic traces in S 1 and all the minimal cyclic traces in S 2 should remain minimal cyclic traces in S3. Unfortunately, there are some situations where a minimal cyclic trace in S 1 (respectively S 2) does not remain a minimal cyclic trace in S 3 . This is the case, when a given trace σ is a minimal cyclic trace in S 1 (respectively S 2), but σ is a noncyclic trace in S 2 (respectively S 1). After executing such a minimal cyclic trace, S 3 reaches a state, which is different from its initial state. Therefore, it does not offer again a choice between the behaviors of $S 1$ and the behaviors of $S 2$. Figure 2 illustrates such kind of situations. After performing a, which is a minimal cyclic trace in $\mathrm{S} 1, \mathrm{~S} 3$ does not offer a choice between behaviors in $S 1$ and behaviors in $S 2$, because the trace a belongs to $S 2$ and it is not a cyclic trace in S2. However, the minimal cyclic trace a.b in S2 remains minimal cyclic trace in S3. In Proposition 2, we determined a sufficient condition, for which a minimal cyclic trace in S_{1} (respectively S 2) remains a minimal cyclic trace in S3.

Figure 2. Counterexample for the minimal cyclic traces

Proposition 2

- For any minimal cyclic trace σ in S 1 , if $\sigma \quad \operatorname{Tr}(\mathrm{S} 2)$ or σ is a cyclic trace in S 2 , then σ is a minimal cyclic trace in S3.
- Reciprocally, for any minimal cyclic trace σ in S2.

Any trace of $S 3$ is either a trace of $S 1$, or a trace of $S 2$, or results from the concatenation of traces of $S 1$ and S2. The following proposition shows how a trace $\sigma . a$ of $S 3$ may be decomposed into its subtraces in $S 1$ and $S 2$, when σ is a trace of $S 1$ (respectively $S 2$).

Proposition 3

$\forall \mathrm{a} \in \mathrm{L} 1 \quad \mathrm{~L} 2$, if $\sigma \in \operatorname{Tr}(\mathrm{S} 1)$ and $\sigma . \mathrm{a} \in \operatorname{Tr}(\mathrm{S} 3)$, then $\sigma . a \in \operatorname{Tr}(\mathrm{~S} 1)$, or $\sigma . \mathrm{a} \in \operatorname{Tr}(\mathrm{S} 2)$, or
$\left(\exists \sigma 1, \sigma 2\right.$ such that $\left.\sigma=\sigma 1 . \sigma 2, S 1=\sigma 1 \Rightarrow \mathrm{~S} 1, \mathrm{~S}_{1}=\sigma 2 \Rightarrow \mathrm{~S}_{1}{ }^{\prime} \neq \mathrm{a} \Rightarrow, \mathrm{S} 2=\sigma 2 \Rightarrow \mathrm{~S}_{2}{ }^{\prime}=\mathrm{a} \Rightarrow\right)$.
Reciprocally, for $\sigma \in \operatorname{Tr}(\mathrm{S} 2)$ and $\sigma . \mathrm{a} \in \operatorname{Tr}(\mathrm{S} 3)$.

4 Merging Structured Specifications

In this section, we consider distributed system specifications, which consist of a parallel composition of subsystem specifications as shown in Figure 3. Such specifications have the following form: $\mathrm{S}=$ $\left(S 1 I_{A} S 2\right) \backslash B$, where A and B represent sets of actions. The subsystem specifications $S 1$ and $S 2$ may also have the same form as S and so on, until a level where the specifications have no structure and are defined directly in terms of some allowed ordering of actions as monolithic specifications. These specifications are called basic components, they may be nondeterministic, but are assumed to be finite. For instance, these specifications are represented by the streaked boxes in Figure 3.

Figure 3. Structure of a Distributed System Specification

Given a distributed system specification $\mathrm{S}_{\text {old }}$, which consists of a parallel composition of subsystem specifications and so on until the basic components, and a specification $S_{\text {added }}$, we want to construct a specification $S_{\text {new }}$, such that $S_{\text {new }}$ extends $S_{\text {old }}$, and $S_{\text {new }}$ extends $S_{\text {added }}$. $S_{\text {new }}$ should have the same structure as $\mathrm{S}_{\text {old. }}$. As for the merging of monolithic specifications, in the case of cyclic traces, $\mathrm{S}_{\text {new }}$ should offer a choice between behaviors of $S_{\text {old }}$ and behaviors of $S_{\text {added }}$, in a recursive manner.

4.1 Identical Structure for $S_{\text {old }}$ and $S_{\text {added }}$

We assume that the specifications $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$ are both structured according to the form $\left(\mathrm{S}_{1} \mathrm{I}_{\mathrm{A}} \mathrm{S} 2\right)$ (B described above, and S_{1} and S_{2} are either basic components or again structured by parallel composition. Moreover, we assume that $S_{\text {old }}$ and $S_{\text {added }}$ have an identical structure. In other words, the form of the expression $\mathrm{S}_{\text {old }}$ is identical to the form of the expression $\mathrm{S}_{\text {added }}$. To every subsystem specification in $\mathrm{S}_{\text {old }}$ corresponds a subsystem specification in $\mathrm{S}_{\text {added }}$ and vice versa. To every basic component $\mathrm{Ci}_{\text {old }}$ in $\mathrm{S}_{\text {old }}$, corresponds a basic component $\mathrm{Ci}_{\text {added }}$ in $\mathrm{S}_{\text {added }}$ and vice versa.

The following algorithm for merging structured specifications, called Structured_Merge, is recursive over the structure of $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$. It is based on the algorithm Merge, for merging monolithic specifications, described in Section 3.

Merging Algorithm for Structured Specifications

Structured_Merge(S1, S2) =
if $\mathrm{S}_{1}=\left(\mathrm{S} 11 \mathrm{I}_{\mathrm{A}} \mathrm{S} 12\right) \backslash \mathrm{B}, \mathrm{S} 2=\left(\mathrm{S} 21 \mathrm{I}_{\mathrm{C}} \mathrm{S} 22\right) \backslash \mathrm{D}$,
then (Structured_Merge(S11, S21) $\left.\right|_{(A \quad C)}$ Structured_Merge(S12, S22)) \backslash (B D)
else $\operatorname{Merge}(\mathrm{S} 1, \mathrm{~S} 2)$ (* S1 and S2 are basic components *)
$S_{\text {new }}$, obtained by Structured_Merge ($S_{\text {old }}, S_{\text {added }}$), has a structure identical to the structure of $S_{\text {old }}$ and $\mathrm{S}_{\text {added }}$. As basic component, instead of $\mathrm{Ci}_{\text {old }}$ or $\mathrm{Ci}_{\text {added }}$, it has $\mathrm{Ci}_{\text {new }}$ which results from the merging of $\mathrm{Ci}_{\text {old }}$ and $\mathrm{Ci}_{\text {added }}$ by the algorithm Merge.

Unfortunately, $S_{\text {new }}$ does not always extend $S_{\text {old }}$ and $S_{\text {added }}$. The extension of the basic components of $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$ is not sufficient to insure the extension of $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$, respectively. Consider the counterexample in Figure 4, where $\mathrm{S}_{\text {old }}=\left(\mathrm{C}_{\text {old }} \mathrm{I}_{\{\mathrm{g} 1\}} \mathrm{C} 2_{\text {old }}\right) \backslash\{\mathrm{g} 1\}, \mathrm{S}_{\text {added }}=\left(\mathrm{C} 1_{\text {added }} \mathrm{I}_{\{\mathrm{g} 2\}}\right.$ $\left.\mathrm{C} 2_{\text {added }}\right) \backslash\{\mathrm{g} 2\}$. The structure of the specification $\mathrm{S}_{\text {new }}$ is identical to the structure of $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$, but $S_{\text {new }}$ does neither extend $S_{\text {old }}$ nor $S_{\text {added }}$. Indeed, $S_{\text {old }}$ never refuses the action b after trace a, whereas $S_{\text {new }}$ may refuse action b after trace a. The same observation holds for action c after trace a. The trace a is common for $\mathrm{C}_{\text {old }}$ and $\mathrm{C}_{\text {added }}$ and it is followed by a hidden action g 1 in $\mathrm{C}_{\text {old }}$ and $\mathrm{g} 2 \mathrm{in} \mathrm{C}_{\text {added }}$. The merging of $\mathrm{C}_{\text {old }}$ and C_{1} added leads to a choice between the two hidden actions g 1 and g 2 after the trace a , in C_{1} new. The components $\mathrm{C} 1_{\text {new }}$ and $\mathrm{C} 2_{\text {new }}$ may, internally, choose to synchronize on action g 1 or g 2 , after a trace a , and offer only action b or only action c , respectively.

Figure 4. Counterexample

In Theorem 1, we have stated sufficient conditions for $S_{\text {old }}$ and $S_{\text {added }}$ such that $S_{\text {new }}$ extends $S_{\text {old }}$ and $S_{\text {new }}$ extends $\mathrm{S}_{\text {added }}$. We denote by $\mathrm{HG}_{\text {old }}$ the set of hidden action names in $\mathrm{S}_{\text {old }}$, and by $\mathrm{HG}_{\text {added }}$ the set of hidden action names in $\mathrm{S}_{\text {added }}$. The proof of Theorem 1 is given in the Appendix.

