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Abstract 

Luo, G., G. v. Bochmann, A. Das and C. Wu, Failure-equivalent transformation of transition systems to avoid internal 

actions, Information Processing Letters 44 (1992) 333-343. 

Labelled transition systems are often used as a theoretical framework for modelling communication protocols or distributed 

software systems. In order to model the deadlock properties of the systems, the internal transitions of the submodules are 

often represented globally by so-called internal actions. However, certain verification and testing methods assume that the 

specification of the system is given in the form of a transition system without internal actions. This paper shows that most 

labelled transition systems with internal actions can be transformed into a failure-equivalent labelled transition system 

without internal actions. A sufficient condition is given, and an algorithm is described which does the transformation for any 

transition system which satisfies the condition. This algorithm can be applied to use the above verification and testing 

methods also for specification including internal actions. 

Keywords: Algorithms; software validation; process algebra; labelled transition system; failure equivalence; LOTOS 

1. Introduction 

Labelled transition systems (LTSs) are often 
taken as the basis for communication software 
specifications [1,3]. LOTOS [l], a communication 
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software specification language, is based on LTSs. 
Due to their concise and well-defined mathemati- 
cal formulation, many methods in the area of 
testing and verification are also based on LTSs 
[2,4,7] and LOTOS [9,10]. Znternal actions (spon- 
taneous transitions) in LTSs are very useful fea- 
tures for protocol specification and are often 
used to represent many protocol features ab- 
stractly 191, for instance to model the acknowl- 
edgement policies in a transport protocol. Inter- 
nal actions also are used to model “time-out” 
features in communication protocols. The compo- 
sition of several LTSs which communicate with 
one another when viewed as a single module also 
gives rise to internal actions. The usefulness of 
internal actions (spontaneous transitions) in rep- 
resenting many different features in an abstract 
and concise manner has led to its inclusion in the 
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next version of CCITT SDL [12]. However, inter- 
nal actions in LTSs often give rise to situations 
which are difficult to deal with when verification 
and testing are considered. Therefore, some exist- 
ing methods and tools do not consider internal 
actions. For example, the testing method given in 
[7] only considers finite LTSs without internal 
actions. CSP [8] also does not consider internal 
actions. An approach solving this problem is to 
develop transformation methods which can trans- 
form LTSs with internal actions to LTSs without 
internal actions which preserve certain equiva- 
lence relations. We consider in this paper only 
finite LTSs; and a finite representation of pro- 
cesses without value-passing expressed in some 
process algebra, e.g. CCS, is given by a systematic 
construction of the corresponding automata [13]. 

Many relations of LTSs are presented [2,31 to 
answer the question of what is conformance be- 
tween specifications and their implementations. 
We study in this paper the transformation which 
preserves failure equivalence [2,5,6], an equiva- 
lence relation which is particularly interesting in 
testing [7]. We first show that there does not exist 
any algorithm which can transform all possible 
LTSs with internal actions to failure-equivalent 
LTSs without internal actions, but we find that an 
LTS can be transformed into failure-equivalent 
LTSs without internal actions if its initial state is 
stable. A state is said to be stable if no internal 
action starts from it. We also present a method to 
transform an LTS with internal actions into a 
failure-equivalent LTS without internal actions 
under the condition that the initial state is stable. 
We note that this condition is not a stringent 
condition in practice. 

The transformation described in this paper can 
be used to extend the test selection method of [7]. 
[7] presents a method to generate test sequences 
from nondeterministic machine of specifications 
(which are modeled by LTSsj in order to test the 
implementations. The method assumes, however, 
that there are no internal actions in the nonde- 
terministic specifications. Combined with our 
transformation approach, the method of [7] can 
be extended to test cases selection for nondeter- 
ministic finite state machines with internal ac- 
tions, by first transforming the specification into 
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an equivalent specification without internal ac- 
tions. This transformation method may also be 
used in the area of protocol verification [l l] where 
the result is often achieved for the LTSs without 
internal actions. 

The rest of the paper is organized as follows. 
Section 2 introduces the basic definitions and 
notations used in this paper. Section 3 presents 
the transformation algorithm; the correctness of 
the algorithm is proved in the Appendix. 

2. Basic definitions and notations 

In this section, we introduce some basic defini- 
tions and notations. We first give the definition of 
LTSs [1,7,141. 

