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Abstract 

In this paper, we propose a generalized diagnostic 
algorithm for the case where more than one fault (output 
or transfer) may be present in one of the transitions of a 
deterministic system represented by a set of 
communicating finite state machines (CFSMs). Such an 
algorithm localizes the faulty transition in the distributed 
system once the fault has been detected. It generates, if 
necessary, additional diagnostic test cases which depend on 
the observed symptoms and which permit the location of 
the detected faults. The algorithm guarantees the correct 
diagnosis of any single or double faults (output andlor 
transfer) in at most one of the transitions of a 
deterministic system which is represented by a set of 
communicating FSMs. A simple example is used to 
demonstrate the functioning of the different steps of the 
proposed diagnostic algorithm. 

1. Introduction 

Testing is an important step in the development cycle 
of any system (i.e. software, communication protocol or 
hardware). A lot of research work has been directed 
towards such tests [4, 3, 16, 18, 14, 2, 81. At the same 
time, in the software domain where a system may be 
represented by an FSM model, very little work has been 
done for diagnostic and fault localization problems [6, 
191. Diagnostic is a well documented subject in other 
areas such as Artificial Intelligence (AI), complex 
mechanical systems and medicine. Therefore, most of the 
concepts and terms used in this paper are imported from 
those domains. 

In model-based diagnostics [l l ,  153, we assume the 
availability of the real system (e.g., implementation) 
which can be observed, and its model (e.g., specification) 
from which predictions can be made about its behavior. It 
is necessary to know how the system or the machine 
under test is supposed to work in order to be able to know 
why it is not working correctly. 

Often the specification of a model-based system is 
described in a structured manner. Therefore, a system is 
seen as a set of components connected to each other in a 
specific way. In order to diagnose this kind of systems, 

models and their corresponding systems are assumed to 
have the same components and the same structure. 
Observations of inputs and outputs show how the 
system is behaving, while expectations, derived from 
its model, tell us how it is supposed to behave. The 
differences between expectations and observations, which 
are called "symptoms", hint the existence of one or 
several differences between the model and its system. In 
order to explain the observed symptoms, a diagnostic 
process should be initiated. It consists mainly of 
performing the following two tasks: the generation of 
candidates and the discrimination between candidates [ 1 11. 
Task 1: Generation of candidates: This process 
uses the identified symptoms and the model to deduce 
some diagnostic candidates. Each diagnostic candidate 
is defined to be a minimal difference, between the model 
and its system, capable of explaining all symptoms. It 
indicates the failure of one or several components in the 
system. 
Task 2: Discrimination between candidates: 
Once the step of candidate generation terminates, we often 
end up with a huge number of diagnostic candidates. To 
reduce their number, two main techniques are used. The 
first one consists in the selection of some additional new 
tests called "distinguishing tests" [5]. The second 
technique consists of introducing new observation points 
in the implementation under investigation and executing 
the same tests again. 

We recall that in general, the diagnostic problem is a 
very complicated task, specially for diagnosing 
complicated systems such as distributed systems. This 
complexity makes the achievement of the candidate 
generation and discrimination tasks harder. In order to 
solve this problem, the use of fault models is necessary 
(see for instance [l]). Given the hierarchical system 
description, corresponding fault models may be 
established using the different levels of abstraction. Some 
of these fault models give all possible failures of each 
component in the system. They help to ease the 
diagnostic procedure, specially by reducing the number of 
the different cases which have to be considered, and hence, 
in reducing the number of diagnoses to be generated. It is 
important to note that different fault models may be used 
during both tasks of the diagnostic process. In the 
simplest case and for high level abstractions, the 
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following fault model, based on the system 
decomposition into components and connections, may 
apply during the candidate generation phase. Each 
component may either be faulty or operating correctly 
[ll]. On the other hand, and for lower level abstractions 
(i.e. gates or transitions levels), different uses of precise 
and more concrete fault models, are recorded in different 
areas such as the diagnostics of hardware circuits (e.g., 
stuck at 0/1 fault models) [123. These fault models may 
be used during the phase of discrimination between 
candidates. In the software area and more precisely for 
FSMs, another simple fault model, based on transfer and 
output faults in transitions, is used for diagnosing 
implementations modeled by FSMs [2, 19,6]. 

In this paper, we propose a diagnostic algorithm for 
deterministic systems represented by CFSMs[9, 101. In 
such a model, transitions are considered as components in 
the above described general model, while states have the 
function of connecting these components. We solve the 
diagnostic problem for the single transition faults (output 
and/or transfer) hypothesis, which means that the 
implementation under test is allowed to have up to two 
(output and/or transfer) faults in at most one transition. 
The algorithm in this paper is a generalization to the 
algorithms presented in [6, 71. It extends the class of 
systems to be diagnosed from systems represented by 
single FSMs to systems represented by N-CFSMs, where 
N 2 2. It also extends the assumed fault model from a 
single (an output or a transfer but not both) fault to single 
transition (an output and/or a transfer) faults. The new 
proposed algorithm will have the ability of localizing the 
faults once an error is detected by one or several test cases, 
which may be generated by one of the existing test 
selection methods [131. 

