
Information Processing Letters 44 (1992) 333-343

North-Holland
28 December 1992

Failure-equivalent transformation of
transition systems to avoid internal actions *
Gang Luo, Gregor v. Bochmann, Anindya Das and Cheng Wu
Dt!partement d’lnformatique et de Recherche Opt+ationelle, Universith de Montrkzl, Mont&al, Q&bee, Canada WC 3.V

Communicated by F. Dehne * *

Received 31 October 1991

Revised 24 July 1992

Abstract

Luo, G., G. v. Bochmann, A. Das and C. Wu, Failure-equivalent transformation of transition systems to avoid internal

actions, Information Processing Letters 44 (1992) 333-343.

Labelled transition systems are often used as a theoretical framework for modelling communication protocols or distributed

software systems. In order to model the deadlock properties of the systems, the internal transitions of the submodules are

often represented globally by so-called internal actions. However, certain verification and testing methods assume that the

specification of the system is given in the form of a transition system without internal actions. This paper shows that most

labelled transition systems with internal actions can be transformed into a failure-equivalent labelled transition system

without internal actions. A sufficient condition is given, and an algorithm is described which does the transformation for any

transition system which satisfies the condition. This algorithm can be applied to use the above verification and testing

methods also for specification including internal actions.

Keywords: Algorithms; software validation; process algebra; labelled transition system; failure equivalence; LOTOS

1. Introduction

Labelled transition systems (LTSs) are often
taken as the basis for communication software
specifications [1,3]. LOTOS [l], a communication

Correspondence to: G. Luo, Departement d’Informatique

et de Recherche Operationelle, Universite de Montreal, C.P.
6128, Succ. A, Montreal, Quebec, Canada H3C 357. Email:

luo@iro.umontreal.ca.

* This work was supported by the IDACOM-NSERC-

CWARC Industrial Research Chair on Communication Pro-
tocols at the University of Montreal, Canada.

** Editor’s Note: In the course of revisions requested by
the Reviewers the length of this paper grew beyond the usual

IPL limits. Any subsequent reduction would have impaired
the presentation, thus I decided to publish the paper in
extenso. This should not be construed as an indication of any

cange of the editorial policy on the length of papers as
specified in the “Instructions for Authors” (p. 3 of the covers).

software specification language, is based on LTSs.
Due to their concise and well-defined mathemati-
cal formulation, many methods in the area of
testing and verification are also based on LTSs
[2,4,7] and LOTOS [9,10]. Znternal actions (spon-
taneous transitions) in LTSs are very useful fea-
tures for protocol specification and are often
used to represent many protocol features ab-
stractly 191, for instance to model the acknowl-
edgement policies in a transport protocol. Inter-
nal actions also are used to model “time-out”
features in communication protocols. The compo-
sition of several LTSs which communicate with
one another when viewed as a single module also
gives rise to internal actions. The usefulness of
internal actions (spontaneous transitions) in rep-
resenting many different features in an abstract
and concise manner has led to its inclusion in the

0020.0190/92/$05.00 0 1992 - Elsevier Science Publishers B.V. All rights reserved 333

Volume 44, Number 6 INFORMATION PROCESSING LETTERS 28 December 1992

next version of CCITT SDL [12]. However, inter-
nal actions in LTSs often give rise to situations
which are difficult to deal with when verification
and testing are considered. Therefore, some exist-
ing methods and tools do not consider internal
actions. For example, the testing method given in
[7] only considers finite LTSs without internal
actions. CSP [8] also does not consider internal
actions. An approach solving this problem is to
develop transformation methods which can trans-
form LTSs with internal actions to LTSs without
internal actions which preserve certain equiva-
lence relations. We consider in this paper only
finite LTSs; and a finite representation of pro-
cesses without value-passing expressed in some
process algebra, e.g. CCS, is given by a systematic
construction of the corresponding automata [13].

