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Abstract: In this paper, we propose a generalized diagnostic algorithm for the case where

more than one fault (output and/or transfer) may be present in the transitions of a system

represented by a deterministic finite state machine (FSM).  If existing faults are detected,

this algorithm permits the generation of a minimal set of diagnoses, each of which is formed

by a set of transitions (with specific types of faults) suspected of being faulty. The

occurrence in an implementation, of all the faults of a given diagnosis, allows the

explanation of all observed implementation outputs. The algorithm guarantees the correct

diagnosis of certain configurations of faults (output and/or transfer) in an implementation,

which are characterized by a certain type of independence of the different faults. We also

propose two approaches for selecting additional test cases, which allows the reduction of

the number of possible diagnoses. A simple example is used to demonstrate the different

steps of the algorithm.
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1. Introduction

Systematic test sequence generation for communication protocols in conformance testing

has been an active research area during the last decade. Methods were developed to produce

optimized test sequences for detecting faults in an implementation under test (IUT). Most of

these methods are based on deterministic finite state machine (FSM) models [Chow 78,

Gone 70,  Nait 81, Mill 90a, Petr 91, Sabn 88, Sato 89, Sidh 89a]. They are intended to

determine whether a given protocol implementation satisfies all properties required by the

protocol specification. However, the application of these methods gives only limited

information about the locations of detected faults. In general, in the communication protocol

area, very little work has been done for the diagnostic and the fault localization problems

[Ghed 92a, Ghed 92c, Ghed 92d, Vuon 90]. However, diagnostics is a well documented

subject in other areas, such as artificial intelligence, in complex mechanical systems and

medicine. Therefore, most of the concepts and terms used in this paper are imported from

those domains.

In model-based diagnostics [Davi 88, Klee 87, Reit 87], we assume the availability of the

real system (e.g., implementation) which can be observed, and its model (e.g.,

specification) from which predictions can be made about its behavior. It is necessary to

know how the system or the machine under test is supposed to work in order to be able to

know why it is not working correctly.

Often the specification of a model-based system is described in a structured manner.

Therefore, a system is seen as a set of components connected to each other in a specific

way. The structure (organization) of a system can be defined as a relationship (e.g.,

physical connection, procedure call,...) between the different components of the system. A

component is seen as one of many smaller sub-systems in the larger system. The behavior

of the larger system is, therefore, described in terms of its component behaviors. A possible

way of describing a component behavior, is through the use of input symbols, which can

be applied to the component, and outputs, which might be generated by the same

component. Observations of inputs and outputs show how the system to be diagnosed is

behaving, while expectations, derived from its model, tell us how it is supposed to

behave. The differences between expectations and observations, which are called

"symptoms", hint the existence of one or several differences between the model and its

system. In order to explain the observed symptoms, a diagnostic process should be
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initiated. It consists mainly of performing the following two tasks: the generation of

candidates of faults and the discrimination between candidates [Klee 87].

Task 1: Generation of candidates:  This process uses the identified symptoms and the

model to deduce some diagnostic candidates. Each diagnostic candidate is defined to be

the minimal difference, between the model and its system, capable of explaining all

symptoms. It indicates the failure of one or several components in the system.

Task 2: Discrimination between candidates: Once the step of candidate generation

terminates, we often end up with a huge number of diagnostic candidates. To reduce their

number, two main techniques are used. The first one consists of the selection of some

additional new tests called "distinguishing tests" [Gene 84]. The second technique

consists of introducing new observation points in the implementation under investigation

and executing the same tests again.

In [Ghed 92b], we introduced a single fault (output or transfer) diagnostic algorithm for

systems represented by FSMs. With respect to the above described general model,

transitions in an FSM are considered as components, while states have the function of

connecting these components. In this paper, we generalize the algorithm of [Ghed 92b] to

the case where system implementations are allowed to have multiple faults; several

transitions might have output and/or transfer faults.  If the occurred faults are detected by

one or several test cases, which may have been generated by one of the existing test

selection methods, the new algorithm will have the ability to generate a minimal set of

diagnoses, each of which is formed by a set of transitions (with specific types of faults)

suspected of being faulty. We also propose two approaches for selecting additional test

cases, which allows the reduction of the number of possible diagnoses.

The  remainder  of  the  paper  is  organized  as  follows. In  Section 2, the deterministic

finite state machine (FSM) model and a corresponding fault model are introduced. A brief

description of some test selection methods and a discussion on their fault localization power

are also presented. Section 3 presents an approach for the multiple fault diagnostics of

system implementations represented by FSMs. In Section 4, an application example

explaining the steps of the proposed diagnostic approach is provided. Section 5 presents

two approaches for the selection of additional test cases in order to reduce the number of

possible diagnoses. An estimation of the complexity of the diagnostic approach is given in
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Section 6. Finally, Section 7 contains a concluding discussion and points for future

research.

2. Finite state machines

A deterministic finite state machine (FSM) M  can be represented by a quintuple

(S, I, Y, T, O) where :

S is the set of states of M. It includes an initial state s0,

I is the set of input symbols,

Y is the set of output symbols. It includes the null output (e),

T is the next-state function, S x I --> S,

O is the output function,  S x I --> Y.

The notation s-a/b->s' is used to represent a transition. For each state in the machine, a

reset transition is used to take the machine to its initial state. It takes the symbol r as

input and generates the symbol e as output.

Finally and in order to deal with null outputs (e.g., e), we assume that the output e is

observed during a test by the application of an input and the non-observation of any output

during a predetermined lapse of time. After deducing that a null output has occurred, the

next input is allowed to be applied.

