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Abstract 
The evolution of specifications is necessary to 
accommodate the evolution of requirements and design 
decisions during the software development and 
maintenance process. We are concerned here with formal 
description techniques that allow the development of 
executable specifications, especially executable object- 
oriented specifications of distributed systems. In this 
paper, we propose a two-level model for the evolution of 
large object-oriented specifications. The first level deals 
with the dynamic modification of types (classes), while 
the second level deals with the modification of modules. 
To allow for dynamic modification of types and modules, 
we have developed a reflection based technique using meta- 
objects where the modijication operations are defined. In 
our approach we have defined a set of structural and 
behavioral constraints to ensure the specification 
consistency after its modification at both levels. 

Key words: Distributed systems evolution, type 
modification, object-oriented specifications, modules 
compatibility, reflection, dynamic change. 

1. Introduction and motivations 

Most of the software development cost is spent in the 
maintenance phase [ 13. Specification modifications are 
most costly because they imply modifications in the other 
phases. Therefore, software design practice should include 
criteria for maintainability [2], such as: design software 
with maintainability in mind, develop design criteria for 
achieving maintainability, and provide a change 
management strategy. We believe that maintenance costs 
can be reduced when formal methods are used at the 
specification level, and that facilities for modification are 
provided at that level. This can provide a systematic way 
for change propagation from the specification level to the 
implementation level, and make it easier to check system 
consistency. 

The object oriented approach is known by its flexibility 
for system construction, and allows to cope with the 

problems related to software development. This is partly 
due to the inheritance property which permits class reuse 
and incremental construction of systems. We have 
developed a new object-oriented specification language, 
called Mondel [3], that has important concepts as a 
ipecification language to be applied in the area of 
distributed systems. The motivations behind Mondel are: 
(a) writing system descriptions at the specification and 
design level, (b) supporting concurrency as required for 
distributed systems, (c) supporting persistent objects and 
transaction facilities, and (d) supporting the object 
concept. Presently, our language Mondel has been used for 
the specification of problems related to network 
management [4] and other distributed applications [5].  

When specifications are large, their manipulation, 
understanding, and maintenance become difficult. 
However, the availability of modules is of great practical 
use for the production of structured specifications that are 
easier to manipulate, understand, analyze and maintain. 
Specification modularity is essential, and permits the use 
of composition to form a specification from reusable and 
independent modules. Therefore, the use of well defined 
module interfaces allows for the validation of module 
interconnections. 

To achieve our goal that is the construction of 
dynamically modifiable specifications, and having the 
above criteria in mind, in this paper we propose a two- 
level generic model for managing large specifications 
evolution. This model consists of the in-the-small and the 
in-the-large levels. We will present each of these levels 
and describe various uses that are made of these levels to 
aid the evolution process. In addition to the means for 
specifying and performing changes, it is also necessary to 
provide facilities for controlling change in order to 
preserve specification consistency. Some properties of 
distributed systems such as blocking should be considered 
for preserving consistency. In our model, the consistency 
requirements are addressed at the in-the-small and at the in- 
the-large levels. 

The paper is structured as follows: Section 2 introduces 
the two-level generic model for large specifications 
evolution. The first level describes the evolution of object- 
oriented specifications by considering classes as the basic 
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units of specification construction. The needed 
requirements to maintain the consistency at this level are 
also addressed. Then we describe the second level that 
presents the module concept as the unit of large 
specifications composition, and the needed requirements 
needed to maintain consistency at the module boundaries. 
In Section 3, after an overview of Mondel and RMondel (a 
reflective version of Mondel) we will show how the two 
levels of modification, introduced by the generic model, 
are supported in the Wondel language. In addition, we 
will show how the structural and the behavioral 
consistencies are supported at both levels. In Section 4 we 
discuss related works. Conclusions are drawn in Section 5. 

2. A generic model at two levels 

Specifications may be too large, and therefore very 
complex and difficult to understand. Therefore, we assume 
in our approach that we have modular specifications. This 
notion of modularity provides the module concept as a 
structuring concept for large specifications. Based on that 
concept, modules will be interconnected to form new 
modules. The entire specification is also a module. 
Fig.2.1 gives a global view of the two levels of 
specification evolution. The in-the-large level deals with 
the specification modules and their interconnections while 
the in-the-small level deals with classes and their 
relationships. 