Many relations of LTSs are presented [2,31 to
answer the question of what is conformance be-
tween specifications and their implementations.
We study in this paper the transformation which
preserves failure equivalence [2,5,6], an equiva-
lence relation which is particularly interesting in
testing [7]. We first show that there does not exist
any algorithm which can transform all possible
LTSs with internal actions to failure-equivalent
LTSs without internal actions, but we find that an
LTS can be transformed into failure-equivalent
LTSs without internal actions if its initial state is
stable. A state is said to be stable if no internal
action starts from it. We also present a method to
transform an LTS with internal actions into a
failure-equivalent LTS without internal actions
under the condition that the initial state is stable.
We note that this condition is not a stringent
condition in practice.

The transformation described in this paper can
be used to extend the test selection method of [7].
[7] presents a method to generate test sequences
from nondeterministic machine of specifications
(which are modeled by LTSsj in order to test the
implementations. The method assumes, however,
that there are no internal actions in the nonde-
terministic specifications. Combined with our
transformation approach, the method of [7] can
be extended to test cases selection for nondeter-
ministic finite state machines with internal ac-
tions, by first transforming the specification into

334

an equivalent specification without internal ac-
tions. This transformation method may also be
used in the area of protocol verification [l l] where
the result is often achieved for the LTSs without
internal actions.

The rest of the paper is organized as follows.
Section 2 introduces the basic definitions and
notations used in this paper. Section 3 presents
the transformation algorithm; the correctness of
the algorithm is proved in the Appendix.

2. Basic definitions and notations

In this section, we introduce some basic defini-
tions and notations. We first give the definition of
LTSs [1,7,141.

Definition. Labelled transition system (L TS j. An
LTS is defined as a 4-tuple (St, L, T S,), where

(1) St is a non-empty set of states,
(2) L is a set of observable actions,
(3) T={-+” I +F : St X St and p E L U {i}) (i

is an internal action),
(4) S, in St is the initial state of the system.

We write P +lr P’ for a pair of states P and
P’ that belongs to the relation -+fi ; it is also
called a transition. +’ represents internal, non-
observable transitions [1,2].

We use the notation shown in Table 1 for
transitions and sets of observable and non-ob-
servable transitions that are relevant within a
given LTS.

The following definitions of refusal function
and failure equivalence are given in the form of
[14]. For the sake of convenience, we also use
LTS names to represent their initial states in the
rest of the paper.

Definition. Refusal function of an LTS S. The
refusal function of an LTS S, R : L* --)
powerset(powerset(L >>, is defined for each u in
L* by:

R(a)={AIA~L,and3P~Stsuchthat

S-“P andVaEA, Pa’}.

Volume 44, Number 6 INFORMATION PROCESSING LETTERS 28 December 1992

Table 1

Notation for labelled transition systems
3. Algorithm of transformation

notation meaning

set of observable actions; a, h, c,. denote

elements of L
set of strings over L; CT denotes such strings

L U (i}; p denotes elements of L’
set of states; A, B, C,.. ., I, P, Q and S denote

such states
there exist Pk for 0 < k c n such that
p=p,,+‘“‘p,... +““f’,=Q

there exists Q such that P +wl,..FL. Q
no Q exists such that P **l”.Fri Q
P -“‘Q (1 4 n) or P = Q (note: i” means n

times i)
there exist P,, Pz such that

P =)’ P, --fa P2 at Q
there exist P,_ for 0 < k G n such that
p = p,, **I p, jar, P, = Q

P-‘I-- “,I, with (~=a,...a,,

there exists Q such that P -“Q
no Q exists such that P -“Q

For specification-based testing, one should an-
swer the question of what is the relation between
a valid implementation F and its specification S.
The relation is based on the following two intu-
itive notions: (1) everything that F does must be
allowed by S and (2) everything prescribed by S
should be implemented in F. The failure equiva-
lence given below is a formalization of the no-
tions [2,5,6].

Definition. Failure equivalence (or Testing Equiv-
alence). The failure equivalence relation between
two LTSs F and S holds iff for every (T in L”,

RF(U) = Rs(a>.

In order to facilitate the presentation of our
method, we require the following notations. An
LTS-Graph is a labelled directed graph of an
LTS where each node is labelled by a state name,
each edge is labelled by an action name, and if
P --)K Q then there is an edge from P to Q with
label p. Figure 1 shows an example of LTS-
Graphs. An i-Path is a directed path with all of
its edges labelled with i.