A graphic representation of a deterministic FSM example, in the form of a  state

transition diagram, is given in  Figure 1.

S1

S2

S0

t2: b/f

t1: a/e

t4: a/f
t6: c/f

t5: b/f
t9: c/e

t3: c/e
t8: b/e

t7: a/f

Figure 1: A state transition diagram of an FSM
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2.1 The FSM fault model

The FSM fault model [Boch 91] is  based on  faults  made on labeled  transitions.  Some  of

these faults, which are essential for the diagnostic approach discussed in Section 3, are

defined as follows:

Definition 1: Output fault: We say that a transition has an output fault if, for the

corresponding state and received input, the implementation provides an output different

from the one specified by the output function.

An implementation has a single output fault if one and only one of its transitions has an

output fault.

Definition 2: Transfer fault: We say that a transition has a transfer fault if, for the

corresponding state and received input, the implementation enters a different state than

specified by the Next-state function.

An implementation has a single transfer fault if one and only one of its transitions has a

transfer fault.

Definition 3: Additional (missing) transition fault:  An implementation  has  an

additional (missing) transition, if for a pair of present state and input, one more (one less)

transition (with respect to the specification) is defined.

An implementation has multiple faults if and only if some of its transitions have one or

several faults defined above.

For our diagnostic approach presented in the following section, we assume the following

fault model: the implementation under test (IUT) may have output faults

and/or transfer faults in its transitions.

This fault model covers single (output or transfer) faults and multiple (output and/or

transfer) faults which might occur in the transitions of the machine. In addition, certain

cases of missing transition faults may also be explained by a combination of transfer and

output faults as explained in the following. A missing transition leads to an incompletely
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specified implementations. Different implementation assumptions may apply in this case,

such as the following:

(a) Blocking: The input is blocked in the input queue, as defined for Estelle [Budk 87].

This case can not be modeled in general by a faulty transition.

(b) The input is dropped, as defined for SDL [Beli 89]. This case can be modeled by a

multiple fault, where the faulty transition has the empty output and leads back to the same

state.

(c) Some error indication: In this case, the fault is detected by the error indication. This

case can be modeled by a multiple fault, where the faulty output has the error output and

leads back to the same state.

2.2 Test selection methods for FSMs

Many test selection methods have been developed for FSMs  [Gone 70, Chow 78, Nait 81,

Sabn 88, Mill 90b, Sato 89, Sidh 89b]. The most important ones are the following:

T-method: The T-method [Nait 81] generates a test suite consisting of a single test

sequence known as a "transition tour". For a given FSM, a transition tour is an input

sequence which takes the FSM from its initial state, traverses every transition at least once,

and returns to its initial state. It has the power of detecting all output faults (in the absence of

transfer faults), but there is no guarantee of detecting any transfer fault.

DS-method: In the DS-method [Gone 70], a distinguishing sequence (DS) is used

for state identification. An input sequence is said to be a distinguishing sequence for a FSM,

if the output sequence produced by the FSM is different for each different starting state. The

DS-method uses a two-phase approach. The tests of the first phase check that each state

defined by the specification also exists in the implementation. The tests of the second phase

check all transitions defined by the specification and not tested during the first phase, for

correct output and transfer in the implementation. Under the assumption that the number of

states of the implementation is not larger than that of the specification, the DS-method

guarantees the detection of all output and transfer faults. Its only disadvantage is that it is

not always applicable because not all FSMs possess a DS.
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UIO-method: The UIO-method [Sabn 88] uses a set of unique input/output (UIO)

sequences for state identification. An UIO sequence for a state s is an I/O behavior not

exhibited by any other state in the FSM. The UIO-method generates test sequences which

check whether each transition has the correct Next-state and the correct output. To check for

the correctness of the Next-state reached by the machine after the execution of the transition

under consideration, the corresponding UIO sequence is applied. In general test sequences

generated by the UIO-method are shorter than those produced by the DS-method.

Vuong claimed that the UIO-method may leave certain transfer faults undetected [Vuon 89].

He also proposed a modified version, called UIOv-method, which contains a procedure for

verifying the uniqueness of the UIO sequences, thus detecting faults which were otherwise

undetectable due to non-unique UIO sequences. The test sequences generated by the UIOv-

method guarantee the detection of all output and transfer faults.

W-method: The W-method [Chow 78] involves the selection of two sets of input

sequences: The W-set  and the P-set. The latter represents a transition cover set of the

specification. The former represents a characterization set of the specification. The set

W consists of input sequences that can distinguish between the behaviors of every pair of

states in the specification.

The W-method provides a set of test sequences consisting of the concatenation of the sets P

and W (i.e. P.W). Each test sequence starts with the initial state, after the application of the

reset operation. In this case, to identify a reached state Ik to which a transition tk transfers,

all the sequences contained in the W-set are applied to the implementation, separately. In

general, test suites generated by the W-method are longer than those produced by other test

selection methods.

Provided that the number of states in the implementation remains within a certain bound, the

W-method has the full power of detecting all output and transfer faults.

Wp-method: The Wp-method [Fuji 91] is a modified version of the W-method. The only

difference between the two methods is that instead of using the complete set W to check

each reached state Si, only a subset of this set is used in its second phase. This subset Wi is

called an identification set for state Si. If the reached state is the intended one, the result

obtained from the application of Wi will confirm its correctness. On the other hand, if the

implementation reaches a faulty state, the result obtained from the application of Wi will be



9

different and hence, indicate the detection of a fault. In such a case, the analysis of the

obtained result will in general not have the full power of identifying the reached state. While

the Wp-method has the same fault detection power as the W-method, its main advantage is

the length reduction of the generated test suite.

