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Abstract 

In most cases of system specification, the logical behavior of the system is defined 

separately from the performance aspects.  However, this separation leads to difficulties 

when the performance aspects are closely related to particular logical aspects of the system 

behavior.  This paper shows how to include the performance aspects of a system when the 

logical behaviour is described by means of an extended finite state machine formalism.  

Performance extensions to the Estelle specification language are defined and the design of a 

corresponding simulation system is discussed.  An application of this combined approach to 

the OSI Transport protocol is described.  The paper also includes a discussion of the main 

results obtained from the analysis of the logical behavior of the specification and a 

comparison of its predicted performance with a real implementation. 

 

1. Formal specifications for describing logical and performance aspects 

 

Specifications are crucial to the software development cycle. Though specifications are 

mainly written in natural language, the use of more formal means of expression is 

advantageous either to reduce ambiguity or to allow automation of certain steps in the 

design process.  

 

In the area of distributed systems, an accepted formalism well suited to the expression of 

logical behaviour is that of finite state machines (FSMs). More recently, standards 

organizations have designed special languages such as Estelle [Budk 87], LOTOS [Bolo 

87] and SDL [Beli 89] for the formal specification of OSI communication protocols and 

services. An overview of the importance of these so-called Formal Description Techniques 

(FDT's) and their associated tools in the areas of protocol design, implementation and 

testing is given in [Boch 90g] and [Lour 92]. 

 

Although these languages are well suited to express the required logical behaviour of a 
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system, they are not designed to specify performance aspects.  For the description of these 

aspects, it is often sufficient to define relatively well-understood performance parameters, 

such as transmission delays and maximum throughput.  In the case of more complex 

functions, however, the performance parameters are more closely related to the logical 

functions performed by the system.  In order to evaluate the performance of a given system 

design, one usually refers to specific performance models, such as Markov processes or 

queuing networks. 

 

Unfortunately, handling the performance aspects independently from the logical aspects of 

the system leads to difficulties, especially when performance is closely related to particular 

logical aspects.  In the case of communication protocols, for instance, the error rate of the 

underlying communication medium (a performance aspect) together with the procedure for 

error detection and recovery (a logical aspect of the protocol) determine the error rate and 

speed of the communication service provided to the users (performance aspects). 

 

In order to combine the logical and performance aspects of a system design within a single 

description, a number of specification methods combining logical and performance aspects 

have been proposed.  Methods based on the logical aspects of finite state machines [Rudi 

83b, Krit 86] or Petri nets [Moll 82, Razo 84b, Holl 87] take advantage of their simple 

structure, but are not powerful enough to model all aspects (logical as well as performance) 

of most real examples.  In other cases, performance simulations have been partially based 

on the logical behavior of protocol specifications written in an extended finite state 

machine formalism [Wolf 82]. 

 

In discrete simulations, resource contention and performance are often central to the 

problem being studied.  As a result, specialized simulation languages such as GPSS and 

SIMULA, embody primitives specifically designed to describe performance aspects of 

systems.  

 

In this paper we consider extending the existing specification languages Estelle or SDL, 

which are based on an extended finite state machine formalism, with concepts derived from 

traditional simulation languages. The extensions cover specification of delays and duration, 

resource usage and stochastic choice.  A more detailed discussion of this combination is 

given in [Boch 88b], and the application of the same approach to the specification language 

LOTOS is described in [Rico 91]. These FDT's are complete specification languages 

powerful enough to describe practically all logical aspects of the specified system.  
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Therefore, no simplification of the logical system aspects is necessary when the 

performance aspects of the system are considered. 

 

In the software development cycle, specifications are successively refined and transformed 

phase by phase until executable code is obtained. Specifications are also crucial to the 

testing and validation process. When specifications are expressed in a formal language, 

some of these steps can be automated.   

 

In support of the implementation process, translators have been designed to convert FDT 

protocol specifications into executable programs which implement the protocol.  For the 

validation of the system specification, the logical and performance aspects could be 

analyzed through various approaches. While the logical aspects of the specification may be 

validated using program proof or symbolic execution techniques, these approaches become 

very difficult to realize in most practical situations. Therefore one of the following 

approaches may be more appropriate: 

 

(1) Complete analysis of a simplified model of the logical aspects, e.g., finite state machine 

model, using a form of reachability analysis (see for instance [Zafi 80] or [Pehr 90]).  

 

(2) Simulated execution of logical aspects of the specification in a kind of testing 

environment [Alga 93].  

 

(3) Performance simulation, combining point (2) with the performance aspects of the 

specification.  

 

During the phase concerning validation of the system implementation, the combined logical 

and performance specification could be used as reference against which the implementation 

is validated.  For example:  

 

(4) the logical aspects of the specification can be used to determine which tests should be 

applied to the implementation in order to find any logical errors in the implementation [Sari 

89c],  

 

(5) the specification can also be used as an oracle to determine whether, for a given test, the 

trace of observed interactions conforms with the specification [Boch 89m],  
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(6) the performance aspects of the specification provide a guideline for determining the 

performance aspects of the implementation to be measured, and the desired performance 

objectives to be attained, and  

 

(7) the performance simulation in combination with the measurements performed on the 

implementation can be used to identify performance bottlenecks within the implementation. 

