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RÉSUMÉ.  Récemment, les spécifications orientées objets des systèmes distribués ont suscité beaucoup
d'interêt. L'approche orientée objet offre beaucoup de flexibilité pour la construction des systèmes. Cependant,
un des problèmes culminant est d'effectuer des modifications de façon dynamique durant le processus de
développement d’exploitation et de maintenance.
   Nous nous intéressons dans cet article, aux techniques de description formelle qui permettent le développement
et la modification dynamique des spécifications exécutables. Nous introduisons un modèle à deux niveaux pour
l'évolution des spécifications orientées objets. Le premier niveau concerne la modification dynamique des types
(classes), alors que le second niveau est consacré à la modification dynamique des modules. Pour chacun des
niveaux, nous définissons un ensemble de contraintes, structurelles et comportementales, qui assurent la
consistence de la spécification après sa modification. Pour effectuer les modifications de façon dynamique, nous
avons développé un langage réflexif de spécification orientée objet. Ce langage permet de définir les opérations
de modifications à un meta-niveau en utilisant des meta-objets. Dans ce langage, les types et les modules sont
des objets.

MOTS-CLES.  Spécification orientée objet, évolution de logiciel, modification des types, compatibilité des
modules, réflection, modification dynamique.

ABSTRACT.  Recently, object-oriented specifications of distributed systems has gained more attention. The
object-oriented approach is known by its flexibility for system construction. However, one of the major
challenges is to provide facilities for the dynamic modifications of such specifications during the development
and maintenance process. Yet, current work has not addressed the dynamic modifications of specifications of
distributed systems.
   In this paper, we are concerned with formal description techniques that allow for the development and the
dynamic modification of executable specifications. A two-level model for the evolution of large object-oriented
specifications is introduced. The first level deals with the dynamic modification of types (classes), while the
second level deals with the modification of modules. We have defined  a set of structural and behavioral
constraints to ensure the specification consistency after its modification at both levels. To allow for dynamic
modification of types and modules, we have developed a reflective object-oriented specification language which
uses meta-objects to support the modification operations. In this language, types and modules are objects.

KEY-WORDS: Object-oriented specifications, software evolution, type modification, modules compatibility,
reflection, dynamic modifications.
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1. Introduction and motivations

    In any software system, especially distributed systems, that exists for long period of time, it

becomes necessary to periodically change various components of the system. While it has long

been understood that support for software evolution and maintenance is an important part of

programming methodology, the proper techniques and tools for performing that evolution and

maintenance easily and correctly are often not available. There are a number of reasons that

might necessitate evolutionary change. One possible reason is the users’ requirements change

over time. Another is to improve efficiency. Finally, systems need to evolve as the application

environment changes. All these cases are examples of change and evolution problems faced

with large software systems.

    In large distributed software systems, it may not be possible to stop the entire system to

allow modification to part of it. A major challenge is to provide facilities for the dynamic

modifications of an evolving system without interrupting the processing of those parts of the

system which are not directly affected. In general, evolutionary changes are difficult to

accommodate because they cannot be predicted at the time the system is designed. Systems

should be sufficiently flexible to permit arbitrary, incremental changes. In addition, when

systems are large, their manipulation, understanding, and maintenance become difficult. The

importance of decomposing large systems into modules is widely recognized within the

software engineering community [Brin 89], [Webe 86], [Parn 72]. Therefore, the availability

of modules is of great practical use for the production of structured systems that are easier to

manipulate, understand, analyze and maintain. System modularity is essential, and permits the

use of composition to form a system from reusable and independent modules. The use of well

defined module interfaces allows for the validation of module interconnections.

    We believe that software system modifications are most of the time incremental. Therefore,

they consist of adding new functionalities or extending some existing ones. In this paper, we

consider that an executable specification of a system is an implementation model of such

system. Therefore, we examine a method of supporting dynamic extensions of distributed

systems specifications in the context of the object-oriented specification language Mondel

[Boch 90].  Mondel has important concepts as a specification language to be applied in the area

of distributed systems. The motivations behind Mondel are: (a) writing system descriptions at

the specification and design level, (b) supporting concurrency as required for distributed

systems,  (c) supporting persistent objects and transaction facilities, and (d) supporting the
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object concept. Presently, Mondel has been used for the specification of problems related to

network management [Boch 91] and OSI directory system [Boch 92]. The object-oriented

approach is known by its flexibility for system construction. This is partly due to the

inheritance property. However, there has been little suggestions to provide facilities for the

dynamic modification of object-oriented systems.

    In this paper, a two-level generic model for managing large specifications evolution is

introduced. This model consists of the in-the-small and the in-the-large levels. The in-the-small

level deals with the dynamic modification of classes within an object-oriented specification.

The in-the-large level deals with the dynamic modification of modules within large object-

oriented specifications. The distinction between the two levels is made because modules are

different from classes used by the object-oriented approach. The construction of modules is

different from the composition of objects. Modules may be constructed in many different ways

and do not always follow the inheritance relationship which exists between classes and

subclasses. In addition, classes are primarily aimed at supporting “programming in the small”,

while modules are used for “programming in the large”.

    In our model, modifications are explicitly specified by an agent external to the specification.

The specification may be modified by the application of modification transactions. In addition

to the means for specifying and performing changes, it is also necessary to provide facilities for

controlling change in order to preserve specification consistency. Modifications may be

performed on the structure as well as on the behavior of the specification. Therefore, we

consider both structural and behavioral consistencies requirements. Structural consistency deals

with preserving the consistency of the structure of the specification after its modification. This

concerns mainly the compiling constraints (i.e., checking dynamically the static semantics rules

of the language in use).  Behavioral consistency deals with preserving the consistency of the

behavior of the specification after its modification. This concerns mainly some properties of

distributed systems such as blocking. The consistency requirements are addressed at the in-the-

small and at the in-the-large levels.