2.3 Diagnostic power of test selection methods

Following the discussion of Section 2.2 on the different test selection methods  and their

fault detection  power,  the question  comes to mind:  What is the  diagnostic and fault

isolation power of these methods?

While a test suite generated by the W-method provides enough information to diagnose a

single fault, it cannot localize the faults in an IUT, in general, as shown in Figure 2. This

figure shows two faulty implementations, which generate the same output sequences in

response to the test sequence, TS, generated by the W method (see Example 1). This failure

can be explained by the fact that W is no longer a characterization set for I2 and state s2 is

no longer reachable in I1. We see that test sequences generated by existing test selection

methods do not, in general, guarantee the localization of multiple faults. It can be expected

that less exhaustive test selection methods, such as the UIO, Wp or transition tour methods

have even less power of fault location. Therefore, in order to localize implementation faults,

additional diagnostic tests are needed. It is important to note that a test sequence with a

better fault coverage (i.e. a W test suite rather than a T test suite) might need less additional

diagnostic tests for the process of discrimination between candidate diagnoses.

Example 1: Given the specification of Figure 1,  a possible characterization set for the W-

method is:

W = {a, b}.

Using the above W and applying the W-method, we generate the following test suite:

TS    =    {aa, ab, bca, bcb, baa, bbb, cab, cca, ccb, cba, bab, bba, caa, cbb}

outputs of S =    {ef,  ef,  fff,  fff,   ffe,  ffe,  efe,  eef, eef,  eee,  fff,  fff,  eff,  eef}

The application of TS, to the faulty implementations I1 and I2 shown in Figures 2a and 2b,

respectively, generates in both cases the same sequences of outputs listed below:
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outputs of I1 and I2 = {ef,  ef,  fff,  fff,   ffe,  fff,  eef,  eee, eef,  eff,  fff,  fff,  eef,  eff}

S1

S2

S0

t2: b/f

t1: a/e

t4: a/f

t6: c/f
t5: b/ft9: c/e

t3: c/e

t8: b/e

t7: a/f

S1

S2

S0

t2: b/f

t1: a/e

t4: a/f

t6: c/f

t5: b/f
t9: c/e

t3: c/e

t8: b/f

t7: a/f

a) An implementation I1 b) An implementation I2

Figure 2: Two faulty implementations non-distinguishable by W

3. The diagnostic approach

3.1 Preliminary definitions

We assume in the following that a specification S is given, as well as an implementation M

with output and/or transfer faults, as described in Section 2.1.

A test suite, TS, is defined as  a set of test cases, where each test case is a sequence of

input symbols. We write TS = { tc1; ...; tcp}, where each tci is a test case. If a test case tci

consists of mi inputs ii,1,ii,2,...,ii,mi, the corresponding sequence of expected outputs is

written as oi  = oi,1,oi,2,...,oi,mi , where output oi,j is expected after input ii,j. ti,j
represents the j-th transition executed in test case tci according to the specification S.

Any difference,  between an expected output o as defined by the specification, and the

corresponding observed output ô, represents a symptom.

A minimal set of faults, which has the capability of explaining all observed outputs, is

called a diagnosis. The corresponding set of transitions, where these faults occur, is

called a diagnostic candidate.

Definition: A fault f of an implementation M in a transition t of S is said to be directly

reached by a test case tc, if the execution of tc, as defined by the specification S, leads
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to the transition t, there is no transfer fault in M on the path that leads from the initial state

to t, and the subsequent path of the test case contains a symptom.

Example: If the machine in Figure 3 represents the specification, then all faults (f1, f2,

f3, f4, f5, f6, f7) in the implementation of Figure 4,  are directly reachable. On the

contrary, the fault f3 in the implementation of Figure 5, is not directly reachable.

S1 S4

S3S2

t1:a/e

t12:c/f

t6:c/et9:c/f

t4:a/f

t2:b/f

t11:b/e

t8:b/g

t10:a/g

t7:a/e

t3:c/g

t5:b/e

Figure 3: The specification S

S1 S4

S3S2

t1:a/e

t12:c/f

(f4) t6:c/e

(f7) t9:c/f

t4:a/f

(f1) t2:b/f

t11:b/e (f6) t8:b/g

t10:a/g

(f5) t7:a/f

(f2) t3:c/g

(f3) t5:b/e

Figure 4: An implementation I1
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S1 S4

S3S2

(f1) t1:a/e t12:c/f

t6:c/e
t9:c/f

(f3) t4:a/f

(f2) t2:b/f
t11:b/e

t8:b/g

t10:a/g

t7:a/e

t3:c/g

t5:b/e

Figure 5: An implementation I2

3.2 The diagnostic algorithm

The diagnostic algorithm described in the following is based on a certain assumption about

the faults contained in the implementation under test (IUT) and the test suite TS used to

detect the presence of faults. As explained below, the algorithm ensures correct and

complete diagnosis if the following assumption is satisfied.

Assumption: For each fault in the implementation, there is a test case in the applied test

suite which reaches that fault directly.