2.1. In-the-small  level 

For object-oriented systems to fulfill their promise as 
vehicles for fast prototyping, ease of maintenance, and 
ease of modification, a well defined and consistent 
methodology for class modification must be developed. At 
the in-the-small level we consider that a specification 
consists of a class lattice. A node in the lattice represents a 
class and an edge between a pair of nodes represents the 
inheritance relationship; that is the lower level node is a 
specialization of the higher level node. The inheritance 
structure of object classes (found in most object-oriented 
languages) is a useful concept for the structuring of 
complex specifications and programs. It also plays an 
important role for the issues of software reusability and 
extendibility. In this section we will enumerate the 
allowed modifications at the in-?he-small level, and we 
discuss the consistency requirements at this level. 

2.1.1. Class evolution: Software developers or 
database designers working with an object oriented system 
are frequently led to modify existing class definitions so 
that they suit their needs. In the area of object oriented 
databases, schema modifications have been extensively 
studied in the recent literature [61, 171, [81, and [91. The 
available methods determine the consequences of class 
changes on other classes and on the existing instances, so 

that possible violations of the integrity constraints can be 
avoided. A major concern in designing a methodology for 
class modification is how to bring existing objects in line 
with a modified class definition. 

In the large level - userelation 

-. Inheritance 
relation 

/ 
Fig.2.1. Two-level view 

The class updates are classified into three categories [61: 
(1) updates to the contents of a node in the class lattice, 
(2) updates to an edge in the class lattice, and (3) updates 
to a node in the class lattice. In the following we 
enumerate the most important update operations on 
classes. 
(1) Modifications to the contents of a node in the lattice. 
(i) Modifications to an instance variable of a class. 

- Add/Drop an instance variable A to/from a class T. 
- Change the class T of an instance variable A. 

- Add/Drop the method m to/from the class T. 
-Change the signature S of the method m. 

(ii) Modifications to a method of a class. 

(2) Modifications to an edge of the lattice. 
(i) Make a class T a superclass of class S. 
(ii) Delete a parent S (superclass) of the class T. 

(3) Modifications to a node of the lattice structure. 
(i) Add a new class T. 
(ii) Delete an existing class T. 

2.1.2. Kinds of consistency: At the in-the-small 
level three kinds of consistencies must be addressed 
structural consistency, semantical consistency, and 
instance-of relationship consistency. 

-Structural consistency: It ensures that the structure of 
the specification (class hierarchy) is maintained according 
to the inheritance relation. This is widely investigated in 
object-oriented databases where some invariants are used to 
define the consistency requirements of the class hierarchy 
[61* 
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-Semantical consistency: While most existing 
approaches [a], [7], and [9] have focused on preserving 
structural consistency, we believe that the semantical 
consistency which deals with object behaviors must be 
addressed. The methodology of Skarra and Zdonik [8] goes 
a long way toward preserving behavior. In effect, their 
methodology implements class modification by the use of 
versions and exception handling mechanisms. However, 
we are exploring solutions to class modification that do 
not require versioning. As we are interested in distributed 
systems, we believe that additional constraints such as 
blocking must be add~ssed. 

-Instance-of relationship consistency: While classes 
evolve, their existing instances must be changed in order 
to remain in line with their classes. This kind of 
consistency can be defined according to the allowed class 
modifications. For instance the addition of an attribute 
within a class involves changes to the existing instances 
of this class. In the case of behavior change, object 
behaviors must conform to their behavior before the 
change. 

2.2. In-the-large level 

The importance of decomposing large specifications 
into modules is widely recognized within the software 
engineering community [lo], [ll], 1121. Modular systems 
are interconnections of modules with matching import and 
export interfaces [13], [14], e.g., the imported modules’ 
export interfaces must match with the importing module’s 
import interface. However, the precise manner in which 
modules should be combined, refined, modified, and 
organized during the evolutionary development of a system 
is not well understood. 

