
Test Result Analysis and Diagnostics for Finite State Machines

A. Ghedamsi and G. v. Bochmann

Universit.6 de Montreal, DIRO, C.P.6128, Succ. A, Montreal, Canada, H3C 3J7

Abstract

Systematic test sequence generation for communication
protocols in conformance testing has been an active
research area during the last &c&. Methods were developed
to produce optimized test sequences for detecting faults in
an implementation under test (IUT). However, the
application of these methods gives only limited
information about the locations of detected faults.
Therefore, we propose a complementary step which
localizes the faulty transition in a deterministic finite state
machine (FSM) once the fault has been detected. A
diagnostic algorithm will generate, if necessary, additional
diagnostic test cases which depend on the observed
symptom and which permit the location of the detected
fault. The algorithm guarantees the diagnostic of any single
(output or transfer) fault in an FSM. An application
example, explaining the functioning of the algorithm, is
provided in the paper.

1. Introduction

A protocol implementation has to be checked as to
whether it conforms to its protocol specification or not.
This activity is called protocol conformance testing. A lot
of research work has been directed towards such tests [161.
In particular, a protocol specification can be viewed as
consisting of two portions: a control portion and a data
portion, which may be addressed separately in the context
of conformance testing. The testing of the data portion,
which is concerned with checking the parameters of input
and output primitives and local variables, has been
investigated by a number of researchers using some forms
of static data flow analysis [15, 21, 233.

In this paper, we are concerned with the control aspects.
We assume that this aspect is modeled by finite state
machines. Various test selection methods have been
described for this aspect [2, 8, 11, 12, 14, 193. These
methods are intended to determine whether a given protocol
implementation satisfies all properties required by the
protocol specification. The purpose of a test selection
method is to come up with a set of test cases, usually
called "test suite", which has the following (conflicting)
properties:

(a) The test suite should be relatively short, that is, the
number of test cases should be small, and each test case
should be fast and easily executable in relation with the
implementation under test.

(b) The test suite should cover, as much as possible, all
faults which any implementation may contain.

Existing test selection methods differ in the kind of
compromise which is reached between these two conflicting
objectives, and in the amount of formalism which is used
to define them.

The remainder of the paper is organized as follows. In
Section 2, we introduce the diagnostic problem, in general,
and discuss the main steps required by any diagnostic
process. In Section 3, the test selection methods are studied
in respect to their capability of solving diagnostic and fault
localization problems, which have not been addressed by
the above references. Test suites, generated by one of these
methods, are used by our diagnostic algorithm which is
presented and discussed in Section 4. An application
example is introduced in Section 5 . Finally in Section 6,
concluding remarks and future research points are included.

2. The diagnostic problem

In distributed systems and the communication protocol
area, very little work has been done for diagnostic and fault
localization problems [22]. At the same time, diagnostic is
a well documented subject in other areas such as Artificial
Intelligence (AI) [3, 53, complex mechanical systems and
medicine [17]. Therefore, most of the concepts and terms
used in this paper are imported from those domains.

2.1 Methodology for test result analysis and
diagnostics

In general, diagnostics can be classified into two classes.
The first class is called "Experimental diagnostic". It is
mainly used in medicine [17] and similar domains.
Experimental diagnostic is not covered in our paper. Our
main interest is related to the second class of diagnostic
called "Diagnostic based on a model'' [9]. The main idea of
this type of diagnostic is that it is necessary to know how
the system or the machine under test is supposed to work
correctly in order to be able to know why it is not working
correctly. Different reasoning systems based on models
were developed for this approach. The most important ones

244
0-8186-2865-0 /92 $3.00 0 1992 IEEE

are the following: HT (Hardware Troubleshooting) [3],
DART (Diagnosis Assistance Reference Tool) [5], and
GDE (General Diagnostic Engine) [9, 201. A brief survey
on these systems can be found in [7].

Often the specification of a model-based system is
structured in a hierarchical manner. The system is Seen as a
set of components connected to each other in a specific
way. The structure (organization) of a system can be
defmed as a relationship (Le, physical connection, procedure
call, ...) between the different components of the system. A
component is seen as one of many smaller sub-systems
in a larger system. The behavior of the larger system is,
therefore, described in terms of its components behaviors.
Each component can itself described at a more detailed
level, possibly in terms of sub-components, and so on.
Depending on the need, we might have several different
descriptions of the Same component, one in terms of the
composition of sub-components, and another which
describes the behavior of the component in terms of its
interactions with the environment.