Note: This implies that there is at least one symptom, generated by the application of the

test suite, which corresponds to each fault of the implementation. In the case of an output

fault, the symptom occurs immediately (therefore the corresponding transition has been

called "symptom transition" [Ghed 92b]). In the case of a transfer fault, the symptom

occurs after the transition containing the fault, and may be due to the wrong transfer of the

fault in question or to other faults which may be present in the implementation. In any case,

we say that the fault has been "detected".
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3.2.1 Step 1: (Generation of expected and observed outputs)

Application of the test suite, TS, to the specification and the IUT. For each test case tci, the

expected output sequence is written as oi  = oi,1,oi,2,...,oi,mi , where output oi,j is expected

after input ii,j, while the observed output sequence is written as: ôi  = ôi,1,ôi,2,...,ôi,mi.

3.2.2 Step 2: (Generation of symptoms)

Compare each observed output sequence with its corresponding expected output sequence

and identify all observed symptoms for all test cases.

3.2.3 Step 3: (Construction of the set of tentative candidate sets)

We construct in the following a set of tentative candidate sets, called STC. This set

has the following properties: Each tentative candidate set TC is a set of fault candidates, and

a fault candidate is a transition name annotated by o or *, which corresponds to a output

fault candidate or a transfer fault candidate, respectively. For example, the candidate t* is a

transfer fault candidate, and represents the assumption that the transition t has a transfer

fault. A tentative candidate {t1*, t2*, t1o} represents the assumption that the transition t1
has an output and a transfer fault, that t2 has a transfer fault, and that all other transitions

have (definitely) no faults.

Definition: The actual set of faulty transitions of the implementation is the set of

transitions of the implementation that contain faults, annotated by o and/or *, as in the case

of the tentative candidate sets.

The following construction of STC ensures that the constucted STC will contain the actual

set of faulty transitions. For each given test case tci, we construct a set of fault hypothesis

SFHi as follows. Each fault hypothesis is a pair <FC, CC>, where FC is a set of fault

candidates and CC is a set of correct candidates, that is, fault candidates that are assumed

not to be present.

(a) If tci has no symptom, SFHi contains a single element of the form { <{},{ti,1o} >},

which indicates that the first transition, ti,1, executed by tci, does not have an output fault.
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(b) If there are m symptoms in tci, we consider the different symptoms in order and include

in SFHi fault hypotheses which correspond to the assumption that the symptom considered

corresponds to a fault that is directly reached by the test case tci. The following situations

may occur for the j-th symptom. Because of the Assumption, the j-th symptom is only

considered under the hypothesis that all earlier symptoms j' < j correspond to output faults.

We have the following two hypotheses:

(1) The j-th symptom corresponds to an output fault (ti,kj
o), and there is no transfer fault on

the execution path (ti,k(j-1),ti,k(j-1)+1,...,ti,kj-1) that leads to this symptom transition. In this

case, the next symptom will also be considered (if it exists) since it corresponds to a

directly reached fault. If there is no next symptom, then the fault hypothesis <X, Y> is
added to SFHi, where X = {ti,k1

o, ti,k2
o , ..., ti,kj

o}, Y = {ti,1o, ti,1*, ti,2o, ti,2*,
...,ti,kj*} - X, and ti,kj is the kj-th transition where the j-th symptom has been observed.

(2) The j-th symptom corresponds to a transfer fault which is located in one of the
transitions (ti,k(j-1),ti,k(j-1)+1,...,ti,kj-1)  from  the  symptom  transition (output fault in

ti,k(j-1)
o) of the previous symptom (or from the initial state, respectively) to the symptom in

question in the transition ti,kj. In this case, the next symptom will not be considered, since

it corresponds to a fault which is not directly reached by this test case, although it may be

directly reached through another test case. For each transition ti,n , n = k(j-1), k(j-1)+1,

..., kj-1, in the transition sub-sequence starting at ti,k(j-1) and ending at the transition ti,kj-1,

the fault hypotheses <X, Y> will be added to SFHi, where X = {ti,k1
o, ti,k2

o , ..., ti,k(j-

1)
o, ti,n*}, Y = {ti,1o, ti,1*, ti,2o, ti,2*, ...,ti,kj

o} - X.

The following example shows the construction of a set of fault hypotheses for a test case

tci:

If for the test case tci, we have the following:

Spec. Transitions:    tri  =  ti,1,  ti,2,  ti,3,  ti,4, ti,5,   ti,6,  ti,7
Spec. outputs:          oi  = oi,1, oi,2, oi,3, oi,4,oi,5,  oi,6, oi,7

Observed Outputs      oi  = oi,1, oi,2, ôi,3, ôi,4,ôi,5,  ôi,6, oi,7

       where oi,j ≠ ôi,j   j = 3, 5, 6

then the following set of fault hypotheses is constructed:
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SFHi = {<{ti,1*}, {}>,     /* first symptom caused by a transfer fault in ti,1 */

 < {ti,2*}, {{ti,1o, ti,1*}>,   /* first symptom caused by a transfer fault in ti,2; ti,1 not faulty */

      <{ti,3o,  ti,3*}, {ti,1o, ti,1*, ti,2o, ti,2*}>, /* first symptom caused by an output fault in ti,3;

     second symptom caused by a transfer fault in ti,3, no faults in ti,1 and ti,2 */

 <{ti,3o,  ti,4*}, {ti,1o, ti,1*, ti,2o, ti,2*, ti,3*}>,

      < {ti,3o, ti,5o,  ti,5*}, {ti,1o, ti,1*, ti,2o, ti,2*, ti,3*, ti,4o, ti,4*}>,

  < {ti,3o, ti,5o,  ti,6o}, {ti,1o, ti,1*, ti,2o, ti,2*, ti,3*, ti,4o, ti,4*, ti,5*>}

The set STC of tentative candidate sets is formed by all possible unions of fault alternatives

taken from all test cases. More formally,

STC = {TC  | TC = 
  

FCi

i=1,2,...Ls
U         3       TC 9  (

  
CCi

i=1,2,...Ls
U  ) = ∅,

    where <FCi, CCi> ∈ SFHi and Ls is the number of test cases}.

