
Control-Flow Based Testing of Prolog Programs

42

Gang Luo* , Gregor v. Bochmann*, Behcet Sarikaya** and Michel Boyer*

Prolog
subgoal 1

* Departement d'IR0, Universite de Montreal,
C.P. 6128,Succ.A, Montreal, P.Q., H3C 3J7, Canada
email:luo@iro.umontreal.ca

4

** Dept. of Computer and Information Sciences,
the Bilkent University, Ankara, Turkey, 06533
email:sarikaya@ trbilun. bitnet.

statementor
subroutine

Abstract

We present in this paper test selection criteria for Prolog
programs which are based on control flow. The control
jlow in Prolog programs is not obvious because of the
declarative nature of Prolog. We present two types qf
control flow graphs to represent the hidden control flow
of Prolog programs explicitly. A fault model is
developed for Prolog programs for guidance on test
selection. Test selection criteria are given in terms of the
coverage on these control pow graphs. Under the given
fault model, the effectiveness of these criteria is analyzed
in terms of fault detection capability of the test cases
produced with these criteria.

1. Introduction

A lot of research has been reported about program testing
for conventional procedure-oriented programming
languages [8, 9, 10, 13, 16, 17, 221, but little has been
said about program testing of logic programming
languages, such as Prolog. Several Prolog-related issues
in the area of software quality assurance have been
studied, such as Prolog program debugging [20, 19, 121,
recursive program termination checking [21, 181, and the
detection of data type anomaly [l]. In particular, the
issue of generating test data from Prolog-like
specification has been investigated in [2, 3, 6, 7, 51.
Those articles, however, address only the case where logic
programs are used as specifications, that is, specification-
based testing, but they do not address testing logic
programs as implementation. The issue of testing a logic
program as an implementation has received very little
attention. Because of the wide use of Prolog, this issue

There exist a few differences between specification-
based and implementation-based test selections. With
specification-based test selection, one can generate both a
set of test data and the expected results from a
specification. With implementation-based test selection,
one can only generate a set of test data from an
implementation, but cannot obtain the expected results

seems important.

1 04
0-8186-2975-4192 $03.00 @ 1992 IEEE

- 1

mainly concentrate on generating test cases automatically,
by taking advantage of the declarative nature of Prolog.

We first present in Section 2 a fault model for Prolog
programs. A fault model consists of a set of fault
types; a fault type is a set of faults; and a fault is a
textual problem with programs. The fault model serves
as a guide to developing test selection criteria. The fault
model is defined with respect to the syntactic structure of
Prolog Programs.

Guided by the given fault model, we give several test
selection criteria in terms of control-flow coverage.
Although control-flow-based testing is not a new idea in
program testing, control flows in Prolog programs are
hidden because of the declarative nature of Prolog. We
first introduce in Section 3 two graphs which we call P -
flowgraph and reduced global P-flowgraph to represent
the hidden control flow structure in Prolog programs. We
then give some test selection criteria based on the two
graphs. The soundness of the above test selection criteria
is analyzed under the fault model .

Furthermore, we investigate in the Section 4 an
instrumentation method and tool which facilitates the
generation of test data. We conclude in Section 5 by
discussing possible future work.

2. Fault model for prolog programs

We give in this section a fault model for Prolog
programs, which serves as a guide to developing test
selection criteria, and a quality measure of determining
when one test (or testing strategy) is better than another.
[16] presented a software quality measure in terms of the
detection of prescribed faults, which serves as the basis of
his fault-based testing strategy. Testing is fault-based
when it seeks to demonstrate that prescribed faults are not
in a program [16]. Furthermore, a "fault" is a textual
problem with the code, resulting from a mental mist'ake
by a programmer or designer, and the mental mistake is
defined as an "error" [l 11. We use a fault model to
classify the prescribed faults into a set of fault types.
Each fault type represents a subset of prescribed faults.
The fault types are defined with respect to the syntactic

We assume in this paper that the computation orders
in Prolog are fixed. Computations are conducted from
left to right within a rule, from the first to the last rule
within a predicate. For implementation-based testing, we
assume that no written formal specification is available,
and that a specification in the human mind serves as an
oracle. Furthermore, we only consider the faults which
cannot be detected easily by an ordinary compiler. Hence,
we consider the following fault types in the
implementations:

structure of programs.

(1) missing or extra cut,
(2) missing or extra rule,
(3) missing or extra predicate in a rule,

(4) wrong order of called predicates in a rule,
(4) wrong order of rules in a predicate,
(6) missing or extra pair of "[" ana' "1" for a list,
(7) wrong intermediate variable name in a rule,
(8) wrong replacement between a variable ana' a value.