The fact that in some cases it is possible to transform a 
set of CFSMs into an equivalent single machine with an 
exponential algorithm, is not a good reason to stop us 
from trying to solve the diagnostic question for systems 
of CFSMs. The equivalent machine is, in general, too big 
and is less convenient to handle. To avoid the high 
transformation cost and the state explosion problem in the 
resulting machine, we propose to solve the diagnostic 
problem directly for the CFSMs model. Compared with 
the case of single FSM diagnostics, more work needs to 
be done to diagnose CFSMs. This becomes evident in 
Section 3, where a set of transitions suspected of having 
output faults has to be identified. Such a set was not 
needed in the case of single FSMs. 

The remainder of the paper is organized as 
follows. In Section 2, the model of communicating finite 
state machines and a corresponding fault model are 
introduced. Section 3 includes all the details of an 
approach for the diagnostic of deterministic system 
implementations represented by the CFSMs model. In 
Section 4, an application example explaining the steps of 
the proposed diagnostic algorithm is provided. Section 5,  
finally, contains a concluding discussion and points for 
future research. 

2. Communicating Finite State 
Machines 

2.1 Principles of the CFSMs model 

A system of communicating finite state 
machines with distributed ports consists of a finite 
number of deterministic finite state machines which 
communicate with each other through input queues in 
addition to their communication with the environment 
through their respective external ports. 
Definition 1: A deterministic FSM M i  (i = 1, 
2, ... N) in a system of N CFSMs can be represented by 
a quintuple (Si. Ii, Oi, NextStaFunci, OutFunci) where : 
N Number of FSMs in the system 
Si : Set of states of Mi. It includes the initial state si0 
Ii : Set of input symbols. It includes the rest  input (r) 
Oi : Set of output symbols. It includes the null output (-) 
NextStaFunci : Next-state function, Si x Ii --> Si 
OutFunci : Output function, Si x Ii --> Yi. 

For the rest of the paper, we assume that each machine 
Mi in the distributed system has a separate external port, 
Pi, through which input and output symbols are 
communicated between the machine and the external 
world. In addition, each machine Mi has N-1 internal 
input queues: qi<l, qi<li .-.,qi<i-1, qi<i+l, .... qi<N, 
where qi<j represents the internal input queue for Mi 
receiving its symbols from the machine M,. 

For each deterministic FSM in a system of CFSMs, 
we distinguish two types of transitions. The first type is 
called "external-output transitions" or simply 
"transitions". It is the kind of transitions which deliver 
their outputs to a corresponding external port. The second 
type is called "internal-output transitions". They 
are those transitions which communicate their outputs to 
another machine, instead of communicating them to the 
external port of the corresponding machine. In this paper, 
we assume that each machine of the CFSMs has an input 
alphabet composed of two distinct subsets of inputs. The 
first subset I E O ,  called "inputs for external 
outputs", contains input symbols which can be applied 
to only external-output transitions. The second set 110. 
called "inputs for internal outputs", contains 
inputs which can be applied only to internal-output 
transitions. 

Each time an input symbol is applied to a machine in 
the system, we assume that enough time is given to 
observe its effect, which will be an output interaction in 
one of the existing external ports. Hence, the application 
of the next external input should be preceded by the 
observation of the output implied by the previous input. 
Therefore, only one message will be circulating in the 
whole system at any time. Such an assumption, which 
we call "the synchronization assumption", 
guarantees the deterministic behavior of the global 
system. Related issues to the synchronization problem are 
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discussed in more details in [17]. With such an 
assumption, only one global sequence of output symbols 
is expected for a given global sequence of input symbols 
(i.e., a mixture of input symbols belonging to the 
different machines). A possible way of implementing 
such a feature, is by providing some coordinating 
procedures between the different external ports of the 
system. 

From the above described model, it is obvious that the 
execution of an internal-output transition in one machine 
implies the execution of another transition in a second 
machine. If the later transition is also an internal-output 
one, a third transition will be executed in a third machine, 
before any output is observed in any of the ports. This 
process will continue until an extemal-output transition is 
invoked. In such a case, the output of that last transition 
will be observed in the extemal port of the machine to 
which that transition belongs. Because of the complexity 
of the diagnostic process, we restrict ourselves to the 
study of systems where the execution of an internal- 
output transition in one machine will only imply the 
execution of an external-output transition in another 
machine. In other words, the set of output symbols of 
internal-output transitions in one machine should be a 
subset in the set of inputs for extemal-output transitions 
in the other machines. Hence, for a pair (Internal-output 
transition, external-output transition) of transitions 
provoked by a single intemal input, the output of the first 
transition is hidden (since it is communicated to an 
intemal queue of one the other machines in the system 
instead of the external port), while the output of the 
second one must be observable in the extemal port of the 
receiving machine. 

