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Abstract 
 

Formal specifications are intended to be used in many activities of the software development 

life cycle in order to increase confidence that a specified system will behave properly. Among 

these activities, this paper focuses on the analysis of test results in the context of OSI 

communication protocols. The paper discusses the principles involved in the comparison of 

test results with respect to a reference specification which may be non-deterministic. The 

analysis tool TETRA is presented which performs such analysis for specifications written in 

the formal description technique LOTOS. The paper also gives an overview of two 

experiments where TETRA was used for the testing of an OSI Application layer protocol 

(namely ACSE) and for the validation of the verdicts of standardized test cases for the X.25 

protocol. 

 
Keywords: Communication protocols, conformance testing, formal specifications, test result 

analysis, error diagnosis. 

 
1. Introduction 
 

A well-known problem in system testing is the realization of a reference, sometimes called 

"oracle", which determines whether  a given interaction sequence observed during the test of 

an implementation under test (IUT) is valid or not. Such an oracle must clearly be related to 
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the specification of the IUT.  This paper deals with the construction of such an oracle based 

on a given formal specification of the IUT.  

 

In the area of communication protocol development and implementation, the protocol 

specification has an important role to play [Boch 90g]. It is the basis for the protocol 

implementations in different systems which are designed to communicate with one another, 

and helps for the selection of test cases and the analysis of test results. Several so-called 

formal description techniques (FDT's) have been proposed for the development of formal 

specifications of the OSI communication protocols and services [Boch 90g]. One of these 

techniques, called LOTOS [Loto 89, Bolo 87], is considered in Section 3 of this paper.  

 

In order to simplify the verification that a given communications product satisfies the 

requirements defined by the OSI standards, the standardization committees responsible for 

OSI are also developing standards about the general methodology of conformance testing and 

specific test suites which should be applied to check that a given IUT satisfies all 

conformance requirements defined by a protocol standard [Rayn 87]. A test suite essentially 

consists of a number of individual test cases, which are to be executed with the given IUT. 

Each test case defines a sequence of inputs to be applied and usually foresees various 

responses from the IUT;  for each response either further inputs are specified or a verdict is 

given which indicates whether the IUT has passed the test. These verdicts embody the oracle 

function. 

 

There are, however, several situations where the standardized conformance test cases are not 

suitable, such as the following: 

 

(a) For the complete testing of an implementation, there are usually system-specific 

implementation requirements to be verified, in addition to the requirements of the protocol 

standard. This implies additional test cases. 

 

(b) Sometimes it is important to execute unexpected test cases, possibly generated randomly.  

 

(c) During interoperability testing, as shown in Figure 1.1, there are no given test cases; 

instead the two systems exchange messages according to a given application. If the two 

systems exhibit difficulties, it is the task of the arbiter to determine which of the two systems 

does not follow the given protocol standards.  

 



 

3

Arbiteruser 1

Protocol 
entity 1

Underlying communication service

user 2

Protocol 
entity 2

analysis 
for 

Entity 1 
+     -

analysis 
for 

Entity 2 
-     +

 
 

Figure 1.1: Test architecture with arbiter 

 

In all the above cases, the oracle function is not provided. While in the first case, the possible 

expected outputs and related verdicts can be statically determined from the protocol and 

system-specific requirements, in the other cases, the oracle function must be provided 

dynamically, that is, the trace of interactions observed during the test must be compared with 

the reference specification which must be satisfied. This comparison is the topic of this paper.  

 

In general, the following three aspects characterize the testing process : 

 

(1) The test architecture determines through which points (interfaces) the IUT can be 

controlled and observed.  

(2) The test suite (set of test cases) determines which kinds of faults will be detected. 

Sometimes the tests are selected in order to satisfy certain fault coverage criteria          

[Boch 91d] (for a review of test selection methods for communication protocols,            

see [Sari 89c]). 

(3) The test result analysis checks whether the observed test trace satisfies the requirements 

of the reference specification. If an error is detected, it may also provide diagnostic 

information in order to locate the problem. 

 

We think that it is in general useful to deal with these three aspects separately. In this paper 

we concentrate on the third aspect. There are, however, certain relations between the different 

aspects. In particular, the test architecture has an impact on the test result analysis. For 

instance, an architecture with partial observation implies reduced fault detection power, as 
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discussed in [Boch 89m]. The architectural structure must also be taken into account in the 

determination of the reference specification if the points of control and observation do not 

correspond directly with the interfaces used in the specification of the IUT [Boch 89m]. In 

this case the reference specification used for test result analysis is different from the 

specification of the IUT (see also Section 4). 

 

In the area of communication protocols, several trace analyzers have been described in the 

literature. They are also called trace checkers or observers. In most cases, each analyzer is 

built with a special protocol in mind, such as SNA [Cork 83], MAC protocol [Molv 85], class 

4 Transport protocol [Matt 88] and X.25 [Prob 88]. More general trace analysis algorithms are 

described in [Jard 83b] and [Ural 86]. Different formalisms are used to model the reference 

specification of the protocol to be tested, such as EFSM, Petri Net, rule-based and knowledge-

based techniques. Data cannot be represented by Petri Nets, only the control structures can be 

taken into account by a Petri Net based  trace analyzer. Also, since a knowledge-based 

analyzer uses heuristic rules, it requires double checking by a human protocol expert. Protocol 

specifications are not taken as parameters by any of the above described analyzers, and they 

are not used directly as references. In each analyzer, the specification is written in a 

programming language such as C, Pascal or Prolog. In this situation, the adaptation of an 

analyzer to another protocol may not be easy to achieve without major changes in the source 

code. Also, while programming languages are usually deterministic, nondeterminism in a 

protocol specification must be handled explicitly. None of the above trace analyzers provides 

any diagnostic facility in case of an invalid trace. This facility would be useful to identify the 

reason of failure. 

 

In Section 2 we discuss in detail how a given test trace can be validated against a reference 

specification. While this is relatively straightforward if the reference specification is 

deterministic, it is more difficult if the specification, for a given trace of observed 

interactions, allows for several execution histories to explain this trace. The application of 

these principles for the construction of a trace analysis tool for LOTOS specifications, called 

TETRA, is described in Section 3. 