 

 

In the following section, we start with a brief introduction to Estelle, then we present our 

proposed extensions for the description of performance aspects of behaviour. An Estelle 

description extended with performance statements can be viewed as a simulation program 

for the specified system. Accordingly, we have devised a simulation package which 

complements an Estelle compiler previously written by our group. This implements the 

approaches (2) and (3) to protocol analysis. The simulation tool is described in Section 2.3.  

To show the benefits of a simulation approach using the extended FDT, the OSI Transport 

protocol (class 4) was specified and simulated. This illustrates approaches (2), (6) and (7). 

This is described in Section 3. 

 

2. Performance aspects for extended state transitions models 

 

This section begins with a short introduction to the specification language Estelle [Este 89].  

This language, based on an extended finite state model, was designed to express only 

logical aspects of behavior.  We show how performance aspects can be added to Estelle and 

finally we present a simulation system which implements those ideas. 

 

2.1 Specification language for extended state transition models 

 

Specification languages such as Estelle and SDL are based on the model of finite state 

machines (FSM).  These languages allow for extensions which deal with the parameters of 

interactions, additional state variables and the composition of several machines into one 

system.  To clarify the presentation, we concentrate in the following on the FSM aspects of 

the languages.  We consider a FSM with one or several input and output streams, as shown 

in Figure 1.  Each FSM is characterized by a finite set of internal states and sets of possible 

inputs or outputs for each stream.  Two kinds of transitions are considered: input transitions 
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and spontaneous transitions.  An input transition consumes a particular input interaction 

from a particular input stream; it can only be executed if the given kind of input is at the 

head of the given stream and the machine is in a particular state.  A spontaneous transition 

consumes no input; it can be executed if the machine is in a particular state.  Both kinds of 

transitions lead to a new state and may produce output over one or several output streams. 

Figure 1- An example of an FSM 
(a) diagram showing FSM and several I/O streams 
(b) state transition diagram

 

We give in the following a short introduction to Estelle and then parts of the example given 

in the Annex.  Using the syntax of Estelle, the FSM shown in Figure 1 could be written as: 

module M1_type; 

 ip IN1, IN2, OUT ; (* interaction points *) 

end; 

body  M1 for M1_type; 

 state S1, S2, S3 ; 

 trans  from S1 to S2 when IN1.a 

  begin output OUT.b end; 

 trans  from S2 to S1 when IN2.b 

   begin end; 

 trans  from S2 to S3 (* spontaneous transition *) 

   begin output OUT.a end; 

 trans  from S3 to S1 when IN1.a 

   begin end; 

end; 

In Estelle, a FSM is described by a module (declarative part) and a body (behaviour part).  
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Each transition is described by a trans statement with from and to clauses indicating initial 

and final states.  A transition which is triggered by availability of input has a when clause; 

spontaneous transitions have none.  Finally, output statements specify the creation of 

messages.  The notation for I/O is <interaction_point>.<message>. 

 

In order to give a more meaningful example, we explain in the following the structure of 

the network service specification given in the Annex.  For distributed systems design, the 

separate specification of services and protocols represent important design steps.  In the 

case of the service specification, the distributed system is described as a single black box 

providing communication service to the users over physically distributed service access 

points (see Figure 2).  The protocol specification gives a more detailed picture of the 

system by identifying several physically distributed "protocol entities" which provide the 

required service at the service access points, and the "underlying communication medium" 

which provides a more basic communication service through which the protocol entities 

exchange so-called protocol data units (PDU's).  This system structure is shown in Figure 3.  

The protocol specification is a specification of the behavior of the protocol entities. 

 
(Service Access Points)SAP SAP

 
Figure 2- Service view of a distributed system 

 

SAP SAP

Network

protocol 
entity

protocol 
entity

underlying communication medium

 
Figure 3- Protocol view of a distributed system 

 

The structure of the Network_service specified in the Annex may be represented as shown 

in Figure 4.  It is used to simulate a Network service between two Users (in our case two 
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Transport Protocol entities).  These interactions can be executed at one of two interaction 

points, called NSAP for "Network Service Access Point", and identified by an index which 

takes on the values "A" or "B".  This index is used by network users (higher layer protocols) 

to identify which side of the network is used for sending or receiving messages.  A message 

sent on side A of the network should then be received later on side B.  This is shown also in 

the specification of the network in the Annex when the function opposite changes A in B 

and B in A. 

 

NSAP [A] NSAP [B]

Transit [B]

Transit [A]

2 resources
2 resources

1 resource
1 resource

Figure 4- Structure of the Network module specified in the Annex 

 

In the following, line numbers relate to the lines of the Annex.  The Network_service 

module defines four states Idle, Opening, Open and Close (line 51) and four transitions 

(lines 72, 81, 95 and 103).  The machine is Idle at the beginning.  When it receives a 

N_CONNECT_req, it goes to the Opening state and sends a N_CONNECT_ind to the other 

side (lines 95-101).  It then waits until reception of N_CONNECT_req when it goes into 

Open state and sends the primitive N_CONNECT_ind to the other side (lines 103-109).  