Each of the above fault types represents a set of faults.
For example, let R1 and R2 be two rules in a predicate.
Therefore, "missing a cut in R1" and "missing a cut in
R2" are two faults in the above fault type (1). The
ordinary Prolog compiler may leave the faults in the
above fault types undetected. Most of the fault types
which are not in the above list can be modeled as
multiple faults from the above lists.

Of these fault types, (6), (7) and (8) are much more
difficult to detect than the first five, as discussed in
Section 3. Since there exist no methods to ensure the
absence of fault types (6), (7) and (S), the best we can do
is to find as many faults in these fault types as possible.

3. Test selection based on prolog
control-flow

Control-flow oriented testing is not a new idea in the area
of software testing; the statement coverage, branch
coverage and path coverage for conventional program
testing [17] belong to this category. On the other hand,
the control flows in Prolog programs are not so obvious
as in conventional programs because the control flows in
Prolog are hidden. These hidden control flows result fkom
the declarative nature of Prolog which avoids a lot of
procedure-oriented programming details to facilitate
programming. For the purpose of control-flow-based
testing, therefore, a means is needed to present the
control flow explicitly . The automaton which was
proposed in [5] to control recursion is one kind of abstract
description far Prolog control flow, but it does not
present the control flows of Prolog program in enough
detail; in particular, it fails to present backtracking in
Prolog.

We propose in this section two kind of graphs to
represent Prolog's hidden control flow explicitly. One
graph is the so-called P-flowgraph (Prolog control flow
graph) which is defined by Algorithm 1 in Section 3.1
and represents the control flow in a given predicate at the
top level. The other is the so-called reduced global P-
flowgraph which is defined by Algorithm 3 in Section
3.2 and represents a portion of the global control flow in
a set of predicates which may be called by a given
predicate.

Guided by the fault model, we present several test
selection criteria in terms of coverage of the P-flowgraph
and the reduced global P-flowgraph. However, many
other kinds of coverages can be defined based on the two
graphs. We therefore have to answer the question of what
kinds of coverages is good and why the proposed
coverages are good. Answering these two questions, we

105

analyze the goodness of the given test selection criteria on
the basis of how many faults can be ensured to be absent
under the fault model.

.
This is a simplified definition of regular expressions:

<exp> ::= <term> I <term> + <exp>
<term> ::= < f a 0 I d a o <term>
< f a 0 ::= <name> I <name>* I (<exp>) I (<exp>)*
same> ::=a I b 1 c Id

.
/* The predicate exp is the main predicate in this program, and is used to do the syntax analysis of regular expression. *I

/* exp-bff, -bbf, -bfb exp succeeds only when (1) the first parameter is <exp>, (2) the second parameter is some left part of
the f i s t parameter and also a <exp>, (3) the concatenation of the second parameter and the third parameter is equal to the
first parameter. For the case of expbff, exp finds the longest <exp> from the first parameter and put it into the second
parameter. *I
exp(EXP,TERM,REST): - term(EXP,TERM,REST).
exp(EXP,EXPl,REST):- term(EXP,TERM,[+ I RESTl]), exp(RESTl,EXP2,REST), appendl(TERM, [+ I EXPZ], EXP1).

I* term-bff, -bbf, -btb term succeeds only when (1) the first parameter is <term>, (2) the second parameter is some left par(
of the first parameter and also a <term>. (3) the concatenation of the second parameter and the third parameter is equal to
the f i s t parameter. For the case of term-bff, term finds the longest <term> from the first parameter and put it into the
second parameter. */
term(EXP,FAC,REST):- fac(EXP,FAC,REST).
term(EXP,TERM,REST):- fac(EXP,FAC,RESTl), term(REST1 ,TERM 1 ,REST), appendl(FAC,TERM 1 ,TERM).

I* fac-bff, -bbf, -bfb fac succeeds only when (1) the first parameter is <fat>, (2) the second parameter is some left part of
the f i s t parameter and also a <fac>, (3) the concatenation of the second parameter and the third parameter is equal to the
fist parameter. For the case of fac-bff, fac finds the longest < f a 0 from the first parameter and put it into the second
parameter. */
fac([X I EXP] ,[X],EXP): -name(X).
fac([X I [* I EXP]],[X I [*]],EXP):-name(X).
fat(["(" I EXP], FAC, REST):- exp(EXP,EXPl, [")" I REST]), appendl(["(" I EXPl], [")"I, FAC).
fat(["(" IEXP].FAC,REST):- exp(EXP,EXPl, [")" I [* I REST]]), appendl(["(" IEXPl], [")" I [*]I, FAC).