2.2.1. Modules and their interconnections: A t 
the in-the-large level we consider that a large specification 
consists of a hierarchy of interconnected modules. A node 
in the hierarchy represents a module, and an edge between 
a pair of nodes means that the upper level module employs 
the module of the level below. A module consist of three 
parts: an export interface, an import interface, and a 
module body. For the sake of simplicity, we do not 
consider parameterized modules. 

(1) The export interface is the visible part which must be 
known for using this module in connection with other 
modules. It allows different aspects of information hiding 
such as: 
- It prevents a user from looking into the internal structure 
of a module. 
- It protect some of the resources that exists internally 
from their use from outside the module. 
(2) The import interface contains reference to one or a 
number of other modules. However, modules may not 
import each other cyclically. 

(3) The module body is intended to define the construction 
of the export interface using the import interface, and may 
contain auxiliary hidden resources such as class and object 
definitions, which do not belong to any other part of the 
module. 

For large specifications, the development process 
consists of a sequence of alternating incremental 
completions of incompletely developed modules and 
refinements through successive decompositions and 
compositions for the top-down or bottom-up continuation 
of the development process. Therefore, a set of 
fundamental operations on module specifications is 
developed in [ 131. 

-The composition of two modules M1 and M2 
connects the import interface of M1 with the export 
interface of M2. The composite module (M1 comp M2) 
will have the same import interface as M2, the same 
export interface as M1, while the body of (M1 comp M2) 
is given by the union of the body parts in M1 and M2. 

-The extension extE(M) of a module M is the result of 
extending some or all constituent parts of the module M 
by additional items, where E denotes the collection of all 
extended items. The extension construction is used to 
augment a given module by adding items in the export, 
import or body part of a module. This construction is 
important to build up modules step by step, adding more 
and more operations. 

-The union (M1 U M2) of two modules M1 and M2 
is the disjoint union of M1 and M2. The constituent parts 
of the resulting module (M1 U M2) are the union of the 
corresponding parts of the original modules. For instance 
the export interface of (M1 U M2) is the disjoint union of 
the export interface of M1 and the export interface of M2. 

2.2.2. Module modifications and consistency: 
Since each module forms a small, rather independent piece 
of the whole specification, then modules can be developed, 
implemented, and modified individually. As specifications 
evolve, designers can be led to modify modules so that 
they suit their needs. This is typically achieved by 
modifying modules constituent parts. We classify module 
modifications into the following categories: 

(1) Modification of the export interface: Adding or 
removing a named object or a class to/from the export 
interface of the module. 
(2) Modification of the import interface: Adding or 
removing a named object or a class to/from the import 
interface of the module. 
(3) Modification of the body part of a module: As a 
consequence of the import and/or the export interface 
modifications, the body of the module can be changed. 
Sometimes, one needs to modify the body of a module 
without modifying the interface (e.g., performance 
enhancement) . 
(4) Addition andor deletion of a module. 
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According to the allowed modifications of modules, 
there are two kinds of consistencies to be considered. First, 
the structural consistency deals mainly with type checking 
at the module boundaries, e.g., the extension of a module 
should ensure type compatibility at the import and export 
interfaces between the original module and its extended 
version. Second, the semantical consistency deals with the 
behavior aspect of modules. That is, an extended version 
of a module should provide the behavior that is required by 
the system (i.e., the extended version should provide at 
least what the original module provides). 

These two kinds of consistency must be addressed at 
two levels, i.e., at the module level and at the whole 
specification level. At the module level we should ensure 
that the allowed modifications, of the import and the 
export interfaces of a module, will not violate the static 
semantics rules, e.g., a resource must not be imported and 
exported by the same module. Moreover, the modifications 
of the body part of a module must be done without 
resulting in run-time errors, blocking, or any 
uncontrollable situation. At the whole specification level, 
one needs to check the impact of the module modification 
on the other modules. This should preserve the 
specification in a consistent state after the modification of 
one or more modules. 

3. Specification evolution in RMondel 

According to the generic model presented in Section 2, 
we will show how the features of such a model are 
supported by RMondel. RMondel is a reflective object- 
oriented specification language, suitable for the 
specification and modeling of distributed systems. It 
provides facilities for building dynamically modifiable 
specifications [15]. After an overview of the original 
language Mondel, we introduce the main characteristics of 
RMondel language. Then we describe evolution at the in- 
the-small level and the in-the-large level as supported in 
RMondel. 