3.1. General idea of the transformation

In order to transform an LTS-Graph into a
failure-equivalent LTS-Graph without internal
actions we proceed in the following manner. We
first eliminate all directed cycles of edges labelled
i. This is done by repeatedly replacing the nodes
in a cycle thus identified by a single node. All
incoming and outgoing edges of the nodes in the
cycle are now attached to the node replacing
them: Once all directed cycles of edges labelled i
have been eliminated, we proceed to the second.
phase.

In the second phase, we first remove redun-
dant edges labelled i. An edge labelled i between
nodes A and B is redundant if there exists
another distinct path between A and B consist-
ing only of edges labelled i. We then identify an
i-Path and remove the last edge labelled i on this
path, adding additional edges as follows. Let A
and B be the head and the tail of the last edge
on the i-Path. To each incoming edge of A we
add an incoming edge to B and to each outgoing
edge of B we add an outgoing edge to A. This
last step is repeated until all edges labelled i are
removed. The transformation procedures are
given in Algorithms 1 and 3. Figure 1 shows a
simple example to illustrate the idea of the trans-
formation.

3.2. Impossibility of transformation in certain cases

It must be noted that there exist LTS-Graphs
for which no failure-equivalent LTS-Graphs with-
out internal actions can be found. An example of

0
Fig. 1. An example to illustrate the transformation.

Volume 44, Number 6 INFORMATION PROCESSING LETTERS 28 December 1992

Fig. 2. An LTS (L ={a, b)) without any failure-equivalent

LTS without i.

such an LTs-Graph which does not have an
equivalent LTS-Graph without internal actions is
shown in Fig. 2. We present the argument as
follows.

Assume on the contrary that we have a
failure-equivalent LTS-Graph F for the LTS-
Graph S in Fig. 2. From the example in Fig. 2,
we have

R,(E) =powerset({b)).

Since both of R,(a) and R,(b) are not empty,
neither R,(a) nor R,(b) should be not empty.
Therefore we have F _a and F db. Further-
more, since there is not any i in F we have F +’

and F-b , which means

RF(E) = t { 1 1.
Therefore, RS(~) is not equal to RF(&), which is
contrary to our assumption that S and F are
failure-equivalent.

On the other hand, for a finite LTS, if the
initial state S, is stable then our algorithm is
guaranteed to find a failure-equivalent LTS with-
out internal actions.

Fig. 3. An example to illustrate Algorithm 1

3.3. Algorithm

Fig. 4. An i-Qcle.

We consider only finite LTSs. Given an LTS-
Graph, the following algorithm removes all di-
rected cycles in which each edge is labelled i

(i-Cycles>.

Algorithm 1. i-Cycle elimination.
Input: LTS-Graph.
Output: LTS-Graph which does not contain any

i-cycle.
Step 1: Find an i-Cycle in the LTS-Graph. Elimi-

nate all edges of the i-Cycle, and collapse all
nodes in the i-Cycle to form a single node.

Step 2: Repeat Step 1 until all i-Cycles are elimi-
nated.

Step 3: Find an edge labelled i such that both
the tail and head nodes have only one outgo-
ing edge respectively. Eliminate the edge, and
collapse the tail and head to form a single
node.

Step 4: Repeat Step 3 until no progress can be
made.

[End of algorithm].

As an example, we consider the LTS-Graph
shown in Fig. 3 which contains an i-Cycle (Fig. 4).
Figure 5 shows the failure-equivalent LTS with-
out any i-Cycle. Steps 3 and 4 are used to reduce
the complexity of the algorithm; the algorithm
can work correctly even without Steps 3 and 4.

Fig. 5. The result obtained by applying Algorithm 1.

336

Volume 44, Number 6 INFORMATION PROCESSING LETTERS 28 December 1992

Fig. 6. An LTS with I!, = (a, b, c, d, e, f, gl.

Theorem 2. The LTS-Graph resulting from the
application of Algorithm 1 is failure-equivalent to
the original LTS-Graph. Algorithm 1 terminates
after a finite number of steps.

For the proof see the Appendix.

Algorithm 3. LTS transformation.
Input: LTS-Graph without i-Cycle.
Output: LTS-Graph without i.