In structured model-based diagnostics, we assume the
availability of the real system (i.e, implementation) which
can be observed, and its model (i.e, specification) from
which predictions can be made about its behavior [9, 131.
Both systems and their corresponding models are assumed
to have the same components and the same structure.
Observations of inputs and outputs show how the
system is behaving, while expectations tell us how it is
supposed to behave. The differences between expectations
and observations, which are called "symptoms", hint the
existence of one or several differences between the model
and its system. The process of comparing observations and
expectations is called "test result analysis". In order to
explain the observed symptoms, a diagnostic process
should be initiated. It consists mainly of performing the
following two tasks: the generation of candidates and the
discrimination between candidates [91.

Task 1: Generation of candidates: This process
uses the identified symptoms and the model to deduce some
diagnostic candidates. Each diagnostic candidate is
defined to be the minimal difference, between the model and
its system, capable of explaining all symptoms. It indicates
the failure of one or several components in the system. A
good candidate generator should be complete, non redundant
and optimal. It is complete if it generates all candidates
which explain all identified symptoms. It is non redundant
when it does not generate the same candidate more than
once. Finally, it is optimal if it generates only minimal
candidates and no super-sets of them.

Task 2: Discrimination between candidates:
Once the step of candidate generation terminates, we often
end up with a huge number of diagnostic candidates. To
reduce their number, two main techniques are used. The
fmst one consists of the selection of some additional new
tests called "distinguishing tests" [5]. The second
technique consists of introducing new observation points in
the implementation under investigation and executing the
same tests again.

2.2 Fault models

We recall that in general, the diagnostic process is a very
complicated task, specially for diagnosing complicated
systems. This complexity makes the achievement of the
candidate generation and discrimination tasks harder. In
order to solve this problem, the use of fault models is
necessary (see for instance [l]). Given the hierarchical
system description, corresponding fault models may be
established using the different levels of abstraction. Some
of these fault models give all possible failures of each
component in the system. They help to ease the diagnostic
procedure, specially by reducing the number of the different
cases which have to be considered, and hence, in reducing
the number of diagnoses to be generated. It is important to
note that different fault models may be used during both
tasks of the diagnostic process. In the simplest case and for
high level abstractions, the following fault model, based on
the system decomposition into components and
connections, may apply during the candidate generation
phase. Each component may either be faulty or operating
correctly [9]. On the other hand, and for lower level
abstractions (i.e. gates or transitions levels), different uses
of precise and more concrete fault models, are recorded in
different areas such as the diagnostics of hardware circuits
(i.e, stack at 0/1 fault models) [203. These fault models
may be used during the phase of discrimination
candidates. In the protocol area and more precis
FSMs, another simple fault model, based ontran
output faults of state transitions, can be used for
protocol entities modelled by FSMs [2,7,22].

2.3 A general diagnostic method

In the following method, we only consider the diagnostic
of structured systems which are assumed to be composition
of different components. These components will be tested
for their correctness during the diagnostic process. We
assume that the behavior of these systems is described in
terms of inputs and outputs. We also assume that the
application of a sequence of inputs to tbe system will
imply the involvement of a specific set of co
the system and the generation of a specific
outputs.

The diagnostic method
Given a structured system to be di

the purpose of the following method is to present
steps required by any diagnostic prmss. Th
not include any specific techniques at
and a more specific algorithm for
modelled by deterministic FSMs is dis

Step 1: Generation of expected
We assume that a test suite "TS" is

been obtained by one of the existing tes
The test suite consists of a number of te

245

sequences of input spbols. We write TS = { tcl, ..., E,},
where each tq is a q t case.

....ii,mi,
the corresponding sequence of expected outputs is written as
oi = oi,~oi,2 o i , ~ , where oij is expected after input

If a test case tci consists of mi inputs

iij.