I* appendl-bbf, -bbb append1 is used to replace the built-in predicate append *I
appendl([l,L,L).
appendl([X I Ll],LZ,[X I L3]):-appendl(Ll,L2,L3).

I* name-b,-f Database facts*/
name(a).
name(b).
name(c).
name(d).

Figure 2: An example of Prolog program

traditional programming languages. The semantics of
Prolog implies the following additional features: (1)
Several types of backtracking, caused by the failure of
subgoal matching and by the requirement for multi-
answers (maybe all answers sometimes) for one single
goal. (2) Next answer searching for a subgod to which
control is transferred after backtracking. (3) Enforced

3,l.Test selection based on P-flowgraph

3.1.1. Construction of P-flowgraph

The control flow in Prolog programs is significantly
more complex than control flow in &e programs of

106

control flow change by the predicate "cut". These features
must be considered from the testing point of view.

We therefore use the so-called P-flowgraph to provide a
means to describe these features explicitly. We will
present in the following an algorithm to construct the P-
flowgraph for a predicate, and explain the algorithm
through the two Prolog programs in Figures 2 and 4.
The algorithm takes a Prolog program as input and
produces the corresponding P-flowgraph. The Prolog
program in Figure 2 is used to explain Algorithm 1. The
Prolog program in Figure 4 is used to explain the
problems related to the existence of deterministic
predicates and "cuts".

The Prolog program in Figure 2 only serves as an
example which is meaningful and able to describe the
mutually recursive definition of predicates. The reader
does not need to fully understand the meaning of the
Prolog program, as long as heJshe understands the
relationship among the mutually recursively defined
predicates and the subgoal-solving order.

w
Figure 3: The P-flowgraph of the predicate exp

ALGORITHM 1: Constructing the P-flowgraph for a
given predicate "p" .
Input: Prolog program containing p
Output: P-flowgraph of p
Step 1: Create nodes for P-flowgraph:

(1.1) For the head of each rule, create a node and label
the node with <predicate namexrule number>.

(1.2) For every called predicate in each rule, create a
node and label it with the predicate name.

(1.3) For every rule, create a node to indicate the
successes of the unifications of all subgoals, and
label it with Tcrule numben. We call this type of
nodes T-nodes.

(1.4) Create a node to represent the failure of the
predicate execution and label it with F. We call
this node an F-node.

Step 2: Identify whether each predicate, which is used in
the definition of the predicate to be tested, is
deterministic or nondeterministic.

Step 3: Create a directed edge (i.e. a branch) for each
possible control transfer between two above-created
nodes as follows:

(3.1) For each control transfer from the head of every
rule to the first called predicate of the rule, create a
branch to link the corresponding nodes.

(3.2) For the control transfer from each called
predicate of every rule to the right side predicate
next to it, create a branch to link the corresponding
nodes.

(3.3) For successful unifications of all subgoals of
every rule, create a branch from the node of the
rightmost predicate of the rule, to the T-node of
the rule.

(3.4) For each nondeterministic predicate node of
every rule and for every T-node, create a
backtracking branch from the node to:
(3.4a) the node of the nondeterministic predicate

next to it if there exists such a predicate and
there is no "cut" between them.

(3.4b) the node of the head of the next rule or F-
node if no nodes has been found in (3.4a).

(3.5) For the direct control transfer from the head of
each rule to the head of the next rule, create a
branch to link the corresponding nodes if the head
of the first rule can fail, or create a branch from its
corresponding node to the F-node if the rule is the
last rule of a predicate.

[End of algorithm I]

Taking the Prolog program of Figure 2 and the
corresponding P-graph of Figure 3 as examples, we
explain the above algorithm as follows:

Step 1: During (l.l), for the heads of two rules of the
predicate exp, create the nodes a and d with labels expl
and exp2 respectively in the P-flowgraph. During
(1.2), for the second rule of exp in Figure 2, resulted
nodes are e, f and g in the P-flowgraph. During (1.3),
for the predicate exp, the resulting T-nodes are nodes c
and ti with labels T1 and T2 respectively. During
(1.4), the created F-node for exp is node j with label
F.

Step 2: Every predicate in the example of Figure 2 is
nondeterministic, but the predicate "write" of Figure
4a is deterministic.