Theorem 1

Given $\mathrm{S}_{\text {old }}$ in the form of a hierarchical structure with the basic components C_{1} old $, \mathrm{C} 2_{\text {old }}, \ldots, \mathrm{Cn}_{\text {old }}$,
$\mathrm{S}_{\text {added }}$ with an identical structure and the basic components $\mathrm{C}_{1 \text { added }}, \mathrm{C}_{2}$ added $, \ldots, \mathrm{Cn}_{\text {added }}$, and $S_{\text {new }}=$ Structured_Merge $\left(S_{\text {old }}, S_{\text {added }}\right)$ as defined by the merging algorithm defined above,
we have that $S_{\text {new }}$ ext $S_{\text {old }}$ and $S_{\text {new }}$ ext $S_{\text {added }}$, if the following conditions are satisfied:
(a) $\forall \mathrm{i}, \mathrm{i}=1, \ldots, \mathrm{n}$, act $\left(\mathrm{C}_{\mathrm{i}_{\text {old }}}\right) \quad \mathrm{HG}_{\text {added }}=\emptyset$, and $\operatorname{act}\left(\mathrm{Ci}_{\text {added }}\right) \quad \mathrm{HG}_{\text {old }}=\emptyset$,
(b) $\forall \mathrm{i}, \mathrm{j}, \mathrm{i} \neq \mathrm{j},\left(\operatorname{act}\left(\mathrm{C}_{\text {old }}\right) \quad \operatorname{act}\left(\mathrm{C}_{\text {added }}\right)\right) \quad\left(\operatorname{act}\left(\mathrm{C}_{\mathrm{jold}}\right) \quad \operatorname{act}\left(\mathrm{C}_{\mathrm{jadded}}\right)\right) \quad\left(\operatorname{act}\left(\mathrm{S}_{\text {old }}\right) \quad \operatorname{act}\left(\mathrm{S}_{\text {added }}\right)\right)=\emptyset$,
(c) For $\mathrm{x}=$ old, added, $\quad \mathrm{Ci}_{\mathrm{x}}$ and C_{j}, such that for some $\mathrm{g} \in \mathrm{HG}_{\mathrm{x}}, \mathrm{g} \in \operatorname{Tr}\left(\mathrm{Ci}_{\mathrm{x}}\right)$ and $\mathrm{g} \in \operatorname{Tr}\left(\mathrm{Cj}_{\mathrm{x}}\right)$,
(d) $\forall \mathrm{i}, \mathrm{i}=1, \ldots, \mathrm{n}$,

1- $\forall \sigma \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {old }}\right)-\{ \}, \quad \sigma . \mathrm{g} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {added }}\right)$ with $\mathrm{g} \in \mathrm{HG}_{\text {added }}$, and reciprocally,
2- $\forall \mathrm{a} \in \operatorname{act}\left(\mathrm{S}_{\text {old }}\right)$, if $\mathrm{a} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {old }}\right)$, then $\quad \sigma . \mathrm{a} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {added }}\right)$, unless σ is cyclic in $\mathrm{Ci}_{\text {added }}$, and reciprocally.

Condition (a) says that the names of hidden actions in $\mathrm{S}_{\text {added }}$ should not conflict with the names of observable or hidden actions in $\mathrm{S}_{\text {old }}$. Reciprocally, the names of hidden actions in $\mathrm{S}_{\text {old }}$ should not conflict with the names of observable or hidden actions in $\mathrm{S}_{\text {added }}$. Note that the names of the hidden actions in both specifications are not important. These actions may be renamed without any observable effect, in order to satisfy this condition.

Condition (b) says that there is no observable action of $S_{\text {old }}$ and $S_{\text {added }}$ shared by two (or more) basic components of $\mathrm{S}_{\text {old }}$ (respectively $\mathrm{S}_{\text {added }}$). A basic component $\mathrm{C}_{\mathrm{i}_{\text {old }}}$ in $\mathrm{S}_{\text {old }}$ may have common observable actions only with the corresponding basic component $\mathrm{Ci}_{\text {added }}$ in $\mathrm{S}_{\text {added }}$, and reciprocally. Consider the example in Figure 5, where $\mathrm{C}_{1 \text { old }}$ and $\mathrm{C} 2_{\text {added }}$ have the action a in common, but they are not merged together. $\mathrm{C} 1_{\text {new }}=\operatorname{Merge}\left(\mathrm{C}_{\text {old }}, \mathrm{C} 1_{\text {added }}\right), \mathrm{C} 2_{\text {new }}=\operatorname{Merge}\left(\mathrm{C} 2_{\text {old }}, \mathrm{C} 2_{\text {added }}\right), \mathrm{C} 1_{\text {new }}$ extends $\mathrm{C} 1_{\text {old }}$ and $\mathrm{C} 1_{\text {added }}$, and $\mathrm{C} 2_{\text {new }}$ extends $\mathrm{C} 2_{\text {old }}$ and $\mathrm{C} 2_{\text {added }}$. The constructed specification $\mathrm{S}_{\text {new }}$ may refuse action b or action c , after trace a , whereas $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$ never refuses b or c after a , respectively. $\mathrm{S}_{\text {new }}$ does neither extend $\mathrm{S}_{\text {old }}$ nor $\mathrm{S}_{\text {added }}$. In order to prevent such situations, for each observable action, we may assign a "place" and the components with common observable actions have to be merged together, as stated by Condition (b).

Figure 5. An illustration for Condition (b)

Condition (c) states that $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$ should not be able to perform an action from $\mathrm{HG}_{\text {old }}$ or from $\mathrm{HG}_{\text {added }}$, respectively, before interacting with the environment. Consider the example in Figure 6, $\mathrm{C} 1_{\text {new }}=\operatorname{Merge}\left(\mathrm{C}_{\text {old }}, \mathrm{C} 1_{\text {added }}\right), \mathrm{C} 2_{\text {new }}=\operatorname{Merge}\left(\mathrm{C}_{2}\right.$ old, $\left.\mathrm{C} 2_{\text {added }}\right), \mathrm{C} 1_{\text {new }}$ extends C_{1} old and $\mathrm{C}_{\text {added }}$, and $\mathrm{C} 2_{\text {new }}$ extends $\mathrm{C} 2_{\text {old }}$ and $\mathrm{C} 2_{\text {added }}$. However $\mathrm{S}_{\text {new }}$ does not extend $\mathrm{S}_{\text {added }}$. After an internal move by executing the hidden action g1, it refuses the action a, whereas $S_{\text {added }}$ never refuses action a after an empty trace.

$\mathrm{C}_{\text {old }}$

C_{1} added

C 2 added

Figure 6. An illustration for Condition (c)

Condition (d-1) prevents from any new nondeterminism which may be introduced by the hidden actions in $\mathrm{HG}_{\text {added }}$ with respect to behavior in $\mathrm{S}_{\text {old }}$ and reciprocally, as shown in Figure 4. For a given pair of basic components $\mathrm{C}_{\text {iold }}$ and $\mathrm{C}_{\text {added }}$, a common trace $\sigma(\neq)$ should not be followed by hidden actions from $\mathrm{HG}_{\text {old }}$ or $\mathrm{HG}_{\text {added }}$.

Condition (d-2) is introduced in order to prevent situations similar to the one shown in Figure 7. Assume that $\mathrm{S}_{\text {old }}=\left(\left.\mathrm{C}_{1_{\text {old }}}\right|_{\{\mathrm{g} 1, \mathrm{~g} 2\}} \mathrm{C} 2_{\text {old }}\right) \backslash\{\mathrm{g} 1, \mathrm{~g} 2\}$ and $\mathrm{S}_{\text {added }}=\left(\mathrm{C}_{\text {added }} \mathrm{I}_{\emptyset}\right.$ stop $) \backslash \emptyset$. The merging algorithm for structured specifications leads to $S_{\text {new }}=\left(\left.C 1_{\text {new }}\right|_{\{g 1, g 2\}} C 2_{\text {new }}\right) \backslash\{\mathrm{g} 1, \mathrm{~g} 2\}$, where $\mathrm{C} 1_{\text {new }}$ is shown in Figure 7 and $\mathrm{C} 2_{\text {new }}=\mathrm{C} 2_{\text {old. }}$. We have $\mathrm{C} 1_{\text {new }}$ ext $\mathrm{C} 1_{\text {old }}$ and $\mathrm{C} 1_{\text {new }}$ ext $\mathrm{C} 1_{\text {added }}$ as well as $\mathrm{C} 2_{\text {new }}$ ext $\mathrm{C} 2_{\text {old }}$ and $\mathrm{C} 2_{\text {new }}$ ext $\mathrm{C} 2_{\text {added }}$. However, $\mathrm{S}_{\text {new }}$ does not extend $\mathrm{S}_{\text {old }}$. For instance, after the trace f.a.b.c, $S_{\text {new }}$ may refuse to perform action d, whereas $S_{\text {old }}$ never refuses to perform action d after trace f.a.b.c. This is due to the fact that we have two traces $\sigma_{1}=$ a.g1.b and $\sigma_{2}=$ a.g2.b in C_{1} old , such that $\sigma_{1} \neq \sigma_{2}, \sigma_{1} \backslash \mathrm{HG}_{\text {old }}=\sigma_{2} \backslash \mathrm{HG}_{\text {old }}, \sigma_{1}$ is cyclic, σ_{2} is not cyclic, σ_{2}.c is a trace in $\mathrm{C}_{\text {old }}$, and c is a trace in $\mathrm{C}_{\text {added }}$. It is possible to prevent such situations with a weaker condition than Condition (d-2) as explained in this example. However the verification of such conditions may be complex, whereas Condition (d-2) can be checked very easily.

Figure 7. Illustration for Condition (d-2).

Theorem 2 states that under certain conditions on the basic components of $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$, a minimal cyclic trace σ in $S_{\text {old }}$ (respectively $S_{\text {added }}$) remains cyclic in $S_{\text {new }}$. Therefore, after performing $\sigma, S_{\text {new }}$ reaches its initial state, and offers again a choice between behaviors in $\mathrm{S}_{\text {old }}$ and behaviors in $\mathrm{S}_{\text {added }}$. The proof of Theorem 2 is given in the Appendix.