Step 2: Generation of observed outputs
Application of the test suite to the IUT. For each test

case tci, a corresponding observed output sequence is
written as: 6i = 6i,18i,2 6i,mi

Step 3: Generation of symptoms
Compare observed outputs with expected ones and

identify all symptoms. Any difference (Oi,j f 6i,j)
represents a symptom. The faulty output corresponding to
a symptom is called a symptom output.

Step 4: Generation of conflict sets
For each symptom (oi,, # Bi,,), determine its

corresponding conflict set. A conflict set for a given
symptom is defined to be the set of components which are
supposed to be involved in the generation

of the symptom output; therefore, at least one of these
components must be faulty.

Step 5: Generation of diagnostic candidates
Diagnostic candidates are components which are

suspected to be faulty. Therefore, each one of them should
have a non empty intersection with each conflict set. It also
has to be consistent with all observations. A diagnostic
candidate with more than one component corresponds to
multiple faults in the IUT.

Step 6: Additional diagnostic tests
In this step, additional diagnostic tests or different points

of observation might be needed in order to reduce the
number of diagnostic candidates, if possible to a single
diagnosis. In such a case, specific techniques might be
applied in order to achieve such a goal (for more details, see
for instance Section 4).

3. The finite state machine model

A deterministic FSM M can be represented by a
quintuple (S, I, Y, T, 0) where :
S : Set of states of M. It includes an initial state so
I : Set of input symbols
Y : Set of output symbols. It includes the null output (-),
T : Next-state function, S x I --> S,
0 : Output function, S x I --> Y.

A graphic representation of a deterministic FSM, called
"State transition diagram", is given in Figure 1.

3.1 Principles of an FSM fault model

The FSM fault model is based on errors and faults made
on labeled transitions or states of the machine. These
definitions are also essential for the FSM-based test
selection methods discussed in the following sections.

Figure 1: A state transition diagram of an FSM

Definition 1: Output fault: We say that a
transition has an output fault if, for the corresponding state
and received input, the implementation provides an output
different from the one specified by the output function.

An implementation has a single output fault if, one
and only one of its transitions has an output fault.

Definition 2: Transfer fault: We say that a
transition has a transfer fault if, for the corresponding state
and received input, the implementation enters a different
state than specified by the Next-state function.

An implementation has a single transfer fault if,
one and only one of its transitions has a transfer fault.

3.2 Test selection methods for FSMs

Many test selection methods have been developed for
FSMs. The most important ones are the following:

(a) The transition tour method called "T-method" [12]
detects any set of output faults in the absence of transfer
faults.

(b) The Distinguishing Sequence method called "DS-
method" [8] and the UIOv-method [23] detect any set of
output and transfer faults, assuming that the number of
states of the implementation is the same as for the
specification.

(c) The W [2] and the Wp [4] methods detect in
addition transfer faults with additional states, if the
number of additional states is limited. However, the test
suite length (and cost) increases in general exponentially
when the number of expected additional states is increases.

Various test suite optimization techniques have been
described based on UIO sequences [18] which try to reduce
the cost of the test suite by keeping its fault coverage
invariant. The invariance of the fault coverage is not shown
in all these cases. However, the fault diagnostic process
might become more complicated. This is might be caused
by the possible loss of information about some parts of the

246

machine once its corresponding small test cases, included in
larger ones, get eliminated by the optimization process.

3 3 Fault diagnosis for FSMs

In this section, we first give a brief overview of a
recently proposed approach for diagnosing FSMs, and then
a discussion on the diagnostic power of the above test
selection methods.

3.3.1 A general diagnostic method for FSMs:
Vuong presented a diagnostic method [22], which is based
on the test sequence generation "Constraint Satisfaction
Problem (CSP)" approach [lo]. In such a method, it is
assumed that an observed inputloutput sequence for the
implementation to be diagnosed, is given. That sequence
can be used as the initial sequence for the CSP method.
Different FSMs might result from the resolution of the
CSP. Each solution represents a possible FSM model for
the given IUT. If none of these FSMs is equivalent to the
FSM specification, the observed sequence indicates that the
given IUT failed the test and that some of its transitions are
faulty. To distinguish the real implementation from the set
of solutions, additional tests are required.

The described method has some major disadvantages
concerning the high complexity of resolving the CSP
problem which is known in general, to be NP-complete.
The other problem is the growing space of diagnostic
candidates which might be generated by the CSP approach.
The number of solutions could grow exponentially with the
number of states in the given FSM and hence the number
of additional tests will also grow fast.