We assume that the input alphabet Ii, of a machine Mi 
(i = 1.2, ..., N) in a system of CFSMs, is formed by two 
subsets (i.e., Ii = IEOi U 1101, where IEOi n IIOi 
= 0). The first subset I E O i  represents the input 
symbols, for external-output transitions of Mi, which 
might be applied from the corresponding external port Pi. 
IEOi includes a subset "IEOqi<I U IEOqi,2 U ... 
U IEOqici-l U IEOqi,i+l U ... U IEOqi,N" 
containing input symbols, for some external-output 
transitions, which might be received from the different 
queues of Mi: qi<l$ qi<l, .-4i<i-1, qi<i+l, ..., qi<N 
instead of the external port Pi. The second subset IIOj 
represents input symbols for the internal-output 
transitions of Mi. It is formed by different subsets ("IIOi 

I I O i > i + l  U ... U I I O ~ > N " ,  where IIOi,x n 
IIOi,,, = 0, i # X,Y and x # Y). Each subset IIOi>j, j 
# i. contains inputs for internal output transitions of Mi 
which communicate their outputs to the machine Mj. 
These input symbols are only applied from the extemal 

Similarly, the set of output symbols Oi of the machine 
Mi can be seen as the union of two subsets (i.e., Oi = 

= IIOj>l U I I O j > 2  U ... U I I O i > i - l  U 

port Pi of Mi. 

OEOi U OIOj). The first subset OEOi is formed by the 
output symbols generated by external-output transitions 
of Mi and addressed to Mi's external port, Pi. The second 

OIOj>i- l  U OIOj>i+l  U ... U O I O ~ > N " ,  is 
formed by output symbols generated by internal-output 
transitions of Mi and addressed to the input queues: q1<i, 
9249 ..., qi-l<iv qi+l<i, ..., qN<i of machines MI. M2, 
..., Mi-1, Mi+l, ..., MN, respectively. It is important to 
note that the input subset IEOqi<j of machine Mi is equal 
to the output subset OIOj>i of machine Mj. From the 
implementation point of view, the input symbols of the 
subset IEOqi<j of the machine Mi (if received from the 
queue qi<j) and the output symbols of the subset OIOj>i 
of a machine Mj are hidden and can not be observed by an 
extemal observer. 

A graphic representation of an CFSMs example, in the 
form of state transition diagram, is given in Figure 
1 where a system of three communicating machines with 
three distributed ports is presented. Each machine Mi in 
the system has an external port for both external input and 
output interactions and an input queue for each machine 
Mj (i f i) which receives messages sent by Mj. In each 
machine Mi of the system, we show external-output 
transitions in simple lines, one group of internal 
transitions (with outputs designated to one machine) in 
continued bold lines, while the other group (with outputs 
designated to the other machine) are shown in dashed bold 
lines. 

For the example in Figure 1, we have the following 
finite sets of inputs and outputs for the three machines in 
the system: 
IEOl= (a, bj; IEOql,2 = (a, bl; IEOql,3 = (a, bl; 
II01>2 = (c, d); IIO1>3 = (e, f )  ==>IO1 = (c, d, e, f )  
I1 = IEOl U I101 ==> 
OEOl= [c', d ) ;  
0101,2 = (C', d ) ;  OIO1>3 = [C', d') => 0101 = (C', d') 
0 1  = OEOl U 0101 ==> 01 = (c', d') 
IE02 = [c', d', 0, PI; IEOq2<1 = {c', d l ;  IEOq2,3 = (0, 

PI: 
I IOb  1 = (9, r) ; IIO2>3 = (s, t) =>I102 = (9, r, s, t) 
I2 = IE02 U I102 ==> I2 = (c', d', 0, p, q, r, s, t) 
OE% = (a, b); 
0102,1 = (a, b]; OIO2>3 = {U, v) ==>0102 = (a, b, U, 
V I  
0 2  = OEO2 U 0102 ==> 0 2  = (a, b, U, v) 
IE03 = (C', d'. U, VI; IEOq3,1 = (c', d); IEOq3,2 = (U, 

VI  
1103>1 = {W, x); IIO3>2= (Y, Z) =>IIO3 = (w, X, Y,Z) 

OEO3 = [a, b) : 

subset, ( " O I O i  = OIOi>l U OIOi>2 U ... U 

I1 = {a, b, c, d, e, f) 

I3 = IE03 U IIO3 ==> I3 = (c', d', U, V, W, X, Y, Z) 
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P1 P, 
11= (a, b,c, 01= { c', d) 

' L  

t"9: wfa 

0 3  = (a, b, 0, PI 

Figure 1: A state transition diagram for a three Communicating Finite State Machines 

oIO3>1= {a, b); OIO3>2 = (0, p) ==> 0103 = (a, b, 0, 
PI 
0 3  = OE03 U OIO3 ==> 0 3  = (a, b, 0, p) 

2.2 The CFSMs fault model 

The CFSMs fault model is based on faults made on 
labeled transitions of the machines. Some of these faults, 
which are essential for the CFSM-based diagnostic 
approach discussed in Section 3, are defined as follows: 
Definition 2: Output fault: We say that a transition 
has an output fault if, for the corresponding state and 
received input, the implementation provides an output 
different from the one specified by the output function. 