Theorem 2

Given specifications $S_{\text {old }}, S_{\text {added }}$, and $S_{\text {new }}$ as in Theorem 1, and assume that the conditions of Theorem 1 are satisfied, we have

- For any minimal cyclic trace σ in $\mathrm{S}_{\text {old }}$, if for $\mathrm{i}=1, \ldots, \mathrm{n}, \sigma_{i}$ is a minimal cyclic trace in $\mathrm{Ci}_{\text {iold }}$ and ($\sigma \mathrm{i}$ $\operatorname{Tr}\left(\mathrm{Ci}_{\text {added }}\right)$ or σ_{i} is a cyclic trace in $\left.\mathrm{Ci}_{\text {added }}\right)$), where σ_{i} represents the sequence of actions performed by $\mathrm{C}_{\mathrm{o}_{\text {old }}}$, when $\mathrm{S}_{\text {old }}$ performs the trace σ, then σ is a cyclic trace in $\mathrm{S}_{\text {new }}$.
- Reciprocally, for any minimal cyclic trace σ in $S_{\text {added }}$.

Example

In the following, we will illustrate our approach by an example. We use variations of the Daemon game [ISO 8807]. We assume a simple game description, noted "Simple Daemon Game" (SDG for short). The player may insert a coin, start the game, probe the system, then he randomly loses or wins. The inserted coin may be refused, the user has to recollect his coin and insert it again until accepted by the system before he can start the game. We have, arbitrarily, structured this system as follows: $\mathrm{SDG}=\left(\mathrm{P} 1 \mathrm{I}_{\{\mathrm{g} 1\}} \mathrm{P} 2\right) \backslash\{\mathrm{g} 1\}$. The processes P 1 and P 2 synchronize through action g 1 . The structure of SDG and the processes P 1 and P 2 are drawn in Figure 8.

Figure 8. Simple Daemon Game Description

Assume that we want to enrich the specification above, in order to describe a new system ("Combined Game", or CG for short), where the player can play, alternatively, the simple game and a sophisticated game, called "Jackpot Daemon Game". As for the "Simple Daemon Game", the player has to insert a coin before starting the game. This coins may be refused. Once the coin has been accepted, the player can start the game, probe, then he randomly loses or wins. If he wins, the game continues. He can probe again, then he randomly loses or get the "Jackpot". The specification of this sophisticated game is given as follows: $J D G=\left(\left.P 3\right|_{\{g 2\}} P 4\right) \backslash\{g 2\}$. The structure of this specification is identical to the structure of SDG. The structure of JDG and the processes P3 and P4 are drawn in Figure 9.

These specifications (games) have many interactions in common. SDG and JDG satisfy the sufficient conditions of Theorem 1. Applying the algorithm Structured_Merge leads to: CG $=\left(\left.\mathrm{P} 13\right|_{\{\mathrm{g} 1}\right.$, $\left.{ }_{\mathrm{g} 2\}} \mathrm{P} 24\right) \backslash\{\mathrm{g} 1, \mathrm{~g} 2\}$, where P 13 and P 24 are described in Figure 10. P13 results from the merging of P1 and P3 by the algorithm Merge. P24 results from the merging of P2 and P4 by the algorithm Merge. The processes $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$, and P 4 are assumed to be basic components. By construction, we have P13 ext P1, P13 ext P3, P24 ext P2, P24 ext P4, CG ext DG and CG ext JDG. In this example, it is easy to verify that each minimal cyclic trace in SDG (respectively JDG) remains cyclic in CG
(Theorem 2). Therefore, CG describes a new system where the user may always alternate between the "Simple Daemon Game" and the "Jackpot Daemon Game".

Figure 9. Jackpot Daemon Game Description

Figure 10. Combined Game Description

4.2 Nonidentical Structure for $\mathbf{S}_{\text {old }}$ and $\mathbf{S}_{\text {added }}$

We assume now that the specifications $S_{\text {old }}$ and $S_{\text {added }}$ are constructed through the combination of the parallel and hiding operators as previously, but their structures are not identical. For instance, the structures of $\mathrm{S}_{\text {old }}=\left(\mathrm{C}_{\text {old }} \mathrm{I}_{\mathrm{A}} \mathrm{C} 2_{\text {old }}\right) \backslash \mathrm{B}$ and $\mathrm{S}_{\text {added }}=\left(\mathrm{S}_{\text {added }} \mathrm{I}_{\mathrm{C}} \mathrm{C} 3_{\text {added }}\right) \backslash \mathrm{D}$ where $\mathrm{S} 1_{\text {added }}=\left(\mathrm{C} 1_{\text {added }} \mathrm{I}_{\mathrm{E}}\right.$ $\left.\mathrm{C} 2_{\text {added }}\right) \backslash \mathrm{F}$, are not identical. There is no one to one correspondence between the subexpressions of $S_{\text {old }}$ and the subexpressions of $S_{\text {added }}$. Before applying the merging algorithm Structured_Merge, $S_{\text {old }}$ and $S_{\text {added }}$ are transformed into strongly bisimilar specifications $S_{\text {old }}$ and $S_{\text {added }}$, respectively, such that the structures of $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$ 'are identical. This transformation may be done by the procedure Transform described below. This procedure is given in a style similar to a Prolog program. In order to determine $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}{ }^{\prime}$, it may be called by Transform $\left(\mathrm{S}_{\text {old }}, \mathrm{S}_{\text {added }}, \mathrm{S}_{\text {old }}\right.$, $\mathrm{S}_{\text {added }}{ }^{\prime}$). Procedure Transform consists of 4 rules applicable to the different forms of the expressions to be transformed.
$\operatorname{Transform}\left(\left(\mathrm{S} 11 \mathrm{I}_{\mathrm{A}} \mathrm{S} 12\right) \backslash \mathrm{B},\left(\mathrm{S} 21 \mathrm{I}_{\mathrm{C}} \mathrm{S} 22\right) \backslash \mathrm{D},\left(\mathrm{S} 11^{\prime} \mathrm{I}_{\mathrm{A}} \mathrm{S} 12^{\prime}\right) \backslash \mathrm{B},\left(\mathrm{S} 21^{\prime} \mathrm{I}_{\mathrm{C}} \mathrm{S} 22^{\prime}\right) \backslash \mathrm{D}\right)=$ Transform (S11, S21, S11', S21'), Transform (S12, S22, S12', S22').
Transform(S1, (S21 $\left.I_{C} S 22\right) \backslash D$, (S11' $\left.\left.\left.\right|_{\emptyset} S 122^{\prime}\right),\left(S 21^{\prime} I_{C} S 22^{\prime}\right) \backslash D\right)=$ Transform (S1, S21, S11', S21'), Transform (stop, S22, S12', S22').
Transform((S11 $\left.\mathrm{I}_{\mathrm{A}} \mathrm{S} 12\right) \backslash \mathrm{B}, \mathrm{S} 2$, $\left.\left(\mathrm{S} 11^{\prime} \mathrm{I}_{\mathrm{A}} \mathrm{S} 12^{\prime}\right) \backslash \mathrm{B}, ~\left(\mathrm{~S} 21^{\prime} \|_{\emptyset} \mathrm{S} 22^{\prime}\right)\right)=$ Transform (S11, S2, S11', S21'), Transform (S12, stop, S12', S22'). Transform(S1, S2, S1, S2).

Note that we have introduced a dummy process stop, which is a process that does nothing [ISO 8807]. $\mathrm{S}_{\text {old }}$ (respectively $\mathrm{S}_{\text {added }}$) is strongly bisimilar to $\mathrm{S}_{\text {old }}$ (respectively $\mathrm{S}_{\text {added }}$). It is deduced from the fact that $\mathrm{S} \sim\left(\mathrm{S}_{\varnothing}\right.$ stop $)$, and $\left(\mathrm{S} 1 \mathrm{I}_{\mathrm{A}} \mathrm{S} 2\right) \backslash \mathrm{B} \sim\left(\mathrm{S}_{1} \mathrm{I}_{\mathrm{A}} \mathrm{S} 2\right)$ (B if $\mathrm{S} 1 \sim \mathrm{~S} 1^{\prime}$ [Miln 89]. $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}{ }^{\prime}$ are merged into $S_{\text {new }}$, using the algorithm Structured_Merge introduced in the previous subsection. If the sufficient conditions of Theorem 1 are satisfied by $S_{\text {old }}$ and $S_{\text {added }}$, then $S_{\text {new }}$ ext $S_{\text {old }}$ and $S_{\text {added }}$. Since $S_{\text {old }}$ (respectively $S_{\text {added }}$ ') is strongly bisimilar to $S_{\text {old }}$ (respectively $S_{\text {added }}$), it follows that $S_{\text {new }}$ ext $S_{\text {old }}$ and $S_{\text {added }}$. Same observation for Theorem 2.

4.3 Discussion

(a) Avoiding the conditions of Theorem 1: Note that, whenever the sufficient conditions of Theorem 1 are not satisfied by the basic components of $S_{\text {old }}$ and $S_{\text {added }}$, we may consider the processes at the next higher level as monolithic and apply algorithm Merge to them. The internal structure of such processes will be lost and we will have to redesign it after the merging.
(b) Extra behavior: In the merging of structured specifications, $S_{\text {new }}$ may contain certain extra behaviors allowed neither by $S_{\text {old }}$ nor by $S_{\text {added }}$. This kind of side effect happens when alternative
behaviors from $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$ involve different components. In this case, these alternative behaviors may be interleaved as shown by the example in Figure 11, in which $\mathrm{S}_{\text {old }}=\left(\mathrm{C}_{1_{\text {old }}} \mathrm{I}_{\{\mathrm{g} 1\}} \mathrm{C} 2_{\text {old }}\right) \backslash\{\mathrm{g} 1\}$, $\mathrm{S}_{\text {added }}=\left(\left.\mathrm{C}_{\text {added }}\right|_{\{\mathrm{g} 2\}} \mathrm{C} 2_{\text {added }}\right) \backslash\{\mathrm{g} 2\}, \mathrm{C} 1_{\text {new }}=\operatorname{Merge}\left(\mathrm{C} 1_{\text {old }}, \mathrm{C} 1_{\text {added }}\right), \mathrm{C} 2_{\text {new }}=\operatorname{Merge}\left(\mathrm{C}_{2}{ }_{\text {old }}, \mathrm{C} 2_{\text {added }}\right)$, and $S_{\text {new }}=\left(\left.\mathrm{C}_{\text {new }}\right|_{\{\mathrm{g} 1, \mathrm{~g} 2\}} \mathrm{C} 2_{\text {new }}\right) \backslash\{\mathrm{g} 1, \mathrm{~g} 2\}$. $\mathrm{S}_{\text {new }}$ extends $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {new }}$ extends $\mathrm{S}_{\text {added }}$. However $S_{\text {new }}$ allows more than what is allowed by $S_{\text {old }}$ and $S_{\text {added }}$, such as the sequences of actions a.c or c.a.