3.3.2 Diagnostic power of test selection
methods: Following the discussion of Section 3.2 on the
different test selection methods and their fault detection
power, the question comes to mind: what is the
diagnostic and fault isolation power of these methods?

Concerning the W- and DS- methods in the case of
single faults, both methods have the full power of
diagnosing and localizing the fault. If there is a transfer
fault, the test sequences are able to tell to which state the
faulty transition has transferred. For the case of the UIO-
and the W p methods, however, the generated test sequences
do not guarantee the localization of transfer faults because
no conclusion about the reached state can be made.
Therefore, a diagnostic process is in general needed if test
suites are generated by the UIO-, Wp-, or T- methods. In
such a case, distinguishing diagnostic tests may be required
in order to reduce the number of the generated diagnostic
candidates. We note that a test sequence with better fault
coverage (i.e. an U10 test suite rather than a T test suite)
might need less additional diagnostic tests for the diagnostic
process.

4. Diagnostics for sequential machines

In this section, we adapt the general diagnostic method

(in Section 2.3) to the specific case where implementations
and their models are represented by deterministic FSMs. In
such a context, transitions (which may be faulty) of an
FSM to be diagnosed, can be seen as the components of the
general structured system described in Section 2.1.

The adapted version of the diagnostic methad consists of
diagnosing (with respect to its specification FSM) an IUT
FSM for possible faulty transitions. We assume the
following fault model: " the IUT may have an output or
transfer fault in at most one of its transitions". Its purpose
is the identification of the faulty transition and the type of
its fault (i.e. output or transfer). This work is mainly
executed within the Step 5 and the Step 6 of the algorithm.
In particular, Step 5 might end up with different diagnostic
candidates. In such a case and in Step 6, additional
diagnostic tests should be selected in order to be able to
isolate the faulty transition and more precisely to know to
which state (in case of transfer fault) that transition has
transferred.
Definition: The transition Ti j of the specification
where the symptom (oij # 6ij) has been observed, is
called a symptom transition. If we have the same
symptom transition for all symptoms, that transition is
called the unique symptom transition (ust). The
observed output generated by the ust, is called the unique
symptom output (uso).

The diagnostic algorithm
Given a FSM specification and the FSM

implementation (to be diagnosed), the following algorithm
develops the general steps of diagnostic method of Section
2.3. It also includes some techniques for the conkputations
needed in each step.

Step 1 to 3: (generation of expected outputs, generation
of observed outputs and generation of symptoms): These
steps are as described in Section 2.3.

Step 4: Generation of conflict sets
For each symptom, a corresponding conflict set is

formed which consists of all transitions executed in
FSM specification when the corresponding test case is
applied. No transitions, executed after the observation of
the symptom under consideration, will be included in the
conflict set.

In order to continue the diagnostic process,
approaches might be used depending on whether
fault hypothesis is made. In the following, we
assumption that the IUT has a single fault, either o
transfer.

Step SA: Generation of the initial tentative
candidate set

The initial tentative candidate set "ITC"
by the intersection of all conflict sets. Eac
ITC represents a tentative candidate ban
output or transfer fault) which may expl

247

Step 5B: The FTC set and the ending state set
If there is a unique symptom transition "ust", it will be

contained in the ITC. In that case, we split the ITC set into
the set "ustset" which will initially contain the ust and
the final tentative candidates set "FTC" which will
contain the rest of transitions in ITC. Otherwise, the full
ITC set forms the FTC set. If applicable, we first process
the ust as explained below. A separate processing will be
done for each transition in the FTC set.

The ust is processed as follows. All test cases in the
initially given test suite "TS" are scanned for transitions
that are equal to the ust. If for all found transitions their
corresponding observed outputs is equal to the uso, which
means the ust explains all observations, then the ust is
considered a diagnostic candidate.