Step 3: During (3.1), we create branches 1 and 6 in the
P-flowgraph. The resulting branch represents the fact
that control is transferred from the head of the rule to
the first called predicate of a rule, after rhe successful
unification of the head. During (3.2), we create
branches 10 and 11 in the P-flowgraph. During (3.3),
we create branches 2 and 12 in the P-flowgraph.
During (3.4a), we have branches 3,9,13 and 14 in
Figure 3. In the case of the existence of deterministic
predicates, for the example in Figure 4a, we create
branch 7 in Figure 4b. The backtracking from T-node
represents the fact that another answer is required after
a successful answer is produced. During (3.4b), we
create branches 5 and 7 in Figure 3. For the
deterministic predicates, in the example of Figure 4a,

I07

we create branches 6 and 8 in Figure 4b. During
(3.5), we have branches 4 and 8 in Figure 3. The
resulting branches represent the direct transfer from the
head of a rule to the head of the next rule when the
unfication of the head of the former rule fails.

Comments on Algorithm 1:
(1) T-nodes and F-node created in Step 1 are used to

represent the successes and failure of the predicate, and
they are needed for revealing the control flow in Prolog
although they do not have textual correspondences in the
Prolog program.

(2) Generally a predicate of Prolog is
nondeterministic, and the corresponding subgoal has two
entries(CALL and REDO) and two exits(EX1T and FAIL),
as shown in Figure 1. But some of the predicates are
deterministic, and each of them only has one
entry(CALL) and one exit(EX1T) like subroutines of
conventional programs, such as some predicates for
printing and so on. Therefore, we need to identify for
each predicate in the definition of the tested predicate
whether it is deterministic, or not, in order to present the
control flow precisely.

(3) The branches resulting from Step 3 reveal the
implied control transfers of Prolog.

(4) This algorithm is polynomial with respect to the
number of nodes in the P-flowgraph and it terminates
after a finite number of steps.

(5) The node in the P-flowgraph which corresponds
to the head of the first rule, is the root of the P-
flowgraph. A directed path from the root to a T-node
represents the execution trace with an answer yes ; and a
directed path from the root to the F-node represents the
execution trace with an answer fa i l . For the example
shown in Figure 2, executing exp([a, +, b,e],Term,[I),
the path "1, 5, 6, 10, 9, 7" in the P-flowgraph shown
Figure 3 is traversed, which corresponds the following
execution trace: the success of the head of the first rule (
branch l), the failure of the term in the first rule (branch
9, the success of the head of the second rule (branch 6),
the success of the term in the second rule (branch lo),
the failure of the exp in the second rule (branch 9), the
failure of the term in the second rule (branch 7).

3.1.2. Test selection criteria

We give in the following two test selection criteria for a
Prolog predicate based on the P-flowgraph, and analyze
the corresponding fault coverage.

CRITERION 3.1 (Branch coverage of the P-
flowgraph): For a given predicate, generate a set of test
data such that every branch of the P-flowgraph of the
predicate will be traversed by running these test data.

Criterion 3.1 is similar to the branch coverage of
conventional programs. According to the criterion all
branches of the P-flowgraph should be traversed.

Therefore, in the tested predicate, the heads of all rules and
all called predicates in the rule bodies should be exercised,
and all possible uansfers between above heads and called
predicates should be exercised too.

In order to analyze the fault coverage clearly, we make
the following convention. For a given implementation
and the corresponding specification (an oracle in the
human mind for implementation-based testing), a P-
flowgraph of the wrong implementation can be considered
to be obtained by deleting and adding some edges in the
P-flowgraph of the specification. Based on such a
convention, therefore, we can talk about the question of
whether a path in an implementation is a path in the
corresponding specification, and vice versa. For
analyzing fault coverage easily, we assume furtbermore
that if the same input causes two different paths in a
specification and its implementation, the two results will
be different. This assumption will be called distinct path
computation assumption .
THEOREM 1: If the distinct path computation
assumption holds, Criterion 3.1 can ensure the absence of
the following fault types:

(1) missing or extra cut,
(2) missing or extra rule,
(3) missing or extra predicate in a rule,
(4) wrong order of called predicates in a rule,
(5) wrong order of rules in a predicate.

Proof: Any fault of the five fault types causes the P-
flowgraphs of the implementation and of the
Corresponding specification to have different edges. In the
case of implementation-based testing where test data are
developed from the P-flowgraph of an implementation,
there exists at least one path, say path A, among the
paths resulting from Criterion 3.1, which does not exit in
the P-flowgraph of the corresponding specification. The
test data for this path A of implementation causes a
different path from path A in the specification, therefore it
will cause different results between the implementation
and the corresponding specification under the distinct path
computation assumption, i.e. a fault is found.
[End OfP~OOfl

This criteria is fault-based. Similar to the branch
coverage of conventional program, this criterion is still
weak due to the following two problems. First, if the
distinct path computation assumption does not hold, the
criterion cannot ensure the absence of the above fault
types. Second, it cannot ensure the absence of all the
faults of the fault types (6), (7) and (8) of the fault model
even if the distinct path computation assumption does
hold.