    In the context of Mondel, large specifications are constructed from units (called modules in

other languages) which are composed of types (called classes in most object-oriented

languages). In order to allow for the construction of dynamically modifiable specifications, we

need to have access, and to be able to modify units and types during execution-time. Therefore,

we developed RMondel, a new version of Mondel, where types are objects, and meta-objects
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are used to provide facilities for the dynamic modifications of types [Erra 92c]. In a similar

way, meta-objects are also used to allow for the dynamic modifications of units.

    The paper is structured as follows: Section 2 introduces the two-level generic model for large

specifications evolution. The first level describes the evolution of object-oriented specifications

by considering classes as the basic units of specification construction. The needed requirements

to maintain the consistency at this level are also addressed. Then, we describe the second level

that presents the module concept as the unit of large specifications composition, and the needed

requirements to maintain consistency at the module boundaries. In Section 3, after an overview

of the Mondel  specification language and RMondel, we show how the two levels of

modification, introduced by the generic model, are supported in the RMondel language.

Thereafter, we introduce the constraints which preserve the structural and the behavioral

consistencies for both levels, and we discuss how modifications may be performed

dynamically in these two levels. Conclusions are drawn in Section 4.

2. A generic model at two levels

    In this section we discuss a generic model for the evolution of object-oriented specifications.

This model consists of two levels of specification evolution which are the class level and the

module level, called in-the-small and in-the-large, respectively. Figure 1 gives a global view of

these two levels. The in-the-large level deals with the specification modules and their

interconnections while the in-the-small  level deals with classes and their relationships.

c1

c2

c3 c4

c5In the small level

In the large level
Modul1

Modul2 Modul3

Inheritance
relation

use relation

Figure 1. Two-level view
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2.1. The in-the-small level

   For object-oriented specifications to fulfill their promise as vehicles for fast prototyping, ease

of maintenance, and ease of modification, a well defined and consistent methodology for class

modification must be developed. A class is a set of objects called its instances. A class

definition specifies the features (a feature can be an instance variable or a method) and the

allowable behavior of its instances. At the in-the-small level a specification consists of a class

lattice. A node in the lattice represents a class and an edge between a pair of nodes represents

the inheritance relationship. Inheritance allows a new class to be derived from an existing class.

The new class, called a subclass, inherits all the features of the existing class. One may also

specify additional features for the subclass. In the following we enumerate the allowed

modifications at the in-the-small  level, and we discuss the consistency requirements at this

level.

2.1.1. Class modifications

    Class modifications are typically achieved by adding or removing instance variables,

reimplementing methods, rearranging inheritance links, etc. Such modifications indicate that

the existing classes are not entirely satisfactory. In the area of object oriented databases, these

modifications have been extensively studied in the recent literature [Bane 87], [Penn 87], [Skar

87], and [Delc 91]. The available methods determine the consequences of class changes on

other classes and on the existing instances, so that possible violations of the integrity

constraints can be avoided. It is important to note that the existing approaches deal mainly with

sequential systems and do not address behavior modifications. An acute problem in designing a

methodology  for class modification is how to bring existing objects in line with a modified

class. This problem becomes more acute in the case of distributed systems such as our

environment where object behaviors impose additional constraints.

    Class updates may be classified into three categories [Bane 87]: (1) updates to the contents

of a node in the class lattice, (2) updates to an edge in the class lattice, and (3) updates to a

node in the class lattice. In the following we enumerate the most important update operations

on classes.

(1) Modifications to the contents of a node in the class lattice.

    (i) Modifications to an instance variable of a class.
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     - Add an instance variable V to a class C.

    - Drop an existing instance variable V from a class C.

    - Change the class C of an instance variable V.

    (ii) Modifications to an operation of a class.

   - Add the operation O to the class C.

   - Drop the existing operation O from the class C.

     -Change the signature S of the operation O.

(2) Modifications to an edge of the lattice.

(i) Make a class S a superclass of class C.

(ii) Delete a parent S (superclass) of the class C.

(3) Modifications to a node of the lattice structure.

(i) Add a new class C.

(ii) Delete an existing class C.

2.1.2. Kinds of consistency

    At the in-the-small level three kinds of consistencies must be addressed w.r.t. class

evolution: the structural consistency, the semantical consistency, and the instance-of

relationship consistency.

The structural consistency : It ensures that the structure of the specification (class lattice) is

maintained according to the inheritance relation. This kind of consistency is widely

investigated in object-oriented databases area where some invariants are used to define the

consistency requirements  of the class lattice [Bane 87], [Penn 87] (e.g., the distinct name

invariant, ensures that all instance variable and method names of a class whether explicitly

defined or inherited, are distinct).

  The semantical consistency: While most existing approaches [Bane 87], [Penn 87], and [Delc

91] have focused on preserving structural consistency, we believe that the semantical

consistency which deals with object behaviors must be addressed. The methodology of

Skarra and Zdonik [Skar 87] goes a long way toward preserving behavior in sequential

systems. Their methodology implements class modification by the use of versions.

However, we are exploring solutions to class modification that do not require versioning.

Our definition of the semantical consistency, that we call behavior extension, will be given in

Section 3.3.1.
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   The instance-of relationship consistency: While classes evolve, their existing instances must

be changed in order to remain in line with their classes. This kind of consistency  can be

defined according to the allowed class modifications which, in a distributed environment,

deals with both structural and behavioral aspects of objects. For instance the addition of an

instance variable within a class involves the restructuration of the existing objects of this

class.