 

It is important to note that the principle of trace analysis can also be used to validate the 

verdicts of test cases with respect to the specification.  In fact, a version of TETRA has been 

developed which allows the analysis of test cases, written in LOTOS, which may contain 

several branches corresponding to different responses obtained from the IUT. Each branch 
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containing a verdict is compared with the reference specification in order to check that the 

verdict corresponds to the requirements of the specification.  

 

Two experiments have been performed with trace analysis and test case validation performed 

by TETRA. An overview of the experiments is given in Section 4. In one case, the trace of 

interactions exchanged between two interworking ACSE protocol entities were analyzed with 

respect to the protocol specification. ACSE (Association Control Service Element) is an OSI 

Application layer protocol and involves ASN.1-encoded messages. The transformation 

between this  coding scheme and the LOTOS format of interaction parameters accepted by 

TETRA was solved through the automatic generation of corresponding (en-)coding routines. 

Another experiment concerns the validation of the X.25 (LAP-B) test cases standardized by 

ISO and CCITT. These test cases are validated by TETRA with respect to a LAP-B 

specification written in LOTOS. 

 

2. Test result analysis with respect to high-level specifications 
 

This section explores trace analysis with respect to a reference specification written in a high-

level specification language. An observed trace T is valid with respect to the reference 

specification if the latter allows for an execution sequence equal to the given trace. In the 

case that the reference specification is executable, the validity of a given trace can be easily 

checked by executing the reference specification using the input interactions of the trace as 

input to the execution. The outputs obtained during the execution should then be equal, in 

type and order, to the output interactions of the given trace. However, in the case that the 

reference specification allows for non-determinism, the checking of a given trace is more 

complicated since all possible execution histories of the reference specification must be 

considered. The trace is valid if at least one of these histories is equal to the trace.  

 

This section gives an introduction to the specification formalism used, and discusses the 

issues of trace analysis in a general context. The subsequent section describes a trace analysis 

tool, called TETRA, which allows the validation of traces with respect to reference 

specifications written in LOTOS. 

  

2.1. A high level specification formalism 

 

We consider in this section a specification formalism which uses rendezvous interactions for 

communication between concurrent processes, similar as in CSP, CCS or LOTOS. We 
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assume that the behavior of a system is expressed in terms of communicating processes. A 

process can be viewed as a black box able to communicate with its environment. The 

communication between (two or more) processes is done by rendezvous through gates, and 

may involve the exchange of parameters.  

 

Interactions that occur at gates which are shared by a process with the environment of the 

system are called external actions. They contribute to the external behavior of the specified 

system. In addition, interactions that occur at the gates which are shared among the processes 

of the system description, and which are hidden from the environment, are called internal 

actions. They are not visible and do not contribute to the trace of observable interactions.  
 

The behavior of a process is defined in terms of behavior expressions. They describe the 

order in which internal and external actions should happen. They are built using a number of 

operators that allow to express such concepts as alternate choice "[]", interleaved parallel 

composition "|||", coupled parallel composition "|[ ]|", sequential composition ";", and 

disabling "[>". We use here and in the following the syntax of LOTOS. A simple example of 

a specification involving five external gates a,b,c,d, and e, is shown as Example 2.1 below. 

The possible execution histories are shown in Figure 2.1 in the form of a tree. The system 

starts in the top node and follows one of the paths through the tree. The three branches of the 

tree correspond to the three choices of the behavior of process P. 

 
 
Example 2.1: 
 
 specification   S [a,b,c,d,e] : noexit := 
  
 behavior 
  P[a,b,c,d,e] 
 where 
  process  P[a,b,c,d,e] : noexit := 
   a; (c; e; stop 
        [] 
        b; c; stop) 
    [] 
     a; b; d; stop           
   endproc 
 
 endspec 
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Figure 2.1: Tree representation of the specification 

 

2.2. Search strategies for non-deterministic specifications 

 

A specification is non-deterministic if, for a particular state, it allows for the execution of 

more than one action (internal or external). This relates to one of the following cases: 

 

(1) For a given external action, there are more than one branch in the execution tree (see for 

example, the initial state in Figure 2.1). 

(2) Execution of internal events (the spontaneous event i, or hidden actions) appear as 

alternatives within a choice of subexpressions. 

 

Usually, non-determinism is introduced in the specification of a protocol or a service for the 

following reasons: a) the description of several alternatives from which one can be chosen by 

the implementation; b) the interleaving of actions of two or more protocol entities within the 

same specification; c) the use of spontaneous events for the description of events that may 

occur any time, such as time-out mechanisms or failures of system components. 

 

For trace analysis, non-determinism means that, at some stage during the analysis,  several 

paths in the reference specification are possible, and the trace analyzer has to explore all 

these possibilities before concluding that the given trace is invalid [Jard 83b]. The way this 

exploration is done depends on the search strategy implemented by the trace analyzer, and 

this has an important impact on the analysis performance. 

 

As example, Figures 2.2 (a) and (b) show the projections of traces T1= "a;b;c" and 

T2="a;e;d", respectively, upon the behavior tree of the specification shown in Figure 2.1. One 

sees that  trace T1 has a corresponding branch in the specification with a point of non-
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determinism. But trace T2 is compatible with the specification only for its first interaction. T1 

is valid, while T2 is invalid since the specification does not allow the interaction e after a. 
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 Figure 2.2:     (a) : Projection of T1           (b) : Projection of T2 

 

Assuming that the behavior of a reference specification can be represented by a tree structure, 

two basic strategies can be applied in order to find a possible execution history for the given 

trace: depth-first and breadth-first exploration. The difference between the two is in the order 

in which the set of possible branches are explored. In the depth-first strategy one branch is 

explored at a time, and a checkpoint is kept whenever a non-deterministic execution point 

occurs. Checkpoints are used to keep the context of execution and to restaure this context 

when the chosen alternative leads to a contradiction with the given trace, and another 

alternative must be explored. This restauration is called backtracking. It is used to cover, in a 

systematic manner, all possible paths in the reference specification. In the breadth-first 

strategy all the possible branches are explored in parallel. No checkpoints are needed, but it is 

clear that this strategy requires a large amount of memory space. 