Theoretically, no method can solve these problems
since they cover the problem of checking whether two
Turing machines are equivalent. However, it is possible
to go further than Criterion 3.1 and solve part of the
problems using the following approach.

108

Many faults in Prolog programs result in the
following situation : Wrong results can be produced only
if a particular pair of successive edges of the P-flowgraph
are exercised. A similar situation can be found in
conventional procedure-oriented program testing, where a
method called branch-to-branch pair or 1-switch coverage
[4] is presented to deal with this situation. Inspired by
this method, we give the following criterion to deal with
a similar situation in Prolog programs.

CRITERION 3.2 (B ranch- t 0- branch pair
coverage of the P-flowgraph): For a given
predicate, generate a set of test data such that every
branch-to-branch pair of its P-flowgraph will be traversed
by running these test data.

Meeting Criterion 3.2 implies meeting Criteria 3.1.
Criterion 3.2 therefore has at least the fault detection
power of Criterion 3.1. It furthermore can detect the
faults which will cause some wrong control transfers, in
particular, the wrong branch-to-branch transfers in the P-
flowgraph.

We explain in the following the form of test data for
Prolog programs before we give an example to explain
Criterion 3.2. Test data for Prolog programs consist of
three parts: (1) the values of input variables (usually
lists), (2) database facts, and (3) the order of the answer
of interest among the altemative answers given by the
Prolog program. The execution outcome of a Prolog
predicate depends on the values of input variables, the
content of the database, and the order numbers of answers.
In particular, the order numbers of the answers are needed
as a part of test data because of the following reason: B y
solving a single goal during the execution of the Prolog
program, many altemative answers may be produced
depending on the user's requests, and the aiiswers are
ordered according to their occurrence in time. During
testing, in order to traverse a specific path in a control
flow graph, maybe only the answer of a particular order
number is interesting to us; we therefore require to
specify the order numbers of the answers of interest as
part of the test data.

findteacher :- student(X), write("there exist students !"),
teacher(Y), !, write("teacher is ' I , Y).

(a) F"

6

Using the example shown in Figure 4a, we now show
a fault which cannot be detected by Criterion 3.1, but can
be detected by Criterion 3.2. The predicate "fmdteacher"
shown in Figure 4a is supposed to print out only one
"there exist students" as one or more "students" are in the
database; it then finds a "teacher" for "students" and
prints out "teacher is <name>" if there exist teachers in
the database: and it prints nothing if there does not exist
any teacher . According to the P-flowgraph of the
predicate findteacher shown in Figure 4b, the different
branch-to-branch pairs are the following:

1-2, 1-8,2-3,3-4,3-7,4-5,5-6,7-2,7-8

According to Criterion 3.1 the following test data can
be adopted:

Test-data 1:
Input variable values: empty;
Database facts: student(R. Roy).
teacher(L. Clarke).
Answers: 1st and 2nd.

Test-data 2:
Input variable values: empty;
Database facts: empty;
Answers: 1st.

Test-data 3:
Input variables values: empty:
Database facts: student(R. Roy).
Answers: 1 st and 2nd.

Although Test-data 1, 2 and 3 cover all branches of the
P-flowgraph, they do not cover all the branch-to-branch
pairs, leaving the pair 7-2 uncovered. Test-data 4 given
below is used to cover the pair 7-2.

Test-data 4:
Input variables values: empty;
Database facts: student(R. Roy).

Answers: 1st.
student((;. Cobbert).

By running Test-data 1, the following is printed

"there exist students !"
"teacher is L. Clarke"

With the fiist answer being true and the second answer
false, we find no fault by executing test data 1. We also
cannot find any fault by executing Test-data 2 and 3. But
by running Test-data 4, the output is:

"there exist students !"
"there exist students !"

(b) P-flowgraph
Figure 4: The P-flowgraph of the predicate findteaher

109

This is contrary to our specification that the predicate
will print out only one "there exist students" if there exist
more than one "students" in the database. A fault is
therefore found. The correct version of predicate
findteacher is the following, and the fault in the incorrect
version is "missing a cut".

fmdteacher :- student(][), write("there exist students !"), !,

Step 2: For every ordered pair of nodes in G where the
predicate of the fast node may call the predicate of
the second node directly, create in G a directed edge
(or branch) from the fmt node to tbe second node.

[End ofalgorithm 2 I.

teacher(X). !, write("teacher is ", X).