Definition. Labelled transition system ( L TS j. An 
LTS is defined as a 4-tuple (St, L, T S,), where 

(1) St is a non-empty set of states, 
(2) L is a set of observable actions, 
(3) T={-+” I +F : St X St and p E L U {i}) (i 

is an internal action), 
(4) S, in St is the initial state of the system. 

We write P +lr P’ for a pair of states P and 
P’ that belongs to the relation -+fi ; it is also 
called a transition. +’ represents internal, non- 
observable transitions [1,2]. 

We use the notation shown in Table 1 for 
transitions and sets of observable and non-ob- 
servable transitions that are relevant within a 
given LTS. 

The following definitions of refusal function 
and failure equivalence are given in the form of 
[14]. For the sake of convenience, we also use 
LTS names to represent their initial states in the 
rest of the paper. 

Definition. Refusal function of an LTS S. The 
refusal function of an LTS S, R : L* --) 
powerset( powerset(L >>, is defined for each u in 
L* by: 

R(a)={AIA~L,and3P~Stsuchthat 

S-“P andVaEA, Pa’}. 
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Table 1 

Notation for labelled transition systems 
3. Algorithm of transformation 

notation meaning 

set of observable actions; a, h, c,. denote 

elements of L 
set of strings over L; CT denotes such strings 

L U (i}; p denotes elements of L’ 
set of states; A, B, C,.. ., I, P, Q and S denote 

such states 
there exist Pk for 0 < k c n such that 
p=p,,+‘“‘p,... +““f’,=Q 

there exists Q such that P +wl,..FL. Q 
no Q exists such that P **l”.Fri Q 
P -“‘Q (1 4 n) or P = Q (note: i” means n 

times i) 
there exist P,, Pz such that 

P =)’ P, --fa P2 at Q 
there exist P,_ for 0 < k G n such that 
p = p,, **I p, jar, P, = Q 

P-‘I-- “,I, with (~=a,...a,, 

there exists Q such that P -“Q 
no Q exists such that P -“Q 

For specification-based testing, one should an- 
swer the question of what is the relation between 
a valid implementation F and its specification S. 
The relation is based on the following two intu- 
itive notions: (1) everything that F does must be 
allowed by S and (2) everything prescribed by S 
should be implemented in F. The failure equiva- 
lence given below is a formalization of the no- 
tions [2,5,6]. 

Definition. Failure equivalence (or Testing Equiv- 
alence). The failure equivalence relation between 
two LTSs F and S holds iff for every (T in L”, 

RF(U) = Rs(a>. 

In order to facilitate the presentation of our 
method, we require the following notations. An 
LTS-Graph is a labelled directed graph of an 
LTS where each node is labelled by a state name, 
each edge is labelled by an action name, and if 
P --)K Q then there is an edge from P to Q with 
label p. Figure 1 shows an example of LTS- 
Graphs. An i-Path is a directed path with all of 
its edges labelled with i. 

3.1. General idea of the transformation 

In order to transform an LTS-Graph into a 
failure-equivalent LTS-Graph without internal 
actions we proceed in the following manner. We 
first eliminate all directed cycles of edges labelled 
i. This is done by repeatedly replacing the nodes 
in a cycle thus identified by a single node. All 
incoming and outgoing edges of the nodes in the 
cycle are now attached to the node replacing 
them: Once all directed cycles of edges labelled i 
have been eliminated, we proceed to the second. 
phase. 

In the second phase, we first remove redun- 
dant edges labelled i. An edge labelled i between 
nodes A and B is redundant if there exists 
another distinct path between A and B consist- 
ing only of edges labelled i. We then identify an 
i-Path and remove the last edge labelled i on this 
path, adding additional edges as follows. Let A 
and B be the head and the tail of the last edge 
on the i-Path. To each incoming edge of A we 
add an incoming edge to B and to each outgoing 
edge of B we add an outgoing edge to A. This 
last step is repeated until all edges labelled i are 
removed. The transformation procedures are 
given in Algorithms 1 and 3. Figure 1 shows a 
simple example to illustrate the idea of the trans- 
formation. 