3.1. Mondel overview 

We have developed Mondel an object-oriented 
specification language 131 with certain particular features, 
such as multiple inheritance, type checking, rendezvous 
communication between objects, the possibility of 
concurrent activities performed by a single object, object 
persistence and the concept of transaction. Mondel is 
particularly suitable for modeling and specifying 
distributed applications. An object is an instance of a type 
(i.e., called class in most object-oriented languages) that 
specifies the properties that are satisfied by all its 
instances. Each Mondel object has an identity, a certain 
number of named attributes (i.e., each object will have 
fixed references to other objects, one for each attribute), 
and acceptable operations which are extemally visible and 
represent actions that can be invoked by other objects. 

In the formalism used to define the semantics of 
Mondel types are static and used as templates for instance 
creation. Only the instances of a type are considered as 
objects. To support the construction of dynamically 
modifiable specifications, we need to have access to, and 
modify the specification during run time. For this 
purpose, reflection is a promising choice. Recently, in 
object-oriented languages, reflection has gained wider 
attention. A language is called reflective if it uses the 
same structures to represent data and programs. The 
original model of reflection was proposed in [16] 
following Smith's earlier work [17], where a meta-object 
is associated with each object in the system to represent 
information about the implementation and the 
interpretation of the object. 

3.2. RMondel facilities 

To define a reflective architecture, one has to define the 
nature of meta-objects and their structure and behavior. In 
addition, one has to show how the handling of objects 
communications and operations lookup are described at the 
meta-level. In RMondel, types are used for structural 
description (i.e., for the definition of the structure of 
objects and of applicable operations), and interpreters are 
used for the behavioral description (i.e., how the 
rendezvous communication is interpreted and the 
operations are applied). One can say that types are 
suuctural meta-objects, while interpreters are behavioral 
meta-objects. 

In RMondel we distinguish two main features: 
Structural reflection (SR) and behavioral reflection (BR). 
The most important aspect of SR, is that each object is an 
instance of a type, and types are objects of a meta-type 
called TYPE. Another aspect of SR is that the RMondel 
statements and expressions are objects. The structure of 
RMondel is supported by an instantiation and an 
inheritance graphs [18]. The instantiation graph represents 
the instance-of relationship, and the inheritaice graph 
represents the subtype-of relationship. The objects TYPE 
and OBJECT are the respective roots of these two graphs. 

Beside the structural reflection, the behavioral 
reflection ( B R )  must be represented. Therefore, an 
interpreter object (i.e., behavioral meta-object) is 
associated to each object. An interpreter object deals with 
the computational aspect of its associated object called 
referent. Interpreter objects are defined as instances of the 
type INTERPRETER. Also an interpreter object may have 
its own interpreter object which in its turn may have its 
own interpreter etc.. leading to an infinite tower of meta- 
interpreters. Specialized interpreters can be defined for 
monitoring the behavior of objects, or for dynamically 
modifying their behaviors. More details on the RMondel 
definition, and the specification of OBJECT, TYPE, 
INTERPRETER, and other kemel objects, are given in 
[W. 
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The reflection facilities of RMondel together with the 
principles introduced by the generic model in Section 2, 
form the basis of the dynamic evolution of large 
specifications written in RMondel. 

3.3. In-the-small level in RMondel 

We are mainly interested in the modifications of a 
specification S which lead to a consistent specification S’ 
using an incremental approach. The incremental approach 
consists of dynamically extending the specification S to 
get a consistent specification S’ such that the latter 
conforms to the former. The modification of S can be done 
through the modification of its types. 

In RMondel specifications, which mainly describe 
distributed applications, objects’ dynamic behaviors are of 
extreme importance. Therefore, our interpretation of type 
modifications takes into account the dynamic behavior of 
objects. Then the type modifications involve not only the 
type structures but the dynamic behavior of objects as 
well. According to the generic model, the in-the-small 
level in RMondel is concerned about type modifications 
and the consistency requirements, which ensure both 
structural and behavioral consistencies at the type level and 
at the specification level. The structural consistency deals 
with the compiling constraints (e.g., type checking), 
while behavioral consistency deals with the dynamic 
behavior of objects (e.g., possibility of blocking). 