Disconnection is done similarly but not shown in the Annex.  Reception and transmission 

of data are handled in two transitions (lines 72-90) while the finite state machine is in the 

Open state: 

 
72 TRANS 
73 any side: Side_type do 
74 when NSAP[ side ].N_DATA_req (* msg *) 
75 from Open to Same 
76 hold Incoming_NSAP_resource[ side ] for Interface_hold 
77  begin 
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78  output Transit[ side ].N_DATA_req(Msg); 
79  end; 
80 
81 TRANS 
82  any side: Side_type do 
83  when Transit[ side ].N_DATA_req (* msg *) 
84  from Open to Same 
85  hold Propagation_resource [side] for Propagation_hold 
86 begin 
87 output NSAP[ Opposite(side) ].N_DATA_req(Msg); 
88 (* There will be a Hold on the resource Outgoing_NSAP_resource[ side ] 
89  for Interface_hold when this signal arrives at the Network User. *) 
90 end; 

 

The necessity of two transitions is explained later.  One transition simply takes data from 

the NSAP interaction point and send it to an internal interaction queue Transit (line 78), and 

another takes the data from the same queue and send it to the other NSAP (line 87).  

Statements of lines 76 and 85 are performance extensions to the language and will be 

explained in Section 2.2.  The any statement (lines 73 and 82) enables the transition to be 

fired with any one value given by the type Side_type (A or B in this case), and then executes 

the transition body part with the side variable instantiated to this one value. 

 

In order to describe more complex systems, several state transition modules can be 

interconnected such that the output from one module becomes the input to another one.  An 

example is shown in Figure 5, which shows two Transport Protocol modules 

communicating through a Network_service module.  In Estelle and SDL, the output of one 

module first enters a queue before it is processed by the destination module.  In SDL, each 

module has exactly one such queue through which all inputs must pass; Estelle allows one 

input queue per interaction point and this is what we assume in the following.  For instance, 

the Network_service module has two input queues (line 29), one for each user module. 

29 NSAP:  array [ Side_type ] of NS_primitives( N_provider ) 

30  individual queue 

31  fifo delay Interface_delay; 
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X.25 network service desribed in FDT (with performance parameters)
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Figure 5- FDT simulation module with Transport protocol 

2.2 Language aspects for performance description 

 

Different approaches can be taken to define performance aspects of state transition models.  

In a basic Markov model, a transition is instantaneous, but some time elapses between the 

instant when it could occur and when it does occur.  For each transition t of the machine, a 

distribution function pt(T) defines the probability that the machine does this transition 

within T time units after the transition has become possible, assuming that no other 

transition has been executed. 

 

In a more complex performance model, based on transition times, transitions start as soon 

as possible.  However, a transition takes some amount of time and the execution of one 

blocks the execution of others.  To deal with the case when several transitions become 

possible at the same time, each transition is assigned a probability and one of the possible 

transitions is selected at random according to the probabilities.  The transition execution 

time may be a random variable, where a distribution function St(T) indicates the probability 

that the execution of the transition t will terminate within T units of time. 

 

The first model is conceptually simpler.  The second model has the advantage that it can be 
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used to model shared resources more naturally with FIFO queuing of requests.  The 

requests wait in the input stream until they are processed, and the processing is modeled by 

the transition and its execution time.  Only one request (transition) is processed at a time by 

any given FSM.  Various variations of these basic models have been described in the 

literature; for example, [Moll 82] and [Krit 86] belong to the Markov and transition time 

performance models, respectively. 

 

Another discipline concerned with the specification of the performance aspects of parallel 

systems is simulation.  The knowledgeable reader will note the influence of languages such 

as GPSS and Simula in the performance extensions to the finite state model that are 

described in the following sections. 

 

2.2.1. Resources 

 

In our system, a transition may take some time.  The duration of a transition is expressed by 

a HOLD clause (extension of Estelle) of the form 

 

 hold for <expression> 

 

where <expression> is a real value expression in time units.  The module within which a 

transition executes is considered to be a resource required for the duration of a transition.  

Thus only one transition at a time may take place in a given module.  During the execution 

of a transition in a module, no other transition may be performed by the same module.  The 

outputs generated by the transition are available at the end of the transition. 

 

For certain applications, it was found convenient to introduce other declared resources.  In 

this case the HOLD clause of the transition has the form 

 

 hold <resource> for <expression> 

 

and <resource> is a variable access expression referring to a variable of type "resource".  

The performance semantics of this clause is as follows: the transition has an additional 

enabling condition, which requires that the <resource> must be free.  If and when the 

execution of the transition is decided, the transition is executed in zero time and the outputs 

are produced; however, the resource remains occupied the amount of time specified by 
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<expression>.  It is therefore possible that immediately after the execution of the transition, 

another transition associated with another resource could execute, while a transition 

associated with the same resource must wait. 

 

For instance, the Network module defined in the Annex receives input packets over two 

interaction points.  In order to model the maximum throughput available for a given 

interaction point, a corresponding resource Incoming_NSAP_resource is declared (line 49) 

and the input transitions receiving a packet hold the corresponding resource for the time 

proportional to the length of the packet received (lines 76). 

49 Incoming_NSAP_resource: array [ Side_type ] of resource; 

... 

76 hold Incoming_NSAP_resource[ side ] for Interface_hold 

 

If a resource exists in a certain number of identical units, it may be convenient to indicate 

for a given transition how many units of the resource are required for the execution of that 

transition.  This may be expressed by the notation 

 hold <number of units> units <resource> for <expression>. 