It is possible to reduce the set STC, by removing some of its elements, if some additional

knowledge is available, such as :

1) The maximum number of transitions which might be faulty in the IUT, or

2) The maximum number  of faults (transfer and output) which might be present in

                 the IUT,

3) The maximum number of output faults and the maximum number of transfer

                  faults which might be present in the IUT.

As an example, if we know that the maximum number of faults in the IUT does not exceed

N faults, then all elements in STC, having a cardinality which is strictly greater than N, can

be removed. As the special case of single fault diagnostics, we may keep in STC only

elements with cardinality one. In this case the algorithm described here reduces to the one

described in [Ghed 92b].

3.2.4 Step 4: (Generation of PossFaults  sets, diagnostic candidates and

diagnoses)

A diagnostic candidate is a tentative candidate and an assignment of faults (specific

output and/or transfer to a specific state) to all its transitions which succeed to explain all

observations. Note that a given tentative candidate may lead to several diagnostic
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candidates. All diagnostic candidates can be obtained by checking for each possible

assignment of faults of all diagnostic candidates whether it explains all observations. The

checking process can be done through the application of all test cases in TS, to the mutant

machine, which corresponds to the diagnostic candidate in question. If the outputs obtained

from the mutant are identical to the outputs observed from the IUT the diagnostic candidate

is confirmed. To compute all possible faults for each tentative candidate, and hence, all

corresponding diagnostic candidates, we proceed as follows:

Suppose that the tentative candidate, "Candi", in STC is under consideration and has n1

transitions suspected of having transfer faults, and n2 transitions suspected of having output

faults. We change in the specification machine the ending states of all Candi's n2 transitions

suspected of having transfer faults. We also assign the remaining transitions in Candi the

corresponding symptom outputs. All remaining specification transitions are left unchanged.

We apply the test cases in TS on the resulting machine (mutant). If the resulting outputs are

equal to those of the IUT, then the specific set of faults, introduced in the elements of

Candi, will be saved as an element in a set called: "PossFaults[Candi]".

The above process is repeated until all combinations of faults (the different assignments of

ending states to Candi's n2  elements suspected of having transfer faults, in addition to the

new outputs assigned to the remaining elements of Candi) for Candi’s elements are

considered. If all combinations of faults for Candi’s elements fail to produce the same

outputs as those obtained from the IUT, then Candi's PossFaults set will be kept empty and

the tentative candidate Candi will not be considered as a diagnostic candidate.

We remove all tentative candidates with empty PossFaults sets from the tentative candidate

set, STC. Each element in the corresponding PossFaults sets represents a diagnostic

candidate, simply called "diagnosis". It consists of the minimal set of faults (output

and/or transfer), which might be present in the given implementation and which have the

ability of explaining all observed outputs.

4. An application example

Suppose that the following initial test suite, obtained through the Wp method, is given for

the FSM specification shown in Figure 1:

TS = {raa; rab; rbca; rbcb; rbaa; rbbb; rcab; rcca; rccb; rcba}
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Step 1: The application of this TS to the specification of Figure 1 and the implementation

of Figure 2a, yields the expected and observed output sequences shown in Table 1. A reset

transition tr is assumed to be available for both the specification and the implementation. We

use the symbol "r" to denote the input for such a transition and the symbol "-" to denote its

output.

tc. #���������������������������              tc1�����        tc2�
  

Inputs�����������������������           r, a, a          r a, b��    ���

Specified transitions           tr,t1,t4    ����tr,t1,t5    ���tr,t2,t6,t4    tr, t2,t6,t5  tr

Expected outputs����            -,  e,  f   ��  �-,  e,  f     ���-, �f, �f, �f    -, f, f
   
Observed outputs��             -,  e,  f   �  ��-,  e,  f      ���-, �f, �f, �f    -, f, f, f 

tc. #���������������������������              tc6�����        tc7�
  

Inputs�����������������������           r, b, b, b      r, c, a, b�����

Specified transitions           tr,t2,t5,t8����tr,t3,t7,t8���tr,t3,t9,t4    tr, t3,t9,t5  tr

Expected outputs����              -,  f,  f, e���-,  e,  f,  e���-, �e, �e, �f   -, e, e
   
Observed outputs��              �-,  f,  f, f���-,  e,  e,  f���-, �e, �e, �e   -, e, e, f

Table 1: Test cases and their outputs

Step 2: Differences between observed and expected outputs are encountered in test cases

tc6, tc7, tc8, and tc10. Therefore, the following symptoms are generated:

 Symp6,1 = (o6,3 ≠ ô6,3),

 Symp7,1 = (o7,2 ≠ ô7,2), Symp7,2 = (o7,3 ≠ ô7,3),

 Symp8,1 = (o8,3 ≠ ô8,3),

 Symp10,1 = (o10,2 ≠ ô10,2), Symp10,2 = (o10,3 ≠ ô10,3).