Figure 11. Extra behaviors
(c) Improved procedure Transform: An improved procedure Transform may be used, in order to produce, $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}{ }^{\prime}$, which satisfy, systematically, Condition (b) of Theorem 1. Using this improved procedure, if, for instance, S 11 and S 22 have some observable actions from $\left(\operatorname{act}\left(\mathrm{S}_{\text {old }}\right)\right.$ $\operatorname{act}\left(\mathrm{S}_{\text {added }}\right)$) in common, and S_{11} and S_{21} do not have observable actions in common, then S11 is associated with S22, instead of S21, for further transformations, and the expression ($\mathrm{S} 21^{\prime} \mathrm{I}_{\mathrm{C}} \mathrm{S} 22^{\prime}$) $\backslash \mathrm{D}$ is changed to ($\mathrm{S} 22^{\prime} \mathrm{I}_{\mathrm{C}} \mathrm{S} 21^{\prime}$) $\backslash \mathrm{D}$. Note that it may happen that S 11 has common observable actions with S21 and with S 22 . In this case, the specifications $\mathrm{S}_{\text {old }}{ }^{\prime}$ and $\mathrm{S}_{\text {added }}$ produced by the procedure Transform described in the previous subsection do not satisfy Condition (b) of Theorem 1. The improved procedure Transform will not be able to transform $S_{\text {old }}$ and $S_{\text {added }}$, because of this "incompatible distribution" of observable actions. The specification $S_{\text {added }}$ should be redesigned using, for instance, the functionality decomposition algorithm described in [Lang 90]. Using this algorithm, the distribution of the common observable actions over the subexpressions of $\mathrm{S}_{\text {added }}$ should be guided by the distribution of these actions in $\mathrm{S}_{\text {old }}$. The observable actions of $\mathrm{S}_{\text {added }}$, which do not belong to $\mathrm{S}_{\text {old }}$, can be distributed randomly. Such an algorithm can also be used, if $\mathrm{S}_{\text {old }}$ is given according to the form $\left(\mathrm{S}_{1} \mathrm{I}_{\mathrm{A}} \mathrm{S} 2\right)$,B, but $\mathrm{S}_{\text {added }}$ is given in a high level form, as a monolithic specification, for instance.
(d) Substitution of a system component: The sufficient conditions in Theorem 1 may be adapted as sufficient conditions for the substitution of a component X in a system SYS by a component Y, with the confidence that the new system SYS' obtained by this substitution satisfies SYS' ext SYS, if Y ext X. For this purpose, we assume that SYS consists of a parallel composition of subsystem specifications and so on until the basic components, X is a basic component in SYS, and Y may be written as $Y=\operatorname{Merge}\left(X, X^{\prime}\right)$ with a certain X^{\prime}. SYS represents $S_{\text {old }}$. X^{\prime} represents $S_{\text {added }}$, which is transformed by the procedure Transform described in the previous subsection into $\mathrm{S}_{\text {added }} \cdot \mathrm{S}_{\text {added }}$ ' is
strongly bisimilar to $S_{\text {added }}$ and for each basic component $Z \neq X$ in $S_{\text {old }}$ corresponds a basic component $Z^{\prime}=$ stop in $S_{\text {added }}$. To the basic component X in $\mathrm{S}_{\text {old }}$ corresponds the basic component X^{\prime} in $\mathrm{S}_{\text {added }}{ }^{\prime}$. $\mathrm{S}_{\text {new }}$ obtained by merging $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$ ' using the algorithm Structured_Merge represents SYS'. Therefore, SYS' extends SYS if the conditions in Theorem 1 are satisfied.

5. Related Work

In [Ichi 90], the problem of incremental specification in the LOTOS language is approached in the following way: Given the processes $\mathrm{B}_{\text {old }}=\mathrm{C}[\mathrm{B} 1]$ and $\mathrm{B}_{\text {added }}$, deduce $\mathrm{B}_{\text {new }}=\mathrm{C}[\mathrm{B} 2]$, such that $\mathrm{B}_{\text {new }}$ ext $\mathrm{B}_{\text {old }}, \mathrm{B}_{\text {new }}$ ext $\mathrm{B}_{\text {added }}$ and B 2 ext B 1 . C[] represents a process expression context.

A new LOTOS operator , called specification merging operator, is introduced and the corresponding inference rules are defined. This approach is restricted to specification behaviors without the internal action τ. B1 B2 defines a behavior, which is supposed to be an extension of B1 and B2. Unfortunately, this is not always the case, as shown by the counterexample of Figure 12. B1 never refuses the action c after trace a.b, whereas B1 B2 may refuse the action c after trace a.b. Moreover, B1 B2 is not able to behave, alternatively, as B1 and B2, in a recursive manner. B1 B2 describes a behavior where the environment has to choose behavior B 1 or behavior B 2 once and for all.

Figure 12. Counterexample for Ichikawa et al. approach

There is no systematic approach to deduce $B_{\text {new }}$ from $B_{\text {old }}$ and $B_{\text {added }}$ with considerations of the structure of these specifications. They considered the basic LOTOS operators and investigated their properties w. r. t. the extension relation. The combination of the hiding operator (hide G in B) and the parallel operator ($\mathrm{B} 1|[\mathrm{G}]| \mathrm{B} 2$) was not considered formally. We note that Proposition 2 in [Ichi 90], which states that $(\mathrm{B} 3|[\mathrm{G}]| \mathrm{B} 2)$ ext $(\mathrm{B} 1|[\mathrm{G}]| \mathrm{B} 2)$, if B 3 ext B 1 and $\operatorname{out}(\mathrm{B} 3)$ out(B2) G , does not hold. We may consider the following counterexample:
B1 $=\mathrm{a} ; \mathrm{b}$; stop
$\mathrm{B} 2=\mathrm{a} ; \mathrm{c} ; \mathrm{b}$; stop
B3 $=\mathrm{a}$; (b; stop [] c ; stop)
$G=\{a, b\}$

It is clear that B3 ext B1 and (out(B3) out(B2)) G, but B3|[a, b]|B2 does not extend B1|[a, b]|B2.

In [Rudk 91] the notion of inheritance is defined for LOTOS. It is seen as an incremental modification technique. A corresponding operator is introduced and denoted by " ". This operator is defined such that if $\mathrm{s}=\mathrm{t} \quad \mathrm{m}$, then s extends t and any recursive call in t or m is redirected to s . However strong restrictions are imposed on t and m , such that m should be stable (no internal transition as first event), the initial events of m should be unique and distinct from initial events of t, and so on. There is no requirement such that s should also extend m, and no considerations to the structure of t or how this modification m is propagated to the processes in t .

6. Conclusion

In this paper, we have proposed an incremental construction approach for distributed system specifications. Given two specifications $S_{\text {old }}$ and $S_{\text {added }}$, we construct a specification $S_{\text {new }}$, which extends $S_{\text {old }}$ and $S_{\text {added }}$, if some sufficient conditions stated in Theorem 1 are satisfied. $S_{\text {new }}$ has the same structure as $\mathrm{S}_{\text {old }}$. Therefore the designer will not have to redesign this structure. In the case of cyclic behaviors of $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$, provided that certain sufficient conditions stated in Theorem 2 are satisfied, $S_{\text {new }}$ offers a choice between behaviors in $S_{\text {old }}$ and $S_{\text {added }}$, in a recursive manner. Note that in the case of merging monolithic specifications, the more simple propositions 1 and 2 of section 3 apply.

The labelled transition systems model is the underlying semantical model for many specification languages, such as, LOTOS [ISO 8807], CCS [Miln 89]. Therefore, the approach described in this paper is applicable for specifications written in these languages.

The proposed incremental specification approach is useful for dealing with multiple-function specifications. Instead of handling all the functions simultaneously, it allows one to focus on one function at a time for the design and verification. The merging approach will derive, whenever possible, the required combined specification. From another point of view, it allows one to extend existing specifications with new behaviors required by the user.

The approach proposed in this paper may promote the reusability of specifications. Once a function specification has been constructed and verified, for example, it may be used in many system specifications where it is required.

In this paper, we determined sufficient conditions, for which the combined specification $S_{\text {new }}$ extends the specifications $S_{\text {old }}$ and $S_{\text {added }}$. As future work, it will be interesting to study the necessity of each condition. More complex applications of our approach are also expected.