An implementation has a single output fault if, 
one and only one of its transitions has an output fault. 
Definition 3: Transfer fault: We say that a 
transition has a transfer fault if, for the corresponding 
state and received input, the implementation enters a 
different state than specified by the Next-state function. 

An implementation has a single transfer fault if, 
one and only one of its transitions has a transfer fault. 

In the CFSMs model defined in the above subsection, 
an output is considered to be composed of two 
components: the message type and the address to which 
that message is destined (e.g., the environment queue or 
another machine queue). Output faults may occur in either 
component. For our diagnostic approach presented in the 
following section, we assume the following fault model: 
the implementation under test (IUT) may have a n  
output fault, where the fault can occur only in the 
message type component and not in the address 
component, and/or a transfer fault in at most one 
transition in one of its machines. 

3. The diagnostic approach 

In this section, we present a diagnostic algorithm for 
deterministic systems represented by CFSMs. Such an 
algorithm consists of diagnosing (with respect to its 
specification CFSMs) an IUT CFSMs for possible faulty 
transitions. Its main purpose is to identify the faulty 
transition and to determine the type of its faults (i.e., 
output and/or transfer). This work is mainly executed 
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within Step 5 and Step 6 of the following algorithm. In 
particular, Step 5 might end up with different diagnostic 
candidates. In such a case, additional diagnostic tests 
should be selected in Step 6, in order to be able to isolate 
the faulty transition and more precisely to know to which 
state (in case of a transfer fault) that transition has 
transfeared. 
ALGORITHM: 
Step 1: Generation of expected outputs 

We assume that a test suite "TS" is given. The test 
suite consists of a number of test cases which are 
sequences of input symbols. We write TS = ( tcl; ...; 
tcp), where each tci is a test case. 

If a test case tci consists of mi inputs: 
iP i,l,ii,2 *P ,..., fmi, the corresponding sequence of expected 

outputs is written as: Oi = O ! , ~ , O ~ , ~  ,..., , where p 
and g are ports (i.e. p, g E (1,2, ..., N): external ports in 
the system) through which interactions get applied or 
observed and otj is expected after input 'Ej. In other 
words, the input symbols in the test cases and their 
corresponding outputs can be applied and observed in 
different extemal ports. It is important to note that the 
application of an input symbol in a test case might imply 
the execution of one or two transitions in both machines, 
depending on whether that input is for an external or an 
intemal output. 
Step 2: Execution of test cases 

Application of the test suite to the JUT. For each test 
case t i ,  a corresponding output sequence is observed in 
the ports of the IUT. It is written as: 6i = 

Definition 4: The transition T i j  of the specification 
machine Mk where the first symptom (o!,~ # 8 t )  in test 
case tCi has been observed, is called a symptom 
transition. If we have the same symptom transition for 
all test cases first symptoms, that transition is called the 
unique symptom transition (ust). The observed 
output generated by the ust, is called the unique 
symptom output (uso). 
Step 3: Generation of symptoms 

Compare observed outputs with expected ones and 
identify all symptoms. Any difference (of,j # tfj) 
represents a symptom. The faulty output corresponding 
to a symptom is called a symptom output. 

Note: In order to continue the diagnostic process, 
different approaches might be used depending on the 
assumed fault model. In the following, we make the 
assumption that the IUT might have at most one 
faulty transition with an output and/or a 
transfer fault. 
Step 4: Generation of conflict sets 
Algorithm: For each test case tci with symptoms and 

for each machine Mi in the system, determine its 

8:,1,6f,2...,6i,mi. g 

corresponding conflict set. A conflict set for a given 
test case is defined to be the set of transitions which are 
supposed to participate (through their execution) in the 
generation of the symptom outputs in t i .  The conflict set 
for a machine M1 is formed by all transitions executed in 
the M1 specification when the corresponding test case is 
applied. No transitions, executed after the observation of 
the first symptom in tci, will be included in the 
corresponding conflict set of MI. More formally, we 
suppose that the following two output sequences (the first 
is expected and the second is observed) correspond to the 
test case, "tci = R, i$, i[,, f 3 ,  ..., f m ,  

i[m+l,...,iP 11, with one or more symptoms: 1,n 
oi = of, 14290!,3,. - , ~ f , ~ , o [ ~ + l ,  - - SO!,, 
6i = 0~,1.0~,2.0k3 , . . . , ~ ~ , ~ , ~ t ~ + l , . . , ~ i , ~  8 

where(~!,,+~ e> 6tm+l) is a symptom. The conflict 
set for the machine M1 is formed by the projection on the 
transitions of M1 which belong to the specification sub- 
sequence of transitions which corresponds to the input 
subsequence "iy, 1, iz,, f 3 ,  ..., f m ,  i[m+l't. 