 

When specifications are of large size, performance of the search algorithm becomes very 

important. To establish a comparison, in terms of performance, between depth-first (DF) and 

breadth-first (BF) strategies, one has to consider  different cases, distinguishing whether the 

given trace is valid or not, and considering different locations, of the validating branch, 

within the tree. Recursive branches leading to loops (see below) may also affect adversely the 

exploration performance. For invalid traces, both strategies are equivalent, at least as far as 

the number of branches to be explored, since all possibilities must be explored. The situation 

is the same when the given trace corresponds to the last branch in the behavior tree of the 

reference specification. In the other cases of valid traces, the DF strategy explores less 

branches. In Section 4.3.1, we compare the two discussed strategies through a concrete 

experience using the LAP-B specification. 
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In the case of recursive process behavior definitions, recursive calls may cause 

infinite loops during the trace analysis. The example below, for instance, may generate an 

infinite number of parallel processes of type P, where c is a hidden gate. 

 

process P [ b] : noexit :=  

     hide c in 

  (c; P [b] 

         ||| 

  b;  stop) 

endproc 

 

Having process P as a reference specification, the analysis of the trace "a;b" using a depth-

first search in the behavior tree of process P, leads to an infinite loop as shown in Figure 2.3. 

Note that similar kinds of loops may also occur when the operators [], |[ ]|, or [> are used 

instead of ||| in the example above. 

 

 

            

c

c

c

b

b

b

 
Figure 2.3: Infinite branches 

 

The possible presence of such loops makes the problem of deciding the validity of a given 

trace with respect to a reference specification undecidable. However, we may arbitrarily 

limit the depth of exploration for internal actions to a specific limit. This will guarantee the 

termination of the analysis, but a negative result does not necessarily imply that the 

analyzed trace is invalid.  

 

Our experience with real-life specifications of OSI communication protocols has shown that 

the number of branches produced during the exploration is often very large (see Section 

4.3.2). Hence, the exploration of such behavior trees tends to be very slow regardless of the 

strategy used. A useful way to solve the problem would be to develop adequate heuristics that 

help to choose the branch most likely to be the one that corresponds to the analyzed trace. 
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Such heuristics  could largely improve the analysis speed when the given trace is valid, which 

is the case in most instances, however, it would not speed up the analysis of an invalid trace, 

since all alternatives will be explored before a negative verdict is given. It seems that the 

LOTOS execution model described in [Wu 90] provides a suitable framework for exploring 

different exploration strategies, since it allows for arbitrarily controlled growing of the 

execution tree.  

 

3. Design and implementation of a trace analysis tool: TETRA 
 

This section describes the design and implementation of a trace analysis tool, called 

TETRA. This tool analyses an observed trace of interactions with respect to a reference 

specification which is assumed to be written in LOTOS [Loto 87]. The latter is a high level 

specification language, developed within International Organization for Standardization 

(ISO) for the development of formal specifications of the OSI communication protocols 

and services. This language has, however, a much larger scope of application. The 

language and the trace analysis tool TETRA follow the principles exposed in Section 2. 

 

 

3.1. General description of TETRA 

 

As shown in Figure 3.1, TETRA compares a given trace of interactions with a reference 

specification checking whether an execution history of the specification could produce the 

given trace. The result of the analysis is either "valid trace" or "invalid trace". In the latter 

case, an optional error diagnostic facility provides indications about possible causes of the 

discrepancy between the trace and the specification, as explained in Section 3.4. 

 

Reference 
specification  
in LOTOS

Observed  
trace in  
LOTOS

Analysis results : 
   - "Valid trace" 
   - "Invalid trace"  + 
       Error diagnostics

TETRA

 
 

Figure 3.1: Trace analysis using TETRA 
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The first version of TETRA [Boch 89j] operates in batch mode where the reference 

specification is compiled together with the traces to be analyzed, which are written in the 

form of LOTOS processes. Subsequently, an on-line version of TETRA was developed 

[Saba 90] which compiles the reference specification alone and analyses a trace one 

interaction after the other. Although the present version of TETRA is not very efficient, the 

on-line version could be directly connected to a system under test and analyze the observed 

interactions as soon as they are executed. It detects an error  as soon as possible, and the 

execution of the system under test could be halted in order to obtain further information 

about the system state at the time when the error occured.  

 

The implementation of TETRA is based on the LOTOS interpreter ISLA [Logr 88] which 

operates in two phases. First the LOTOS specification is checked for syntax and typing 

errors and compiled into Prolog facts, and then the translated specification is interpreted by 

an interpreter written in Prolog. TETRA uses the ISLA compiler without change, while the 

LOTOS interpreter has been rewritten in order to perform the automatic trace analysis, as 

described in this section. The experiments reported in Section 4 were performed using 

TETRA written in Quintus Prolog running on a Sun SPARC station 1 workstation.  

 

TETRA also  has an option to validate the specification of test cases and their verdicts with 

respect to the reference specification which defines the expected behavior of the tested 

system. The application of this facility to the verification of standardized OSI conformance 

test cases is described in Section 4.2. 

 

3.2. Interaction parameters 

 

In the discussion of trace analysis in Section 2, we assumed that the interactions of the 

observed trace and the interactions defined in the reference specification have no data 

parameters. In most practical applications, however, data parameters of interactions must 

be considered. Also the distinction between input and output is important in this context. It 

is therefore important that a complete trace analysis tool analyses not only the order of the 

observed interactions in the trace, but also distinguishes whether the interactions were input 

to the system under test (or were produced as output) and whether the observed data values 

of output parameters are  valid according to the specification.  

 

TETRA provides the analysis of interaction parameters with respect to the information 

included in the reference specification written in LOTOS. In LOTOS, an interaction may 
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have a number of parameters with well defined data types. The  value of each parameter of 

an interaction is determined by all the processes that participate in the rendezvous 

interaction. A process that executes the behavior expression  "g ! Value" is ready to 

participate in an interaction at the gate "g" provided that it has a single parameter with 

value "Value". A process that executes the behavior expression "g ? x:Type", where x is a 

variable, is ready to participate in an interaction if its parameter has a value of type "Type". 

The latter is a kind of "reception" which may be associated with a guard  "g ? x:Type 

[<guard expression>]" which defines a boolean condition which must be satisfied for the 

interaction to be possible.  