2.2. The in-the-large level

    Before addressing the problem of specification modifications and the consistency

requirements at the in-the-large level, we need to understand what are the components of a

specification and their relationships. A large specification consists of a lattice of interconnected

modules. A node in the lattice represents a module, and an edge between a pair of nodes means

that the upper level module uses the module of the level below. The hierarchic organization of

modular specifications does not predetermine the way they are developed i.e., top-down,

bottom-up, or in an iterative manner.

2.2.1. Constituent parts of modules

    A module consist of three parts: an export interface, an import interface, and a module body.

The export interface is the visible part which must be known for using this module in

connection with other modules. It allows different aspects of information hiding such as:

- It prevents a user from looking into the internal structure of a module.

- It protects some of the resources that exist internally from their use from outside the module.

The import interface contains references to one or more other modules. Modules may not

import each other cyclically.

The module body is intended to define the construction of the export interface using the import

interface, and may contain auxiliary hidden resources such as classes and objects, which do not

belong to any other part of the module.

2.2.2. Module interconnections
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    For large specifications, the development process consists of a sequence of alternating

incremental completions of incompletely developed modules and refinements through

successive decompositions and compositions for the top-down or bottom-up continuation of

the development process. For this, a set of fundamental operations on module specifications

has been provided [Blum 87]. These include horizontal structuring operations such as

composition and union, and vertical development steps, such as refinement.

.The composition of two modules M1 and M2 connects the import interface of M2 with the

export interface of M1. The composite module (M1 comp M2) will have the same import

interface as M1, the same export interface as M2, while the body of (M1 comp M2) is given

by the union of the body parts in M1 and M2 (see Figure 2. (a)).

.The union M1 U M2 of two modules M1 and M2 is the disjoint union of M1 and M2. The

constituent parts of the resulting module (M1 U M2) are the union of the corresponding parts

of the original modules (see Figure 2. (b)).

.The extension extE(M) of a module M is the result of extending some or all constituent  parts

of the module M by additional items, where E denotes the collection of all extended items.

The extension construction is used to augment a given module by adding items in the export,

import or body part of a module (see Figure 2.(c)). This construction is important to build up

modules step by step.

2.2.3. Module modifications

    Since each module forms a small and independent piece of the whole specification, then

modules can be developed, implemented, and modified individually. As specifications evolve,

designers can be led to modify modules so that they suit their needs. This is typically achieved

by modifying module constituent parts (e.g., adding or removing a resource to/from an import

or export interface). We classify module modifications into the following categories:

(1) modification of the export interface: Adding and/or removing a named object or a class

to/from the export interface of the module.

(2) modification of the import interface: Adding and/or removing a named object or a class

to/from the import interface of the module.

(3) modification of the body part of a module: As a consequence of the import and/or the export

interface modifications, the body of the module may be changed. Sometimes, one needs to

modify the body of a module without modifying the interface (e.g., performance

enhancement).
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(4) Addition and/or deletion of a module.

    A particular aspect of module modification in object-oriented systems is to specialize objects

or classes by means of inheritance. This aspect will be discussed further in relation with our

environment in Section 3.4.

Exp2

Bod2

Exp1

Imp2

Imp1
Bod1M1

M2

(a) composition, M1 comp M2

Exp2

Bod2

Exp1

Imp2

Imp1
Bod1M1

M2

Bod1 U Bod2

Imp1 U Imp2

Exp1 U Exp2

(b) Union , M1 U M2 (c) Extension, M' is an extension of M.
      Exp' = extension of Exp
		   Imp'  = extension of Imp
     Bod'  = extension of Bod

Exp

Bod
Imp

M

Exp'

Bod'

Imp'

M'

Figure 2. Operations on modules

2.2.4. Kinds of consistency in the in-the-large level

    According to the allowed modifications of modules, there are two kinds of consistencies to

be considered. First, the structural consistency deals mainly with type checking at the module

boundaries. For example, the extension of a module should ensure type compatibility, at the

import and export interfaces, between the original module and its extended version. Second,
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the semantical consistency deals with the behavior aspect of modules. That is, an extended

module should provide the behavior required by the whole specification. The extended module

should provide at least what the original module provides.

    These two kinds of consistency must be addressed at the module level and at the whole

specification level. At the module level we should ensure that the allowed modifications, of the

import and the export interfaces of a module, will not violate the static semantics rules, e.g., an

object or a class name must not be imported and exported by the same module. Moreover, the

modifications of the body part of a module must be done without resulting in run-time errors,

blocking, or any uncontrollable situation. At the whole specification level, one needs to check

the impact of the module  modification on the other modules. This should preserve the

specification in a consistent state after the modification of one or more modules. According to

our goal which is the dynamic modification of a running specification, it should not be

necessary to stop the execution of the specification to modify parts of it. One should define a

mechanism to determine the part of the specification which are affected by the change. The rest

of the specification should be able to continue its execution normally. In Section 3.4, we

address these problems in the context of RMondel.

3. Specification Evolution in RMondel

    According to the generic model presented in Section 2, we will show how the features of

such a model are supported by RMondel. RMondel is an object-oriented specification

language, suitable for the specification and modeling of distributed systems. It provides

facilities for building dynamically modifiable specifications. After an overview of the original

language Mondel, we introduce the main characteristics of RMondel language. Then we

describe evolution at the in-the-small level and at the in-the-large level as supported in this

language.
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3.1. Mondel overview

    We have developed Mondel an object-oriented specification language [Boch 90] with certain

particular features, such as multiple inheritance, type checking, rendezvous communication

between objects, the possibility of concurrent activities performed by a single object, object

persistence and the concept of transaction. An object is an instance of a type (i.e., called class

in most object-oriented languages) that specifies the properties that are satisfied by all  its

instances. Each Mondel object has an identity, a certain number of named attributes which may

be fixed references to other objects, and operations which are externally visible.