 

2.2.2. Transition probabilities 

 

In the underlying finite state transition model, there may be several different transitions 

enabled for a given state and input signal.  Like in the Markov model, one may associate 

different probabilities with these transitions.  However, in the context of an extended state 

transition language such as Estelle, the situation is not that simple.  Due to the extensions 

involving interaction parameters and additional enabling conditions for the transitions, 

which usually depend on parameters and additional state variables, the present major 

STATE and the available kind of input interaction do not completely determine which 

transitions are possible.  Therefore it is not clear how transition probabilities (which must 

add up to one) can be associated with the transitions in a straightforward manner. 

 

Since a given transition may "compete" with different sets of other transitions depending on 

the available inputs and the module state, we have adopted a notation where the probability 

of execution may be specified indirectly by assigning a WEIGHT to the transition through a 

clause of the form 

 weight ( <expression> ) 
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where <expression> is a real value expression.  The semantics of this clause is that the 

probability of selection of this transition for a particular system state is equal to the value of 

this <expression> divided by the sum of the weights of all transitions enabled in that system 

state. 

 

In the case of SDL, the situation is somehow different.  There is no possibility for implicit 

non-determinism, and therefore there is always at most one SDL transition to be executed.  

Different probabilities for different branches of execution can, however, be introduced by 

defining decisions which may depend on random functions, or which are not completely 

defined, leaving thus room for different decision outcomes.  This is similar to sequential 

programming languages where the conditions used in IF of CASE statements may be non-

deterministic.  It is therefore sufficient to provide random distribution functions (see 

below). 

 

2.2.3. Interaction queues with transmission delays 

 

For modeling the transmission delays in telecommunication networks, it is convenient to 

introduce transmission delays for input/output streams.  A similar approach is often taken in 

reachability analysis for protocol design validation where ad hoc models are used for the 

communication medium between two communicating protocol entities.  Properties such as 

FIFO discipline, and transmission error and loss possibilities are important not only for the 

performance but also for the logical aspects of protocol operation. 

 

The basic performance parameters of a transmission medium are the delay and maximum 

throughput.  The latter can be modeled by associating a resource with the input to the 

medium (Section 2.2.1).  Its service time will limit the number of transmission requests that 

can be handled.  Transmission delays are described by introducing additional properties for 

the input queue associated with a given interaction point.  The syntax of the interaction 

point declaration becomes 

 <interaction point> ":" <interaction point type> <properties> 

where <properties> may be of the forms 

 delay <expression> 

or 

 fifo delay <expression>. 
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The meaning of the first form is that an output generated for the given interaction point is 

delayed by the amount specified by <expression> before it is entered into the input queue 

of the interaction point.  In the case of a constant <expression> the implicit FIFO property 

of the Estelle queues remain valid.  However, if the <expression> contains random 

distribution functions, the order of arrival of interactions in the queue may be different from 

the order in which the outputs were generated.  In other words, some interactions may 

overtake others.  When the second form of the <properties> is used the delays will be 

lengthened, if necessary, in order to maintain FIFO order. 

 

In the example shown in the Annex, transmission delays are modeled by using a FIFO 

queue (Transit, see also Figure 4).  Incoming messages are not sent out immediately to their 

receivers; rather, they are first placed in the Transit queue which has been declared to 

operate in FIFO mode and has random delays with a normal distribution (line 43). 

43 fifo delay Propagation_delay; 

A separate transition (line 81, see above) removes the messages from the Transit queue and 

places them on the output interaction point. 

 

2.2.4. The DELAY clause 

 

The DELAY clause for spontaneous transitions is already defined in Estelle.  In a more 

restricted form, it can be written as: 

 provided <enabling_condition> 

 delay  <expression> 

where <expression> is a real-value expression in time units.  The semantics of this clause is 

as follows: the transition is scheduled for execution when its <enabling_condition> has 

been satisfied for at least <expression> time units (if transitions are executed during this 

time interval, the condition must remain true in between the transition executions).  This 

clause can be used to describe timeout transitions. 

 

2.2.5. Use of random distribution functions 

 

It is important to note that probability distributions may be used for describing non-

deterministic behavior of the specified module.  The simplest notation for such distributions 

seems to be the use of pseudo-random functions that return (random) values which have a 
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given distribution.  For simulation studies, it is important to allow for the use of 

independent streams of random numbers.  Random functions are used in functions such as 

Interface_hold (line 22) or Interface_delay (line 20). 

20 function Interface_delay: integer; primitive; 

21 function Propagation_delay: integer; primitive; 

22 function Interface_hold: integer;  primitive; 

23 function Propagation_hold: integer; primitive; 

 

2.3 A Simulation System 

 

The performance aspects described previously were tested in a simulation tool for Estelle 

specifications.  The approach chosen was to combine an Estelle compiler and execution 

package with a process-oriented simulation package handling the time aspects. 

 

The specification language that we have used for the simulation system is an early version 

[FDT 83] of Estelle [Este 89], which differs from the latter by a static module structure and 

some small syntactic changes. For our purposes, the restriction to a static module structure 

presented no problem.  The Estelle compiler [Boch 87h] accepts as input a system 

specification written in Estelle and produces as output Pascal procedures.  For each module 

type in the specification, the compiler generates one procedure.  A run-time execution 

package, associated with the compiler, uses these procedures for the execution of the 

specified system.  Originally, the compiler and the associated run-time system were 

designed to provide an implementation-oriented run-time environment [Boch 87h, Vuon 

88].  In fact, the compiler and the run-time package have been used for a number of 

protocol implementation projects [Boch 86n], [Boch 87h] and [Boch 89m]. 