 

In the case of two communicating processes there are 3 possibilities concerning the use of 

the symbols "!" and "?": 

 

- Value passing: one process using "!" determines the value which is accepted by the other 

process using "?". 

- Value matching: Both processes use "!" and the interaction is only possible if both have 

selected the same value. 

- Value generation: Both processes use "?" and an arbitrary value satisfying the conditions 

of both processes, if such a value exists, will be selected when the interaction is 

executed, and both processes know this value thereafter. If no such value exist, the 

interaction is not possible. 

 

Data types, values and operations on data values are specified in LOTOS using a notation 

of abstract data types [Ehri 85]. These definitions are automatically evaluated by TETRA 

during the analysis of a trace. For this purpose, TETRA receives as input not only the name 

of an observed interaction (which is the same as the name of an external gate), but also the 

values of the associated parameters. TETRA accepts the parameter values in a notation 

which corresponds to the LOTOS source code for  value expressions (which is also used by 

the interactive user interface of the ISLA interpreter). This notation is quite appropriate for 

abstract types, such as stacks and queues, however, the notation for "records" and basic 

predefined data types is very clumsy. In many practical applications therefore, the notation 

results in quite complex and unreadable type and value descriptions (see for example [Boch 

89h] or [Boch 90j]).  

 

Since the parameter values of the observed interaction trace usually are recorded by the test 

system in an implementation-dependent form, this form must be converted into the value 
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notation accepted by TETRA prior to analysis. In the case of interoperability testing of 

implementations of OSI Application layer protocols, as discussed in Section 4.1, the 

observed interactions between the interworking OSI implementations are coded according 

to the ASN.1 encoding rules [ASN1 C], which are based on the data structures of the 

exchanged messages specified in the ASN.1 notation [ASN1]. Because of the regular 

structure of these coding rules, it is possible to use the ASN.1 definition of the standardized 

message structure to generate automatically the necessary coding routines that translate the 

ASN.1 encoded messages into the LOTOS notation accepted by TETRA, as explained in 

[Boch 89h]. 

 

3.3. Optimizations 

 

Under this heading we discuss a few issues that are related to the efficient realization of trace 

analysis in the context of non-deterministic specifications. While the first subsection deals 

with a kind of state explosion which is related to the interleaving semantics for parallel 

activities, the other subsections deal with problems related to the data parameters. 

 

3.3.1. Elimination of redundant branches 

 

In addition to the invisible actions on hidden gates, as discussed in Section 2, LOTOS 

specifications may include other kinds of invisible events, such as the so-called internal 

event, written "i", which may be used to select an alternative, and the "exit" operation which 

terminates the behavior of a process. If such events occur within a behavior expression 

containing a parallel operator, they may cause the generation of several redundant branches, 

as shown for the expression "i; a; stop  |||  b; c; stop" below, where all the dashed branches are 

redundant: 

 

    

i

a ca

a b

b
c

c

c

aa

b

c

i

i

c a

  stop    stop    stop    stop    stop   stop  

i; a; stop | | | b; c; stop

 
 

Figure 3.2: Redundant branches 
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In order to eliminate this redundancy, the following reduction rules might be applied : 

 

a) i; B                 -->     B 

b) exit  >> B      -->     B 
c) exit (E1, ..., En) >> accept x1 : t1, ..., xn : tn in B       -->        [E1/x1, ..., En/xn] B 

where  Ei/xi means that the value-identifier xi in B is replaced by the value expression Ei. 

 

The idea behind these rules is to eliminate any non-relevant internal event that  would 

duplicate a number of branches in the behavior tree and increase the analysis time. After 

reduction, the resulting tree is trace equivalent with the original one, and so the analysis 

results will not be affected. 

 

3.3.2. Uninstantiated parameters 

 

A LOTOS specification may include a choice statement of the form "choice x:Type 

[<condition>] in <behavior expression>" which means that an arbitrary value of type "Type" 

satisfying the <condition> may be selected and then used during the execution of the 

subsequent behavior expression. Since the selected value may not have an impact on the first 

interactions of the behavior expression, but only on some interactions following later, the 

handling of this LOTOS feature in trace analysis is not so easy. It would be possible to 

assume one value for x and continue with the analysis until a contradiction between the trace 

and the reference specification is found. It would then be necessary to backtrack to the point 

of the choice statement and select another value, and so on, until all values have been tried. 

Since the set of possible values may not be finite, as in the case of Integers, this treatment of 

the choice statement may lead to infinite loops during the trace analysis. 

 

We have therefore adopted another way of treating this case. Using the facility of Prolog of 

leaving variables uninstantiated until a value is found later on, we represent the selected value 

of a choice statement by a Prolog variable which remains non-instantiated until its value can 

be deduced from the observed output interactions contained in the subsequent trace.  

 

The same problem occurs when an interaction occurs on an internal (invisible) gate of the 

reference specification and for one of the parameters the value must be generated because 

none of the processes participating in the interaction defines its value (see Section 3.2, case of 

value generation). TETRA treats such a parameter in the same manner as a choice variable. 
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3.3.3. Elimination of unfeasible branches 

 

During the expansion of the behavior tree of the reference specification, many of the explored 

branches contain predicates which should be true. In constraint-oriented specifications [Viss 

88], the predicate of a branch is often the conjunction of several independent conditions 

imposed by different processes participating in an interaction, and sometimes this different 

conditions contradict one another. We call a branch "unfeasible" if its attribute evaluates to 

False. 

 

Unfortunately, often these predicates contain variables which remain uninstantiated, as 

explained above, and they cannot be evaluated as long as they contain an uninstantiated 

variable. In general, the question whether a given branch is unfeasible, that is, whether its 

predicate evaluates to true, is undecidable. In order not to loose a possibility of explaining the 

observed trace as a valid execution history, TETRA assumes that a predicate with 

uninstantiated variable will evaluate to True. In addition, the user may establish a database of 

contradictory predicates which is consulted by TETRA to detect unfeasible branches. This 

approach has been used successfully in the case of trace analysis with respect to the OSI 

Transport service [Saba 90]. 