Step 3: Corresponding to the above symptoms, we construct the following sets of fault

hypothesis: 
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SFH1 =  { <{},{t1o} >}

SFH2 =  { <{},{t1o} >}

SFH3 =  { <{},{t2o} >}

SFH4 =  { <{},{t2o} >}

SFH5 =  { <{},{t2o} >}

SFH6 =  { <{t2*},{} > , <{t5*}, {t2*, t2o}>, <{t8o}, {t2*, t2o, t5*, t5o}>}

SFH7 =  { <{t3*},{} > , <{t7o, t7*}, {t3*, t3o}>, <{t7o, t8o}, {t3*, t3o,  t7*}>}

SFH8 =  { <{t3*},{} > , <{t9*}, {t3*, t3o}>, <{t4o}, {t3*, t3o, t9*, t9o}>}

SFH9 =  { <{},{t3o} >}

SFH10 = { <{t3*},{} > , <{t8o, t8*}, {t3*, t3o}>, <{t8o, t1o}, {t3*, t3o,  t8*}>}

Using the above sets of fault hypothesis, we construct the following set of tentative

candidate sets:

STC =  {{t2*, t3*}, {t2*,t7o, t7*, t9*,t8o, t8*}, {t2*,t7o, t7*, t4o,t8o, t8*}, {t2*,t7o,

t9*,t8o, t8*}, {t2*,t7o, t4o,t8o, t8*}, {t3*, t5*}, {t5*,t7o, t7*, t9*,t8o, t8*}, {t5*,t7o, t7*,

t4o,t8o, t8*}, {t5*,t7o, t9*,t8o, t8*}, {t5*,t7o, t4o,t8o, t8*}, {t3*, t8o}, {t7o, t7*, t9*,t8o,

t8*}, {t7o, t7*, t4o,t8o, t8*}, {t7o, t8o, t8*, t9*}, {t7o, t4o,t8o, t8*}}

Step 4: For  each element in STC, all possible assignments of faults, having the ability of

explaining all observed outputs,  lead to the following possibilities:

PossFaults[{t2*, t3*}] = {}

PossFaults[{t2*,t7o, t7*, t9*,t8o, t8*}] = {}

PossFaults[{t2*,t7o, t7*, t4o,t8o, t8*}] = {}

PossFaults[{t2*,t7o, t9*,t8o, t8*}] = {}

PossFaults[{t2*,t7o, t4o,t8o, t8*}] = {}

PossFaults[{t3*, t5*}] = {{t3->s0, t5->s0},

      {t3->s0, t5->s1}}

PossFaults[{t5*,t7o, t7*, t9*,t8o, t8*}] = {{t5->s0, t7-e->, t7->s0, t8-f->, t8->s1, t9->s0}

       {t5->s0, t7-e->, t8-f->, t7->s0, t8->s1, t9->s2}

       {t5->s0, t7-e->, t8-f->, t7->s1, t8->s1, t9->s0}

       {t5->s0, t7-e->, t8-f->, t7->s1, t8->s1, t9->s2}

       {t5->s1, t7-e->, t8-f->, t7->s0, t8->s1, t9->s0}

       {t5->s1, t7-e->, t8-f->, t7->s0, t8->s1, t9->s2}
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       {t5->s1, t7-e->, t8-f->, t7->s1, t8->s1, t9->s0}

       {t5->s1, t7-e->, t8-f->, t7->s1, t8->s1, t9->s2}}

PossFaults[{t5*,t7o, t7*, t4o,t8o, t8*}] = {}

PossFaults[{t5*,t7o, t9*,t8o, t8*}] = {{t5->s0, t7-e->, t8-f->, t8->s1, t9->s0}

{t5->s0, t7-e->, t8-f->, t8->s1, t9->s2}

{t5->s1, t7-e->, t8-f->, t8->s1, t9->s0}

 {t5->s1, t7-e->, t8-f->, t8->s1, t9->s2}}

PossFaults[{t5*,t7o, t4o,t8o, t8*}] = {}

PossFaults[{t3*, t8o}] = {{t3-->s0,  t8-f->}}

PossFaults[{t7o, t7*, t9*,t8o, t8*}] = {{t7-e->, t7->s0, t8-f->, t8->s1, t9->s0}

{t7-e->, t7->s0, t8-f->, t8->s1, t9->s2}

{t7-e->, t7->s1, t8-f->, t8->s1, t9->s0}

{t7-e->, t7->s1, t8-f->, t8->s1, t9->s2}}

PossFaults[{t7o, t7*, t4o,t8o, t8*}] = {}

PossFaults[{t7o, t8o, t8*, t9*}] = {{t7-e->, t8-f->, t8->s1, t9->s0},

       {t7-e->, t8-f->, t8->s1, t9->s2}}

PossFaults[{t7o, t4o,t8o, t8*}] = {}

Note: ti-->sj means that ti might have transferred to sj, while tk-x-> means that tk might

have the output fault of x.

For example, the last possibility {t7-e->, t8-f->, t8->s1, t9->s2} corresponds to the

following diagnosis: The IUT has t7 with an output fault of e, t8 with an output fault of f

and a transfer fault to s1, and t9 with a transfer fault to s2.

5. Additional tests for reducing the number of diagnoses

Recall that the main purpose of testing and diagnostics is the localization of implementation

faults and their correction. Therefore, if the diagnostic process ends up with multiple

diagnoses, additional tests are needed to help reducing the number of diagnoses, if

possible, to a single diagnosis. In other words, additional tests should be selected and

applied to the implementation until a set of faults in one of the diagnoses is confirmed and

consequently, all remaining diagnoses could be removed.