References

[Aho 79] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, 1979.
[Brin 86] E. Brinksma, G. Scollo and S. Steenbergen, LOTOS specifications, their implementations and their tests, Protocol Specification, testing and verification, VI, Montréal, Canada, 1986, Sarikaya and Bochmann (eds.).
[DeNi 87] R. De Nicola, Extensional Equivalences for Transition Systems, Acta Informatica, 24 1987, pp. 211-237.
[Henn 85] M. Hennessy, Acceptances Trees, J. of ACM, Vol.32, No. 4, Oct. 1985, pp. 896-928.
[Ichi 90] H. Ichikawa, K. Yamanaka and J. Kato, Incremental Specification in LOTOS, Protocol Specification, Testing and Verification X (1990), Ottawa, Canada, Logrippo, Probert and Ural (eds.), pp. 185-200
[ISO 8807] ISO - Information Processing Systems - Open Systems Interconnection, LOTOS - A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour, Feb. 1989.
[Kell 76] R. Keller, Formal verification of parallel programs, Communication of the ACM 19 July 1976, pp. 371-384.
[Khen 92] F. Khendek and G. v. Bochmann, Merging specification behaviors, submitted for publication.
[Lang 90] R. Langerak, Decomposition of functionality : a correctness-preserving LOTOS transformation, Protocol Specification, Testing and Verification X, 1990, Ottawa, Canada, Logrippo, Probert and Ural (eds.), pp. 203-218.
[Miln 89] R. Milner, Communication and Concurrency, Prentice-Hall International, 1989.
[Rudk 91] S. Rudkin, Inheritance in Lotos, Formal description technique (FORTE), Sydney, Australia, 1991, pp. 415-430.
[Viss 85] C. A. Vissers and L. Logrippo, The importance of the service concept in the design of data communications protocols, Protocol Specification, Testing, and Verification, V, Toulouse-Moissac, France, June 10-13, 1985, M. Diaz (ed.).
[Viss 88] C. A. Vissers, G. Scollo and M. v. Sinderen, Architecture ans Specification Style in Formal Descriptions of Distributed Systems, Protocol Specification, Testing, and Verification, VIII, North-Holland, 1988, pp. 189-204.

Appendix

For the needs of the proofs in this appendix, we use the following notations: $\operatorname{act}(\sigma)$: the set of action names in trace σ, $\sigma \backslash X$: the projection of σ to $\operatorname{act}(\sigma)-\mathrm{X}$,
Comp(old, $\left.\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$: represents the set of possible traces obtained by composition of σ_{1}, σ_{2}, $\ldots, \sigma n$ in $S_{\text {old }}$ structure with the hidden gates of $\mathrm{S}_{\text {old }}$.
$\operatorname{Comp}\left(\right.$ new, $\left.\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right):$ represents the set of possible traces obtained by composition of σ_{1}, $\sigma 2, \ldots, \sigma_{n}$ in $S_{\text {new }}$ structure (which is the same than $S_{\text {old }}$ structure) with the hidden gates of $S_{\text {new }}$.

Proof of Theorem 1

We will prove that $S_{\text {new }}$ ext $S_{\text {old }}$. The proof for $S_{\text {new }}$ ext $S_{\text {added }}$ is very similar.
a - First, we have to prove that any trace σ of $S_{\text {old }}$ is also a trace of $S_{\text {new }}$:
let $\sigma \in \operatorname{Tr}\left(\mathrm{S}_{\text {old }}\right)$, it implies that $\quad \sigma_{\mathrm{i}_{\sigma} \in \operatorname{Tr}}\left(\mathrm{Ci}_{\text {old }}\right)$, for $\mathrm{i}=1, \ldots$, n , such that $\sigma \in \operatorname{Comp}$ (old, $\sigma 1_{\sigma}$, $\left.\sigma 2_{\sigma}, \ldots, \sigma n_{\sigma}\right)$. From Proposition 1 , we have $\mathrm{Ci}_{\text {new }}$ ext $\mathrm{Ci}_{\text {old }}$. It follows that, for $\mathrm{i}=1, \ldots, \mathrm{n}, \sigma_{\mathrm{i}_{\sigma}} \in$ $\operatorname{Tr}\left(\mathrm{Ci}_{\mathrm{n}_{\text {ew }}}\right)$. By Condition (a), we deduce that $\sigma \in \operatorname{Comp}\left(\right.$ new, $\left.\sigma 1_{\sigma}, \sigma 2_{\sigma}, \ldots, \sigma \mathrm{n}_{\sigma}\right)$. Therefore, $\sigma \in$ $\operatorname{Tr}\left(\mathrm{S}_{\text {new }}\right)$.
b - In a second step, we have to prove that $S_{\text {new }}$ will not block where $S_{\text {old }}$ does not block:

We have to prove that $\forall \sigma \in \operatorname{Tr}\left(\mathrm{S}_{\text {old }}\right)$ and $\mathrm{A} \quad \operatorname{act}\left(\mathrm{S}_{\text {old }}\right)$, if $\quad S_{\text {new }}{ }^{\prime}$, such that $\mathrm{S}_{\text {new }}=\sigma \Rightarrow \mathrm{S}_{\text {new }}{ }^{\prime} \neq \mathrm{a} \Rightarrow, \forall \mathrm{a} \in \mathrm{A}$, then $\quad \mathrm{S}_{\text {old }}$ such that $\mathrm{S}_{\text {old }}=\sigma \Rightarrow \mathrm{S}_{\text {old }}{ }^{\prime} \neq \mathrm{a} \Rightarrow, \forall \mathrm{a} \in \mathrm{A}$,

Let $\sigma \in \operatorname{Tr}\left(\mathrm{S}_{\text {old }}\right), \mathrm{A} \quad \operatorname{act}\left(\mathrm{S}_{\text {old }}\right)$ and $\mathrm{S}_{\text {new' }}$ such that $\mathrm{S}_{\text {new }}=\sigma \Rightarrow \mathrm{S}_{\text {new }}{ }^{\prime} \neq \mathrm{a} \Rightarrow, \forall \mathrm{a} \in \mathrm{A}$, it implies $\quad \sigma_{i_{\sigma}} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {new }}\right)$, and $\mathrm{Ci}_{\text {new }}$ ' for $\mathrm{i}=1, \ldots, \mathrm{n}$, such that $\sigma \in \operatorname{Comp}\left(\right.$ new, $\sigma{ }_{\sigma}$, $\left.\sigma 2_{\sigma}, \ldots, \sigma_{n_{\sigma}}\right)$ and $\mathrm{Ci}_{\text {new }}=\sigma_{\mathrm{i}_{\sigma}} \Rightarrow \mathrm{Ci}_{\text {new }^{\prime}} \neq \mathrm{a} \Rightarrow, \forall \mathrm{a} \in \mathrm{A}$, since $\mathrm{A} \quad \operatorname{act}\left(\mathrm{S}_{\text {old }}\right)$ and $\operatorname{act}\left(\mathrm{S}_{\text {old }}\right) \quad\left(\mathrm{HG}_{\text {old }}\right.$ $\left.\mathrm{HG}_{\text {added }}\right)=\varnothing$.

First, we have to prove that $\sigma i_{\sigma} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {old }}\right)$, for $\mathrm{i}=1, \ldots, \mathrm{n}$.

We distinguish two cases:

b-1: $\sigma=$

From Proposition 3, we deduce that, for a given $\mathrm{a} \in\left(\operatorname{act}\left(\mathrm{Ci}_{\mathrm{old}}\right) \quad \operatorname{act}\left(\mathrm{C}_{\mathrm{added}}\right)\right)$, if $\mathrm{a} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {new }}\right)$, then $\mathrm{a} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {old }}\right)$ or $\mathrm{a} \in \operatorname{Tr}\left(\mathrm{C}_{\mathrm{i}_{\text {added }}}\right)$. By Condition (c) which states that $\mathrm{S}_{\text {old }}\left(\mathrm{S}_{\text {added }}\right)$ should not be able to perform an action from $\mathrm{HG}_{\text {old }}\left(\mathrm{HG}_{\text {added }}\right)$ before interacting with the environment. By Condition (a), $\operatorname{act}\left(\mathrm{Ci}_{\text {old }}\right) \quad \mathrm{HG}_{\text {added }}=\emptyset$ and act $\left(\mathrm{Ci}_{\text {added }}\right) \quad \mathrm{HG}_{\text {old }}=\emptyset$, for $\mathrm{i}=1, \ldots, \mathrm{n}$. It follows that $\mathrm{Ci}_{\text {new }}$ and $\mathrm{C}_{j \text { new }}$, with $\mathrm{i} \neq \mathrm{j}$, such for some $\mathrm{g} \in\left(\mathrm{HG}_{\text {old }} \quad \mathrm{HG}_{\text {added }}\right), \mathrm{g} \in \operatorname{Tr}\left(\mathrm{C}_{\mathrm{i}_{\text {new }}}\right)$ and $\mathrm{g} \in \operatorname{Tr}\left(\mathrm{C}_{\mathrm{j}_{\text {new }}}\right)$. It follows that $S_{\text {new }}$ is not able to perform an action from $\left(\mathrm{HG}_{\text {old }} \quad \mathrm{HG}_{\text {added }}\right)$ before interacting with the environment. We deduce that $\sigma_{i_{\sigma}}=$ and $\sigma_{\sigma} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {old }}\right)$, for $\mathrm{i}=1, \ldots$, n .

b-2: $\sigma \neq$

From (b-1) above, we know that $S_{\text {new }}$ is not able to perform an action from $\left(\mathrm{HG}_{\text {old }} \quad \mathrm{HG}_{\text {added }}\right)$ before interacting with the environment. Therefore, $\sigma=$ a. σ^{\prime} with $\mathrm{a} \in \operatorname{act}\left(\mathrm{S}_{\text {old }}\right)$ and $\sigma l_{\sigma} \in \operatorname{Tr}\left(\mathrm{Cl}_{\text {new }}\right)$, such that $\sigma l_{\sigma}=$ a. σl^{\prime}.

Now, assume that $\quad \sigma \mathrm{k}_{\sigma} \in \operatorname{Tr}\left(\mathrm{C}_{\text {new }}\right)$, but $\sigma \mathrm{k}_{\sigma} \quad \operatorname{Tr}\left(\mathrm{C}_{\mathrm{old}}\right)$. More specifically, $\sigma \mathrm{k}_{\sigma}$ can be written in the form of $\sigma k^{\prime} . \mu . \sigma \mathrm{k}^{\prime \prime}$, with $\sigma \mathrm{k}^{\prime} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, but $\sigma \mathrm{k}^{\prime} . \mu \quad \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right) . \mu$ may be an action from $\mathrm{HG}_{\text {old, }}$, or from $\mathrm{HG}_{\text {added }}$, or an observable action from $\operatorname{act}\left(\mathrm{S}_{\text {old }}\right)$.