Note: The flag is set to true if If (O~,~+,,..,O:,~ c > 

Step 5: Generation of diagnostic candidates and 
their diagnoses 

Diagnostic candidates are transitions which are 
suspected to be faulty. Therefore, each one of them should 
belong to each of the conflict sets generated in the last 
step. It also has to be consistent with all observations in 
all initially given test cases. 
Step 5A: Generation of initial tentative 
candidate sets 
Algorithm: For each machine Mi in the system, the 
initial tentative candidate set "ITCi" will be formed by 
the intersection of all its conflict sets. Each element 
Tk in ITC' represents a tentative candidate transition 
(with an output and/or a transfer fault) which may explain 
all symptoms. 
S t e p  5B: The F T C ,  the E n d s t a t e s ,  the 

outputs, and the statout sets 
Algorithm: For each generated initial tentative candidate 
set ITCi, if there is a unique symptom transition llustill, 
it will be contained in the ITCi (i.e, see definition 4). In 
that case, we split the ITCi.into the set "usfseti1', which 
will initially contain the ust', and the set of final tentative 
candidates for transitions with transfer faults "FTCtri", 
which will contain the rest of the transitions in ITCi. 
Otherwise, the full ITCi set forms the FTCtri set. A third 
set, called the final tentative candidate set for intemal- 
output transitions with possibly only outpyt faults or 
both output and transfer faults, "FTCCO~" ,  will be 

6;,m+2.. . ,6;,,). 
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else 
outputs[Tk ] := 0; 

{outputs[Tk ] is the set of all faulty outputs Tk mighl 
generate} 

Forall2 o E OIOi>j and o # Output(Tk) Do 
calouts (Tk , 0, outputs) 

ENDForalM 
, ENDForall1 

Procedure ustprocessing (ustseti, flag) 
If ( (usbeti # 0) and flag) Then 

{statout(psti) is the set of all couples, (state, usoi), of 
faults ustl might have} 

statout(ust') := 0 
processtate&out(usti, i, usoi, statout) 

calouts (ust', uso1, outputs) 

Else If (usbeti # 0) Then 
outputs(usti) . .  := 0 

Procedure processtate&out(cand, i, 0, statout) 
Fora111 s E Si and s f NextState(cand) Do 

flagl := true 
Fora112 tCm E TS DO 

[if in ik,n we have p = i, or i&,n is an internal inpul 
hen Tg,, is assigned the corresponding transition of Mi 
itherwise, it is null} 

Forall3 iE,n E tcm DO 
If (TL,, = m d )  Then 

[let the ending state of TL,, in the specification be s} 

[let the output of TL,, in the specification be 0) 
NextState'(Tg,.,) := s; 

Output"(TPm,n) := o 
Apply the test case tcm to the modified specificatior 
If (newly set of expected output sequences c> set o 

3bserved outputs) Then flag1 := false; exit 
EndForall3 

EndForall2 
IF (flag1 = true) Then 
statout(cand) := statout(Cand) U { [s,o]} 

EndForalll 

Procedure calouts (cand, 0, outputs) 
flagl := true 
Ford11 tcm E TS DO 

Fora112 ik,, E tcm DO 
IF (TL,, = cmd) THEN 

Output'(T$,,) = 0; 
Apply the test case tcm to the modified specification 

IF (newly expected outputs Q observed outputs) 
THEN flagl := false; exit 
ENDForall2 

ENDForall 1 
IF (flagl = true) THEN 

outputs(cand) := outputs(cand) U (0) 

For each transition Tk in the FTCtris (i = 1, 2, ..., N), 
we compute the set of all faulty transfer states called 
"EndStates(Tk )", to which Tk might transfer. For 
each transition, we consider all states in the machine Mi, 
with the exception of the expected Nextstate of Tk, one at 
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a time. For each state s under consideration, s will be 
included in EndStates(Tk ), if under the assumption that s 
is the Nextstate of Tk, the expected and observed outputs 
re equal for all succeeding transitions in all test cases. 
'rocedurefindendngstates (FTCtr'); 
~oral l l  ~k in mctr i  DO 

Tk is the k-th transition in FTCtri 1 
EndStates(Tk ) := 0 

EndStales(Tk ) is the set of all states to which Tk migh 
ransfer } 

Forall2 state s E Si and s # NextStute(Tk) Do 
flagl .- .- true 
Fora113 tcm E TS DO 

Forall4 ik,n E tcm Do 

if in i i , n  we have p = i, or ik,n is an internal inpul 
hen TL,n is assigned the corresponding transition of Mj 
Itherwise, it is null} 