3.3.1. Consistency at the type level: Before 
addressing the in-the-small modifications of RMondel 
specifications, an understanding of types and their 
relationships is required. 

Definition 1: A type t consists of an interface It and a 
behavior Bt, t = <It, Bt >. It = c At, Opt > where ‘ t .- 
the set of attributes and Opt is the set of operations. L 
the behavior specification of the objects of type t. 0 

Types’ interfaces are used as a basis for the traditional 
inheritance scheme of object-oriented languages. Thus, a 
type has at least all attributes and operations defined for the 
more general type, where the types of the operations result 
must be conforming and the types of the input parameters 
must be inversely conforming (see for instance [201). 
Based on this aspect of inheritance, we give a recursive 
definition of the structural consistency relation as follows. 

Definition 2: The type t’= c c At’, Opti > , Bt’ > is 
structurally consistent with the type 
t = < < At, Opt >, Bt > if: 
(1) Ati a At t’ has at least all the attributes of t. 
(2) For each operation o in Opt there is a corresponding 
operation 0’ in Opt such that 

- o and 0’ have the same name 
- o and 0’ have the same number of parameters. 

- The result type of o’, if any, is structurally consistent 

- The type of the i-th parameter of o is structurally 
with the result type of 0. 

consistent with the type of the i-th parameter of 0’. 0 

The following definition introduces our notion of 
behavior extension. According to Mondel formal 
semantics, the behavior of objects is formally specified by 
a translation to labeled transition systems [21]. Both 
RMondel and Lotos have their formal semantics defined 
based on labeled transition systems. Therefore, If we 
ignore operations parameters, our definition of the 
behavior extension corresponds to the extension relation 
defined for Lotos specifications [22]. 

Definition 3: The type t’= <It, , Bti > extends the type 
t = <It, Bt >, if the following properties are satisfied: 
property 1. Bt* may perform any trace of actions that Bt 
may perform (Bt’ may do more). 
property 2 .  What Bt. refuses to do (i.e., blocking), can 
be refused according to Bt (Bt- may not refuse more than 
Bt). 0 

It is important to note that for many authors the 
concept of inheritance is only concerned with the names 
and parameter types of the operations that are offered by 
the specified type, e.g. in Emerald [20] and Eiffel 1231. 
However, there are other important aspects to inheritance 
related to the dynamic behavior of objects [24], including 
constraints on the results of operations, the ordering of 
operation execution, and the possibilities of blocking [251. 
Therefore, our definition of inheritance takes into account 
the dynamic behavior of objects as follows: 

Definition 4: A type t’ = <It* , Bt’ > conforms-to a 
type t = <It, Bt > if: 

and t’ extends t. 0 
t’ is strcturully consistent with t. 

If type t’ conforms to type t then we say that t’ is a 
subtype of t and t is a supertype oft’. In order to provide 
the facilities for the dynamic modification of object types, 
and to ensure type consistency, we deduce from the 
previous definitions a set of invariants [26]. These 
invariants check the type interfaces compatibility and the 
behaviors extension, respectively. 

The constraints introduced in Definition 4 allow to 
ensure that an object type can be extended to get an object 
type which inherits from the former. Recall that types are 
objects in RMondel. Therefore, our strategy for type 
modification allows the modification of types without 
changing the type object identity. This implies that the 
whole specification remain structurally consistent i.e., we 
do not need to recompile the whole specification. This 
assertion can be proved according to two situations, which 
are assignment and parameter passing. However, the 
conform-to relation do not ensure that the whole obtained 
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specification remains behaviorally consistent (i.e., the 
specification after modifications is not necessarily an 
extension of the initial specification). An example which 
illustrate this situation is given in [26]. 