3.2. Impossibility of transformation in certain cases 

It must be noted that there exist LTS-Graphs 
for which no failure-equivalent LTS-Graphs with- 
out internal actions can be found. An example of 

0 
Fig. 1. An example to illustrate the transformation. 
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Fig. 2. An LTS (L ={a, b)) without any failure-equivalent 

LTS without i. 

such an LTs-Graph which does not have an 
equivalent LTS-Graph without internal actions is 
shown in Fig. 2. We present the argument as 
follows. 

Assume on the contrary that we have a 
failure-equivalent LTS-Graph F for the LTS- 
Graph S in Fig. 2. From the example in Fig. 2, 
we have 

R,(E) =powerset({b)). 

Since both of R,(a) and R,(b) are not empty, 
neither R,(a) nor R,(b) should be not empty. 
Therefore we have F _a and F db. Further- 
more, since there is not any i in F we have F +’ 

and F-b , which means 

RF(E) = t { 1 1. 
Therefore, RS(~) is not equal to RF(&), which is 
contrary to our assumption that S and F are 
failure-equivalent. 

On the other hand, for a finite LTS, if the 
initial state S, is stable then our algorithm is 
guaranteed to find a failure-equivalent LTS with- 
out internal actions. 

Fig. 3. An example to illustrate Algorithm 1 

3.3. Algorithm 

Fig. 4. An i-Qcle. 

We consider only finite LTSs. Given an LTS- 
Graph, the following algorithm removes all di- 
rected cycles in which each edge is labelled i 

(i-Cycles>. 

Algorithm 1. i-Cycle elimination. 
Input: LTS-Graph. 
Output: LTS-Graph which does not contain any 

i-cycle. 
Step 1: Find an i-Cycle in the LTS-Graph. Elimi- 

nate all edges of the i-Cycle, and collapse all 
nodes in the i-Cycle to form a single node. 

Step 2: Repeat Step 1 until all i-Cycles are elimi- 
nated. 

Step 3: Find an edge labelled i such that both 
the tail and head nodes have only one outgo- 
ing edge respectively. Eliminate the edge, and 
collapse the tail and head to form a single 
node. 

Step 4: Repeat Step 3 until no progress can be 
made. 

[End of algorithm]. 

As an example, we consider the LTS-Graph 
shown in Fig. 3 which contains an i-Cycle (Fig. 4). 
Figure 5 shows the failure-equivalent LTS with- 
out any i-Cycle. Steps 3 and 4 are used to reduce 
the complexity of the algorithm; the algorithm 
can work correctly even without Steps 3 and 4. 

Fig. 5. The result obtained by applying Algorithm 1. 

336 
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Fig. 6. An LTS with I!, = (a, b, c, d, e, f, gl. 

Theorem 2. The LTS-Graph resulting from the 
application of Algorithm 1 is failure-equivalent to 
the original LTS-Graph. Algorithm 1 terminates 
after a finite number of steps. 

For the proof see the Appendix. 

Algorithm 3. LTS transformation. 
Input: LTS-Graph without i-Cycle. 
Output: LTS-Graph without i. 

Condition of applicability: The initial state S,, is a 
stable state. 

Step 1: Find an edge labelled i, say “e”, for which 
there exists an i-Path having same starting 
node and ending node as “e” and not contain- 
ing “e”; then delete the “e”. Repeat this oper- 
ation until no progress can be made (for exam- 
ple, according to Step 1, we obtain the result 
in Fig. 7 from Fig. 6 by deleting the edge from 
D to B). 

Fig. 7. The LTS of Fig. 6 transformed after Step 1 of Algo- 

rithm 3. 

Fig. 8. The LTS of Fig. 6 transformed after Step 4 of Algo- 

rithm 3. 

Step 2: Find an edge with i, say “e”, with tail A 
and head B, such that there is no outgoing 
edge labelled i from B. 

Step 3: Delete the edge “e” found in Step 2. 
Step 4: For every edge from some node P to A 

with label p, add an edge labelled p from P 

to B. (For example, we can obtain the LTS- 
Graph of Fig. 8 from the LTS-Graph of Fig. 7 
by applying Steps 1, 2, 3 and 4.) 