3.2. Test selection based on a reduced
global P-flowgraph

We give in this section a test selection criterion to detect
the faults which can be exhibited only by exercising the
recursive part of Prolog programs. A P-flowgraph only
presents the top-level control flow of a tested predicate
which does not reflect the recursive nature. Solving such
a problem, we require to construct a kind of control flow
graph to represent global control flow in order to capture
the recursive nature. Test selection criteria will be
presented in terms of coverage of the global control flow

Ideally, a global control flow graph of a given
predicate can be constructed in the following fashion:
Let a modified P-flowgraph be the graph resulting from a
P-flowgraph by removing all T-nodes and the F-node; for
example, the modified P-flowgraph of Figure 6
corresponds to the P-flowgraph of Figure 3. Starting
from the P-flowgraph of the predicate, replace a node
corresponding to a predicate by the modified P-flowgraph
of the predicate (for instance, by replacing the node b in
the P-flowgraph shown in Figure 3 by the modified P-
flowgraph of the predicate term, we obtain the graph in
Figure 7), and do such replacements repeatedly until no
further progress can be made.

Unfortunately, the graph thus resulted is usually
infinite or very large so that we cannot use it directly to
select test data. To compromise between the
completeness and complexity for test selection, we use a
so-called reduced global P-flowgraph to present a part of
global control flow in the above ideal control flow graph.
To determine the reduced global P-flowgraph, we require
the Calling-graph (calling relation graph) to describe the
relations among the recursively defined predicates.

ALGORITHM 2: Constructing the Calling-graph for a
given predicate "p".
Input: Prolog program containing p
Output: Calling-graph for p
Step 1: Create a graph G of one node with label p. For

every predicate which can be called directly or
indirectly by the predicate p, create in the graph Cr
a node labeled with the corresponding predicate
name.

graph.

\@-*-
Figure 5: The Calling-graph of the predicate exp

REDO

Figure 6: The modified P-flowgraph of the predicate exp

Figure 5 shows the Calling-graph of the predicate exp
in Figure 2. It is easy to identify a group of mutually
recursively defined predicates by means of the Calling-
graph, where the group of predicates corresponds to a
group of nodes in a strongly connected component of the
Calling-graph. For example, from the Calling-graph
shown in Figure 5, we know that the predicates exp, term
and fac are a group of mutually recursively defined
predicates.

However, although the Calling-graph represents the
relationship among those mutually recursively defined
predicates, it hardly presents any detailed information
about the global control flow. But, it gives an idea of
how to construct a reduced global control flow graph. By
replacing the nodes of all strongly connected components
of a Calling-graph with the corresponding P-flowgraphs
or modified P-flowgraphs, a reduced global P-flowgraph
can be obtained by using the following algorithm. ?be
resulting reduced control flow graph is a compromise
between the completeness of test coverage, the
complexity of test generation and the size of the test set.

I f'AT.1. TERM

-
Figure 7: Intermediate result in constructing the reduced global P-flowgraph

ALGORITHM 3: Constructing a reduced global P-
flowgraph for a given predicate "p".
Input: (1) Prolog program containing p, (2) Calling-
graph for p
Output: Reduced global P-flowgraph

Data structure: a stack
Step 1: Put the predicate p into the stack.
Step 2: If the stack is empty , then stop with G being

the reduced global P-flowgraph. Otherwise:

(1) Pop out a predicate, say q. Find all successive
internal nodes of q in the Calling-graph which
have never been pushed into the stack, and push
them into the stack.

(2) If q is the given predicate p, let the P-flowgraph
of p be graph G. Otherwise, if the P-flowgraph
or modified P-flowgraph of q has not yet been used
in Step 2 to replace some node in G, find a node
with label q in G and replace it by its modified P-
flowgraph. Goto Step 2.

[End of algorithm 3 3.

The algorithm is explained in the following by the
Prolog program of Figure 2. Suppose that predicate exp
in the program of Figure 2 is the given predicate p in
Algorithm 3. We fust obtain the Calling-graph of exp
shown in Figure 5. During Step 1, exp is pushed into
the stack. After Step 2 is executed the first time, the P-
flowgraph of exp is created; the content of the stack is [
term 3 since exp has in the Calling-graph only one
successive intemal node "term" and since node "append" is
a leaf node. After Step 2 is executed the second time, we
obtain the graph shown in Figure 7 with the content of
the stack being [fac 3. After Step 2 is executed the third
time, we finally obtain the graph shown in Figure 8
which is the reduced global P-flowgraph of the predicate
exp.

Based on the reduced global P-flowgraphs, we propose
the following test selection criterion.

CRITERION 3.3 (Branch coverage of the
reduced global P-flowgraph): For a given predicate,
generate a set of test data such that every branch of the
reduced global P-flowgraph will be traversed by running
these test data.