Condition of applicability: The initial state S,, is a
stable state.

Step 1: Find an edge labelled i, say “e”, for which
there exists an i-Path having same starting
node and ending node as “e” and not contain-
ing “e”; then delete the “e”. Repeat this oper-
ation until no progress can be made (for exam-
ple, according to Step 1, we obtain the result
in Fig. 7 from Fig. 6 by deleting the edge from
D to B).

Fig. 7. The LTS of Fig. 6 transformed after Step 1 of Algo-

rithm 3.

Fig. 8. The LTS of Fig. 6 transformed after Step 4 of Algo-

rithm 3.

Step 2: Find an edge with i, say “e”, with tail A
and head B, such that there is no outgoing
edge labelled i from B.

Step 3: Delete the edge “e” found in Step 2.
Step 4: For every edge from some node P to A

with label p, add an edge labelled p from P

to B. (For example, we can obtain the LTS-
Graph of Fig. 8 from the LTS-Graph of Fig. 7
by applying Steps 1, 2, 3 and 4.)

Step 5: If A does not have any outgoing edge
labelled i after the edge e is deleted in Step 3,
then for every edge from B to some node P
with label k, add an edge labelled p from A
to P. (Figure 9 shows the LTS-Graph obtained
from the LTS-Graph in Fig. 8 by applying Step

5.)
Step 6: Repeat Steps l-5 until there are no edges

labelled i in the resulting LTS-Graph.
[End of algorithm].

Fig. 9. The LTS of Fig. 6 transformed after Step 5 of Algo-

rithm 3.

337

Volume 44. Number 6 INFORMATION PROCESSING LETTERS 28 December 1992

We make the following observations regarding
Algorithm 3. Step 1 is used merely to reduce the
complexity of the algorithm; the algorithm can
work correctly even without Step 1. Step 4 en-
sures that if a u in L* can cause a deadlock
before the transformation, then v can also do so
after the transformation. Step 5 ensures that if a
Q in L* cannot cause a deadlock before the
transformation, the u cannot also cause a dead-
lock after the transformation. If the A still has
some outgoing edges labelled i after the edge e is
deleted in Step 3, no edges will be added in Step
5.

We show that Step 4 and 5 do not produce any
i-Cycle. Since all edges introduced in Step 4 end
in B and there is no i-Path starting from B, Step
4 does not introduce any new i-Cycle. Since there
is no i-Path starting from B, Step 5 does not
introduce any new edge labelled i.

Theorem 4. The LTS-Graph resulting from the
application of Algorithm 3 is failure-equivalent to
the original LTS-Graph. Algorithm 3 terminates
after a finite number of steps.

See the Appendix for a proof.
By applying Algorithm 1 and Algorithm 3,

under the condition of applicability of Algorithm
3, we can transform a given LTS with internal
actions to a failure-equivalent LTS without inter-
nal actions.

4. Conclusion

By using Algorithm 1 and Algorithm 3, we can
transform all LTSs with internal actions, except
for those having internal actions from their initial
states, to the failure-equivalent LTSs without in-
ternal actions. In order to take advantage of this
method, people should be encouraged to use
LTSs without internal actions from the initial
states. We consider in the paper the failure-
equivalent transformations to avoid internal ac-
tions. Further work is needed for transformation
algorithms to avoid internal actions concerning
the other equivalence relations [3,14], such as
bisimulation equivalence.

338

Appendix

In order to prove Theorems 2 and 4, we re-
quire the following definitions.

Definition. S-after-u. S-after-u is a set of states
which can be reached by applying sequence u
starting from state S. Let u E L*, S E St; we have

S-after-u = {P j P E St and S *(T P} .

For the example in Fig. 9, S,,-after-a = (A, B}.
We now give in the following a so-called Node
refusal function of an LTS.

Definition. Node refusal function of an LTS S.
The node refusal function of an LTS S, Rn : St +
powerset(powerset(L)), is defined for each state
Q in St by:

Rn(Q) ={AIAcL, 3PEQ-after-e

such that (Va EA, P *a)).