? r d u r e ust-processing (ust)

Forall I,,, E t h DO
Forall t h E TS DO

IF (Tm,, = ust) THEN
IF o uso) THEN

ustset = 0; exit [the ust is not a
diagnostic candidate}

(1 =1, 2, ..., im where n +im is the
length of the test case t h }

ELSE IF Om,n+l o 6m,n+l THEN

ustset = 0; exit
ENDForall

ENDFomll

For each transition Tk in FTC, we compute the set of
all states called "EndStatesk", to which the transition
might transfer. For each transition, we consider all states in
the machine, with the exception of the expected NextState
of Tk, one at a time. For each state s under consideration, s
will be included in "Endstatesk", if under the assumption
that s is the NextState of Tk, the expected and observed
outputs are equal for all succeeding transitions in all test
CaseS.

3 d u r e findendingstates (FTC);
Forall Tk in FTC Do { Tk is the k-th transition in FTC}

(EndStateSk is the set of all
states to which the tranSitiOnTk might transfer}

Endstatesk := 0

Forall state s E S and s f NeXtState(Tk) Do
flag := true
Forall t h E TS Do

Forall Im,n E t h Do
IF vm,n=Tk)"
IF (O(S, Im,n+l) 0 Gm,n+l) THEN

[l =1, 2, ..., im where n +im is the
length of the test case tcm}

flag := false; exit
ENDForall

Step 5C: Identification of diagnostic candidates
and generation of diagnostics

In this step we remove all correct (i.e. transitions with
empty ending state sets) transitions from the final tentative
candidate set FTC. All transitions in the resulting "DCtr"
set (if not empty) are diagnostic candidates with transfer
faults. For each transition Tk in the DCtr and for each state
Sik in the Endstatesk, a diagnostic, stating that Tk might
transfer to state Sik, is generated. An extra diagnostic,
stating that the ust might have an output fault, is also
generated, if the ustset is not empty.

Step 6: Additional diagnostic tests
Depending on the result of the previous step, different

possibilities might be present.
Case 1: The ustset contains the ust transition and DCtr

is empty. In such a case, the ust is the faulty transition
with an output fault and no further diagnostic tests are

Case 2: The ustset is empty and the DCtr is a
singleton with a corresponding singleton ending state set.
In such a case, the transition in DCtr has a transfer fault to
the state in the ending state set. No further tests are

Case 3: The ustset is empty and the DCtr is a
singleton with a corresponding ending state set with more
than one element, or the DCtr has more than one element.
Therefore, each element in DCtr might be the faulty
transition with a transfer fault. In such a case, we should
process the elements of DCtr to derive further tests with the
purpose of identifying the faulty transition and the state to
which it transfers.

We propose the following approach and algorithm for
the derivation of additional diagnostic tests. For each
transition in the DCtr, the following step is executed:

Given the transition under consideration Tk in the DCtr,
additional test cases have to be selected and executed, in
order to be able to know exactly to which state Tk
transfers. These test cases should have the ability of
distinguishing between the different states contained in the
corresponding ending state set "EndStateSk " and possibly
the correct ending state of the transition. Therefore, an
"limited characterization set" wk [2] has to be
computed for the states in Endstatesk and the correct state.
It is formed by sequences of inputs such that if applied to
the machine in one of the states in Endstatesk, the
produced outputs will be different from the outputs obtained
if the same input sequences was applied to any other state
of Endstatesk or the correct state. Each additional test case

required

required.

248

is a concatenation of an input sequence, called transfer
sequence, required to take the machine from its initial state
to the starting state of Tk, the input for Tk and a sequence
of inputs from the wk.

In order to avoid any ambiguities, the transfer sequence
and the limited characterization set should be chosen in
such a manner that they do not involve any transition in
DCtr.

The construction of the additional tests is progressive
because if the fault is located, the rest of these additional
tests need not be generated, since we work under the single
fault hypothesis. If some of the generated tests are already
included in the initially given test suite, this will be taken
into consideration for the analysis of the obtained outputs,
but they need not be applied again to the IUT. If the
application of these additional tests generates the expected
outputs, the transition is declared correct and is removed
from the DCtr. When a faulty transition is found, the
observed outputs identify the wrong transfer of the
transition.

Case 4: The ustset contains the ust transition and
DCtr is not empty. In such a case, we first check the ust
transition by generating for it additional test cases in a
similar way as in Case 3. If the application of these test
cases generates the expected output, then ust is declared
correct (no output fault) and the search for a faulty
transition with a transfer fault has to be done as in Case 3.