    A Mondel specification corresponds to a type lattice. In such a lattice, types are linked by

mean of the inheritance relation. The execution of a specification consists of a set of objects that

run in parallel. Each object has its individual behavior which provides certain details as

constraints on the order of the execution of operations by the object, and determines properties

of the possible returned results of these operations. Among the actions related to the execution

of an operation, the object may also invoke operations on other objects. Basically,

communication between objects is synchronous, based on the rendezvous mechanism. Mondel

has a formal semantics which associates a meaning to the valid language sentences. The

behavior of objects is formally specified by a translation to labeled transition systems. The

Mondel formal semantics was the basis for the verification of Mondel specifications [Barb 91],

and has been used for the construction of an interpreter [Will 90].

3.1.1. Example of a Mondel specification

    In the following we show an example using the Mondel language. Let us consider a vending

machine which receives a coin and delivers candies to its user. The specification of the vending

machine system consists of one module composed of two types: the type Machine and the type

User, as shown in Figure 3. The root of the type lattice in Mondel is the most general type

object (called top in other languages). Therefore, the types Machine and  User inherit from

object as shown in lines 1 and 21 of Figure 3. The relation between the type User and the type

Machine  is represented by the attribute m, of type Machine (see line 22 of Figure 3), defined

within the User type. The operations, InsertCoin and PushAndGetCandy, are specified within

the operation clause as shown in lines 2 to 4 of Figure 3. Note that these operations are without
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parameters and result. The user is initially in a Thinking state, and when he decides to buy a

candy he inserts a coin. After the coin has been accepted, the user enters the GetCandy state.

Then the user pushes the machine's button to get a candy. The machine is initially in the Ready

state, ready to accept a coin. Once a coin is inserted, the machine accepts the coin and then

enters the DeliverCandy state. After the user has pushed the button of the machine, the latter

delivers a candy and becomes Ready to accept another coin. The behavior of the vending

machine system is defined as the composition of two interacting objects (i.e., Machine and

User objects) (see lines 35 to 38 of Figure 3.) . The types are specified using a state oriented

style [Viss 88] where internal states are modeled as Mondel procedures.

0 unit VMsystem =

1 type Machine = object with

2 operation

3    InsertCoin;
4     PushAndGetCandy;
5 behavior

6     Ready
7 where

8     procedure Ready =
9          accept InsertCoin do

10                return;
11           end;
12 			     DeliverCandy;
13   endproc Ready

14  procedure  DeliverCandy = 

15    accept PushAndGetCandy do

16       return;
17    end;
18    Ready;
19 endproc DeliverCandy

20 endtype Machine

21 type User = object with

22			m: Machine;
23 behavior

24     Thinking
25 where

26   procedure Thinking =
27          m! InsertCoin;
28			       GetCandy;
29   endproc Thinking

30   procedure  GetCandy =
31     m! PushAndGetCandy;
32     Thinking;
33    endproc GetCandy

34 endtype User

{the vending machine system behavior}
35	behavior

36      define Amachine = new (Machine) in
37             eval  new(User (Amachine));
38      end;

39 endunit VMsystem     

Figure 3. Mondel specification of the vending machine system

3.2. RMondel facilities

     In the formalism used to define the semantics of Mondel, types are static and used as

templates for instance creation. Only the instances of a type are considered as objects. To

support the construction of dynamically modifiable specifications we need to have access to

types during execution-time. For this purpose, reflection is a promising choice.



13

    Recently, in object-oriented languages, reflection has gained wider attention as confirmed by

the first and second workshops on reflection and meta-level architectures in object-oriented

programming [Work 91] held in conjunction with OOPSLA'90 and 91. A language is called

reflective if it uses the same structures to represent data and programs.  In conventional

systems, computation is performed only on data that represent entities of an application

domain. In contrast, a reflective system contains another type of data that represent the

structural and computational aspects of itself. The original model of reflection was proposed in

[Maes 87] following Smith's earlier work [Smit 82], where a meta-object is associated with

each object in the system to represent information about the implementation and the

interpretation of the object.

    To define a reflective architecture, one has to define the nature of meta-objects and their

structure and behavior. In addition, one has to show how the handling of objects

communications and operations lookup are described at the meta-level [Ferb 89]. In RMondel,

types are used for structural description (i.e., for the definition of the structure of objects and

of applicable operations), and interpreters are used for the behavioral description (i.e., how the

rendezvous communication is interpreted and the operations are applied) of their associated

objects called referents. One can say that types are structural meta-objects, while interpreters

are behavioral meta-objects.

    More details on the definition of RMondel and of other kernel objects, are given in [Erra

92d]. Let us now introduce the fundamental features of reflection as supported in RMondel.

We distinguish two main features: Structural reflection (SR) and behavioral reflection (BR).

The structural reflection is supported in a similar manner as in ObjVlisp  [Coin 87]. The most

important aspect of SR  in RMondel, is that each object is an instance of a type, and types are

objects. Another aspect of SR is that the RMondel statements and expressions are objects. The

structure of RMondel is supported by instantiation and inheritance graphs. The instantiation

graph represents the instance-of relationship, and the inheritance graph represents the subtype-

of relationship. TYPE and OBJECT are the respective roots of these two graphs [Erra 90].

Figure 4 gives a subset of the definitions of the structures used to create new types and to

detect the inconsistencies in the type lattice induced by modifications.

    The behavioral reflection (BR) deals with object behaviors. Therefore, an interpreter object

is associated to each object. An interpreter object deals with the computational aspect of its

associated object called referent. Interpreter objects are defined as instances of the type
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INTERPRETER. Also an interpreter object may have its own interpreter object; thus the

number of interpreter objects is virtually infinite.  Specialized interpreters can be defined for

monitoring the behavior of objects, or for dynamically modifying their behaviors. A possible

specification of the type INTERPRETER is given in [Erra 92d].