Lemma A.l. (a) Zf a given LTS S does not contain
any i-Cycle, then

R%(Q) = U Rn#‘)
PtQ-after-&

U Rns(P).
PE Q-after-e

P is a stable state

(b) The refusal function of a given LTS S can
be presented as follows:

Rs(u) = u Rfls(P).
P E S-after-u

Proof. (Skeleton) (a) From the definition of the
node refusal function, we have

Rns(Q>
= {A (A c L, 3P E Q-after-e such that

3P’ E P-after-s and (Va E A, P’ *U)}

= {A I3P E Q-after-s such that A E Rn,(P)}

= U Rns(P).
P E Q-after-t-

Volume 44, Number 6 INFORMATION PROCESSING LETTERS 28 December 1992

Similarly, it can be proved that

Rn.JQ) = u Rns(P).
Pt Q-after-~

P is a stable state

(b) From the definitions of the refusal func-
tion and the node refusal function, we have

Rs(fl)

= (A / A 2 L, 3P E S-after-v such that

3P’ E P-after-& and (Vu E A, P’ *a)}

= {A IZIP E S-after-a such that A E Rn,(P))

= u Rn,(P). 0
P ES-after-n

Theorem 1. The LTS-Graph resulting from the
application of Algorithm 1 is failure-equicalent to
the original LTS-Graph. Algorithm 1 terminates
after a finite number of steps.

Proof. (Skeleton) Let S be a given LTS-Graph
and F the LTS-Graph after Step 1. Let W be the
set of states in the i-Cycle identified in Step 1, B
the node formed in Step 1. The following can be
proved:

for a state P in S,

if PE W, then Rn,(P) =Rnr(B),

otherwise, Rns(P) = Rn,(P).

Then, by using Lemma A.l(b) it can be proved
that ‘da EL* Rs(a) = R,(a).

By using an approach similar to the above, it
can be proved that Step 3 preserves the failure-
equivalence relation. The termination of the algo-
rithm is easy to prove since a finite number of
edges labelled i are assumed, and that the Steps
1 and 3 decrease the edges labelled i. q

The proof of Theorem 2 consists of two parts:
the proof that the refusal function remains invari-
ant for every (T in L* after applying Algorithm 2,
and the proof of termination of Algorithm 2. In
order to prove Theorem 4, we require the follow-
ing lemmas.

Lemma A.2. Let the LTS-Graph after Step 1 be S
and the LTS-Graph after Steps 3, 4 and 5 be F.
After any single application of Step 2, 3, 4 and 5,
we have

VUEL* S-after-a = F-after-a.

Proof. We prove the lemma in the following two
parts. We assume in the following that S,, is the
initial state of S and F.

Part I. We first show by induction on the length
of a sequence u in L* that the following is true:

P E S-after-u implies P E F-after-u. (1)

Induction base: Let (T be a sequence in L* of
length 0, i.e., u = E. According to the condition of
applicability of Algorithm 3, the initial state of S
is a stable state. Furthermore, it is easy to see
that Algorithm 3 will not add any transition with
an internal action to a stable state. Therefore, we
have

S-after-u = F-after-u = {S,} .

Thus (1) holds for all sequences u in L* of
length 0.

Induction step: Now assume that (1) holds for
all sequences u in Lx of length at most k, k > 0.
Let u = u,.a be a sequence in L* of length
k + 1, and P E F-after-u.

If the edge e found in Step 2 does not lie on
any one of the paths from S to P by applying u,
then (1) holds. Now suppose that the edge e
found in Step 2 lies on one of the paths from S to
P by applying u. Let A and B be the tail and
head respectively of edge e. Two cases occur if
edge e is considered:

Case 1: The last occurrence of the edge e on
this path can be found when u, is applied. From
P E S-after-u,.a, there must be two states C and
D along the path such that

S, *“I C +‘D jF P in S. (2)

From the assumption of Case 1, we have

C+“D*‘P in F. (3)

33’)

Volume 44, Number 6 INFORMATION PROCESSING LETTERS 28 December 1992

According to the induction hypothesis and (21, we
have

C E F-after-u,. (4)

Then, from (3) and (41, it follows that P E F-
after-a,.~.