 

The run-time package keeps track of all module instances in the specified system during the 

execution phase, and of all output interactions which are placed in the appropriate input 

queues.  Based on some implementation-dependent scheduling scheme, it selects an input 

transition or a spontaneous transition of a particular module instance for execution.  It then 

calls the generated procedure corresponding to the module type, and provides the input 

interaction (if any) and the state information of the module instance as parameters to the 

procedure.  The generated procedure does the processing corresponding to the transition 

and calls an OUTPUT procedure for each output interaction generated.  The latter 

procedure is part of the run-time package. 
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In order to introduce the performance aspects in the run-time environment, it was necessary 

to modify the run-time package associated with the Estelle compiler and combine it with a 

time simulation function.  An existing process-oriented simulation package PSIM [Vauc 

84b] was adapted for this purpose.  The list handling routines, the tracing mechanism, the 

dynamic allocation, disposal routines and the random number generators could be used 

without modification.  However, the event notice structures, all scheduling routines, the 

simulation executive and the resource algorithms had to be redesigned for the Estelle 

environment.  This was made necessary both by the requirement to interface with the fixed 

structure of the automatically generated procedures (the Estelle compiler was not changed), 

as well as by the very specific semantics of some of the interaction primitives: for example, 

spontaneous transitions with both DELAY and HOLD clauses.  The resulting simulation 

package is further described in [Vauc 84]. 

 

This combination of an Estelle compiler and a simulation package provides a tool which 

allows the automatic execution of simulation runs of specification systems, as described in 

Section 3, except for one point.  The performance clauses in the specifications, written in 

the notation described in Section 2.2, must be hand-translated into corresponding Pascal 

statements and/or declarations in the generated procedures.  The translation scheme is quite 

simple and further described in [Vauc 84]. 

 

3. Simulation studies of the OSI Transport protocols 

 

A relatively extensive simulation study of the OSI class 4 Transport protocol [OSI TP], in 

the following called TP-4, was performed with the objective of examining the utility of the 

simulation approach described in this paper (direct execution of a formal specification).  

The main characteristics of this experiment and the major results are described in this 

section.  Further details can be found in [Boch 86m]. 

 

3.1. Overview 

 

The overall structure of the simulated system is shown in Figure 5.  Two Transport entities 

execute the TP-4 protocol by exchanging PDU's over a simulated Network connection and 

provide the Transport communication service to four users each.  Each user module can 
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establish a Transport connection with a user connected to the other Transport entity.  Up to 

four Transport connections can be simulated simultaneously.  The simulation study 

concentrated on the data transfer phase. 

 

The Network specification used for simulation was similar to the specification shown in the 

Annex (only one additional internal queue representing VMS-mailboxes has been removed 

to simplify the code presented in this paper).  The specification of the Transport entities 

was adapted from a preliminary version of a formal Transport protocol specification 

developed within ISO [NBS 85].  That specification had been adapted for the development 

of a semi-automated implementation and was subsequently further adapted in order to 

obtain a "parameterized" specification [Serr 86b], which has a number of parameters, the 

values of which determine selected implementation options.  Originally developed for the 

purpose of testing [Sari 86b], the parameterized specification is therefore also very suitable 

for simulation studies since different implementation options can be simulated. 

 

The simulation study proceeded through the following phases: 

Phase 1: Network simulation only, 

Phase 2: Basic Transport simulation (no processing overheads), 

Phase 3: Transport simulation with realistic CPU and buffer constraints, 

Phase 4: Transport simulation for the case of packet losses. 

 

In order to have a point of reference from which the performance results of the simulation 

could be validated, it was decided to try to reproduce, through simulation, the behavior of 

the real implementation.  The implementation was also based on the "parameterized" 

specification [Serr 86b] and was running under the VMS operating system on a DEC VAX 

computer, using the Network service provided by the DEC X.25 software over the 

Canadian public packet-switched data network.  The measurements were taken in a 

configuration shown in Figure 6 where all users were on the same computer, and the 

network connection looped back to the computer from the network node to which the latter 

was connected. 
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up to 8 users

Transport protocol entity

VAX-750/computer with VMS op. system

X.25-NS (DEC's PSI)

packet-switched 
network

Figure 6- Configuration for testing Transport implementation.

During phase (1) the performance parameters of the Network simulation were adjusted to 

the Network performance measurements made.  Phase (2) was introduced to validate the 

logical correctness of the simulated formal specification of the Transport protocol.  Phase 

(3) was used to adjust certain PDU utilization and buffer management parameters such that 

the measured Transport performance would be reproduced.  This was possible by 

introducing a single HOLD clause in all transitions of the Mapping module.  Phase (4) gave 

some results for expected performance if packets were lost occasionally.  These results 

were not compared with experiments on a real implementation, since the real network was 

reliable.  Several simulation results indicated quite bad performance for the protocol.  

These results could be used to find ways to introduce essential performance improvements 

for the implementation. 

 

3.2 Selecting the simulation parameters 

 

In order to study the performance aspects of the Transport protocol in a systematic manner, 

the following traffic patterns were selected.  They were used for the simulations, as well as 

for measurements on a real implementation [Serr 86b]. 