Step 5: If A does not have any outgoing edge 
labelled i after the edge e is deleted in Step 3, 
then for every edge from B to some node P 
with label k, add an edge labelled p from A 
to P. (Figure 9 shows the LTS-Graph obtained 
from the LTS-Graph in Fig. 8 by applying Step 

5.) 
Step 6: Repeat Steps l-5 until there are no edges 

labelled i in the resulting LTS-Graph. 
[End of algorithm]. 

Fig. 9. The LTS of Fig. 6 transformed after Step 5 of Algo- 

rithm 3. 
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We make the following observations regarding 
Algorithm 3. Step 1 is used merely to reduce the 
complexity of the algorithm; the algorithm can 
work correctly even without Step 1. Step 4 en- 
sures that if a u in L* can cause a deadlock 
before the transformation, then v can also do so 
after the transformation. Step 5 ensures that if a 
Q in L* cannot cause a deadlock before the 
transformation, the u cannot also cause a dead- 
lock after the transformation. If the A still has 
some outgoing edges labelled i after the edge e is 
deleted in Step 3, no edges will be added in Step 
5. 

We show that Step 4 and 5 do not produce any 
i-Cycle. Since all edges introduced in Step 4 end 
in B and there is no i-Path starting from B, Step 
4 does not introduce any new i-Cycle. Since there 
is no i-Path starting from B, Step 5 does not 
introduce any new edge labelled i. 

Theorem 4. The LTS-Graph resulting from the 
application of Algorithm 3 is failure-equivalent to 
the original LTS-Graph. Algorithm 3 terminates 
after a finite number of steps. 

See the Appendix for a proof. 
By applying Algorithm 1 and Algorithm 3, 

under the condition of applicability of Algorithm 
3, we can transform a given LTS with internal 
actions to a failure-equivalent LTS without inter- 
nal actions. 

4. Conclusion 

By using Algorithm 1 and Algorithm 3, we can 
transform all LTSs with internal actions, except 
for those having internal actions from their initial 
states, to the failure-equivalent LTSs without in- 
ternal actions. In order to take advantage of this 
method, people should be encouraged to use 
LTSs without internal actions from the initial 
states. We consider in the paper the failure- 
equivalent transformations to avoid internal ac- 
tions. Further work is needed for transformation 
algorithms to avoid internal actions concerning 
the other equivalence relations [3,14], such as 
bisimulation equivalence. 
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Appendix 

In order to prove Theorems 2 and 4, we re- 
quire the following definitions. 

Definition. S-after-u. S-after-u is a set of states 
which can be reached by applying sequence u 
starting from state S. Let u E L*, S E St; we have 

S-after-u = {P j P E St and S *(T P} . 

For the example in Fig. 9, S,,-after-a = (A, B}. 
We now give in the following a so-called Node 
refusal function of an LTS. 

Definition. Node refusal function of an LTS S. 
The node refusal function of an LTS S, Rn : St + 
powerset(powerset(L)), is defined for each state 
Q in St by: 

Rn(Q) ={AIAcL, 3PEQ-after-e 

such that (Va EA, P *a)). 

Lemma A.l. (a) Zf a given LTS S does not contain 
any i-Cycle, then 

R%(Q) = U Rn#‘) 
PtQ-after-& 

U Rns(P). 
PE Q-after-e 

P is a stable state 

(b) The refusal function of a given LTS S can 
be presented as follows: 

Rs(u) = u Rfls(P). 
P E S-after-u 

Proof. (Skeleton) (a) From the definition of the 
node refusal function, we have 

Rns(Q> 
= {A ( A c L, 3P E Q-after-e such that 

3P’ E P-after-s and (Va E A, P’ *U)} 

= {A I3P E Q-after-s such that A E Rn,( P)} 

= U Rns(P). 
P E Q-after-t- 
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Similarly, it can be proved that 

Rn.JQ) = u Rns(P). 
Pt Q-after-~ 

P is a stable state 

(b) From the definitions of the refusal func- 
tion and the node refusal function, we have 

Rs(fl) 

= (A / A 2 L, 3P E S-after-v such that 

3P’ E P-after-& and (Vu E A, P’ *a)} 

= {A IZIP E S-after-a such that A E Rn,( P)) 

= u Rn,(P). 0 
P ES-after-n 

Theorem 1. The LTS-Graph resulting from the 
application of Algorithm 1 is failure-equicalent to 
the original LTS-Graph. Algorithm 1 terminates 
after a finite number of steps. 