Case 2: The last occurrence of the edge e on
this path cannot be found when u, is applied. We
have one of the following situations in S:

S” =+O’ A ‘+aA+iB=P, (5)

S,, qcrl A’ +“ B’ dF C +i B = p. (6)

According to the induction hypothesis, for both
situations (5) and (61, we have

S, *(‘I A’ in F. (7)

If (5) occurs then by the elimination of the edge e
in Step 3 and the addition of the edges in Step 4,
we have

A’*“B=P in F. (8)

If (6) occurs, please notice that the edge e must
not be in the portion of the path corresponding
to B’ dF C, since there is not any i-Cycle in S.
Then by the elimination of the edge e in Step 3
and the addition of the edges in Step 4, we have

A’+aB’*E C+‘B=P in F. (9)

From (7), (8) and (9), (1) holds for all sequences
v in L* of length k + ;.

Thus by induction (1) is true for all sequences
u in L*.

Part II. We now show by induction on the length
of a sequence u in L” that the following is true:

P E F-after-o implies P E S-after-a. (10)

Induction base: Let (T be a sequence in L” of
length 0, i.e., u = E. Based on the same argu-
ments as given in the proof of “induction base”
of Part I, we have that: (10) holds for all se-
quences u in L* of length 0.

Znduction step: Now assume that (10) holds for
all sequences u in L* of length at most k, k 2 0.
Let u = u,.u be a sequence in L* of length
k + 1, and P E F-after-u.

340

If no edge introduced in Steps 4 or 5 lies on
any path from F to P by applying u, then (10)
holds. Now suppose that an edge introduced in
Steps 4 or 5 lies on one of the paths from F to P

by applying u. Let e, be the last occurrence of an
edge introduced in Steps 4 or 5 which lies on this
path. Let C and D be the tail and head respec-
tively of edge e,. Similar to the “induction step”
of Part I, two cases occur if edge e, is considered:

Case 1: The edge e, on this path can be found
when u, is applied. Based on the arguments
similar to Case 1 of the “induction step” of Part
I, and from the induction hypothesis, it follows
that P belongs to S-after-a.

Case 2: Otherwise, we have one of the follow-
ing situations in F:

S,*“‘C+“D=P, (11)

S,, dml A’ +* B’ aF C +; D = P. (12)

Suppose (11) occurs. If the edge C -+’ D was
introduced in Step 4, based on the induction
hypothesis, then the following path can be found
in S:

where A -+I D corresponds to the edge elimi-
nated in Step 3 and C +“A is an edge in S. If the
edge C +a D was introduced in Step 5, based on
the induction hypothesis, then the following path
can be found in S:

where C *i B corresponds to the edge eliminated
in Step 3 and B -a D is an edge in S. Thus for
this case (10) holds.

Now suppose (12) occurs. We note that the
edge C +’ D could only have been introduced in
Step 4 since no edge labelled i is introduced in
Step 5. Moreover, from (121, based on the induc-
tion hypothesis, a path S, -ml A’ da B’ can be
found in S. Thus the following path can be found
in S:

Volume 44, Number 6 INFORMATION PROCESSING LETTERS 28 December 1992

where A -+’ D corresponds to the edge elimi-
nated in Step 3 and C +‘A is an edge in S.
Hence for this case (10) holds.

By induction, (10) holds for all u in L*.

From (1) and (lo), the lemma holds. q

Lemma A.3. Let the LTS-Graph after Step 1 be S
and the LTS-Graph after Steps 3, 4 and 5 be F.
After any single application of Steps 2, 3, 4 and 5,
for all (T in L* ,

U Rns(P) = U Rni4Q).
P E S-after-a Q t S-after-a

Proof. Let S-after-a = W, U W,, where
(1) u is in L*,
(2) the states A and B found in Step 2 are in

S-after-a,
(3) W, only contains all states which cannot be

reached from A by i-Paths,
(4) W, only contains all states which can be

reached from A by i-Paths, including A.
Therefore, W, fl W, = (d, and A,B E W,.

Part I. We first show that

PEW, QcW

Consider P E W,. If the P is not the tail of any
incoming edge of A, then Steps 3, 4 and 5 do not
change the outgoing edges of state P; therefore
Rn,(P) = Rn,(P). Otherwise, P is the tail of an
incoming edge of A, Steps 3 and 5 do not change
the outgoing edges of state P, and Step 4 only
adds edges with labels which are the labels of
existing outgoing edges of P; therefore Rn,(P) =
Rn,(P) still holds. Hence, (13) holds.