The above cases are covered by the following algorithm:

F (ustset = [ust} AND DCtr = 0)
WEN Print "The ust transition has an output fault"
XSEIFustset =0 ANDDCtr= { T i } AND

EndStatesl = {si}
THEN Print "Ti is the faulty transition with transfer

ELSE IF ustset = 0 AND DCtr = { T i , ..., Td }
fault to si''

THEN Findtransferfault (DCtr)
ELSE IF ustset = {ust) AND DCtr = { T i , ..., Td }
THEN select test cases for the ust;
apply these tests to the IUT;
IF (observed output o expected output)

THEN Print "The ust has an output fault and
all other transitions are correct"
ELSE Findtransferfault (DCtr)

Rocedure Findtransferfault (DCtr)
flag := false; k := 1;
REPEAT {Tk is a transition in DCtr}

select diagnostic tests for Tk ;
apply these tests to the implementation;
IF (observed output c> expected output)
THEN flag := me;
Print "Tk has a transfer fault. Its ending state is

deduced f'rom the analysis of the observed outputs.
All other transitions are correct"

ELSE Print "Tk is correct"
k : = k + l

UNTIL (flag = true)

5. An application example

Given the FSM specification of Figure 1, we execute
the steps of the proposed diagnostic algorithm as

follows:

Step 1: Generation of expected outputs
Suppose that the initial test suite is given as follows:
TS = (rab, rbca, rcab, rcca}
The expected outputs for these tests are: { -ef, -fff, -efe, -

ef)

Step 2: Generation of observed outputs
The application of the given TS to the IUT of Figure 2

generates the observed output sequences included in the
following table.

Input rbca rcab ma
Transition tit5 t2t@4 t3t7tg t3t9t4
Exp. output -ef -efe eef

-eff eef

Table 1: Test cases and their outputs

t6: C/f LL. U I 1

t9: c/
\D: c/e / /E: b/f t7:h&y t8: b/t

Figure 2: An implementation I

Step 3: Generation of symptoms
A difference between observed and expected

detected during the application of test case tc3.
we have a single symptom "Symp3 = (03,3 f 63,3)
the symptom transition t8.
Step 4: Generation of conflict sets

The conflict set for the given symptom is "C
t7, tg)", namely, the transitions of test case tc3
the symptom.

249

Step 5A: Generation of the initial tentative
candidates set

Because there is only one conflict set, the resulting
initial tentative candidate set ITC is equal to the conflict set
Conf3. Each transition in ITC is a tentative candidate.

Step 5B: The FTC set and the ending state sets
The unique symptom transition t8 is included in ITC.

Therefore, ITC is split into ustset and the final tentative
candidate set FTC as follows:

UsWt = (t8) FTC := (t3, t7]
The computation of the ending state sets for the

EndStates[t3] = ()
transitions in FK leads to:

EndStates[t7] = (so, SI]

Step 5C: Identification of diagnostic candidates
and generation of diagnostics

The transitions with empty ending state sets are correct,
therefore they are removed from the final tentative candidate
set FTC. The resulting set DCtr is the one containing the
diagnostic candidates with transfer faults. We obtain:

Usbet = (t8) Dctr= (t7).
With the use of the ustset and the ending state sets

generated for transitions in DCtr by Step 5B, the following
diagnostics are generated:

D1: t7 might transfer to state so instead of s2.
D2: t7 might transfer to state s1 instead of s2.
D3: t8 might have an output fault off instead of e.

Step 6: Additional diagnostic tests
We determine the faulty transition by completing the

initial test suite with additional diagnostic tests. In order to
discriminate between the two diagnostic candidates t7 and
t8, additional diagnostic tests have to be selected.

At this stage, we know for sure that all transitions, with
the exception of t7 and t8, are correct. In order to check
whether t8 has an output fault or not, we just have to use a
path which takes the machine to the starting state of t8,
then we execute it. For this example, a possible additional
test case is "rcb". The execution of this test case generates
"-eel' as output. This result confirms that t8 is not faulty
and therefore, t7 has a transfer fault.