    Types and interpreters are instances of the kernel types Modifiable-Type, a subtype of

TYPE, and INTERPRETER, respectively. This approach shows many advantages:

- types are objects, instances of the Modifiable-Type, which is defined at a meta-level.

- operations for type modifications may be defined at the meta-level (i.e., within Modifiable-

Type as shown in Figure 4 ).

- an object behavior can be monitored and/or modified by its interpreter.

- new communication strategies can be defined by creating subtypes of INTERPRETER.

   type TYPE = OBJECT with
TypeName : string;
BehaviorDef : var[Statement];
DirectSuperTypes  : set [TYPE];
Attributes : set [AttributeDef];
Operations : set [Operation];
Procedures : set[Procedure];
. . .

   operation
. . .
{the operation New creates an object according to RMondel object structure}
New  : OBJECT;
{the operation LookUp checks if the operation “OpName” is defined for an object’s type or for
 one of its supertypes; then returns the associated statements}
LookUp (OpName : string) : Statement;

 Behavior
{ּthe semantics definitions of the above operations}

endtype TYPE

{ the type Modifiable-Type is defined as a subtype of TYPE as follows }

type Modifiable-Type = TYPE with
o p e r a t i o n

AddStat (S: Statement);
AddAttr (A:Attribute);
AddOper(O:Operation);
AddProc(P:Procedure);
. . .

b e h a v i o r
{ The semantics definitions of the modification operations above . }

endtype Modifiable-Type

 Figure 4. TYPE and Modifiable-Type specifications with the modification operators
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    The reflection facilities of RMondel together with the principles introduced by the generic

model in Section 2, form the basis of the dynamic evolution of large specifications written in

RMondel.

3.3. In-the-small  modifications in RMondel

    We are mainly interested in the modifications of a specification S which lead to a consistent

specification S' using an incremental approach. The incremental approach consists of

dynamically extending the specification S to get a consistent specification S' such that the later

conforms to the former. The type modifications in RMondel may be seen as a specialization of

the in-the-small level introduced in the generic model of Section 2.

    In RMondel specifications, which mainly describe distributed applications, the dynamic

behavior of objects is of extreme importance. Therefore, our interpretation of type

modifications takes into account the dynamic behavior of objects. According to the generic

model, the in-the-small level in RMondel is concerned about type modifications and the

consistency requirements which ensure both structural and behavioral consistencies. The

structural consistency deals with the compiling constraints (e.g., type checking), while

behavioral consistency deals with the dynamic behavior of objects (e.g., possibility of

blocking).

3.3.1. Definition of consistency constraints

    Before addressing the in-the-small modifications of RMondel specifications, an

understanding of types and their relationships is required.

Definition 1:  A type t consists of an interface It and a behavior Bt,  t = <It ,  Bt >.

It = < At, Opt > where  At is the set of attributes and Opt is the set of operations. Bt is the

behavior specification of the objects of type t.  o

    Types' interfaces are used as a basis for the traditional inheritance scheme of object-oriented

languages. Thus, a type has at least all attributes and operations defined for the more general

type, where the types of the operations result must be conforming and the types of the input
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parameters must be inversely conforming (see for instance [Blac 87]). Based on this aspect of

inheritance, we give a recursive definition of the structural consistency relation as follows.

Definition 2: The type t’= < < At', Opt' > ,  Bt’ > is structurally consistent  with the type

 t = < < At, Opt >, Bt >  if:

    1.  At' ⊇ At .  t' has at least all the attributes of t.

    2.  For each operation o in Opt there is a corresponding operation o’ in Opt' such that:

- o and o’ have the same name

- o and o’ have the same number of parameters.

- The result type of o’, if any, is structurally consistent with the result type of o.

- The type of the i-th parameter of o is structurally consistent with the type

   of the i-th parameter of o’. o

    The following definition introduces our notion of behavior extension. According to Mondel

formal semantics, the behavior of objects is formally specified by a translation to labeled

transition systems [Erra 92a]. Both RMondel and Lotos have their formal semantics defined

based on labeled transition systems. Therefore, If we ignore operations parameters, our

definition of the behavior extension corresponds to the extension  relation defined for Lotos

specifications [Brin 86].

Definition 3: The type t’= <It' ,  Bt' > extends the type t = <It ,  Bt >, if the following

properties are satisfied:

property 1. Bt’  does what is explicitly allowed according to Bt  (but it may do more).

property 2. What Bt’ refuses to do (i.e., blocking),  can be refused according to Bt

 (Bt’ may not refuse more than Bt ).   o

It is important to note that for many authors the concept of inheritance is only concerned with

the names and parameter types of the operations that are offered by the specified type, e.g. in

Emerald [Blac 87]  and Eiffel [Meye 88]. However, there are other important aspects to

inheritance related to the dynamic behavior of objects [Amer 90], including constraints on the

results of operations, the ordering of operation execution, and the possibilities of blocking

[Boch 89]. Therefore, our definition of inheritance takes into account the dynamic behavior of

objects as follows:
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Definition 4:  A type t’ = <It’ ,  Bt’ > conforms to a type t = <It ,  Bt >   if :

t’  is  strcturally consistent  with t.

       and t’  extends   t.              o

If type t' conforms to type t then we say that  t' is a subtype of t and t is a supertype of t'.

3.3.2. Structure modifications

    In the following we give a classification of type interfaces modifications that are supported in

RMondel, and we provide the description of their semantics. As we are concerned by the

incremental approach for specification evolution, we will consider those type modifications that

lead to new types which are structurally consistent with the old ones.