IF (Tg,n = Tk ) THEN 
NextState'(Tg,n) = s; 

Apply the test case tcm to the modified specificatior 
IF (newly expected outputs o observed outputs 

ENDForall3 
IF (flagl = true) THEN 

THEN flagl := false; exit 
ENDForal 14 

EndStates(Tk ) := EndStutes(Tk ) U { s} 
ENDForall2 

ENDForall 1 
itep 5C: Identification of diagnostic 

candidates and generation of diagnoses 
Algorithm: In this step we remove all correct (i.e. 
transitions with empty Endstates, empty statout and 
empty outputs) transitions from the final tentative 
candidate sets. A! remaining transitions in an FTCtr' set 
form a "DCtrl" set (if not empty) of diagnostic 
candidates with transfer faults in machine Mi. For each 
transition Tk in the DCtris (i = 1,2, ..., N) and for each 
state Sik in the set EndStates(Tk ), a diagnose, stating that 
Tk might transfer U, state s&, is generated. If sfutout sets 
are not empty, we generate corresponding diaposes which 
suspect the remaining transitions in "DCco*" sets and 
the ustset' (if not empty), for having both output and 
transfer faults. If outputs sets are not empty, we generate 
corresponding diagnose? which suspect the remaining 
transitions in "DCcol" sets and the ustsetl (if not 
empty) for having only output faults. 
Step 6: Additional diagnostic tests 

Depending on the results of the previous steps, the 
following different possibilities might be present. 
Case 1: One of the ustsetis contains the usti transition 
with a corresponding singleton outputs set, the DCtris 

and the DCcois (i = 1, 2, ..., N) are all empty. In such a 
case, the usti is the faulty transition with the output fault 
usoi and no further diagnostic tests are required. 
Case 2: One of the ustsetis contains the usti transition 
with a corresponding singleton statout set, the DCtris and 
the DCco's (i = 1,2, ..., N) are empty. In such a cay, the 
usti is the faulty transition with the output fault USO' and 
the transfer fault to the state belonging to the only 
element of statout. No further diagnostic tests are required. 
Case 3: The ustset's are empty and all of the DCtrls and 
the DCCO~S (i = 1,2, ..., N) are empty, except one of the 
DCtris (DCcois) which is a singleton with a 
corresponding singleton Endstates set ( a corresponding 
singleton outputs set or a singleton statout set). In this 
case, the only transition of DCtrl (NCO') has a transfer 
fault to the state in E n d s t a t e s  (a faulty output 
corresponding the only element in outputs or both an 
output and a transfer faults corresponding to the only 
element in statout). No further tests are required. 
Case 4: The ustsetis are empty and one or more of the 
other sets has more than one element. Therefore, any 
element of the DCtris or the DCco's (i = 1, 2, ..., N) 
might be the faulty transition. In such a case, we should 
process the elements of these sets in order to derive further 
tests with the purpose of identifying the faulty transition 
and localizing the exact faults. 
Algorithm for Case 4: 
Step (a): For each transition T k  in the DCtris, 
additional test cases have to be selected and executed, in 
order to be able to know exactly to which state it 
transfers. These test cases should have the ability of 
distinguishing between the different states contained in the 
corresponding ending state set EndStafes(Tk) and possibly 
the correct ending state of the transition. Therefore, a 
"limited characterization set" Wk has to be 
computed for the states in EndStutes(Tk) and the correct 
state. It is different from the characterization set defined in 
[2], since it concerns only a subset of states rather than 
the whole set of states in the machine. It is formed by 
sequences of inputs such that if applied to the machine in 
one of the states in EndStates(Tk), the produced outputs 
will be different from the outputs obtained if the same 
input sequences were applied to the machine in any other 
state of EndStutes(T9 or the correct state. Each additional 
test case is a concatenation of an input sequence, called 
transfer sequence, required to take the machine from its 
initial state to the starting state of Tk, the input for Tk 
and a sequence of inputs from the Wk. 
Step (b): For the internal-output transitions in the 
DCcois, a similar approach to Step (a) is used. If the 
statout set is not empty, two groups of additional tests 
will be needed for each transition Tk in DCcol. The first 
group concerns the ending state of Tk and can be found 
using the algorithm of Step (a), while the second group 
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concerns the output of Tk and can be found using the 
present algorithm. If the outputs set is not empty, only 
one group of additional tests will be needed for each 
transition Tk in DCcol. This group concerns the output 
of Tk and can also be found using the present algorithm. 
An additional test for finding the output of a transition Tk 
in DCcoi is a concatenation of an input sequence, called 
transfer sequence, required to take the machine Mi from its 
initial state to the starting state of Tk, the input for Tk 
and a sequence of inputs from "the distinguishing 
set" Uk. The characteristic of the sequences in Uk is 
that once incorporated in the additional test cases, they 
will have the ability of distinguishing between the 
different possible outputs which might be generated by Tk 
and communicated to the machine Mj. In other words, if 
Mj in a state s receives an input symbol x (i.e. the output 
of Tk ) from Mi, it will execute a precise corresponding 
transition t and will reach a state s', then, a sequence from 
Uk will be applied to Mj in state s'. If a faulty input 
symbol x' (instead of x) is received by Mj in state s, a 
different transition t' will be executed and possibly a 
different output will be generated and a different state will 
be reached. Therefore, the different sequences of uk will 
identify such an anomaly. Consequently, if the 
application of these additional tests generates the expected 
outputs, the transition Tk is confirmed to do not have an 
output fault. If at the Same time Tk is confirmed not 