Consequently, another diagnostic test is required in order
to distinguish between the two diagnoses of t7 (D1 and
D2). We don't know whether the faulty transition t7
transfers to state so or to state S I . A possible transfer
sequence which will take the machine to the starting state
s2 of t7 is "rc". A possible sequence which will distinguish
between states so and s1 is the input "a". If in so, the
machine produces "e" as output for the input "a", and "f"
for the same input if it was in state SI . Hence, the resulting
additional test case is '"a" where the first "a" input
represents the input of the transition t7. If after the
application of "rcaa" the observed output is "-efe", t7

transfers to state so as shown in Figure 4, otherwise, it
would transfer to state S I , as assumed by the second
diagnosis.

6. Concluding discussion

6.1 The diagnostic algorithm and test selection
methods

It is important to note that the proposed algorithm
depends closely on its first step, where different test
selection methods might be used for generating the initial
test suite. In the following, we discuss this dependance in
more details.

For a poor test selection method, such as the T method,
it is not even guaranteed that a fault is detected. If the fault
is not detected, no diagnostics will be generated and Steps 4
to 6 of the algorithm will simply not apply . However, if a
symptom is identified, the diagnostic process may generate
a larger number of diagnostic candidates and therefore
correspondingly, an even larger number of diagnostics,
because the initially applied tests were not very thorough.
In order to distinguish between these diagnostics, a large
number of additional diagnostic tests will be needed. We
conclude that the less complete an initial test suite is used,
the more complex is the task of diagnosing the location of
a detected fault.

For a better initial test suite, such as generated by the
UIOv- or Wp- methods, faults are guaranteed to be detected,
but they are not necessarily localized. In such a case, the
diagnostic algorithm might end up with several diagnostics
at the end of Step 5 and additional tests might be generated
by Step 6. It is interesting to use the UIOv- or the Wp-
methods since their corresponding test suites are shorter
than those generated by the W-method. It is important to
mention that, even after complementing the test suites
generated by the UIOv- or the Wp- methods with the
additional diagnostic tests, the resulting test suites will, in
general, remain shorter than those generated by the W-
method.

In the case of the W- or DS- methods finally, the
computation required by the steps of the algorithm will be
simplified considerably. The generated test suites can detect
and localize any single (output or transfer) fault in the
implementation. At the end of Step 5 of the algorithm,
only a single diagnostic candidate will remain and hence
there will be no need for additional diagnostic tests.

6.2 Complexity of the Algorithm

A detailed study about the complexity of the proposed
diagnostic algorithm is given in [6]; in this subsection, we
only give the result of this study. The overall complexity
of the algorithm is found to be of 0(nLsLc3) where n,
Ls, Lc are variables representing the number of states in the
specification, the number of test cases in the initially given

250

test suite, and the number of inputs in the longest test case,
respectively.

It is important to note that the two variables Ls and Lc
are interrelated, if one of them is reduced the other one will
be increased. Hence, it is possible to reduce the execution
time of the proposed algorithm by reducing as much as
possible Lo since in general, Ls will only register minor
increases. For example, suppose we use the transition tour
method to select an initial test suite consisting of a single
test case of length 50 (i.e. Lx = 1, Lc = 50). It may be
possible to reduce dramatically the execution time of the
diagnostic algorithm by just selecting several small test
cases corresponding to sub-tours of the whole sequence, for
instance 15 sub-tours not longer than 5 (i.e. Ls = 15, Lc =
5) . From the practical point of view and as indicated in
[14], for most of the known protocols Lc I 5 .

6.3 Presence of multiple faults

As explained above, the proposed algorithm is designed
for diagnosing single faults. In general, the initial test
suites which might be used by the algorithm, will not
necessarily guarantee the detection of all faults and hence
the algorithm will not ensure their diagnosis. In the
presence of multiple faults, and if detected, the diagnostic
algorithm needs to be modified in order to accommodate the
change in the fault model assumption. In particular in Step
5, the generation of the diagnostic candidates will be more
complicated, since they might be formed by more than one
transition. As a consequence, Step 6 should also be
modified. It is not obvious how to select additional tests
which will have the ability of distinguishing between sets
of transitions and their corresponding diagnostics.

Acknowledgments: The authors would like to thank F.
Khendek for discussions on test methods discussed in this
paper. This work was partly supported by the Natural
Sciences and Engineering Research Council of Canada, the
Ministry of Education of Quebec and the IDACOM-
NSERC-CWARC Industrial Research Chair on
Communication Protocols.