We distinguish two sub-cases:
b-2-1: $\sigma k^{\prime}=$

b-2-1-1: $\mu \in \mathbf{H G}_{\text {old }}$

We have $\mu \in \operatorname{Tr}\left(\mathrm{C}_{\text {new }}\right)$, with $\mu \in \mathrm{HG}_{\text {old }}$. From Proposition 3, we deduce that $\mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$ or $\mu \in$ $\operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$, since $\mathrm{Ck}_{\text {new }}$ results from the merging of $\mathrm{Ck}_{\text {old }}$ and $\mathrm{Ck}_{\text {added }}$ by the algorithm Merge. By Condition (a), act($\left.\mathrm{Ck}_{\text {added }}\right) \quad \mathrm{HG}_{\text {old }}=\emptyset$, it follows that $\mu \quad \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$. We have $\mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, which contradicts our hypothesis above. Consequently, $\quad \sigma \mathrm{k}_{\sigma} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {new }}\right)$, such that $\sigma \mathrm{k}_{\sigma}$ $\operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$.
b-2-1-2: $\mu \in \operatorname{act}\left(\mathbf{S}_{\text {old }}\right)$ (μ is an observable action)
By Proposition 3, we deduce again that $\mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$ or $\mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$. Assume that μ $\operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, and $\mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$. We have $\sigma \in \operatorname{Tr}\left(\mathrm{S}_{\text {old }}\right)$, it follows that $\quad \sigma \mathrm{k}_{\text {old }} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, such that $\sigma \mathrm{k}_{\text {old }}=\mathrm{s} . \mu . \mathrm{t}$, because of the distribution of observable actions over the basic components of $\mathrm{S}_{\text {old }}$ and $S_{\text {added }}$ expressed by Condition (b). We have $\mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$ and $\mathrm{s} . \mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, by Condition (d-2), it follows that $\mathrm{Ck}_{\text {old }}=\mathrm{s} \Rightarrow \mathrm{Ck}_{\text {old }}$ and $\mathrm{Ck}_{\text {old }}=\mu \Rightarrow$. It follows that $\mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, which contradicts our assumption. Consequently, $\mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\mathrm{old}}\right)$, which contradicts our original hypothesis. Therefore, $\sigma_{k_{\sigma}} \in \operatorname{Tr}\left(\mathrm{C}_{\text {new }}\right)$, such that $\sigma_{\mathrm{k}_{\boldsymbol{\sigma}}} \operatorname{Tr}\left(\mathrm{C}_{\text {old }}\right)$.

b-2-1-3: $\mu \in \mathbf{H G}_{\text {added }}$

We deduce that $\quad \sigma m_{\sigma} \in \operatorname{Tr}\left(\mathrm{Cm}_{\text {new }}\right)$, such that $\sigma \mathrm{m}_{\sigma}=\sigma \mathrm{m}^{\prime} . \mu . \sigma \mathrm{m}^{\prime \prime}$. From (b-1) above, we know that $S_{\text {new }}$ is not able to perform an action from $\left(\mathrm{HG}_{\text {old }} \quad \mathrm{HG}_{\text {added }}\right)$ before interacting with the environment. In other words, we know that $\mathrm{Ci}_{\text {new }}$ and $\mathrm{Cj}_{\mathrm{new}}$, with $\mathrm{i} \neq \mathrm{j}$, such for some $\mathrm{g} \in\left(\mathrm{HG}_{\text {old }}\right.$ $\left.\mathrm{HG}_{\text {added }}\right), \mathrm{g} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {new }}\right)$ and $\mathrm{g} \in \operatorname{Tr}\left(\mathrm{C}_{\mathrm{j}_{\text {new }}}\right)$. It follows that $\sigma \mathrm{m}^{\prime} \neq$.

We distinguish two cases, $\sigma \mathrm{m}^{\prime} \in \operatorname{Tr}\left(\mathrm{Cm}_{\text {old }}\right)$ and $\sigma \mathrm{m}^{\prime} \operatorname{Tr}\left(\mathrm{Cm}_{\text {old }}\right)$:

- $\sigma m^{\prime} \in \operatorname{Tr}\left(\mathrm{Cm}_{\text {old }}\right)$: we have $\sigma m^{\prime} . \mu \in \operatorname{Tr}\left(\mathrm{Cm}_{\text {new }}\right)$, but $\sigma \mathrm{m}^{\prime} . \mu \quad \operatorname{Tr}\left(\mathrm{Cm}_{\text {old }}\right)$, since $\mu \in \mathrm{HG}_{\text {added }}$. By Condition (d-1), we also have $\sigma \mathrm{m}^{\prime} . \mu \operatorname{Tr}\left(\mathrm{Cm}_{\text {added }}\right)$. By Proposition 3, it follows that $\sigma \mathrm{m}^{\prime}=$ $\sigma \mathrm{m} 1^{\prime} . \sigma \mathrm{m} 2^{\prime}$ with $\mathrm{Cm}_{\text {old }}=\sigma \mathrm{m} 1^{\prime} \Rightarrow \mathrm{Cm}_{\text {old }}, \mathrm{Cm}_{\text {old }}=\sigma \mathrm{m} 2^{\prime} \Rightarrow \mathrm{Cm}_{\text {old }}{ }^{\prime}, \mathrm{Cm}_{\text {added }}=\sigma \mathrm{m}_{2}{ }^{\prime} \Rightarrow \mathrm{Cm}_{\text {added }}{ }^{\prime}$ and $\mathrm{Cm}_{\text {added }}{ }^{\prime}=\mu \Rightarrow$. If $\sigma \mathrm{m}^{\prime} \neq$, we have $\sigma \mathrm{m}^{\prime}(\neq) \in \operatorname{Tr}\left(\mathrm{Cm}_{\text {old }}\right)$ and $\sigma \mathrm{m}^{\prime} . \mu \operatorname{Tr}\left(\mathrm{Cm}_{\text {added }}\right)$, which is in contradiction with Condition (d-1). If $\sigma \mathrm{m}^{\prime}=$, we have $\mu \in \operatorname{Tr}\left(\mathrm{Cm}_{\text {added }}\right)$. We also have $\mu \in$ $\operatorname{Tr}\left(\mathrm{Ck}_{\text {new }}\right)$, by Proposition 3, it follows that $\mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$, since $\mu \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$. This is in contradiction with Condition (c). We have reached a contradiction again, it follows that $\mu \quad \mathrm{HG}_{\text {added }}$.
- $\sigma m^{\prime} \operatorname{Tr}\left(\mathrm{Cm}_{\text {old }}\right):$ we deduce that $\sigma \mathrm{m}^{\prime}=\mathrm{s} . \mu^{\prime} . \mathrm{t}$, where $\mathrm{s} \in \operatorname{Tr}\left(\mathrm{Cm}_{\text {old }}\right)$, but s. $\mu^{\prime} \operatorname{Tr}\left(\mathrm{Cm}_{\text {old }}\right)$. Depending on s and μ^{\prime}, we proceed recursively. In the case where $\mu^{\prime} \quad H G_{\text {added }}$, we reach, immediately, a contradiction as shown in the other subcases. In the case of $\mu^{\prime} \in \mathrm{HG}_{\text {added }}$, we proceed recursively, until $\sigma l_{\sigma}=$ a. $\mu^{*} . \sigma l^{\prime \prime}$ with $\mathrm{a} \in \operatorname{Tr}\left(\mathrm{Cl}_{\text {old }}\right)$, but a. $\mu^{*} \quad \operatorname{Tr}\left(\mathrm{Cl}_{\text {old }}\right)$. Since $\sigma \in \operatorname{Tr}\left(\mathrm{S}_{\text {old }}\right)$, Condition (c) states that $S_{\text {old }}$ is not able to perform an action g from $\mathrm{HG}_{\text {old }}$ before interacting with the environment and Condition (b) for the distribution of observable actions over the basic components of $S_{\text {old }}$ and $S_{\text {added }}$, it follows that $\quad \sigma l_{\text {old }} \in \operatorname{Tr}\left(\mathrm{Cl}_{\text {old }}\right)$, such that $\sigma l_{\text {old }}=$ a. $\sigma l_{\text {old }}$. If $\mu^{*} \in \mathrm{HG}_{\text {old }}$, or $\mu^{*} \in$ $\operatorname{act}\left(\mathrm{S}_{\text {old }}\right)$, it is solved in the subcases (b-2-2-1) and (b-2-2-2) and we reach in both cases a contradiction. If $\mu^{*} \in \mathrm{HG}_{\text {added }}$, by Condition (d-1), a. $\mu^{*} \operatorname{Tr}\left(\mathrm{Cl}_{\text {added }}\right)$. We have a. $\mu^{*} \in \operatorname{Tr}\left(\mathrm{Cl}_{\text {new }}\right)$, $\mathrm{a} \in \operatorname{Tr}\left(\mathrm{Cl}_{\text {old }}\right)$, a. $\mu^{*} \operatorname{Tr}\left(\mathrm{Cl}_{\text {old }}\right)$ 历nd a. $\mu^{*} \quad \operatorname{Tr}\left(\mathrm{Cl}_{\text {added }}\right)$, by Proposition 3, it follows $\mathrm{Ci}_{\text {old }}=\mathrm{a} \Rightarrow \mathrm{Ci}_{\text {old }}$ and $\mu^{*} \in \operatorname{Tr}\left(\mathrm{Cl}_{\text {added }}\right)$. This is in Contradiction with Condition (c), because we have $\mu^{*} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$
and $\mu^{*} \in \operatorname{Tr}\left(\mathrm{Cl}_{\text {added }}\right)$. Recursively, each assumption is contradicted until the first one: $\mu \in \mathrm{HG}_{\text {added }}$. Consequently, we can not have $\mu \in \mathrm{HG}_{\text {added }}$.
b-2-2: $\sigma k^{\prime} \neq$