having a transfer fault, it can then be removed from the 
corresponding DCcoi. When a faulty transition is found, 
the analysis of observed outputs will identify the faulty 
output of that transition and the search is stopped. 

In order to avoid any ambiguities, the transfer sequence, 
the limited characterization set and the distinguishing set 
should be chosen in such a manner that they do not 
involve any candidate transition in any of the DCtris or 
the DCcois (i = 1, 2, ..., N) sets. Figure 2 illustrates the 
progressive construction of the additional test cases needed 
to distinguish the faulty transition from the rest of the 
diagnostic candidates of DCtris. A similar picture would 
illustrate the progressive construction of additional tests 
for DCCO~S. 

The construction of the additional tests is progressive 
because if the faults are located, the rest of these additional 
tests need not be generated, since we work under the 
single transition faults hypothesis. If some of the 
generated tests are already included in the initially given 
test suite, this will be taken into consideration for the 
analysis of the obtained outputs, but they need not be 
applied again to the IUT. If the application of these 
additional tests generates the expected outputs, the 
transition is declared correct and is removed from the 
corresponding diagnostic candidate set. When a faulty 
transition is found, the analysis of the observed outputs 
identify the wrong transfer and/or the wrong output of the 
transition and the search is stopped. 

2.1 W 

Notes: 
1) s fs, ss .Is, es .'s and esi . 's are states in the machine. 
2) ct is a d  candidate tranditions 
3) each Pi is a transfer sequence from the initial state to the starting state of cti 
4) The input sequence in each path in the tree represents a possible additional 
diagnostic test for a specific candidate transition and a specific ending state. 
5 )  Solid lines transitions indicate the predicted behavior of the diagnostic candidates 
(no fault case). 
6) Each subtree starting with Pi represents additional tests for transition tci 
7) The set of sequences { w i,l. . wi,+] distinguishes between the states esi,l. . . esi,mi 
in the EndStatesi for candidate transition ct i 

Figure 2 : Construction of additional diagnostic tests 
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Input 
Spec. transitions 
Expected output t Observed output 

R, al ,  c'3, cl, t2, x3, 
tr, tl ,  t"1, t6t'l, t'6t1'4, t"5t7 
-, c'l, a3, a2, b3, d l  
-, c'l, a3, a2, b3, c'l 

tcl I tc2 

R, al, c'2, d'2, c'3, x3, f l  
-, tl ,  t'l, t'4, t"1, t"5t4, t5t"l 
-, c'l, a2, b2, a3, d l ,  a3 
-, c'l, a2, b2, a3, d'l, a3 

I 

Case 5: One of the ustsetis contains the usti transition 
and one or more of the other sets have more than one 
element. In such a case, we first check the ust' transition 
by generating for it one (or several) additional test case@) 
depending on the corresponding stutout set is empty or 
not. If stutout is empty and outputs contains one element, 
then only one additional test is needed. This test should 
not imply the execution of any transition in the sets 
DCtrls and DCco's (i = 1, 2, ..., N). It should terminate 
by the input of usti. If its application generates the 
expected output, then the usti is declared correct and the 
search for the faulty transition in the other sets has to be 
done as in Case 4, otherwise, usti is the transition with 
an output fault and the search stopped. If the set stutout 
which corresponds to the ustl transition, is not empty, 
then additional tests should first be selected for ust' using 
the algorithm in Step (a) of Case 4. If these tests confirm 
the correctness of the ust' transition, we select additional 
tests for the transitions in the other sets using the 
algorithms in Case 4. 

4. An application example 

Suppose that we are given the three CFSMs 
specification (implementation) shown in Figure 1. We 
execute the diagnostic algorithm presented in Section 3 
with the following test suite: 
TS = (R, a1, ~ ' 3 ,  c1, t2, x3; R, a l ,  ~ ' 2 ,  &, ~ ' 3 ,  x3, f1) 
Step 1 and 2: The application of TS to the 
specification and the implementation (i.e. equals to the 
specification with the exception of transition t"4 which 
has a transfer fault) of Figure 1, yields the expected and 
observed output sequences, as shown in Table 1. 