Part II. We now show that

U bus = U W(Q).
PEW, QEWZ

From Lemma A.l(a), we have

(14)

U Rn,(P) =Rn,(A).
PGW,

(15)

Two cases occur if the outgoing edges of state A
are considered.

Case 1: A has only one outgoing edge labelled
i, which is deleted in Step 3; i.e., W, = {A, B}. In
this case, from Lemma A.l(a), we have

Rn,(A) =Rn,(B). (16)

From W, = (A, B}, we have

Rn,(A) uRnF(B) = U Rn,(P). (17)
PEW,

We now argue

Rn,(B) =Rn,(B). (18)

If the B is not the tail of any incoming edge of
A, then Steps 3, 4 and 5 do not change the
outgoing edges of state B; therefore (18) holds.
Otherwise, B is the tail of an incoming edge of
A, Steps 3 and 5 do not change the outgoing
edges of state B, and Step 4 only adds the edges
with labels which are the labels of existing outgo-
ing edges of B; therefore (18) still holds.

Due to the edges added in Step 5, we have
Rn,(B) xRn,(A). Thus

Rn,(B) =Rn,(B) uRn,(A). (19)

From (15), (16), (17), (18) and (19), it follows that
(14) holds for this case.

Case 2: A has more than one outgoing edges
labelled i. In this case, no edges are added in
Step 5. From Lemma A.l(a), we have

Rn,(A) =Rn,(B) u
i

U Rns(P) .
PEW*-{A,B) i

(20)

From Lemma A.l(a) we also have

u Rn,(P)
PEW,

=RnF(B) URn,(A)

=Rn,(B) U
i

U Rn,(P) .

PEW,-{A,Bl i
(21)

Using arguments which are similar to those given
for (18) in Case 1, we have

Rn,(B) =Rn.(B). (22)

341

[umber 6 INFORMATION PROCESSING LETTERS 28 December 1992

iments which are similar to those given
(13), we have

U Rns(P) = u RnAf?.
PEW,-{A,E) PEW*-L4,B)

(23)

From (1.51, (201, (211, (221 and (231, it follows that
(14) also holds for this case.

Thus (14) holds for all cases. From (13) and
(141, the lemma follows. q

We define two terms in order to prove Lemma
A.4. For LTSs, a maximal i-path terminating at a
state Q is defined to be an i-Path such that it is
not a portion of any other i-Path terminating at
the Q. A function lengths : St --, positive integers,
with St being the state set, is defined as follows:
For Q E St,

lengths (Q) = c the length of p.
p is a maximal i-Path

terminating at Q

Now we prove Lemma A.4.

Lemma A.4 Algorithm 3 terminates after a finite
number of steps.

Proof. Assume sum = EPEst lengths(Q). Since
finite LTSs contain only a finite number of inter-
nal actions, and since no i-Cycles in the LTS
according the condition of application of Algo-
rithm 3, sum is a finite positive integer. It is easy
to see that Steps 1 and 2 do not increase sum.
We now argue that sum is decreased by each
single application of Steps 3, 4 and 5. Let A and
B be the tail and head respectively of the edge
identified in Step 2. Please notice that a single
application of Steps 3, 4 and 5 does not change
the following:

c lengths (Q) .
Q=St-(L?)

However, a single application of Steps 3, 4, and 5
decreases lengths(B). Therefore, sum is de-
creased. According to the definition of sum, sum
will not be less than zero. Therefore, Algorithm 3
terminates after a finite number of steps. q

342

For the example illustrated in Fig. 7 we have,
lengths(B) = 2 + 1 and sum = lengths(B) +
Zengths(A) = (2 + 1) + 1 = 4. After Steps 3, 4 and
5, we obtain the figure shown in Fig. 9 where
sum = lengths(B) + lengths(A) = (1 + 1) + 1 = 3,
decreased by one.