(a) a single connection with interactive traffic, 

(b) four multiplexed connections with interactive traffic, 
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(c) a single connection with file transfer traffic, 

(d) four multiplexed connections with file transfer traffic, and 

(e) three connections with interactive traffic and one connection with file transfer 

traffic. 

 

In all cases, a single Network connection was used.  For interactive traffic, an exponential 

data departure rate was assumed, and the data block size was exponentially distributed with 

an average length of about 8 octets.  For file transfer traffic, the data departure rate was 

constant, and the data block size was fixed to 123 octets (which can be sent in a single X.25 

data packet).  A typical simulation measurement involved three simulation runs (with 

different random number seeds) of 500 to 1000 data blocks sent.  In order to allow the 

system to enter a stable situation, the first 64 data blocks were not used for the 

measurements.  The traffic is generated by the user modules, which are specified in Estelle 

using spontaneous transitions with DELAY clauses and random distribution functions. 

 

An important aspect of any simulation system is the collection of results.  Our simulation 

system provided accounting for the occupation of each resource, however, measurements 

for delay and interarrival rates had to be explicitly programmed by including statements in 

the user modules for writing the relevant information on a trace file.  In order to calculate 

delays, each data block included a time-stamp containing the time when the block was sent 

by the user module.  In addition, a sequence number was included which was used to check 

the correctness of the error recovery mechanism of the protocol. 

 

3.3 Selecting realistic performance parameters 

 

The simulation performance parameters were adjusted to reproduce the characteristics of 

the real Transport implementation shown in Figure 6.  In addition to the measurements of 

delay and interdeparture and interarrival rate, the measurements on the implementation also 

included the determination of CPU usage by the Transport protocol task. 

 

In Phase (1), the Network parameters were adjusted.  Since our implementation used a 

relatively slow network access line (2400 bits per second), a flow control window of 2, and 

the loop-back network connection shown in Figure 6, it could be assumed that the 

Propagation_delay and Propagation_hold values (see lines 20-23 of the Annex) are 

negligible compared to the corresponding values at the network access interface.  The 
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Interface_delay value was determined by measuring the transmission delay of data blocks 

exchanged between user tasks directly connected to the Network service (without the 

intervention of the Transport protocol task).  The Interface_hold value was determined by 

measuring the maximum throughput obtainable by the implementation.  The following 

values (in milli-seconds) were obtained, assuming a linear dependency on the size of the 

data blocks:  

Interface_delay = 120 + n * 5.2 

Interface_hold = 60 + n * 3.6 

where n is the number of octets in the data block.  The hold value corresponds to a little 

over 80% utilization of the network access line, which corresponds to 100% if one 

considers the transmission overhead of the X.25 packet and link layers. 

 

These obtained network performance parameters were used in all the subsequent phases of 

the simulation study.  The processing delay of the Transport entity was assumed to be zero 

during Phase 2, while during Phase 3, an attempt was made to adjust the performance 

parameters of the Transport entity in the simulation to match the measured performance of 

the implementation. 

 

In order to simplify the performance simulation, we assumed that the processing delay of 

the Transport entity is located in a few transitions only.  As shown in Figure 5, each entity 

contains a Mapping module which looks after the multiplexing and coding of the PDU's, 

and one ATP module for each active Transport connection (for more details, see for 

example [Boch 90a]).  We assumed for the simulation that all transitions of the Mapping 

module involve the same processing delay (independently of the size of the data block, 

since data buffers are referenced, not copied), and that the transitions of the ATP modules 

have no processing delay.  With this assumption, the measurements lead to a processing 

time of 175 milli-seconds for each Map transition.  However, there is an additional 

processing delay which is due to the fact that the CPU of the computer is time-shared with 

other operating system tasks.  Since the operating systems used a CPU quota of 200 milli-

seconds (maximum time a task can keep the CPU), we obtain a Hold time for the Map 

transitions equal to 

Map_hold = 175 + DRAW (0.6*(175/200)) * 200 

We assume here that the Transport entity has always input to process (see Section 3.5.2) 

and that 175/200 of the time the processing of an input extends to the next time slot.  The 

CPU utilization by other processes has been measured to be 60%; this implies that 

(175/200)*60% of the time the Transport entity has to wait for another time slot because 
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the CPU is seized by another process. 

 

3.4 Typical simulation results 

 

Simulations were executed for each of the five cases mentioned in Section 3.2.  About three 

to ten simulations for each case and set of parameters were sufficient to get reproducible 

results.  They were long simulation executions of many thousands of messages (usually 

1000 messages sent for each user).  In order to obtain results for stationary system states, 

the first hundred of messages in each simulation were not accounted for.  Graphs were 

made showing the relation between the number of message sent per second and their end-

to-end delay, and the resources usage. 

 

Initially, as the rate at which messages are submitted is increased, the message throughput 

(departure rate) increases.  However, there is an upper limit to throughput (around 1 

message/second in Figure 7).  Figure 8 shows the CPU to be the bottleneck: CPU utilization 

is proportional to the throughput and reaches 100% for the observed maximum throughput.  