References

[l] G.v. Bochmann, R. Dssouli, A. Das, M. Dubuc, A.
Ghedamsi and G. Luo, "Fault models in testing", Invited
paper in 4-th IWPTS, Leidschendam, Holland, 15 - 17
Oct. 1991.
T.S. Chow, "Testing Design Modelled by Finite-State
Machines", IEEE Trans. S.E. 4, 3, 1978.
R. Davis, and W. Hamscher, "Model-based reasoning:
Troubleshooting", in: Exploring Artificial Intelligence,
edited by Shrobe, H. E. and the American Association for
Artificial Intelligence, pp. 297-346, Morgan Kaufman,
1988.
S. Fujiwara, G.v. Bochmann, F. Khendek, M. Amalou, A.
Ghedamsi. "Test selection based on finite state models",

[2]

[3]

[4]

121

131

141

IEEE Trans. on Software Engineering, Vol. 17, No. 6,
June 1991, pp. 591-603.
M.R. Genesereth, "The use of design descriptions in
automated diagnosis", Artificial Intelligence 24(3).

A. Ghedamsi and G.v. Bochmann, "Diagnostic Tests for
Finite State Machines", TR No. 807, Univ de Montdal,
MontrBal, January 1992.
A. Ghedamsi, "Test selection and diagnostic methods",
TR, Univ de MonMal, Montdal, February 1991.
G. Goenenc, "A method for the design of fault detection
experiments", IEEE Trans. Computer, Vol. C-19, pp.
551-558, June 1970.
J. de Kleer, and B.C. Williams, "Diagnosing multiple
faults", Artificial Intelligence 32(l), 1987, pp. 97-130.
A.K. Mackworth, "Consistency in networks of
relations", Artificial Intelligence 8(l), 1977, pp. 99-
118.
R.E. Miller and G.M. Lundy, "Testing protocol
implementations based on a formal specification", 3rd
international workshop on protocol test systems,
McLean, Virginia, Oct. 30 - Nov. 1, 1990.
S . Naito and M. Tsunoyama, "Fault Detection for
Sequential Machines by Transition-Tours", Proc. of
FTCS (Fault Tolerant Computing Systems), pp.238-243,
1981.
R. Reiter, "A theory of diagnosis from first principles",
Articificial Intelligence 32(l), 1987, pp. 57-96.

K.K. Sabnani and A.T. Dahbura, "A protocol Testing
Procedure", Computer Networks and ISDN Systems, Vol.

B. Sarikaya, "An Estelle based test generation tool",
Univ. de Montreal, DIRO, Montreal.

B. Sarikaya, "Conformance Testing: Architecture and
Test Sequences", Computer Networks and ISDN Systems

E.H. Shortlife, "Computer-based Medical Consultations :
MYCIN", Elsevier, New-York, 1976.
Y.N. Shen, F. Lambardi and A.T. Dahbura, "Protocol
conformance testing using multiples U10 sequences" in
E. Brinksma, G. Scollo, C.A. Vissers (eds), PTSV IX,
Amsterdam 1989.

D. P. Sidhu and T.K. Leung, "Formals Methods for
Protocols Testing: A Detailed Stud, IEEE Trans. On S. E.
, vol. 15. No. 4 , 1989.
P. Struss, and 0. Dressler, "Physical Nega
Integrating Fault Models into the General Diag
Engine", Proceedings IJCAI, Detroit - Michigan,

H. Ural, "A Test Derivation Method for Protocol
Conformance Testing", Proc. of the 7th IFW Symposium '
on Protocol Specification, Testing and Verification,
Zurich, May 5-8 1987.'
S.T. Vuong and K.C. KO, "A
test sequence generation",
conference and exhibition, San
2-5, 1990, vol. no. 3, 904.1.1 -
S. T. Vuong, W. W. L. Chan
Method for protocol test sequence generation", in the 2-
nd International Workshop on Protocol Test Systems,
Berlin, Germany, Oct. 3-6. 1989.

1984, pp. 411-436.

15, NO. 4, pp. 285-297, 1988.

17, pp. 111-126, 1989.

pp. 1318-1323.

25 1