 

3.4. Error diagnostics    

 

While the basic function of a trace analysis tool is the determination of the validity of the 

analyzed trace, it would clearly be useful to also provide some diagnostic facilities which 

would identify the reason for non-conformance in the case of an invalid trace. The provision 

of a function which provides meaningful and intuitively "correct" diagnostics is very difficult. 

The problem is similar to, if not more difficult than, the problem of providing meaningful 

error diagnostics in compilers.  

 

TETRA includes a second "diagnostic" phase which is initiated only for non-conforming 

traces. During this phase various error hypothesis are checked for consistency with the 

analyzed trace. Each hypothesis gives rise to a diagnostic message, which may be of the form 

"The second interaction is wrong and should be such and such", or "The third interaction of 

the trace should be absent". Each diagnostic message gives a possible interpretation of the 

reason for the non-conformance of the analyzed trace. 
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A first type of error hypothesis is called "wrong actions". It includes the following cases: 

 

(1) Gate error: a different gate should be used for a given interaction. 

 

(2) Parameter error: either the number and/or types of the parameters of a given interaction 

are not correct, or a parameter value should be different. 

 

(3) Predicate error: in the case that a guard is associated with the interaction, the predicate of 

the guard evaluates to false in the reference specification. 

 

TETRA performs a depth-first search of the behavior tree of the reference specification and 

finds all possibilities of N action errors that are sufficient to explain the analyzed trace with 

respect to the specification. N is a parameter which can be set by the user. It usually takes the 

value 1 or 2. If for a given branch of the specification behavior tree one needs more than N 

errors to explain the analyzed trace, the specification branch is abandoned. If the analysis 

reaches the end of the trace, a diagnostic is obtained corresponding to the errors that must be 

assumed in order to equate the analyzed branch  with the given trace. Several different 

branches may therefore lead to different diagnostics. 

 

As an example, we consider the reference specification Example 3.1 (which is similar to 

Example 2.1) and the non-valid trace T="a;e;d". The analyzer will first explore the first 

alternative of the specification (line 7) and encounter a discrepancy with the specification at 

the second interaction. In the case that the maximum number N of errors to be considered is 

one, this alternative will not be further explored since the following interaction of the trace 

cannot be explained. The same happens to the second branch (lines 7 and 9). Therefore the 

analyzer will backtrack and explore the third alternative of the specification (line 11). It finds 

that the trace can be explained with one wrong action at the second place, which is indicated 

by the diagnostic message "action 2 should be: b!x:Nat [x ne 0]". In the case of N equal to 2, 

the first alternative would also give rise to a diagnostic message, which would be of the form 

"action 2 should be: c!0 ; action 3 should be: e".  

 

In this example, it seems intuitively clear that the error in trace T is caused by the second 

interaction. However, in more complicated situations, it is not easy to identify the cause of 

the error. In any case, the analyzer provides a number of possible diagnostic messages, each 
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indicating how the analyzed trace could be obtained from a correct branch by a small number 

of changes.  

 
 
Example 3.1 
 
(1) specification   S [a,b,c,d,e] : noexit := 
(2) Library   NaturalNumber   endlib 
(3) behavior 
(4)  P[a,b,c,d,e] 
(5) where 
(6)  process  P[a,b,c,d,e] : noexit := 
(7)   a; (c!0; e; stop 
(8)        [] 
(9)        b; c; e; stop) 
(10)  [] 
(11)    a; b ?x:Nat [x ne 0]; d; stop           
(12) endproc 
       endspec 
 

 

A second type of error hypothesis concerns additional and missing actions. TETRA checks 

whether the trace includes an interaction that should not be present according to the 

specification, or whether an interaction foreseen by the specification is not present in the 

trace. The analysis proceeds in a similar manner as explained for the case of wrong actions. 

Again, a user-chosen parameter N limits the number of errors of this type that are considered 

by the analyzer. 

 

The following table shows further examples. Various traces are compared with the 

specification Example 3.1 and the diagnostics obtained are indicated. The value N=1 is 

assumed, except for the trace marked by a "*" which requires N=2 for providing any 

diagnostic. The last three diagnostics show that different error hypothesis may explain a 

given trace with respect to the same branch in the specification. 
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Trace Diagnostic(s) Line # 
in the 
spec. 

Error type 

a; c!0; d action 3 should be: e 7 erroneous action gate 

 action 2 should be: b!x:Nat [x ne 

0] 

11 erroneous gate and param.

a; c!Succ(0); 

e 

action 2 should be: c!0 7 erroneous action 

parameter 

a; c; e action 2 should be: c!0 7 missing parameter 

a; b!0; d action 2 should be: b!x:Nat [x ne 

0] 

11 predicate evaluated to 

false 

      b; c; e   * action 1 should be: a   and 
action 2 should be: c!0 

7 erroneous action gate &  
missing parameter 

a; c!0; c!0; e action 3 should be absent 7 extra action 

a; d action b ?x:Nat [x ne 0] is 

missing, 
should be in position 2 

11 missing action 

 action 2 should be: c!0 7 erroneous action gate &  
missing parameter 

a; b; e action 3 should be: c 7 & 9 erroneous action gate  

 action 3 should be absent 7 & 9 extra action 

 action c is missing,  
should be in position 3 

7 & 9 missing action 

 

 

4. Experience with the TETRA tool 
 

4.1. Experience with test result analysis 

 

We consider in this subsection the analysis of test results during the testing of an IUT. In the 

case of standardized test cases including verdicts, the analysis of the test results can be 

performed based on the verdicts, however, such an approach is not possible when other test 

cases are used which may be required for additional test coverage, the testing of 

implementation-dependent features or interoperability tests. In all such cases, including the 

case of random test inputs, the test results can be analyzed directly with respect to the 

specification [Boch 89m] using automated tools such as TETRA. 
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Figure 4.1:  ACSE implementation test experiment 

 

An experiment with test result analysis has been performed for the protocol of the 

Association Control Service Element (ACSE), which is an OSI Application layer protocol. 