As could be expected from queuing theory, the transmission delays increase exponentially 

as the utilization of the CPU reaches 100% (see Figure 7).  Figures 9 and 10 for the case of 

four users are quite different than the ones for a single user.  There is still a maximum 

throughput around 1/4 message/sec/user (or 1 message/user overall), but attempts to 

increase throughput by increasing submission rates only results in lower throughput 

(around 0.6 messages/sec). 

 

Further study showed this phenomenon to be the result of the flow control mechanism.  In 

our case, each user was allowed 16 credits: that is he could have a maximum of 16 unsent 

messages waiting in the system queues.  After that he would be allowed to provide a 

message only when one had effectively been sent.  When a system is saturated, the delay 

through the system is directly proportional to the queue length.  In our case, with one user 

we saturate with 16 messages in the system but with four users, there are 64 messages and 

delays are four times greater for submitted messages.  This difference becomes significant 

because with longer delays, retransmissions due to time-out were activated, thus increasing 

congestion even further.  Note that in all cases the CPU proved to be the bottleneck with 

100% utilization at saturation.  The drop in throughput at saturation for the four users case 

from 1 message/sec to 0.6 message/sec would suggest that 40% of all transmissions were 
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duplicated messages. 
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Figure 8- TP4 with one user and short messages: 
throughput vs resource utilization 
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 23

0.00 0.04 0.08 0.12 0.16 0.20 0.24

0

20

40

60

80

100

throughput (mess./s)

re
so

u
rc

es
 (

%
)

CPU

NSAP

Figure 10- TP4 with four users and short messages: 
throughput vs resource utilization 

3.5 Lessons learned 

From our experiments, we noted two areas for which the simulation studies were 

particularly useful. 

 

3.5.1. Testing the logical aspects of the formal specification 

 

A formal specification of a protocol (or any other system of interest) must be validated.  In 

the case of executable specifications, one approach to validation is the execution of test 

scenarios.  The semi-automatic implementation approach described in [Boch 87h] can be 

used to obtain executable programs directly based on the formal specifications.  In fact, the 

Transport implementation mentioned above was obtained in such a manner.  It was partly 

debugged through the execution of a certain number of test executions.  A similar, but more 

flexible, debugging environment is provided by the simulation system. 

 

During Phase 2 of the simulation study, several errors of the formal Transport specification 

were detected.  In fact, the specification had not been completely debugged during the 

previous implementation experiments, especially not for the case of multiplexing.  Two 
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kinds of logical errors were detected: specification errors and implementation errors.  The 

debugger of the VMS operating system was used to debug the TP-4 within the simulation 

program.  After adapting certain key functions of the debugger for the FDT program, it 

turned out that the so created environment was very useful for debugging the Transport 

specification. 

 

Our experience shows that the simulation environment is more suitable for debugging a 

specification than a standard testing environment.  In particular, a simulation environment 

with simulated performance parameters allows these parameters to be changed in such a 

manner that execution scenarios are obtained which would usually not occur in a real 

implementation.  For instance, we tested the behavior of the Transport entity in the 

presence of certain time-outs which would seldom (or never) happen in our real 

implementation. 

 

3.5.2.  Understanding the performance issues of the implementation 

 

As could be expected, the simulation studies underlined certain problem areas in the 

implementation of the Transport protocol.  Again, the ease of changing the parameters in 

the specification was a key factor for the success of the simulation approach.  The identified 

problem areas included: 

 

(1) Retransmission time-out and/or credits: The simulated system (and the implementation) 

allows for very large buffers between the user and the Transport entity, as well as between 

the Transport entity and the Network service.  With 4 parallel Transport connections and 16 

credits per connection, it was therefore possible to send 64 data PDU's at once into the 

Network layer.  Because of the slow speed of the network access line, a certain number of 

these PDU's did not arrive at the remote site before the retransmission timer expired, thus 

generating more data PDU's to be transmitted.  As mentioned previously, when the system 

is saturated, the transit time is directly proportional to the queue length.  Adding credits 

means that more messages are stored in internal queues increasing delays to the point where 

time-outs occur (compounding the problem).  This can only be prevented by adjusting the 

retransmission time-out, or the number of credits, to the transmission speed of the Network 

connection and the number of simultaneous Transport connections.  This potential problem 

was identified during Phase (2) of the simulation. 
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(2) CPU bottleneck: As Figures 8 and 10 show, the CPU utilization reaches 100% when the 

traffic increases (difference between the two curves is explained in Section 3.4).  This was 

a surprise to us, since we expected that the network access line would be the bottleneck.  

This lead us to consider performance improvements in the Transport implementation, in 

particular the reduction of spontaneous transitions to be checked after each executed 

transition, and the introduction of priorities for transitions, which should lead to checking 

the more probable transitions first. 

 

(3) Improving error recovery: During Phase (4) of the simulation, the Transport protocol 

was tested for the case that PDU's are lost in the Network.  This situation never occurred in 

our real implementation.  As a result, a few specification errors and implementation choices 

were rectified. 

 

4. Conclusions 

 

The advantages of protocol simulation before implementation (or after) are numerous.  First 

the use of one specification in FDT (the same as for the real implementation) allows us to 

make simultaneous corrections or modifications to both the real implementation and the 

simulated one.  Compared with traditional queuing model or other analytical models, the 

simulation approach described here allows for a more representative and realistic modeling 

of the systems under investigation, and therefore provides a more accurate view of what 

really happens.  An added bonus is the simulation environment which can also be used for 

easy debugging which should lead to the situation where most of the implementation errors 

can be corrected before trying the system in the real world.  Also some adjustments and 

improvements to enhance performance can be made more easily. 