    Add an attribute A to a type T: This update allows the user to append an attribute definition

to a given type definition. We suppose that the added attribute A causes no name conflicts in

the type T or any of its subtypes.

   Change the type T of an attribute A by the type T1: This update is allowed only if T1 inherits

from T.

   Add the operation O to the type T: This update allows the user to append the operation O to

the type T. We suppose that the added operation O causes no operations name conflicts in the

type T or any of its subtypes.

   Change the signature S of the operation O:

(i) Change the type T of the parameter p in S:  This update allows the change of the type T of

the parameter p in S, to become T’. This update is allowed only if T inherits from T’.

(ii) Change the type T of the result, if any, of the operation O: This update allows the change of

the type T of the result to become of type T’. This update is allowed only if T’ inherits from T.

   Make a type S a supertype of type T: This modification is allowed only if it does not

introduce a cycle in the inheritance lattice. The attributes and operations provided by S, are

inherited by T and by the subtypes of T.

   Add a new type T: If no supertypes of T are specified, then the type OBJECT (i.e. the root of

the type lattice) is the default supertype of T. If supertypes are specified, then all attributes and

operations from the supertypes are inherited by T. The name of the added type T must not be

used by an already defined type. The specified supertypes of T must have been previously

defined.
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    In RMondel, types are objects (e.g., instances of Modifiable-Type which is defined at a

meta-level). The Modifiable-Type provides the primitive operations for type modifications

defined above (see Figure 4.).

3.3.3. Behavior modifications

    For the modification of the behavior, we consider those modifications which extend the

existing behavior. This is similar to the notion of incremental specifications proposed for a

subset of basic Lotos language [Ichi 90]. The behavior of objects is to some degree dependent

upon preserving structural consistency. For instance, when an operation is called on an object,

the associated code to be executed is determined by the object’s type or supertypes.

Additionally, once the operation code is located, its implementation is dependent on the called

object’s structure. This structure has to be present in all objects that are instances of the type

where the operation is defined. So, changes to the type interface may lead, in most cases, to

changes in the behavior, accordingly.

    The possibilities of behavior modifications are based on the language constructs which can

be involved in such modifications. The behavior obtained after modification, should be an

extension of the old behavior. A modified behavior consists of the composition of an old

behavior with a new one. This composition is based on the sequential, the choice, or the

parallel composition operators of RMondel. Further details on the behavior modifications are

given in [Erra 92b]. An algorithm for behaviors composition is given in [Khen 92].

3.3.4. Invariant definitions

    In this section we define a set of invariants which are deduced from the definitions of

Section 3.3.1. Such invariants must be satisfied by each type and its related types in the type

lattice. The invariants are checked when an object or a type is created and after type updates. In

RMondel, the invariants are checked dynamically.  Therefore, they are defined at the meta-level

within the invariant clause of the Modifiable-Type as shown in Figure 5.
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Type Lattice Invariant: The type lattice is seen as a directed acyclic graph, where the root is a

system-defined type called OBJECT , and each node (i.e., a type) is reachable from the root.

Each type in the lattice has a unique name.

Distinct Name Invariant: All attribute and operation names of a type, whether explicitly defined

or inherited, are distinct.

Object Representation Invariant: The object’s structure must be as specified by its type.

Full Inheritance Invariant: A type inherits all attributes and operations from each of its

supertypes. Name conflicts are not addressed here, but may be avoided using the name conflict

detection algorithms in a similar way as in [Delc 91].

Type Compatibility Invariant: If  a type T defines an attribute with the same name as an attribute

it would otherwise inherit from a supertype S, the type of T's attribute must be the same or a

subtype of S's attribute.

{ the class of modifiable types is defined as a subclass of TYPE as follows }
type Modifiable-Type = TYPE with

AddStat (S: Statement);
AddAttr (A:Attribute);
AddOper(O:Operation);
AddProc(P:Procedure);
. . .

   invariant
{ We define here, the invariants described above, which correspond to the static semantics rules
   of the language.  A formal definition, in Mondel, of these invariants is given in [Erra 92a] }

  behavior
{ The semantics definitions of the modification operations above . }

endtype Modifiable-Type

Figure 5. Modifiable-Type specification with the invariants

3.3.5. Consistency checking of a specification

    In this section we discuss the consistency checking of a specification after type

modifications. On the one hand, if we replace a type t by t' in some specification S, where t' is

structurally consistent with t, does the resulting specification S' remain structurally consistent

w.r.t. S ? Recall that types are objects in RMondel. Our strategy for type modification allows

the modification of types without changing their identities. This implies that the whole

specification remains consistent from the structural point of view, i.e., we do not need to
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recompile the whole specification. This may be proved according to two situations, which are

assignment and parameter passing, where type checking is important.

    On the other hand, if we replace a type t by t' in some specification S, where t' extends  t,

does the resulting specification S' extends S ? The answer is in general no, an illustrative

example is given in [Erra 92b]. Therefore, we need to check dynamically that the modification

of the behavior of an object does not introduce new deadlocks in the overall specification.

Among the existing approaches for deadlock detection (e.g., program transformation,

simulation, reachability analysis) we use a dependency graph and the reachability analysis

techniques widely used for the validation (e.g., deadlock detection) of communication

protocols [Zafi 78], [Zhao 86]. A dependency graph is constructed based on the relation of

dependency between types. A type t1 depends on a type t2 if the former uses one or more

operations of the later. If the extension  relation is violated, e.g., a deadlock is detected, then

the system reports the inconsistencies and the type must be revised again.