,3.3.2. Structure and behavior modifications 

In the following we give a classification of type 
modifications that are supported in RMondel. As we are 
concerned by the incremental approach for specification 
evolution, and in comparison with the classification of the 
class modifications in ORION [6], we will consider only 
those type modifications that lead to new types which 
conform to old ones. For structure modifications we 
distinguish the following: . Add an attribute A to a type T . Change the type T of an attribute A 

. Add the operation 0 to the type T . Change the signature S of the operation 0 

.Makea type S asupertype of type T . Add a new type T 
In RMondel, types are objects (i.e., types are instances 

of the TYPE object which is defined at a meta-level). The 
TYPE object provides the primitive operations for type 
modifications, and holds invariants which define the static 
semantic rules of the language (e.g., all attribute and 
operation names of a type, whether explicitly defined or 
inherited, must be distinct). These invariants must be 
satisfied by each type and its related types in the type 
lattice. 

The behavior of objects is to some degree dependent 
upon preserving structural consistency. For instance, when 
an operation is called on an object, the associated code to 
be executed is determined by the object’s type or 
supertypes. Additionally, once the operation code is 
located, its implementation is dependent on the called 
object’s structure. This structure has to be present in all 
objects that are instances of the type where the operation 
is defined. So, changes to the type interface may lead, in 
most cases, to changes in the behavior definition, 
accordingly. The possibilities of behavior definition 
modifications are based on the language constructs which 
can be involved in such modifications. The behavior 
obtained after modification, should be an extension of the 
original behavior. An algorithm for systematic 
construction of object behavior extensions is given in 
[271. 

3.3.3. Instance-of relationship consistency: 
While types evolve, their existing instances must be 
changed to remain in line with their types. Therefore, two 
problems should be addressed: when and how objects can 
be converted, accordingly. We consider that the 
modifications of type objects are performed within a 
transaction. This ensures that no conversion is done until 
the whole modifications have been completed. A 
transaction is constructed based on the modification 

operations which consist of several successive 
modification of an object type. We assume that each 
object can be active, passive, or locked, and that all the 
objects involved in a type modification transaction must 
be in their passive state. Within a transaction, the type 
(and its subtypes) to be modified and its existing objects 
will be locked if they reach their passive state. A locking 
protocol [19] is used to ensure that the objects behave 
according to their types, and to maintain the specification 
in a consistent state. 

3.4. In-the-large level in RMondel 

A modular language has to suffice several requirements. 
First, to enhance the independent development, analysis, 
and compilation of modules, they should be represented as 
syntactical components in the language. Second, the 
composition of modules to build a complete specification 
should be simple (e.g.. this aspect can be realized by 
means of the impodexport mechanism). In the following, 
we will show how these features are supported in 
RMondel using units. Then we introduce the structural and 
behavioral consistency requirements which allow for the 
construction of valid specifications. Afterwards, we 
introduce the unit modifications and their semantics as 
defined in RMondeL 

3.4.1. The u n i t  concept in RMondel: I n  
RMondel, a unit consist of the following constituent 
parts: an import interface, an export interface, types, and a 
unit body. There are two forms of the import interface: 
(1) Use U1, U2, ...., Un. 
(2) From Uj, Use N1, N2, ..., Nm, where the Ui are 
unit identifiers and the Ni are named objects or type names 
defined within the Ui. The first form makes the names of 
the units Ui visible. This implies that exported objects 
and types of Ui are visible. The second form makes only 
the names N1, N2, ..., Nm visible from the unit Uj. This 
assumes that the names Ni are available in Uj. 

Export N1, N2, ..., Nm, where the Ni are named objects 
or type names. The export interface is intended to be the 
visible part of the module. The types of a unit: Like a flat 
RMondel specification, a unit contains a type lattice 
where types are linked by means of the inheritance 
relation. The body part of a unit must include the 
definition of the exported objects . It can includes also a 
collection of types that can be used only within the unit. 

3.4.2. Structural consistency: An important issue 
in large specification developments is interface control, to 
establish and maintain consistent interfaces between the 
numerous components. The unit construct is defined in 
accordance with a set of constraints that must hold in order 
to have a structurally correct specification configuration. A 
configuration is a combination of two or more units by 
means of the composition and/or the union operations 

The export interface has the form: 
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which are defined in Section 2.2. A specification 
configuration corresponds to an internal node in the 
hierarchy. 