The intent of the criterion is to find the faults which
will cause wrong control transfer related to recursive
definitions and the integration of predicates. The only
way to exhibit this wrong control transfer is to exercise
the paths of the global P-flowgraph. Since it is
impossible to exercise all different paths of the global P-
flowgraph, it is adequate and necessary to generate test
data on the basis of the coverage of the reduced control
flow graph. Usually we f is t generate test data according
to Criteria 3.1 and 3.2 and find extra test data if the test
data thus produced does not satisfy Criterion 3.3.

4. Test data generation tool

Given test selection criteria, one still needs to generate
test data according to the criteria efficiently. In order to
facilitate test generation, we propose in the following a
program instrumentation tool which inserts special
predicates (probes) into a given Prolog program. These
probes make up a Test Generation Tool (TGT) which
generates test data semi-automatically.

4.1. Monitoring execution traces by
instrumentation

In order to obtain the execution trace information for
evaluating the coverage of the P-flowgraph and the
reduced global P-flowgraph, the probes which are also
Prolog predicates should be inserted into the given Prolog
program to be tested. We study in this section which
points in a given Prolog program the probes should be
inserted by an instrumentation tool.

In order to record traces, probes are inserted into the
four following places: (1) the entry of a rule, (2) the exit
of a rule, which is also a successful exit of a
corresponding predicate, (3) the entry of a predicate, and
(4) the failure exit of a predicate. The probes are used to
record the information about the execution @ a m . For
example, according to the above description, the predicate
exp shown in Figure 2 would be instrumented as follows:

exp(EXP1, EXP2, ExP3):- probe(exp-in), fail.
exp(EXP,TERM,REST):-probe(exp1-in),

term(EXP,TERM,REST), probe(exp1-T).
exp(EXP,EXPl ,REST):-probe(exp2-in).

term(EXP,TERM,[+ I RESTl]),

append(TERM,[+ I EXP2],EXPl), probe(exp2-T).
exp(RESTl,EXP2,REST),

exp(EXP1, EXP2, EXP3):- probe(exp-F), fail.

probe(St):- "record St in some place".

where the predicate "fail" always fails when it is called.
For the Prolog program of Figure 2, the completely
instrumented program is given in [15].

When we run this instrumented program with the goal
exp([a],X,[]), TGT will record the following trace:
exp-in, expl-in, term-in, terml-in, fac-in, facl-in,
facl-T, terml-T, expl-T, and return with X = [a]
successfully. From this trace, the TGT can find that this
trace covers the path "1,2" of the P-flowgraph shown in
Figure 3 and the path "1,2,3,4" of the reduced global P-
flowgraph shown in Figure 8. In this example,
prohe(exp1-T) and probe(exp2-T) are used to monitor the
traversal of the T-nodes in the P-flowgraph and the
reduced global P-flowgraph; and probe(expl3 is used to
monitor the traversal of the F-node.

If each predicate of a given Prolog program is
instrumented in the above four places, the trace
information obtained by the probes during the executions
is enough to decide what parts of the P-flowgraph or the
reduced global P-flowgraph have been traversed.

4.2. Test selection with the help of TGT

We explain in the following the test selection with help
of TGT briefly. More details have been presented in [HI.
By using TGT, we can generate test data in the following
manner:

112

(1) The probes are inserted into the given Prolog
program by the instrumentation tool automatically: the
TGT consists of the probes.
(2) Select some test data arbitrarily and run these test data
on the instrumented program.
(3) The TGT records the resulting execution traces,
reports what part of the P-flowgraph (or the reduced
global P-flowgraph) has not yet been exercised. The
report provides a guidance for test selection according to
the adopted test selection criteria.
(4) According to the report from TGT, find extra test
which may increase the coverage on the P-flowgraph (or
the reduced global P-flowgraph) intuitively. Repeat this
process until no more coverage has been achieved, or the
full coverage has been achieved.
(5) In the case where the full coverage has been achieved
in (4), no more test cases are needed. Otherwise, find
extra test to achieve the full coverage by manual
calculation.

Using TGT, we can generate test case semi-
automatically. In contrast to the case of procedure-
oriented program testing, a single Prolog test case
produces a much longer execution path because of
backtracking and recursions. Thus, it is much more
difficult to manually derive the resulting paths and the
coverage of the control-flow-graph for a test. IJsing
TGT, however, we can save a lot of manpower by an
automatic evaluation of execution coverage provided by
TGT.

5. Conclusion

We have presented several test selection criteria for Prolog
programs, which are based on the control flow of Prolog
programs. Future work could be done with respect to the
data flow of Prolog programs. The test generation tool
presented here provides a means to generate test cases
semi-automatically.