b-2-2-1: $\mu \in \mathbf{H G}_{\text {old }}$

We have $\sigma k^{\prime} . \mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {new }}\right)$, $\sigma \mathrm{k}^{\prime} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, and $\mu \in \mathrm{HG}_{\text {old }}$. By Condition (a), we have $\operatorname{act}\left(\mathrm{Ck}_{\text {added }}\right) \quad \mathrm{HG}_{\text {old }}=\emptyset$. We deduce that $\sigma \mathrm{k}^{\prime} . \mu \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$, and $\sigma \mathrm{k} 1^{\prime} . \sigma \mathrm{k} 2^{\prime}$ such that $\sigma \mathrm{k}^{\prime}=\sigma \mathrm{k} 1^{\prime} . \sigma \mathrm{k}^{\prime}, \mathrm{Ck}_{\mathrm{old}}=\sigma \mathrm{k} 1^{\prime} \Rightarrow \mathrm{Ck}_{\mathrm{old}}, \mathrm{Ck}_{\mathrm{old}}=\sigma \mathrm{k} 2^{\prime} \Rightarrow \mathrm{Ck}_{\mathrm{old}}{ }^{\prime}, \mathrm{Ck}_{\mathrm{added}}=\sigma \mathrm{k}^{\prime} \Rightarrow \mathrm{Ck}_{\mathrm{added}}{ }^{\prime}$ and $C k_{\text {added }}{ }^{\prime}=\mu \Rightarrow$. By Proposition 3, it follows that $\sigma \mathrm{k}^{\prime} . \mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, which is in contradiction with our hypothesis. Consequently $\quad \sigma \mathrm{k}_{\boldsymbol{\sigma}} \in \operatorname{Tr}\left(\mathrm{C}_{\text {new }}\right)$, such that $\sigma \mathrm{k}_{\boldsymbol{\sigma}} \operatorname{Tr}\left(\mathrm{C}_{\mathrm{o}_{\text {old }}}\right)$.

b-2-2-2: $\mu \in \operatorname{act}\left(S_{\text {old }}\right):$

$\sigma k^{\prime} . \mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {new }}\right)$, $\sigma \mathrm{k}^{\prime} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$: By Proposition 3, we have $\sigma \mathrm{k}^{\prime} \cdot \mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, or $\sigma \mathrm{k}^{\prime} \cdot \mu \in$ $\operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$, or $\sigma \mathrm{k} 1^{\prime} . \sigma \mathrm{k} 2^{\prime}$ such that $\sigma \mathrm{k}^{\prime}=\sigma \mathrm{k} 1^{\prime} . \sigma \mathrm{k} 2^{\prime}, \mathrm{Ck}_{\mathrm{old}}=\sigma \mathrm{k} 1^{\prime} \Rightarrow \mathrm{Ck}_{\mathrm{old}}, \mathrm{Ck}_{\text {old }}=\sigma \mathrm{k} 2^{\prime} \Rightarrow \mathrm{Ck}_{\mathrm{old}}{ }^{\prime}$, $\mathrm{Ck}_{\text {added }}=\sigma \mathrm{k} 2^{\prime} \Rightarrow \mathrm{Ck}_{\text {added }}$ and $\mathrm{Ck}_{\text {added }}{ }^{\prime}=\mu \Rightarrow$.

- $\sigma \mathrm{k}^{\prime} \cdot \mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right):$ we deduce that act $\left(\sigma \mathrm{k}^{\prime}\right) \quad\left(\mathrm{HG}_{\text {old }} \quad \mathrm{HG}_{\text {added }}\right)=\emptyset$, because $\sigma \mathrm{k}^{\prime} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, $\operatorname{act}\left(\mathrm{Ck}_{\text {added }}\right) \quad \mathrm{HG}_{\text {old }}=\emptyset$ and act($\left.\mathrm{Ck}_{\text {old }}\right) \quad \mathrm{HG}_{\text {added }}=\emptyset\left(\right.$ Condition (a)). We write $\sigma k^{\prime}=\mathrm{a} 1 . \mathrm{a} 2 \ldots \mathrm{an}$, with $a i \in \operatorname{act}\left(S_{\text {old }}\right)$, for $i=1, \ldots, n$. Because of Condition (b), for the distribution of actions over the basic components of $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$, and the fact that $\sigma \in \operatorname{Tr}\left(\mathrm{S}_{\text {old }}\right)$, it follows that $\quad \sigma \mathrm{k}_{\text {old }} \in$ $\operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$ such that $\sigma \mathrm{k}_{\text {old }}=\sigma \mathrm{k}_{\text {old }}{ }^{\prime} \cdot \sigma \mathrm{k}_{\text {old }}{ }^{\prime \prime}$, where $\sigma \mathrm{k}_{\text {old }}{ }^{\prime} \backslash \mathrm{HG}_{\text {old }}=\sigma \mathrm{k}^{\prime} \cdot \mu=\mathrm{a} 1 . \mathrm{a} 2 \ldots$..an. μ. If $\sigma \mathrm{k}_{\text {old }}{ }^{\prime}=$ a1. $\sigma \mathrm{k}_{\text {old }}{ }^{\prime \prime}$ with $\sigma \mathrm{k}_{\text {old }}{ }^{\prime \prime} \backslash \mathrm{HG}_{\text {old }}=\mathrm{a} 2 \ldots$ an. μ, then $\sigma \mathrm{k}_{\text {old }}{ }^{\prime \prime \prime}=\mathrm{a} 2 \ldots$ an. μ, because of Condition ($\mathrm{d}-1$), we can not have hidden actions (from $\mathrm{HG}_{\text {old }}$) in $\sigma \mathrm{k}_{\text {old }}{ }^{\prime \prime}$. It follows that $\sigma \mathrm{k}^{\prime} \cdot \mu \in \operatorname{Tr}\left(\mathrm{C}_{\text {old }}\right)$. If $\sigma \mathrm{k}_{\text {old }}{ }^{\prime}=$ $\sigma \mathrm{k} 1_{\text {old }}{ }^{\prime}$.a1. $\sigma \mathrm{k} 2_{\text {old }}{ }^{\prime}$ with $\sigma \mathrm{k} 2_{\text {old }}{ }^{\prime} \backslash \mathrm{HG}_{\text {old }}=\mathrm{a} 2 \ldots$ an. $\mu, \sigma \mathrm{k} 1_{\text {old }}{ }^{\prime} \backslash \mathrm{HG}_{\text {old }}=, \sigma \mathrm{k} 1_{\text {old }}{ }^{\prime} \neq$ and $\sigma \mathrm{k} 1_{\text {old }}{ }^{\prime}$ is not cyclic in $\mathrm{Ck}_{\text {old }}$, we are in contradiction with Condition (d-2). If $\sigma \mathrm{k}_{\text {old }}{ }^{\prime}=\sigma \mathrm{k} 1_{\text {old }} \cdot \mathrm{am}$. $\sigma \mathrm{k} 2^{\text {old }}{ }^{\prime}$ with $\sigma \mathrm{k} 2_{\text {old }}{ }^{\prime} \backslash \mathrm{HG}_{\text {old }}=\mathrm{a} 2 \ldots$ an $. \mu, \sigma \mathrm{k} 1_{\text {old }}{ }^{\prime} \backslash \mathrm{HG}_{\text {old }}=, \quad \sigma \mathrm{k} 1_{\text {old }}{ }^{\prime} \neq$ and $\sigma \mathrm{k} 1_{\text {old }}{ }^{\prime}$ is cyclic in $\mathrm{Ck}_{\text {old }}$, it follows that a1. $\sigma k 2_{\text {old }} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$. Because of Condition (d-1), we can not have hidden actions (from $\mathrm{HG}_{\text {old }}$) in $\sigma \mathrm{k} 2_{\text {old }}{ }^{\prime}$ and $\sigma \mathrm{k} 2_{\text {old }}{ }^{\prime}=\mathrm{a} 2 \ldots$...an. μ. It follows that $\sigma \mathrm{k}^{\prime} . \mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, which is in contradiction with our hypothesis.
- $\sigma \mathrm{k}^{\prime} . \mu \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$: it follows that $\sigma \mathrm{k}^{\prime}=\sigma \mathrm{k} 1^{\prime} . \sigma \mathrm{k} 2^{\prime}$ with $\mathrm{Ck}_{\text {old }}=\sigma \mathrm{k} 1^{\prime} \Rightarrow \mathrm{Ck}_{\text {old }}, \mathrm{Ck}_{\text {old }}=\sigma \mathrm{k} 2^{\prime} \Rightarrow \mathrm{Ck}_{\text {old }}{ }^{\prime}$, $\mathrm{Ck}_{\text {added }}=\sigma \mathrm{k} 2^{\prime} \Rightarrow \mathrm{Ck}_{\text {added }}{ }^{\prime}$ and $\mathrm{Ck}_{\text {added }}{ }^{\prime}=\mu \Rightarrow$. As above, by Condition (b) for the distribution of actions over the basic components of $\mathrm{S}_{\text {old }}$ and $\mathrm{S}_{\text {added }}$, and the fact that $\sigma \in \operatorname{Tr}\left(\mathrm{S}_{\text {old }}\right)$, it follows that $\quad \sigma \mathrm{k}_{\text {old }} \in$ $\operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$ such that $\sigma \mathrm{k}_{\text {old }}=\mathrm{s} . \mu . \sigma \mathrm{k} 1_{\text {old }}{ }^{\prime \prime}$. if $\sigma \mathrm{k} 2^{\prime}=, \sigma \mathrm{k}^{\prime}=\sigma \mathrm{k} 1^{\prime}$. By Condition (d-2), s is cyclic in $\mathrm{Ck}_{\text {old }}$ and $\mathrm{Ck}_{\text {old }}=\mu \Rightarrow$. It follows that $\mathrm{Ck}_{\text {old }}=\sigma \mathrm{k}^{\prime} \Rightarrow \mathrm{Ck}_{\text {old }}$ and $\mathrm{Ck}_{\text {old }}=\mu \Rightarrow$. We have deduced that $\sigma \mathrm{k}^{\prime} . \mu \in \operatorname{Tr}\left(\mathrm{C}_{\mathrm{old}}\right)$, which is in contradiction with our hypothesis. If $\sigma \mathrm{k} 2^{\prime} \neq$, then $\sigma \mathrm{k} 2^{\prime}=$
a1.a2...an, with ai $\in \operatorname{act}\left(\mathrm{S}_{\text {old }}\right)$, for $\mathrm{i}=1, \ldots$, n , since $\sigma \mathrm{k} 2^{\prime}$ is a common trace for $\mathrm{Ck}_{\text {old }}$ and $\mathrm{Ck}_{\text {added }}$. It follows that $\mathrm{s}=\mathrm{s} 1 . \mathrm{a} 1 . \mathrm{s} 2 . \mu . \sigma \mathrm{k} 1_{\text {old }}$, such that $\mathrm{s} 1 \backslash \mathrm{HG}_{\text {old }}=\sigma \mathrm{k} 1^{\prime} \backslash \mathrm{HG}_{\text {old }}$ and $\mathrm{s} 2 \backslash \mathrm{HG}_{\text {old }}=\mathrm{a} 2 \ldots$ an. We have $\mathrm{Ck}_{\text {added }}=\mathrm{a} 1 \Rightarrow$, and $\mathrm{s} 1 . \mathrm{a} 1 \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, by Condition (d-2), it follows that s 1 is cyclic in $\mathrm{Ck}_{\text {old }}$ and $\mathrm{a} 1 \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$. We have a1.s2 $\backslash \mathrm{HG}_{\text {old }} \mu .=\mathrm{a} 1 . \mathrm{a} 2 . . \mathrm{an} . \mu$. By Condition ($\mathrm{d}-1$), we can not have hidden action (from $\mathrm{HG}_{\text {old }}$) in s 2 . It follows that $\mathrm{s} 2=\mathrm{a} 2 \ldots \mathrm{an}$. We have $\mathrm{Ck}_{\text {old }}=\sigma \mathrm{k} 1^{\prime} \Rightarrow \mathrm{Ck}_{\text {old }}$, and $\sigma k 2^{\prime} . \mu \in \operatorname{Tr}\left(\mathrm{C}_{\mathrm{old}}\right)$, it follows that $\sigma \mathrm{k}^{\prime} . \mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, which is in contradiction with our hypothesis.