Proof. (Skeleton) Let S be a given LTS-Graph 
and F the LTS-Graph after Step 1. Let W be the 
set of states in the i-Cycle identified in Step 1, B 
the node formed in Step 1. The following can be 
proved: 

for a state P in S, 

if PE W, then Rn,(P) =Rnr(B), 

otherwise, Rns( P) = Rn,( P). 

Then, by using Lemma A.l(b) it can be proved 
that ‘da EL* Rs(a) = R,(a). 

By using an approach similar to the above, it 
can be proved that Step 3 preserves the failure- 
equivalence relation. The termination of the algo- 
rithm is easy to prove since a finite number of 
edges labelled i are assumed, and that the Steps 
1 and 3 decrease the edges labelled i. q 

The proof of Theorem 2 consists of two parts: 
the proof that the refusal function remains invari- 
ant for every (T in L* after applying Algorithm 2, 
and the proof of termination of Algorithm 2. In 
order to prove Theorem 4, we require the follow- 
ing lemmas. 

Lemma A.2. Let the LTS-Graph after Step 1 be S 
and the LTS-Graph after Steps 3, 4 and 5 be F. 
After any single application of Step 2, 3, 4 and 5, 
we have 

VUEL* S-after-a = F-after-a. 

Proof. We prove the lemma in the following two 
parts. We assume in the following that S,, is the 
initial state of S and F. 

Part I. We first show by induction on the length 
of a sequence u in L* that the following is true: 

P E S-after-u implies P E F-after-u. (1) 

Induction base: Let (T be a sequence in L* of 
length 0, i.e., u = E. According to the condition of 
applicability of Algorithm 3, the initial state of S 
is a stable state. Furthermore, it is easy to see 
that Algorithm 3 will not add any transition with 
an internal action to a stable state. Therefore, we 
have 

S-after-u = F-after-u = {S,} . 

Thus (1) holds for all sequences u in L* of 
length 0. 

Induction step: Now assume that (1) holds for 
all sequences u in Lx of length at most k, k > 0. 
Let u = u,.a be a sequence in L* of length 
k + 1, and P E F-after-u. 

If the edge e found in Step 2 does not lie on 
any one of the paths from S to P by applying u, 
then (1) holds. Now suppose that the edge e 
found in Step 2 lies on one of the paths from S to 
P by applying u. Let A and B be the tail and 
head respectively of edge e. Two cases occur if 
edge e is considered: 

Case 1: The last occurrence of the edge e on 
this path can be found when u, is applied. From 
P E S-after-u,.a, there must be two states C and 
D along the path such that 

S, *“I C +‘D jF P in S. (2) 

From the assumption of Case 1, we have 

C+“D*‘P in F. (3) 

33’) 
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According to the induction hypothesis and (21, we 
have 

C E F-after-u,. (4) 

Then, from (3) and (41, it follows that P E F- 
after-a,.~. 

Case 2: The last occurrence of the edge e on 
this path cannot be found when u, is applied. We 
have one of the following situations in S: 

S” =+O’ A ‘+aA+iB=P, (5) 

S,, qcrl A’ +“ B’ dF C +i B = p. (6) 

According to the induction hypothesis, for both 
situations (5) and (61, we have 

S, *(‘I A’ in F. (7) 

If (5) occurs then by the elimination of the edge e 
in Step 3 and the addition of the edges in Step 4, 
we have 

A’*“B=P in F. (8) 

If (6) occurs, please notice that the edge e must 
not be in the portion of the path corresponding 
to B’ dF C, since there is not any i-Cycle in S. 
Then by the elimination of the edge e in Step 3 
and the addition of the edges in Step 4, we have 

A’+aB’*E C+‘B=P in F. (9) 

From (7), (8) and (9), (1) holds for all sequences 
v in L* of length k + ;. 

Thus by induction (1) is true for all sequences 
u in L*. 

Part II. We now show by induction on the length 
of a sequence u in L” that the following is true: 

P E F-after-o implies P E S-after-a. (10) 

Induction base: Let (T be a sequence in L” of 
length 0, i.e., u = E. Based on the same argu- 
ments as given in the proof of “induction base” 
of Part I, we have that: (10) holds for all se- 
quences u in L* of length 0. 