We present in the following two approaches to the selection of additional tests for reducing

the number of diagnoses for a given implementation. The first approach attacks the
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uncertainty by checking a particular transition at a time. The second approach compares the

different diagnoses against one another. If the number of diagnoses is large, the first

approach seems more efficient; however, it is not applicable in all situations.

5.1. Additional tests for diagnosing transitions

This approach consists of selecting a candidate transition which occurs in at least one of the

diagnoses, and then selecting additional diagnostic tests for determining which fault the

transition contains, if any. This will eliminate all diagnoses that are not consistent with this

new information. Before presenting the approach for the selection of additional tests, we list

few useful heuristics which could guide the selection of the first transition to be considered:

a) Select diagnostic tests for transitions in smaller diagnoses before those in larger ones,

since once the set of faults in the diagnosis are confirmed, there is no need to continue

testing.

b) Select diagnostic tests for transitions suspected of having output faults before those

suspected of having transfer faults, since the confirmation of output faults requires less

tests.

c) Select diagnostic tests for transitions less frequent in diagnoses before those more

frequent, since if a transition is confirmed to be faulty only those diagnoses containing it

can be kept and all remaining ones can be removed.

The approach

Suppose that a transition, Tk , was selected with the help of the above heuristics. If Tk is

suspected of having an output fault, all we need to do is to find a path (sequence of
transitions) P which does not contain any diagnostic candidate other than Tk. Hence, the

execution of the additional test case, which corresponds to P, will tell us whether Tk is

faulty or not. If Tk is suspected of having a transfer fault, several additional test cases

might be needed to know exactly to which state Tk  transfers. These test cases should have

the ability of distinguishing between the different states contained in the corresponding
ending state set "PossFaultsk" and possibly the correct ending state of the transition.

Therefore, a "limited characterization set" Wk has to be computed for the set of

states including  PossFaultsk plus the correct state. It is formed by sequences of inputs



21

such that, if applied to the machine in one of these states, the produced outputs will be

different from the outputs obtained if the same input sequences was applied to any other

state of that set. Each additional test case is a concatenation of an input sequence, called

transfer sequence, required to take the machine from its initial state to the starting state of
Tk, the input for Tk and a sequence of inputs from the Wk.

In order to avoid any ambiguities, the transfer sequence and the limited characterization set

should be chosen in such a manner that they do not involve any diagnostic candidate. If it

is not possible to choose them in this manner, the algorithm of the following sub-section

may be used instead of the one described here. Figure 6 illustrates the progressive

construction of the additional test cases needed to confirm whether a diagnostic candidate

has a transfer fault or not.

Figure 6 : Construction of additional diagnostic tests

Notes:
1) s  's, ss  's, es  's and es    's are states in the machine.
2) ct  's are candidate transitions
3) each P  is a transfer sequence from the initial state to the starting state of ct
4) The input sequence in each path in the tree represents a possible additional 
diagnostic test for a specific candidate transition and a specific ending state.
5) Solid lines transitions indicate the predicted behavior of the diagnostic candidates 
(no fault case).
6) Each subtree starting with P   represents additional tests for transition tc
7) The set of sequences { w  . . . w    } distinguishes between the states es    . . . es
in the PossFaults  for candidate transition ct
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The construction of additional tests is progressive because if the faults corresponding to

one diagnosis are located, no further tests need be made. If some of the generated tests are
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already included in the initially given test suite, this will be taken into consideration for the

analysis of the obtained outputs, but they need not be applied again to the IUT. If the

application of these additional tests generates the expected outputs, the transition is

declared correct and is removed from the list of diagnostic candidates. When a faulty

transition is found,  the observed outputs identify the wrong output or transfer of the

transition.

5.2 Tests for distinguishing between diagnoses

Another approach to distinguish between different diagnoses can be based on a test method

described by Gill [Gill 62]. This method determines a test sequence which allows the

distinction between any two given finite state machines. In our context, each diagnosis

corresponds to a particular (faulty) implementation determined by the specification and the

faults predicted by the diagnosis. Gill's test method can be used to distinguish between any

pair of diagnoses (mutants) by a single test sequence derived by his method.

Given a set of n diagnoses for a given implementation, Gill's method may be applied to

distinguish between any two selected diagnoses, say Di and Dj. The application of the

derived test sequence to the implementation will lead to one of the following situations:

(1) The observed output is equal to the one expected for Di.

(2) The observed output is equal to the one expected for Dj.

(3) The observed output is different from both of the outputs expected for Di and Dj.

In cases (1) or (2), we know that Dj or Di, respectively, is a wrong diagnosis. In case (3),

we know that both, Di and Dj are wrong diagnosis. We have therefore reduced the number

of possible diagnoses and may continue until only one diagnosis remains.

Gill's algorithm for the selection of a test sequence to distinguish between two given

implementations can be described as follows:
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Given two machines M1 and M2, generate a pruned tree breath first (nodes are labelled by

pairs of states from M1 and M2, respectively)

Create the root node n0 of a tree T, n0 = [s01, s02], where s01 and s02 are the initial

                states of M1 and M2, respectively.

For each non-closed node, nk = [si1, sj2], in the current level of the tree do

              For each input symbol i do

                If (O1(si1, i) = O2(sj2, i) ) then

                     Create the new node, nl = [nextState1(si1, i), nextstate2(sj2, i)], in 

     the next level of the tree

  Create a new branch labeled i/(O1(si1, i)) between nodes nk and nl

                               If (nl = nm), where  nm is an existing node in the tree then

                                         Close nl by marking it with an x (it will not be considered 

   for further expansion).