b-2-2-3: $\mu \in \mathbf{H G}_{\text {added }}$

We have $\sigma k^{\prime} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$ and $\sigma k^{\prime} \neq$. By Condition (d-1), we deduce that $\sigma \mathrm{k}^{\prime} \cdot \mu \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$. We have $\sigma k^{\prime} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, $\sigma \mathrm{k}^{\prime} . \mu \quad \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$, $\sigma \mathrm{k}^{\prime} . \mu \quad \operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$ and $\sigma \mathrm{k}^{\prime} . \mu \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {new }}\right)$. By Proposition 3, it follows that $\sigma \mathrm{k}^{\prime}=\sigma \mathrm{k} 1^{\prime} . \sigma \mathrm{k} 2^{\prime}$ with $\mathrm{Ck}_{\mathrm{old}}=\sigma \mathrm{k} 1^{\prime} \Rightarrow \mathrm{Ck}_{\text {old }}, \mathrm{Ck}_{\text {old }}=\sigma \mathrm{k} 2^{\prime} \Rightarrow \mathrm{Ck}_{\mathrm{old}}{ }^{\prime}$, $\mathrm{Ck}_{\text {added }}=\sigma \mathrm{k} 2^{\prime} \Rightarrow \mathrm{Ck}_{\text {added }}{ }^{\prime}$ and $\mathrm{Ck}_{\text {added }}{ }^{\prime}=\mu \Rightarrow$. If $\sigma \mathrm{k} 2^{\prime} \neq$, we have $\sigma \mathrm{k} 2^{\prime}(\neq) \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$ and $\sigma \mathrm{k} 2^{\prime} \cdot \mu$ $\operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$, we have reached a contradiction with Condition (d-1). If $\sigma k 2^{\prime}=$, it follows that $\mu \in$ $\operatorname{Tr}\left(\mathrm{Ck}_{\text {added }}\right)$ and $\quad \sigma \mathrm{m}_{\sigma} \in \operatorname{Tr}\left(\mathrm{Cm}_{\text {new }}\right)$, such that $\sigma \mathrm{m}_{\sigma}=\sigma \mathrm{m}^{\prime} . \mu . \sigma \mathrm{m}^{\prime \prime}$. Now, we are in the same situation as case b-2-1-3, which is solved recursively and reaches a contradiction in all cases. We can not have $\mu \in \mathrm{HG}_{\text {added }}$.

Consequently $\quad \sigma \mathrm{k}_{\sigma} \in \operatorname{Tr}\left(\mathrm{Ck}_{\text {new }}\right)$, such that $\sigma \mathrm{k}_{\sigma} \quad \operatorname{Tr}\left(\mathrm{Ck}_{\text {old }}\right)$.
By the algorithm Merge (Proposition 1), we have $\mathrm{Ci}_{\text {new }}$ ext $\mathrm{Ci}_{\mathrm{i}_{\text {old }}}$, for $\mathrm{i}=1, \ldots, \mathrm{n}$.
It follows that, for $\mathrm{i}=1, \ldots, \mathrm{n}, \forall \sigma \mathrm{i} \in \operatorname{Tr}\left(\mathrm{Ci}_{\text {old }}\right)$ and $\mathrm{A} \quad \operatorname{act}\left(\mathrm{S}_{\text {old }}\right)$,
if $\quad \mathrm{Ci}_{\text {new }}{ }^{\prime}$, such that $\mathrm{Ci}_{\text {new }}=\sigma \mathrm{i} \Rightarrow \mathrm{Ci}_{\text {new }}{ }^{\prime} \neq \mathrm{a} \Rightarrow, \forall \mathrm{a} \in \mathrm{A}$,
then $\quad \mathrm{Ci}_{\text {old }}$ such that $\mathrm{Ci}_{\text {old }}=\sigma \mathrm{i} \Rightarrow \mathrm{Ci}_{\text {old }}{ }^{\prime} \neq \mathrm{a} \Rightarrow, \forall \mathrm{a} \in \mathrm{A}$,
$\sigma \in \operatorname{Comp}\left(\right.$ new, $\left.\sigma 1_{\sigma}, \ldots, \sigma n_{\sigma}\right)$ and for $\mathrm{i}=1, \ldots, \mathrm{n}, \sigma \mathrm{i}_{\sigma} \in \operatorname{Tr}\left(\mathrm{Ci}_{\mathrm{o}_{\text {ld }}}\right.$), we deduce that $\sigma \in \operatorname{Comp}$ (old, $\sigma_{1_{\sigma}}, \ldots, \sigma_{n_{\sigma}}$. Since $\quad \mathrm{Ci}_{\text {old }}{ }^{\prime}$ such that $\mathrm{Ci}_{\text {old }}=\sigma_{i_{\sigma}} \Rightarrow \mathrm{Ci}_{\text {old }}{ }^{\prime} \neq \mathrm{a} \Rightarrow, \quad \forall \mathrm{a} \in \mathrm{A}$, for $\mathrm{i}=1, \ldots, \mathrm{n}$, it follows that $\quad \mathrm{S}_{\text {old }}{ }^{\prime}$ such that $\mathrm{S}_{\text {old }}=\sigma \Rightarrow \mathrm{S}_{\text {old }}{ }^{\prime} \neq \mathrm{a} \Rightarrow, \forall \mathrm{a} \in \mathrm{A}$.

Proof of Theorem 2

Consider $\sigma \in \operatorname{Tr}\left(\mathrm{S}_{\text {old }}\right)$, such that σ is a minimal cyclic trace in $\mathrm{S}_{\text {old }}$. It follows that, for $\mathrm{i}=1, \ldots, \mathrm{n}$,
$\sigma i \in \operatorname{Tr}\left(\mathrm{Ci}_{\mathrm{old}}\right)$ such that $\sigma \in \operatorname{Comp}\left(\right.$ old, $\left.\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$. Assume that for $\mathrm{i}=1, \ldots, \mathrm{n}, \sigma_{\mathrm{i}}$ is a minimal cyclic trace in $\mathrm{Ci}_{\text {old }}$, and ($\sigma \mathrm{i} \quad \operatorname{Tr}\left(\mathrm{Ci}_{\text {added }}\right)$ or σ_{i} is a cyclic trace in $\left.\mathrm{C}_{\text {added }}\right)$. From Proposition 2, it follows that, for $\mathrm{i}=1, \ldots, \mathrm{n}, \sigma_{\mathrm{i}}$ is a minimal cyclic trace in $\mathrm{Ci}_{\text {new }}$. By Condition (a) of Theorem 1 , we know that $\sigma \in \operatorname{Comp}\left(\right.$ new $\left., \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$. Since the initial state of the structured specification $S_{\text {new }}$ is composed by the initial states of all its components, we deduce that σ is a cyclic trace in $S_{\text {new }}$.

The proof for the second part of the theorem is similar.

[^0]: * This research was supported by a grant from the Canadian Institute for Telecommunications Research under the NCE program of the Government of Canada and by an IBM research fellowship.