Znduction step: Now assume that (10) holds for 
all sequences u in L* of length at most k, k 2 0. 
Let u = u,.u be a sequence in L* of length 
k + 1, and P E F-after-u. 
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If no edge introduced in Steps 4 or 5 lies on 
any path from F to P by applying u, then (10) 
holds. Now suppose that an edge introduced in 
Steps 4 or 5 lies on one of the paths from F to P 

by applying u. Let e, be the last occurrence of an 
edge introduced in Steps 4 or 5 which lies on this 
path. Let C and D be the tail and head respec- 
tively of edge e,. Similar to the “induction step” 
of Part I, two cases occur if edge e, is considered: 

Case 1: The edge e, on this path can be found 
when u, is applied. Based on the arguments 
similar to Case 1 of the “induction step” of Part 
I, and from the induction hypothesis, it follows 
that P belongs to S-after-a. 

Case 2: Otherwise, we have one of the follow- 
ing situations in F: 

S,*“‘C+“D=P, (11) 

S,, dml A’ +* B’ aF C +; D = P. (12) 

Suppose (11) occurs. If the edge C -+’ D was 
introduced in Step 4, based on the induction 
hypothesis, then the following path can be found 
in S: 

where A -+I D corresponds to the edge elimi- 
nated in Step 3 and C +“A is an edge in S. If the 
edge C +a D was introduced in Step 5, based on 
the induction hypothesis, then the following path 
can be found in S: 

where C *i B corresponds to the edge eliminated 
in Step 3 and B -a D is an edge in S. Thus for 
this case (10) holds. 

Now suppose (12) occurs. We note that the 
edge C +’ D could only have been introduced in 
Step 4 since no edge labelled i is introduced in 
Step 5. Moreover, from (121, based on the induc- 
tion hypothesis, a path S, -ml A’ da B’ can be 
found in S. Thus the following path can be found 
in S: 
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where A -+’ D corresponds to the edge elimi- 
nated in Step 3 and C +‘A is an edge in S. 
Hence for this case (10) holds. 

By induction, (10) holds for all u in L*. 

From (1) and (lo), the lemma holds. q 

Lemma A.3. Let the LTS-Graph after Step 1 be S 
and the LTS-Graph after Steps 3, 4 and 5 be F. 
After any single application of Steps 2, 3, 4 and 5, 
for all (T in L* , 

U Rns(P) = U Rni4Q). 
P E S-after-a Q t S-after-a 

Proof. Let S-after-a = W, U W,, where 
(1) u is in L*, 
(2) the states A and B found in Step 2 are in 

S-after-a, 
(3) W, only contains all states which cannot be 

reached from A by i-Paths, 
(4) W, only contains all states which can be 

reached from A by i-Paths, including A. 
Therefore, W, fl W, = (d, and A,B E W,. 

Part I. We first show that 

PEW, QcW 

Consider P E W,. If the P is not the tail of any 
incoming edge of A, then Steps 3, 4 and 5 do not 
change the outgoing edges of state P; therefore 
Rn,(P) = Rn,(P). Otherwise, P is the tail of an 
incoming edge of A, Steps 3 and 5 do not change 
the outgoing edges of state P, and Step 4 only 
adds edges with labels which are the labels of 
existing outgoing edges of P; therefore Rn,( P) = 
Rn,(P) still holds. Hence, (13) holds. 

Part II. We now show that 

U bus = U W(Q). 
PEW, QEWZ 

From Lemma A.l(a), we have 

(14) 

U Rn,(P) =Rn,(A). 
PGW, 

(15) 

Two cases occur if the outgoing edges of state A 
are considered. 

Case 1: A has only one outgoing edge labelled 
i, which is deleted in Step 3; i.e., W, = {A, B}. In 
this case, from Lemma A.l(a), we have 

Rn,(A) =Rn,(B). (16) 

From W, = (A, B}, we have 

Rn,(A) uRnF(B) = U Rn,(P). (17) 
PEW, 

We now argue 

Rn,(B) =Rn,(B). (18) 

If the B is not the tail of any incoming edge of 
A, then Steps 3, 4 and 5 do not change the 
outgoing edges of state B; therefore (18) holds. 
Otherwise, B is the tail of an incoming edge of 
A, Steps 3 and 5 do not change the outgoing 
edges of state B, and Step 4 only adds the edges 
with labels which are the labels of existing outgo- 
ing edges of B; therefore (18) still holds. 