C = ( Cl,C2, ..., Cn ] where each Ci may be a unit or 
another configuration. According to our definition of the 
unit we introduce the following notations: 

is the set of objects exported by the unit U, 
E X 0  is the set of types exported by the unit U, 
1 0 0  is the set of objects imported by the unit U, and 
I T 0  is the set of types imported by the unit U. 

Definition 5: A spec i f ica t ion  conf igura t ion  
C=(Cl,C2, ..., Cn) is well-formed if it satisfies the following 
conditions: 
(1) Every type and every object that are exported by C are 
exported by some Ci. 

(EqC) U ET(C)) G U i  (EO(Ci) U ET(Ci) ) for i=l,.., n. 
(2) C imports those types and objects imported by all Ci 
except for types and objects already exported by some other 
component of C. 
IO(C) U IT(C) 2 (U i (Io(Ci)U IT(Ci) ))- (U i(EO(Ci)U ET(Ci) )) 
for i=l,.., n. 
(3) C does not export and import the same types and objects 

(4) No type or object is exported by more than one 
component. (EO(Ci) U ET(Ci) ) n (EO(Cj) U ET(Cj) ) = 0 
for all Ci, Cj E C, i # j .  
(5 )  All Ci (for i =l,.., n ) are well-formed 

We write a specification configuration as: 

(IO(C) U E(C)  ) n ( EO(C) U ET(C) ) = 0 

0 

3.4.3. The behavioral consistency: In the 
following, we define the constraints that must hold to 
maintain the specification behavioral consistency after the 
unit modifications. This must preserve some behavioral 
constraints as the extends relation of Definition 4. 

Definition 6 [28]: A unit U2 is UpWurdComputible to the 
unit U1 if and only i f  U2 exports at least what U1 exports, 
and imports not more than what U1 does. That means that U2 
can be used instead of U1, but not vice versa: 
(EO(U2) U ET(U2) ) 2 (EO(U1) U ET(U1)) and 
(IO(u2) U rr(U2) ) G (IO(U1) U IT(U1) ) 0 

This definition is based only on imported and exported 
object and types. However our interpretation of the upward 
compatibility relation is not satisfied by this definition. 
We need to take into account the conforms-to relation as 
defied among object types in Definition 4, and consider 
the dynamic behavior of the units. Therefore, we define the 
UpWardConform relation as follows: 
Notation: t l  e: t2 means that the object type t l  
conform-to the object type t2. 
Definition 7: A unit U2 is UpWurdConform to U1 if the 
following conditions are satisfied: 
(1) U2 is UpWurdCompatible with U1. 
(2) The type of an object exported by U2, conforms-io the 
type of an exported object by U1. 

V 01 E EO(Ul), 3 0 2 6  EO(U2) suchthat 

(3) The type of an imported object in U1, conforms-to the 
type of an imported object in U2. 
V 0 2 ~  IO(U2). 301 E IO(U1) suchthat 

(4) Every exported type by U2, conforms-to a type exported 
by U1. 

V t l  E ET(U1). 3 t2 E ET(U2) such that ( t 2  <: t l  ) 
( 5 )  Every imported type in U1, conforms-to a type imported 
by U2. 

(6) The behavior of U2 (specified by its body part) conforms- 
ro the behavior of U1. 

type (02) <: type (01) ) 

type (01) <: type (02) 

V t2 E IT( U2), 3 tl  E IT(U1) 

0 

such that ( t l  <: t2 ) 

3.4.4. Semantics of the unit modifications: W e  
allow only those unit updates that lead to an extension of 
the original unit, according to Definition 7. We 
distinguish the following categories of modiications: 
(1) modification of the export interface: Adding a named 
object or a type to the export interface of the unit. (2) 
modification of the import interface: Removing a named 
object or a type from the import interface of the unit. (3) 
modification of the types: these are the same as those 
allowed by the type level, as has been shown in Section 
3.3. (4) modification of the body part of a unit: similar to 
the behavior modifications of types. 