The purpose of this experiment was at the same time to demonstrate tools for ASN.1 which 

were developed for implementation support in conjunction with the FDT Estelle [Boch 90f], 

and for the support of ASN.1 in relation with LOTOS [Boch 89h]. The ACSE protocol was 

used in this experience because of its relative simplicity. The experiment consisted of having 

two ACSE implementations communicate with one another and having the exchanged PDU's 

observed and automatically analyzed by the trace analysis tool TETRA, as shown in Figure 

4.1. These implementations, written in C, were obtained through the automatic translation of 

an ACSE Estelle specification. The latter contained PDU definitions automatically obtained 

through translation from the original ASN.1 definitions found in the standard [ISO 8650]. 

The implementation contained automatically generated PDU encoding and decoding routines.  

 

The exchanged PDU's were recorded into a trace file and at the same time analyzed on-line 

by the TETRA tool using as the reference an ACSE LOTOS specification. The latter also 

contained PDU definitions automatically obtained through translation from the ASN.1 

definitions. Before being analyzed by the TETRA tool, which accepts the analyzed 

interactions in LOTOS action format, the ASN.1-encoded PDU's were translated into the 
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form of LOTOS expressions by the ASN.1 Decoder (see Figure 4.1) automatically generated 

by our ASN.1/LOTOS tool.  

The ACSE protocol specification is relatively simple. Nevertheless, the length of the PDU 

definitions in ASN.1 is 100 lines. This is translated into 200 lines of Estelle type definitions 

and 1000 lines of LOTOS data type definitions. The total size of the ACSE LOTOS 

specification used by TETRA as a reference is 2400 lines. The control part is small 

(approximatively 200 lines) which gives a simple behavior tree. The on-line version of 

TETRA validates each interaction in matters of seconds.  A certain number of test scenarios 

were run and the resulting traces of PDU's were analyzed. TETRA detected one error in the 

implementation and one error in the specification. In all those cases, the diagnostic part 

located the erroneous behaviors. Example 4.1 shows an execution trace of TETRA which 

points out an error in the implementation. 

 
 
Example 4.1: Execution trace of TETRA (on-line  version) 
 
Observed new interaction -> 
 
   P !Input:IO !PCONind : primitive !ACSE_apdu(AARQ_apdu( protocol_version(Bit(0)+Bit(1)), 
application_context_name(a), called_AP_title(d), called_AE_qualifier(e), called_AP_invocation_id(Not_Present), 
called_AE_invocation_id(Not_Present), calling_AP_title(b), 
calling_AE_qualifier(c),calling_AP_invocation_id(Not_Present), calling_AE_invocation_id(Not_Present),, 
implementation_information(Not_Present), user_information(f+ <>))) : ACSE_apdu 
 
... Valid ... 
 
Observed new interaction -> 
 
   P !Out : IO !PCONrspAcceptance : primitive !ACSE_apdu(AARE_apdu(protocol_version(Bit(1)), 
application_context_name(a), result(0), Associate_source_diagnostic(acse_service_user(0)), 
responding_AP_title(Not_Present), responding_AE_qualifier(Not_Present), responding_AP_invocation_id(Not_Present), 
responding_AP_invocation_id(Not_Present), implementation_information(Not_Present), user_information(Not_Present)))) : 
ACSE_apdu 
 
... Invalid ... 

 
 Next Possible Actions  

 
  <1>- P !Out:IO !PCONrspUserRejection:primitive 
!ACSE_apdu(ACSE_apdu_genere_1(AARE_apdu(protocol_version(protocol_version(Bit(1)), 
application_context_name(a), result(Succ(0)), Associate_source_diagnostic(acse_service_provider(Succ(Succ(0)))), 
responding_AP_title(Not_Present), responding_AE_qualifier(Not_Present), responding_AP_invocation_id(Not_Present), 
responding_AP_invocation_id(Not_Present), implementation_information(Not_Present), user_information(Not_Present))) : 
ACSE_apdu 
 
  <2>- P !Out:IO !PUABreq : primitive !ACSE_apdu(ABRT_apdu(abort_source(Succ(0)), user_information(Not_Present))) : 
ACSE_apdu 
 
  <3>- ... 
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In this example, we wanted to test if the called implementation reacts properly when an 

AARQ APDU is sent with an unsupported protocol version (first interaction of Example 4.1). 

In this test scenario, the called implementation should respond with a rejection, i.e. AARE 

APDU (Result = 1), but instead, it responds with an acceptance, i.e. AARE APDU (Result = 

0),  as shown in the second interaction of Example 4.1. In a first analysis phase, TETRA 

diagnoses an invalid interaction. In a second phase, TETRA provides a list of actions that 

could have validly taken place instead of the erroneous behavior. This includes the AARE 

APDU (Result = 1) shown as last interaction in Example 4.1 (note that "Succ(0)" is the 

notation for 1 in LOTOS). 

 

One of our test cases (collision of two release requests) highlights a problem with remote and 

distributed testing architectures, which may also apply to local testing when the interfaces 

contain queues. According to the specification, the IUT may generate a RLRQ (release 

request) PDU just before receiving a RLRQ from its peer, as shown for the initiator in Figure 

4.2, but not after it has received such a PDU. However, the latter sequence may be observed 

by an observer that resides at the peer site, or somewhere between the two communicating 

entities, as shown by the dashed line in Figure 4.2. 
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Figure 4.2: Sequence of ASPs and APDUs in the release collision scenario 

 

Although we performed local observation, as shown in Figure 4.2, we sometimes observed 

the wrong sequence of PDU's. This is due to the fact that our point of control and observation 

(PCO) was at the Presentation service interface, and included queues for PDU buffering 

within the ACSE entity implementation. It seems that this is a quite normal situation. 

Unfortunately, this makes the observation of certain timing and ordering errors, such as the 

one above, difficult to observe and diagnose [Dsso 90]. 

 

The presence of such queues between the PCO and the state machine of the protocol 

implementation can be taken into account during the test result analysis by including queues 

in the reference specification used for the analysis, as shown for X.25 in Figure 4.3. We did 

not do this exercise in the case of ACSE. 