Due to the edges added in Step 5, we have 
Rn,(B) xRn,(A). Thus 

Rn,(B) =Rn,(B) uRn,(A). (19) 

From (15), (16), (17), (18) and (19), it follows that 
(14) holds for this case. 

Case 2: A has more than one outgoing edges 
labelled i. In this case, no edges are added in 
Step 5. From Lemma A.l(a), we have 

Rn,(A) =Rn,(B) u 
i 

U Rns(P) . 
PEW*-{A,B) i 

(20) 

From Lemma A.l(a) we also have 

u Rn,(P) 
PEW, 

=RnF(B) URn,(A) 

=Rn,( B) U 
i 

U Rn,(P) . 

PEW,-{A,Bl i 
(21) 

Using arguments which are similar to those given 
for (18) in Case 1, we have 

Rn,(B) =Rn.(B). (22) 
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iments which are similar to those given 
(13), we have 

U Rns(P) = u RnAf?. 
PEW,-{A,E) PEW*-L4,B) 

(23) 

From (1.51, (201, (211, (221 and (231, it follows that 
(14) also holds for this case. 

Thus (14) holds for all cases. From (13) and 
(141, the lemma follows. q 

We define two terms in order to prove Lemma 
A.4. For LTSs, a maximal i-path terminating at a 
state Q is defined to be an i-Path such that it is 
not a portion of any other i-Path terminating at 
the Q. A function lengths : St --, positive integers, 
with St being the state set, is defined as follows: 
For Q E St, 

lengths ( Q ) = c the length of p. 
p is a maximal i-Path 

terminating at Q 

Now we prove Lemma A.4. 

Lemma A.4 Algorithm 3 terminates after a finite 
number of steps. 

Proof. Assume sum = EPEst lengths(Q). Since 
finite LTSs contain only a finite number of inter- 
nal actions, and since no i-Cycles in the LTS 
according the condition of application of Algo- 
rithm 3, sum is a finite positive integer. It is easy 
to see that Steps 1 and 2 do not increase sum. 
We now argue that sum is decreased by each 
single application of Steps 3, 4 and 5. Let A and 
B be the tail and head respectively of the edge 
identified in Step 2. Please notice that a single 
application of Steps 3, 4 and 5 does not change 
the following: 

c lengths ( Q) . 
Q=St-(L?) 

However, a single application of Steps 3, 4, and 5 
decreases lengths(B). Therefore, sum is de- 
creased. According to the definition of sum, sum 
will not be less than zero. Therefore, Algorithm 3 
terminates after a finite number of steps. q 
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For the example illustrated in Fig. 7 we have, 
lengths(B) = 2 + 1 and sum = lengths(B) + 
Zengths( A) = (2 + 1) + 1 = 4. After Steps 3, 4 and 
5, we obtain the figure shown in Fig. 9 where 
sum = lengths(B) + lengths(A) = (1 + 1) + 1 = 3, 
decreased by one. 

Theorem 4. The LTS-Graph obtained by applying 
Algorithm 3 is failure-equivalent to the input LTS- 
Graph. Algorithm 3 terminates after a finite num- 
ber of steps. 

Proof. We divide the proof of the above theorem 
into two parts. 

Part I. To prove that the refusal function remains 
invariant for every (T in L* after applying Algo- 
rithm 3. The LTS-Graph is modified only in Steps 
1, 3, 4 and 5. Clearly Step 1 does not change the 
refusal function. Let the LTS-Graph after Step 1 
be S and the LTS-Graph after Steps 3,4 and 5 be 
F. From Lemmas A.l(b), A.2 and A.3 we have 

VUEL*, 

Rs(a) = U &z,(P)= U &z,(P) 
PES-after-o PES-after-a 

= U Rn,(P) ‘RF(o). 
P E F-after-a 

Therefore, it proves Part I since Steps 3, 4, and 5 
of the algorithm are only used sequentially as a 
whole. 

Part II. The proof of termination of Algorithm 3. 
Lemma A.4 proves Part II. 0 

Since Part I and Part II are independent of the 
order of choosing edges labelled i, the edge to be 
deleted in Step 3 can be chosen arbitrarily. 
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