In Table 1, a reset transition tr is used. It is assumed to 
be available for both the specification and the 
implementation. It resets all machines in the system to 
their initial states. We use the symbol "R" to denote the 
input for such a transition and the symbol "-" to denote 
its output. 
Step 3: A difference between observed and expected 
outputs is detected for test case tcl. Therefore, the 
symptom is: "Sympl = ( 0 ~ 1 ~ 6  f 611,6)yy with the 
symptom transition t7. 
Step 4: Corresponding to the above symptom, we 
generate a conflict set for each machine in the system: 

Confl1 = ( t l ,  6, t7), Conf21 = (t'1, t'6), ~ o n f 3 1 =  

Step 5A: Since there is only one conflict set for each 
machine, no intersection is needed. The three initial sets 
of tentative candidates for the three machines are the 
following: I T C ~  = ( t l ,  b, t71, I T C ~  = (t'1, t'6), 

Step 5B: For each ITCi ( i =1, 2), we generate its 
corresponding FrCtri, lTCcoi and the ustseti sets: 

Frctrl  = (tl, tt;) , ustsetl = (t7). FTccol = (Q) 
FTCU~ = (t* 1 1, ustset2 = ( 1, FTCCO~ = (t'6) 
F T C ~  = ( t"1, t1'4 , ustset2 = ( , FTCCO~ = ( t''5 
The processing of the above sets and the computation 

of the outputs and the ending state sets for the transitions 
in FTCtris and FTCcois (i =1, 2,3) leads to: 

(t"1, t"4, t 3 )  

I T C ~  = (titl, tip4, tit5) 

ustsetl = (t7). 
EndStates[tl] = (), Endstates[$] = ( )  outputs[@ = ()  
ustset2= (), 
EndStates[t'1] = ( ) , OUtpUts[t'(j] = ( ) , 
ustset3= (), 
EndStates[t"l] = (), EndStates[t"4] = (so) outputs[t"5] 

= (a), 
Step 5C: The transitions with empty ending state sets 
or empty output sets are correct, therefore they are 
removed from their final tentative candidate sets. The 
resulting diagnostic candidate sets are the following: 

D C W ~  = (1, ustsetl = ( t7),  col = (1 
DC$= (),ustset2= (),Dcc$= (1 

With the use of the ending state sets and the outputs 
sets generated in Step 5B, the following diagnoses are 
Qeduced: 
Diagl: t7 might have the output fault of c' instead of d'. 
Diag2: t"4 might transfer to state instead of state SI. 
Diag3: '"5 might have an output fault of a instead of b. 
Step 6: In order to reduce the number of these diagnoses, 
additional diagnostic tests have to be selected. Since 
output faults are in general easier to be tested and require 
less tests, we start with Diagl . As indicated in the 
proposed algorithm, other diagnostic candidates have to be 
avoided from the path of transitions executed by the 
additional test case. A possible transfer sequence which 
will take the machine M1 to the starting state s2 of t7 is 

DCtr3 = (t"4), ustset3 = ( ) , DCco3 = (t"5) 
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"R, clft.  We concatenate this sequence with the input of 
t7. The execution of the resulting additional test "R, c1, 
bl"generates the output sequence 'I-, a2, d'l''. This result 
confirms the correctness of t7 in M1 and the search for the 
faulty transition should be continued. 

Let us consider now Diag2. A possible transfer 
sequence which will take the machine M3 to the starting 
state s i  of t"4 is "R, c '~" .  A possible sequence which will 
distinguish between states so and s1 is the input "~3 ' ' .  
After the application of the additional test case "R, ct3, 
v3, v3", we observe 'I-, a3, b3, E ~ ' '  as output. Such a 
result confirms that t"4 is faulty and transfers to state so 
instead of state s1 as specified. Since it is assumed that 
there is at most one fault in IUT, the fault is localized and 
the remaining diagnoses are discarded. 

5. Concluding discussion 

In this paper, we proposed a generalized diagnostic 
approach for deterministic systems represented by 
CFSMs. We showed that even for a single transition 
faults (output and/or transfer) hypothesis, a lot of work 
needs to be done for its diagnosis. The main advantage of 
the diagnostic approach is the need of shorter test suites 
for localizing detected faults. The optimization factor 
comes from the fact that only suspicious transitions 
requires additional tests, rather than every transition in the 
CFSMs, such as done in existing test selection methods 
with a strong diagnostic power (i.e., W or DS methods 
for single deterministic FSMs). 

Many important questions are left for future work, such 
as the diagnostic of distributed systems which are 
represented by CFSMs and have non-deterministic 
behaviors. The non-determinism can be caused by the 
absence of synchronization between the different ports of 
the different machines of the distributed system. The 
extension of the CFSMs fault model is also recommended 
to cover, for example, addressing faults which are not 
considered in this paper. Another important question is 
the diagnostics of systems having multiple faults, which 
is known to be a very difficult problem. A possible 
starting point is to try to solve such a question for at least 
some special classes of multiple faults. 
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