 

4.2. Experience with test case validation 
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The test cases developed for OSI conformance testing usually contain verdicts for different 

possible reactions of the IUT. The verdict has usually the form of "test passed", "test failed", 

or "inconclusive".  The "inconclusive" verdict indicates that the observed behavior of the IUT 

satisfies the rules of the specification, but that the particular behavior to be tested could not 

be observed. Since it is important that these verdicts conform to the protocol specification, 

and test descriptions are usually quite lengthy and complicated, it would be useful to 

automatically check the verdicts of a defined test case against the specification of the 

protocol. As long as the test case consists of a finite number of possible traces (each ending 

with a particular verdict), the verification of the test case is in fact possible by performing the 

same kind of test trace analysis, as described above, separately for each trace of the test case. 

 

The main problem for the automation of such a test case verification is the availability of a 

suitable formal specification of the protocol specification, to be taken as the reference. In 

addition, the test case should be defined in a compatible language. Most OSI test cases are 

now written in the TTCN language [OSI C3]. It seems that for the comparison of a test case 

with a formal protocol specification, it is most convenient to represent the test case in the 

same language in which the specification is written. Therefore the automatic translation of 

TTCN into FDT's would be a useful step towards the validation of test cases (see for instance 

[Sari 88f]). 

 

We have validated the verdicts of a large number of the ISO/CCITT conformance test cases 

for the link layer of X.25 [ISO 8882] against a specification of the corresponding protocol, 

the LAP-B, as mentioned in the introduction. For this purpose, we used an existing LOTOS 

specification of LAP-B which had already been validated through extensive simulations 

[Guer 89a]. This is a quite sizable specification of approximately 2500 lines of LOTOS code. 

Since the test suite was described in TTCN, we had to translate it into LOTOS. This has been 

done manually [Dubu 90]. 

 

As shown in Figure 4.3, the test cases are executed under a simulated remote test architecture. 

We chose this architecture because the test cases of the ISO document were conceived to be 

executed within such an architecture. The test cases only describe the interactions with the 

lower tester. The medium is a reliable full duplex queue. 
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Figure 4.3: Remote Test Architecture 

 

The complexity of the behavior tree increases when we model the medium between the 

specification and the lower tester explicitly, as part of the reference specification, in the form 

of two FIFO queues in LOTOS. For simple test cases, the analysis time increases by a factor 

of up to ten. In more elaborated test cases, the analysis aborts due to a lack of memory. In 

order to obtain our results, we have therefore bypassed the queues. Table 4.1 shows results 

for the validation time of some of the test cases. The following paragraphs discuss particular 

aspects of our results. 

 
 

Test case 
Number of branches 
isolated by TETRA

Number of branches 
validated 

Maximum number of 
test steps in a branch 

Total validation 
time (in sec.) 

DL1-101 21 21 7 1541 

DL1-207 18 18 7 974 

DL2-101 98 8 7 3005 

 

Table 4.1: Statistics on validation time 

 

(a) Detected error in LAP-B test suite:  We have found an error in one of the test cases of 

the original TTCN document. Test case DL1_306 says that the trace: 

 

L ! DISC (P:=1) 

 L ? DM [F=1] 

  L ! UA (F:=1) 

   L ? DISC [P=1] 

 

should have a fail verdict, but it is accepted by the specification. We found that this sequence 

of actions is valid with respect to the LAP-B standard. We believe that the last test step of the 
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test case DL1_306 (L ?Otherwise)  should have an inconclusive verdict instead of a fail 

verdict. 

 

(b) Detected error in the specification: Test case DL1_207 indicates an error in the 

specification which does not include all details concerning error processing. The branch: 

 

L ! DISC (P:=1) 

 L ? DM [F=1] 

  L ! Hex (string:='03F??'H) 

   L ? Otherwise 

 

has a fail verdict, but is accepted by the specification (string '03F??'H is a SABM/P=1 with an 

non-empty information field). 

 

(c) Preambles for arbitrary initial states:  We were surprised to see that TETRA rejected 

certain branches of preambles which are considered valid according to the test suite [ISO 

8882]. For instance the branch: 

 

L ! DISC [P:=1] 

 L ? UA [F=1] 

 

of the subtree DL1_STATE is not accepted by the LAP-B specification. Later we noticed that 

the ISO test cases do not necessarily assume that the IUT is initially in the disconnected state. 

For instance, the above branch is valid starting in the data transfer phase. 

 

(d) Error diagnostics: While this facility works well for smaller specifications, we found 

that in this example the number of fault hypothesis (each indicated by a diagnostic message) 

was often too large to be useful. For instance, a fault in the first actions of a branch could lead 

to about hundred diagnostics messages. 

 

4.3. Performance considerations 

 

During the experience with the LAP-B test case validation described above, we were 

interested in determining the performance of the analyzer when different search strategies 

are used, and in understanding how the behavior tree of the reference specification changes 

during the validation of a typical test case. This latter aspect concerns the branching factor 
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in the specification behavior tree, and the kinds of branches generated at each step of the 

validation process. 

 

4.3.1. Space and time efficiency of different search strategies 

 

Two search strategies have been implemented in TETRA for the sake of comparison, 

namely, Breadth-First (BF) strategy  and Depth-first (DF) strategy. We used these two 

strategies to validate the test case DL2-101. This test case contains 36 branches with a  

maximum of five actions per branch. Table 4.2 summarizes the validation time, in seconds, 

taken by TETRA to validate each branch. Note that in the case of the BF strategy, the 

analyzer could not validate all the branches because of memory limits. We conclude from 

Table 4.2 that the DF strategy is a good factor more efficient than the BF strategy. 

 

Table 4.2 
 

Branch Depth-First Search Breadth-First Search 
1 108.7 170.72 
2 10.3 155.35 
3 17.27 54.37 
4 8.0 49.41 
5 13.87 39.88 
6 2.55 38.38 
7 2.15 38.33 
8 6.8 37.45 
9 6.72 38.25 
10 13.47 20.65 
11 13.25 20.82 
12 13.27 20.45 
13 13.22 20.70 
14 13.17 21.47 
15 87.57 175.67 
16 6.95 21.98 
17 6.95 22.1 
18 7.03 30.58 
19 6.93 35.5 
20 6.93 27.77 
21 7.03 34.37 
22 6.88 26.68 
23 531.3 system overflow 
... ...  
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4.3.2. Evolution of the reference specification behavior tree 

 

In order to better understand the evolution of the behavior tree of the reference 

specification during the analysis of a trace, we have obtained some statistical information 

about the number of possible branches compared with the total number of branches 

foreseen by the specification, and the relative number of internal actions compared with 

external ones. This information was obtained using the breadth-first search strategy. 