Acknowledgments: The authors would like to thank
many people, in particular Prof. Roland Groz who
carefully read our paper and gave us many valuable
comments, and Mr. Cheng Wu and Mr. Kaiyuan Huang
for many useful suggestions and comments. This work
was supported by the IDACOM-NSERC-CWARC
Industrial Research Chair on Communication Protocols
at the University of Montreal (Canada).

References:
[l] Pierre De Boeck and Baudouin Le Charlier, "Static Type

Analysis of Prolog Procedures for Ensuring Correctness",
International Workshop PLILP'90, Lecture Notes in
Computer Science 456, Springer-Verlag, pp.223-237.

[2] L.Bouge, N.Choquet, L.Fribourg, M.C.Gaude1,
"Application of Prolog to Test Sets Generation from
Algebraic Specification", TAP Soft Conference on
Theory and Practice of Software Developnient, Berlin,
March, 1985, LNCS 186 pp.261-275.

[3] N. Choquef "Test Data Generation Using a PROLOG with
Constraints", Workshop on Software Testing,
Verification and Analysis", Banff, Canada, July 1986,

[4] T.S.Chow, "Testing Software Design Modeled by Finite-
State Machines, IEEE Transactions on Software Eng.,

[SI Richard Denney, "Test-Case Generation from Prolog-
Based Specifications", IEEE Software, March 1991,

[6] Michael M.Gorlick, Carl F.Kesselman, Daniel A.Marotta
& D. Stott Parker, "MOCKINGBIRD: A Logical
Methodology for Testing", J. Logic Programming, No.8,

[7] Daniel Hoffman, and Paul Strooper, "Automated Module
Testing in Prolog", IEEE Transactions on Software
Engineering, Vol. SE-17, No.9, 1991, pp.934-943.

[8] William E.Howden, "Reliability of the Path Analysis
Testing Strategy", IEEE Transactions on Software
Engineering, Vol. SE-2, No.3, 1976, pp.208-215.

[9] William E.Howden, "Functional Program Testing", IEEE
Transactions on Software Engineering, Vol. SE-6, N0.2,
March 1980, pp.162-169.

[101 William E.Howden, Functional Program Testing &
Analysis, McGraw-Hill, Inc., New York, 1987.

[111 IEEE Standard Glossary of Software Engineering
Terminology, IEEE Standard 729-1983, 1983.

[12] Marian Kamkar, Nahid Shahmehri and Peter Fritzson,
"Bug Localization by Algorithmic Debugging and
Program Slicing, International Workshop PLILP90,
Lecture Notes in Computer Science 456, Springer-Verlag,

[13] B. Korel, "Automated Software Test Data Generation",
IEEE Transactions on Software Engineering, Vo1.16,

[14] Gang Luo, Junliang Chen and Xun Yuan, "Prolog Logic
Program Testing", Journal of China Institute of
Computer, November, 1991, pp.838-844.

[lS] Gang Luo, Gregor v. Bochmann, Behcet Sarikaya and
Michel Boyer, "Control-flow Based testing of Prolog
Programs", Department Report #825, Department of
Computer Science, University of Montreal, 1992.

[16] Larry J.Morel1, "A Theory of Fault-Based Testing", IEEE
Transactions on Software Engineering, Vol. 16, No.8,

[17] G.J.Myers, The Art of Software Testing, John Wiley &
Sons, Inc. New York, 1979.

[18] Lutz Plumer, Termination Proofs for Logic Programs,
Lecture Notes in Artificial Intelligence, Vol. 446 1990,
Springer-Verlag.

[191 L.M.Pereira, "Rational Debugging in Logic
Programming", Third International Conference on Logic
Programming, Ed. E.Y.Shapiro, Lecture Notes on
Computer Science 225, 1986, pp.203-210.

[20] E.Y.Shapiro: Algorithmic Program Debugging. MIT
press. 1983.

[21] J.D.Ullman & A.V.Gelder, "Efficient Tests for Top-
Down Termination of Logical Rules", Journal of ACM,

[22] Elaine J.Weyuker and Thomas J.Ostrand, "Theories of
Program Testing and Application of revealing
su bdomains", IEEE Transactions on Software
Engineering, Vol. SE-6, No.3, May 1980, pp.236-246.

ppl32--141.

Vol. SE-4, NO.3, 1978.

pp.49-57.

1990, pp95--119.

pp. 223 -237.

No.8, August 1990, pp.870-879.

August 1990, pp.844-857.

V01.35, N0.2.1988, pp.345-373.

1 I3