                    Else

Form a test case sequence, tc, by the input part in the labels of the 

    path, which starts in the root node and ends in node nk

Concatenate the input i to the end of the test case tc.

    Stop.

The number of different nodes in the constructed tree is bounded by O(n2), where n is the

number of states in the specification machine. Since each node in the constructed tree is

considered at most once (due to node closing) by all possible inputs, the number of leafs in

such a tree is bounded by  O(I.n2), where I is the number of input symbols accepted by

the specification machine. Hence, the overall complexity of the selection of the additional

tests  to distinguish between the N diagnoses, is bounded by O(N.I.n2). Knowing that

the number of diagnoses is bounded by O((LcS).nF), where Lc is the number of inputs

in the longest test case, S  is the estimated maximum number of test cases with symptoms,

and F  is the maximum number of transfer faults, the overall complexity is

O(I.LcS.nF+2).

If Step 4 of the diagnostic approach produces N diagnoses, at most (N-1) additional

diagnostic tests will be needed, in order to reduce the set of diagnoses to a single diagnosis.

Since the initial states of the mutant machines are known, Corollary 4.1 in [Gill 62]
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guarantees that the length of each of the additional tests will be at most (2n -1), where n is

the number of states in these machines.

Example: Suppose that, we are given the specification S of Figure 1, the implementation I

of Figure 6, and the following two diagnoses among the several diagnoses produced in

Step 4 of the diagnostic approach:

Diag1: The IUT might have t3 transferred to s0 and t5 transferred to s1

Diag2: The IUT might have t7 generated e as output, t8 transferred to s1 and 

generated f as output, and t9 transferred to s0

We generate the tree of Figure 8 for the machines M1 and M2 (shown in Figure 7)

corresponding to Diag1 and Diag2, respectively. The corresponding constructed additional

test is rcb. The application of this test case to the implementation I of Figure 2a generates

the output -ef. Such a result eliminates  the diagnose Diag2 from the list.

S1

S2

S0

t2: b/f

t1: a/e

t4: a/f

t6: c/f
t5: b/ft9: c/e

t3: c/e

t8: b/e

t7: a/f

S1

S2

S0

t2: b/f

t1: a/e
t4: a/f

t6: c/f

t5: b/f

t9: c/e

t3: c/e t8: b/e

t7: a/e

M1 M2

Figure 7: Machines  corresponding to diagnoses Diag1 and Diag2

6. Complexity approximation of the diagnostic approach

The proposed diagnostic approach has four sequential steps. Therefore, the overall

complexity of this approach is equal to the complexity of the most complex step. A close

look at the different steps leads to the conclusion that Step 4 has the highest complexity

since during the process of diagnoses generation all n states in the machine have to be

checked as to whether it might be the ending state for a transition suspected of having a

transfer fault. Since in this step, we make use of tentative candidates determined during

Step 3, we also need to study the complexity of Step 3.
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1S 1S,1S 1S,

a/e c/e
b/f

b/eb/f

M1 , M2

S0S0,[ ]

[ [] ] ,S0 2S[ ]

1S 1S,[

1S S2, ][

a/f
b/f

c/f

X X

]

Stop

S0S0,[ ]
X

1S S2, ][

a/e

Figure 8: The test-tree for M1 and M2

To estimate the upper bound of the number of tentative candidate sets q we have to study

the algorithm in Step 3, which uses Ls test cases. The maximum number of elements in a

set of fault hypothesis for a given test case is Lc. Only the test cases with symptoms

contribute to the construction of the set of tentative candidate sets. If the number of test

cases with symptoms is S, then the maximum number of tentative candidate sets q, which

is the number of all combination of elements in the S sets of fault hypothesis, is bounded

by LcS.

In Step 4, each element in the set  of tentative candidates contains several transitions  some

of which are suspected of having transfer faults and the rest is suspected of having output

faults. If F is the upper bound of the number of transfer faults (this number can never be

larger than Ls, the number of test cases, because of the Assumption) in any of the LcS

tentative candidates determined during Step 3, the complexity of Step 4, in terms of

possible number of diagnoses, will be O((LcS).nF). If Fand S are reasonably small, say

3 or 4, the complexity of the algorithm will remain manageable. Even when F and S

become large, the complexity of our algorithm remains comparable with the complexity of

other existing methods; for example, Ko's method generates up to nI.n, diagnoses, where

n and I are the number of states and the number of inputs, respectively.
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7. Conclusion

In this paper, we generalized the diagnostic approach proposed in [Ghed 92b] to the case

where system implementations, represented by FSMs, are allowed to have multiple faults.

Such an approach is mainly motivated by the fact that even strong test selection methods

(e.g., the W-method) do not have in general full fault localization power. If existing faults

are detected, this algorithm permits the generation of a minimal set of diagnoses, each of

which is formed by a set of transitions (with specific types of faults) suspected of being

faulty. The occurrence in an implementation, of all the faults of a given diagnosis, allows

the explanation of all outputs observed during the test of the implementation. We also

proposed two approaches for selecting additional test cases, which allow the reduction of

the number of possible diagnoses.

The proposed diagnostic approach provides the guarantee of correct diagnosis only in those

situations where each fault of the implementation is directly reachable by a test case in the

given test suite. An interesting research project would be the extension of our work to the

diagnostics of machines not respecting this assumption. Another challenging question,

which needs to be solved, is to extend the diagnostic approach to systems modelled by

extended FSMs.
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