 

In order to illustrate the kind of information which was collected, Figure 4.4 shows a very 

simple example of a behavior tree which was explored during the analysis of a given trace. 

The dashed arrows correspond to branches which are not further explored since the 

behavior defined for this arrow is in contradiction with the analyzed trace. The thin arrows 

correspond to internal actions, which are not externally observable, and the fat arrows 

correspond to an interaction defined by the specification which is matched by the observed 

trace. 

 
Level 0

Level 1

Level 2

Level 3
matching 

branch  
 

Figure 4.4: Reference behavior tree evolution, illustration 
 

Table 4.3 shows the information which would be gathered for the above example. For each 

level of the behavior tree (throughout the whole breadth), the first two columns indicate the 

total number of branches, and the number of feasible ones. The last two columns 

correspond to the number of thin and fat arrows. The redundant branches indicated in the 

third column are branches that have the same action (internal or external) as another branch 

at this level, and also the same behavior expression, which determines the subsequent 

behavior. Because they are redundant, these branches need not be further explored. 

 

Table 4.3 
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Level 

 
Total number 
of branches 

Number  of  possible branches 

  total redundant 
with internal 

action 
with external 

action 

1 5 2 0 1 1  
2 6 5 0 3 2 
3 7 3 0 1 2 

 
 Number of actions on matching branch: 1 internal, 2 external. 
 Analysis time : n seconds 
 
 

 

Tables 4.4 and 4.5 show the same kinds of results for the analysis of two typical traces, 

corresponding to two branches (number 15 and 23, respectively) of the LAP-B test case 

DL2_101 already mentioned in Section 4.2. We can draw the following conclusions from 

these experiments: 

 

(a) Number of branches with internal actions: For the LAP-B reference specification, the 

number of branches beginning with internal actions is always clearly greater than the 

number of branches beginning with external actions. However, specifications written in a 

purely constraint-oriented style, such as the OSI Transport service specification [OSI TS3] 

used in [Saba 90], have no internal actions. In this latter case, only a single fat arrow was 

observed at each level, together with a large number of unfeasible branches. 

 

(b) For the matching branch, the number of internal actions is small compared with the 

number of external actions observed (at least in the case of this LAP-B specification). 

 

(c) The analysis time required for the analysis of a trace varies a lot, even if the traces have 

the same length. In the case of the LAP-B specification, this fact can be explained by the 

blow-up of alternative branches which is observed at certain levels of the analysis, such as 

at the deeper levels in the Tables 4.4 and 4.5. 

 

 
Table 4.4 
 

 

Level 

 
Total number 
of branches 

Number  of  possible branches 
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  total redundant 
with internal 

action 
with external 

action 

1 11 9 7 8 1 
2 19 17 8 16 1 
3 44 28 18 20 8 
4 28 24 17 22 2 
5 34 24 17 19 5 
6 28 24 16 22 2 
7 24 12 6 6 6 
8 2 2 0 2 0 
9 8 4 0 2 2 
10 10 6 2 4 2 
11 74 70 2 68 2 
12 152 148 2 82 66 

 
 Number of actions on matching branch: 7 internal, 5 external. 
 Analysis time : 240.666 seconds 
 

 

 
Table 4.5 
 

 

Level 

 
Total 

number of 
branches 

Number  of  possible branches 

  total redundant 
with internal 

action 
with external 

action 

1 11 9 7 8 1 
2 14 12 8 11 1 
3 12 6 3 3 3 
4 1 1 0 1 0 
5 4 2 0 1 1 
6 5 3 1 2 1 
7 37 35 1 34 1 
8 140 74 1 41 33 
9 467 387 252 347 40 
10 628 438 273 343 95 
11 4076 3936 3593 ? ? 
12 Not enough memory   

 

 

 

5. Conclusions 
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We have shown in this paper that the specification of a tested system may be used as a 

reference for the automatic analysis of test results, not only in the case of deterministic 

specifications where the output interactions and their parameters are determined from the 

given test inputs, but also in the case of non-deterministic specifications which allow for 

different outputs for a given sequence of inputs. However, in the latter case, test result 

analysis is more complex since different execution histories of the specification must be 

explored in order to check whether one of them may explain the outputs received from the 

system under test. Although this question is non-decidable in general, we explain in this 

paper how such an analysis can be performed in many practical situations.  

 

We have considered, in particular, the case that the reference specification is written in 

LOTOS, which is a formal specification language developed by ISO for the description of 

OSI communication protocols and services. A trace analysis tool, called TETRA, is 

presented, which analyses a given trace of interactions with respect to a reference 

specification written in LOTOS. Our practical experiments, mentioned in Section 4, indicate 

that TETRA is already a practical tool for the analysis of test results and the validation of 

verdicts in conformance test cases. We hope that further optimizations of the analysis and 

diagnostic algorithm will lead to an improved tool which can handle most practical problems 

in this area. However, our implementation approach using Prolog is probably not sufficiently 

efficient for most cases of on-line analysis of test results. 

 

The performance studies discussed in the paper indicate, as could be expected, that a depth-

first strategy for the exploration of all possible behaviors of a reference specification is more 

efficient than a breadth-first exploration. However, a breadth-first exploration provides 

interesting statistics about the structure of the behavior tree in terms of number of possible 

branches, and internal actions. This structure largely determines the effectiveness of the trace 

analysis algorithm and it is dependent on the structure of the reference specification. Further 

work is required to better understand the impact of the specification style on the ease of trace 

analysis. 

 

The errors found during our experiences indicate, as could be expected, that even well studied 

specifications, implementations and test cases still contain a few errors. In particular, it shows 

that the automatic checking of OSI conformance test cases with respect to the corresponding 

protocol specification is a useful activity for increasing the confidence in the OSI 

specifications. It is important to note that the automation of this activity is only possible when 
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a formal specification of the protocol is available. Unfortunately, at present, there are only 

few formal specifications of OSI protocols or services that have been generally recognized to 

faithfully represent the OSI standards. 
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