Theorem 4. The LTS-Graph obtained by applying
Algorithm 3 is failure-equivalent to the input LTS-
Graph. Algorithm 3 terminates after a finite num-
ber of steps.

Proof. We divide the proof of the above theorem
into two parts.

Part I. To prove that the refusal function remains
invariant for every (T in L* after applying Algo-
rithm 3. The LTS-Graph is modified only in Steps
1, 3, 4 and 5. Clearly Step 1 does not change the
refusal function. Let the LTS-Graph after Step 1
be S and the LTS-Graph after Steps 3,4 and 5 be
F. From Lemmas A.l(b), A.2 and A.3 we have

VUEL*,

Rs(a) = U &z,(P)= U &z,(P)
PES-after-o PES-after-a

= U Rn,(P) ‘RF(o).
P E F-after-a

Therefore, it proves Part I since Steps 3, 4, and 5
of the algorithm are only used sequentially as a
whole.

Part II. The proof of termination of Algorithm 3.
Lemma A.4 proves Part II. 0

Since Part I and Part II are independent of the
order of choosing edges labelled i, the edge to be
deleted in Step 3 can be chosen arbitrarily.

Acknowledgment

The authors would like to thank Professor
Brinksma and Dr. Pierre de Saqui-Sannes for
helpful discussions, and thank the anonymous
referees for their very useful comments.

Volume 44, Number 6 INFORMATION PROCESSING LETTERS 28 December 1992

References

[l] T. Bolognesi and E. Brinksma, Introduction to the IS0

specification language LOTOS, Comput. Networks ISDN

Systems 14 (1987) 25-59.

[2] E. Brinksma, A theory for the derivation of tests, in: S.

Aggarwal and K. Sabnani, eds., IFIP Protocol Specifica-
tion, Testing and Verification, Vol. VIII (North-Holland,

Amsterdam, 1988) 63-74.

[3] E. Brinksma, On the design of extended LOTOS, Ph.D.

Dissertation, University of Twente, The Netherlands,

1988.

[4] E. Brinksma, R. Alderen, R. Langerak, J. van de Lage-
maat and J. Tretmans, A formal approach to confor-

mance testing, in: J. de Meer, ed., Proc. 2nd Internat.
Workshop on Protocol Testing Systems, Berlin, Germany

(1989) 311-325.

[5] SD. Brookes, C.A.R. Hoare and A.W. Roscoe, A theory

of communicating sequential process, J. ACM 31 (1984)

560-599.

[6] R. De Nicola, Extensional equivalences for transition

systems, Acta Inform. 24 (1987) 211-237.
[7] S. Fujiwara and G. v. Bochmann, Testing nondeterminis-

tic finite state machines with fault coverage, in: J. Kroon,

R.J. Heijink and E. Brinksma, eds., Proc. 4th Internat.

Workshop on Protocol Testing Systems, Leidschendam,

The Netherlands (North-Holland, Amsterdam, 19921

267-280.
[S] C.A.R. Hoare, Communicating sequential processes,

Comm. ACM 21 (1978) 666-677.

[9] K. Naik and B. Sarikaya, Testing Communiction Proto-

cols, IEEE Software (January 1992) 27-37.

[lo] D.H. Pitt and D. Freestone, The derivation of confor-

mance tests from LOTOS specifications, IEEE Trans.
Software Engrg. 16 (12) (1990) 1337-1343.

[ll] P. de Saqui-Sannes and J.P. Courtiat, From the simula-
tion to the varification of Estelle specifications, in: S.T.

Vuong, ed., Proc. IFIP 2nd Internat. Conf on Formal
Description Techniques for Distributed Systems and Com-
munication Protocols (North-Holland, Amsterdam, 1990)

393-407.

[12] SDL Newsletter, December 1991.

[13] D. Taubner, Finite Representations of CCS and TCSP
Programs by Automata and Petri Nets, Lecture Notes in

Computer Science 369 (Springer, Berlin, 1989).

[14] J. Tretmans, Test case derivation from LOTOS specifica-

tions, in: S.T. Vuong, ed., Proc. IFIP 2nd Internat. Conf
on Formal Description Techniques for Distributed Systems
and Communication Protocols (North-Holland, Amster-

dam, 1990) 345-359.

343