    In order to ensure the consistency of the whole specification after its modification, we use

the concept of transaction which is well-known for database systems. The user formulates his

requirements within a transaction which consists of one or several type update operations. In

order to allow for dynamic modifications of a given specification without interrupting the

processing of those parts of the specification which are not directly affected by the change, we

define a locking protocol to isolate those parts of the specification which are affected by the

modifications. This protocol also ensures the mutual exclusion of concurrent transactions. The

other parts of the specification continue to behave normally. This protocol is incorporated

within our transaction mechanism. A detailed description of the transaction mechanism and the

locking protocol, as supported in RMondel, is given in [Erra 92d].

3.4. In-the-large modifications in RMondel

    For large specifications, the availability of modules is of great practical use for the

production of structured specifications that are easier to manipulate, understand, analyze and

maintain. Modules can be developed independently, and they can be analyzed or even compiled

separately. Moreover, modules of general purpose can be reused within several specifications.

In order to realize these features, a modular specification language has to fulfill several

requirements. First, to enhance the independent development, analysis, and compilation of
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modules, they should be represented as syntactical components in the language. Second, the

composition of modules to build a complete specification should be simple, e.g., this aspect

can be realized by means of the import/export mechanism.

    In the following, we will show how these features are supported in RMondel using units.

Then we introduce the structural and behavioral consistency requirements which allow for the

construction of valid specifications. Afterwards, we introduce the unit modifications and their

semantics as defined in RMondel.

3.4.1. The unit concept in RMondel

    A unit consists of the following constituent parts: an import interface, an export interface,

types, and a unit body.  There are two forms of the import interface:

(1)  Use  U1, U2, ...., Un

(2)  From  Uj  Use  N1, N2, ..., Nm

Where the Ui  are unit identifiers  and the Ni are named objects or type names defined within

the Ui. The first form makes the names of the units Ui (i=1,...,n) visible. This implies that the

exported objects and the types of Ui are visible. The second form makes only the names N1,

N2, ..., Nm visible from the unit Uj. This assumes that the names Ni are available in Uj.

The export interface has the form:

Export  N1, N2, ..., Nm

where the Ni are named objects or type names. The export interface is intended to be the visible

part of the module. The types of a unit constitute a  type lattice where types are linked by means

of the inheritance relation. The body part of a unit must include the definition of the exported

objects . It can includes also a collection of types that can be used only within the unit.

    There are certain semantical requirements that have to be fulfilled before several units may be

considered to form a correct specification.

.  A specification consists of a number of units. One unit may depend on objects and types

given in other units. A given specification is executed by executing sequentially the

behaviors in the different units. The units should be executed in such an order that if a unit A

uses a unit B then the unit B is executed before the unit A.
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. The types and those objects that are exported can be used by other units if the later explicitly

indicate that they use the former.

. Units may not import each other cyclically.

. The exported objects and types should be uniquely identified to avoid name conflicts.

3.4.2. Notion of configuration

    A large specification is a directed acyclic graph where the leaf nodes are units, and the

internal nodes are subspecifications. Each subspecification is realized by a configuration of its

successor nodes which may, in turn, be other subspecifications or modules. A configuration

may be a combination of two or more units by means of the composition and/or the union

operations introduced in Section 2.2.2. The characteristics of meaningful configurations are

embodied in the concept of well-formed configurations introduced by Tichy [Tich 82].

However, Tichy’s approach is purely syntactic. He does not consider the dynamic behavior

aspect of modules. Our approach considers the dynamic behavior aspect and the inheritance

relation as supported by the RMondel language.

   The unit construct is defined in accordance with a set of constraints in order to have a

structurally correct configuration. A structurally correct configuration must ensure that the same

object and/or type cannot be imported and exported within such configuration. It is also

important to ensure that the types and those objects that are exported by a unit are not exported

by other units within the same configuration.

   Let a specification configuration C = < C1,C2, ..., Cn > where each Ci may be a unit or

another configuration. According to our definition of the unit we introduce the following

notations:

EO(U) is the set of objects exported by the unit U,

ET(U)  is the set of types exported by the unit U,

IO(U)  is the set of objects imported by the unit U, and

IT(U)  is the set of types imported by the unit U.
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Definition 5: A specification configuration is well-formed if it satisfies the following

conditions:

(1) Every type and object that is exported by C is exported by some Ci.

( EO(C)   "   ET(C) )   ⁄   "i ( EO(Ci)   "   ET(Ci) ) for i=1,.., n.

(2) C imports those types and objects imported by all the Ci except for the types and objects

    already exported by some other component in the configuration.

    IO(C)  " IT(C) ⊇ ( "i  ( IO(Ci) " IT(Ci) )  ) - ( "i ( EO(Ci) " ET(Ci) )  for i=1,.., n.

(3) C does not export and import the same types and objects

 IO(C)    ∩    EO(C) = ∅    and    IT(C)  ∩ ET(C) ) = ∅

(4) No type or object is exported by more than one component.

EO(Ci)  ∩  EO(Cj) = ∅   and      ET(Ci)  ∩  ET(Cj) = ∅   for all Ci, Cj of C, i ≠ j.

(5) The conditions (1) to (4) are satisfied by all Ci  (for i=1,.., n).   o

3.4.3. Consistency constraints for modifications

    As modifications can be carried out on components of a configuration, it is important to

ensure a continued validity of the specification as it evolves. In the following, we define the

constraints that must hold to maintain the structural and behavioral consistencies of a

specification after its modification.