 

Our experiments with the TP-4 implementation showed the CPU to be the main bottleneck, 

and other areas for improvement were also found.  After these tests, results were made 

available to the designer of the TP-4 implementation (Jean-Marc Serre).  He could easily 

point out the deficiencies that follow.  First, credit allocation could be more intelligent and 

depends on the number of users and network connections (and not be constant).  Some 

transitions in the finite state machine should have some priority and be checked first: this 

could improve a lot CPU time processing.  And flow control between Transport Protocol 

and adjacent layer could be much more efficient by reducing credit given to a user of 

Transport depending on how many users or what kind of users they are.  Then timer 
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adjustment could be made and improve results significantly. 

 

At the end, some simulations were done with a Transport losing blocks over Network 

service.  After debugging the Transport implementation, it proved to be quite reliable: no 

data was lost, but throughput was reduced. 

 

Thus, we conclude that simulation should be an integrated part of the testing of any 

protocol.  In our case (Transport class 4), it proved to be essential for the correctness and 

efficiency of the implementation. 
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Annex: Network Service specification 
  1 
  2    type 
  3       Side_type = (A, B); (* left and right side on figure 4 *) 
  4       Msg_body = ...; 
  5   
  6    channel NS_primitives( N_user, N_provider ) ; 
  7    by N_user : 
  8        N_CONNECT_req; 
  9        N_ACCEPT_req; 
 10        N_DATA_req( Msg : Msg_body ) ; 
 11      
 12    by N_provider : 
 13        N_CONNECT_ind; 
 14        N_ACCEPT_ind; 
 15        N_DATA_ind( Msg : Msg_body ); 
 16    end NS_primitives ; 
 17     
 18    (* Declaration part of primitives used to evaluate queue delays and 
 19       hold times on resource *) 
 20    function Interface_delay: integer; primitive; 
 21    function Propagation_delay: integer; primitive; 
 22    function Interface_hold:  integer; primitive; 
 23    function Propagation_hold: integer; primitive; 
 24   
 25   
 26    module  Network_service; 
 27      
 28       ip 
 29        NSAP: array [ Side_type ] of NS_primitives( N_provider ) 
 30     individual queue 
 31     fifo delay Interface_delay; 
 32      (* delay going out through NSAP *) 
 33   
 34    end; (* of module header definition *) 
 35                       
 36                                             
 37    body Network_body for Network_service; 
 38     
 39    ip 
 40    (* internal ip *) 
 41   Transit: array [ Side_type ] of NS_primitives( N_user ) 
 42     individual queue 
 43     fifo delay Propagation_delay; 
 44      (* propagation delay in Network *) 
 45     
 46    var 
 47      (* Resources *)                                  
 48      Propagation_resource: array [ Side_type ] of resource; 
 49      Incoming_NSAP_resource:array [ Side_type ] of resource; 
 50   
 51    state   Idle, Opening, Open, Close; 
 52   
 53    (* Function definition part *) 
 54    function Opposite (side: Side_type): Side_type; 
 55      begin 
 56      if side = B then Opposite := A 
 57                  else Opposite := B 
 58      end;         
 59    
 60    (* Initialization *) 
 61    initialize to Idle 
 62      begin 
 63      all side: Side_type do 
 64        begin 
 65        Propagation_resource[side] := newresource('Propagation resource', 1); 
 66        Incoming_NSAP_resource[side] := newresource('NSAP resource', 1) 
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 67        end 
 68      end; 
 69   
 70   
 71    (* DATA transitions: ------------ *) 
 72    TRANS 
 73    any side: Side_type do 
 74    when NSAP[ side ].N_DATA_req (* msg *) 
 75    from Open to Same 
 76    hold Incoming_NSAP_resource[ side ] for Interface_hold 
 77      begin 
 78      output Transit[ side ].N_DATA_req(Msg); 
 79      end;     
 80     
 81    TRANS 
 82      any side: Side_type do 
 83      when Transit[ side ].N_DATA_req  (* msg *) 
 84      from Open to Same 
 85      hold Propagation_resource [side] for Propagation_hold 
 86        begin 
 87        output NSAP[ Opposite(side) ].N_DATA_req(Msg); 
 88        (* There will be a Hold on the resource Outgoing_NSAP_resource[ side ] 
 89           for Interface_hold when this signal arrives at the Network User. *) 
 90        end; 
 91     
 92     
 93    (* Control transitions: --------------- *) 
 94     
 95    TRANS 
 96      any side: Side_type do 
 97      when NSAP[ side ].N_CONNECT_req 
 98      from Idle to Opening 
 99        begin                                            
100        output NSAP[ Opposite(side) ].N_CONNECT_ind; 
101        end ;             
102                      
103    TRANS 
104      any side: Side_type do 
105      when NETWORK[ side ].N_ACCEPT_req 
106      from Opening to Open 
107        begin                        
108        output NSAP[ Opposite(side) ].N_ACCEPT_ind; 
109        end ; 
110     
111    (* ... OTHER TRANSITIONS FOR NETWORK OPERATIONS ... *) 
112    
113    end; (* Network_body *) 