Definition 6 [Tich 82]:  A unit U2 is UpWardCompatible to the unit U1 if and only if: U2

exports at least what U1 exports, and imports not more than what U1 does. That means that

U2 can be used instead of U1, but not vice versa:

( EO(U2)  "  ET(U2) ) ¤  ( EO(U1)   "   ET(U1) )

  and  ( IO(U2)   "   IT(U2) )   ⁄   ( IO(U1)   "   IT(U1) )                 o

   This definition is based only on imported and exported objects and types. However our

interpretation of the upward compatibility relation is not satisfied by this definition. We need to

take into account the conforms-to relation defined for types in Section 3.3.1, and consider the

dynamic behavior of the units. Therefore, we define the UpWardConform relation as follows:
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Definition 7: A unit U2 is UpWardConform to U1 if the following conditions are satisfied:

(1) U2 is UpWardCompatible with U1.

(2) The type of an object exported by U2 conforms-to the type of an object exported by U1.

 ¢ O1  [ EO(U1) ,     ¡  O2 [  EO(U2)  such that  ( type (O2) conforms-to  type (O1) )

(3) The type of an object imported in U1 conforms-to the type of an object imported in U2.¢ O2 [  IO(U2),     ¡ O1  [  IO(U1)  such that: ( type (O1) conforms-to  type (O2) )

(4) Every type exported by U2 conforms-to a type exported by U1¢ t1  [ ET(U1) ,    ¡ t2  [  ET(U2)  such that : ( t2 conforms-to  t1 )

(5) Every type imported in U1 conforms-to a type imported by U2¢ t2  [  IT( U2),  ¡  t1  [  IT(U1)    such that : ( t1 conforms-to  t2 )

(6) The behavior of U2 (specified by its body part) conforms-to the behavior of U1.       o

3.4.4. Semantics of the unit modifications

    We classify the unit modifications that we support in RMondel and define their semantics.

We distinguish the following categories: (1) modification of the export interface: Adding a

named object or a type to the export interface of the unit. (2) modification of the import

interface: Removing a named object or a type from the import interface of the unit. (3)

modification of the types: these are the same as those allowed by the in-the-small level, as has

been shown in Section 3.3. (4) modification of the body part of a unit: similar to the behavior

modifications of types.

(1) Add a named object or a type to the export interface of a unit: this update should not cause a

name conflict, and the added object or type must be defined within the unit. This modification

has no impact on the existing modules.

(2) Delete a named object or a type from the import interface of a unit: This is the case where a

unit can produce the same service with less resources. This implies that the unit behavior

and/or the types, where the removed object or type is used, must be changed accordingly.

(3) the modifications of types and of the unit body are performed by using those modification

operations defined for the modification of types.

(4) Add a unit: The added unit must be previously created, and can import the existing units. It

can also, exports named objects or types which should be eventually used by other added

units.
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   The deletion of an exported object or type,  the addition of an object or type to the import

interface of a given unit,  and the deletion of a unit may be useful for changing the

configuration of the specification.

3.4.5. Dynamic modification of a modular specification

    In order to allow the construction of dynamically modifiable large specifications, we need to

have access, and to be able to modify units during the specification execution. Modifications

should be supported dynamically, without interrupting the processing of those parts of the

specification which are not directly affected. In a similar way as our reflection based model

used to support dynamic type modifications, a unit is an object of type UNIT which is defined

at the meta-level. The type UNIT provides some primitive operations for unit modifications as

shown in Figure 6.

   The unit components are defined as variable attributes (UnitName, Import, Export, Types,

and Body) within the UNIT type (see Figure 6.). The constraints defined by Definition 7, are

introduced as invariants which must hold for each unit. The invariants are checked at creation

time and after the unit modifications. The allowed modification primitives, are defined as

operations which can be accepted by the units. The semantics of these primitive operations is

specified in RMondel within the Behavior clause of the UNIT type.

type UNIT = OBJECT with
UnitName : string;
Import : set [UsedUnit];
Export : set [NamedObject];
Types : set [TypeDef];
Body : var [statement];

Invariant
{ the constraints (1) to (6) of Definition 7 above, are specified here as invariants that must
   hold after a unit modifications}

Operation
DelImp(Unit); {drop a unit from the import list}
AddExp(NamedObj); { add the “NamedObj” object to the export interface}

*  Type update: for type modifications see Figure 4.
AddStat(statement); {add a statement to the unit body}

Behavior
   {we specify here the semantics, in terms of RMondel statements, of the above operations}
Endtype Unit

Figure 6. The type UNIT specification.
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4. Conclusions

   We have studied dynamic modifications within an object-oriented language that is

particularly suitable for distributed systems modeling and specification. Dynamic type

modifications is an interesting and challenging research problem. Object-oriented systems in

conjunction with reflection, allow us to approach this problem that conventional systems have

not been able to address. We have presented a generic model with two levels of specification

modification. This model allows for the evolution of large specifications at both the type and

the module levels. We have shown how such a model is supported by the RMondel reflective

language. We have gained more flexibility for the modification of large specifications by

considering that both types (classes) and units (modules) are objects, and by defining the

modification operations at a meta-level. In order to maintain the consistency of a specification

after its modification, we have introduced a set of constraints at both levels. The allowed

modifications proposed in our approach are restricted to those which extend a given

specification. However, performing any kind of modifications remain a difficult problem. It is

interesting to note that a set of modifications may be consistent when performed together,

whereas each single update realized independently may yield an inconsistent specification.

Therefore the use of the transaction mechanism is very important.

Mondel has been implemented on a Sun workstation, and used for writing and

simulating the specifications of the OSI directory system, and the personal communication

services. A prototype of the RMondel interpreter is implemented in Mondel.  Our approach

gives an interesting framework based on a formal approach, for the development of

corresponding CASE tools, especially for specifications prototyping and maintenance. Our

future research focuses on how and under which conditions the modifications to a given

specification may be performed upon an implementation within the same transaction. The

modification must be done in a way to preserve the conformance relation between the

implementation and its specification. We are also considering the development of a version

control mechanism in order to keep track of the evolution history of an evolving specification.
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