(1) Add a named object or a type to the export interface of 
a unit: this update should not cause a name conflict, and 
the added object or type must be defined within the unit. 
This modification has no impact on the existing modules. 
(2) Delete a named object or a type from the import 
interface of a unit: This is the case where a unit can 
produce the same service with less resources. This implies 
that the unit behavior andor the types, where the removed 
object or type is used, must be changed accordingly. 
(3) Modification of types and unit bodies is performed by 
using those modification operations defined for the 
modification of types at the “in the small level”. 
(4) Add a unit: The added unit must be previously created, 
and can import the existing units. It can also, exports 
named objects or types which should be eventually used 
by other added units. 

Note that we allow only those modifications which 
preserve the constraints of Definition 7. The deletion of an 
exported object or type, the addition of an object or type 
to the import inteiface of a given unit, and the deletion of 
a unit may be useful for changing the configuration of the 
specification. 

3.4.5. Dynamic modification of a modular 
specification: In order to allow the construction of 
dynamically modifiable large specifications, we need to 
have access, and to be able to modify units during the 
specification execution. We believe that modifications 
should be supported dynamically, without interrupting the 
processing of those part of the specification which are not 
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directly affected. Therefore, in a similar way as our 
reflection based model used to support dynamic type 
modifications [26], we consider that a unit is an object of 
type UNIT which is defined at the meta-level. The type 
UNIT provides some primitive operations for unit 
modifications. 

Fig.3.1. shows a possible RMondel specification of the 
UNIT type. The unit components are defined as variable 
attributes (UnitName, Import, Export. Types, and Body). 
The constraints defined by Definition 7, are introduced as 
invariants which must hold for each unit. The invariants 
are checked at creation time and after the unit 
modifications. The allowed modification primitives, are 
defined as operations which can be accepted by the units 
(units are objects). The semantics of these primitive 
operations is specified in RMondel within the “Behavior” 
clause of the UNIT type. 

I tvm UNIT = OBJECT with 
- 1  

UnitName : string; 
Import : set [Usedunit]; 
Export : set [NamedObject]; 
Types : set [TypeDefJ; 
Body : var [statement]; 

Invariant 
{the constraints of Definition 7 are specified as invariants] 
Operat ion 

DelImp(Unit); 
AddExp(Named0bj); {add the NamedObj object 

* Type update: for type modifications see [26]. 
AddStat(statement); 

B e h a v i o r  

Endtype Unit 

(drop a unit from the import list] 

to the export interface] 

(add a statement to the unit body} 

{we specify here the semantics of the above operations] 
I 

Fig.3.1. The type UNIT specification. 

4. Related works 
Our work adapts and extends some of the concepts 

introduced by different researchers. The problem of 
maintaining the integrity of an evolving configuration has 
been addressed recently using module interconnection 
languages [29]. The approach reported in [29], allows that 
one component of a modular software system can be 
substituted for another provided that the specification of 
the new component is an upward compatible extension of 
the specification for the original component. Such 
approach introduces a separate language, the module 
interconnection language, for configuration descriptions. 
In our approach we use one language for both writing the 
system components as well as their interconnections, 
rather than introducing a special language for recording 
module dependencies. The work reported in [29], is limited 
to sequential systems and does not provide any facility for 
dynamic evolution of distributed systems. 

Kramer and Magee have addressed the problem of 
dynamic change management for distributed systems [301. 
Their approach focuses mainly on changes specified in 
terms of the system structure and provides a separate 

language for changing specifications. Unlike their 
approach, which concentrates on the logical structure of a 
system, we consider the dynamic behavior of a 
specification and we take into account the inheritance 
property which is inherent to the object-oriented aspect of 
our language. Their approach deals with configuration 
change, however, our approach deals also with the way the 
component can be changed 

In the area of object oriented databases, class 
modifications have been extensively studied in the recent 
literature [61, [7], [8], and [9]. The available methods 
determine the consequences of class changes on other 
classes and on the existing instances, so that possible 
violations of the integrity constraints can be avoided. 
These approaches deal mainly with sequential system and 
have focused on preserving only structural consistency. In 
our approach, we address both the structural and behavioral 
consistencies. For the behavioral consistency we deal 
mainly with object behaviors and we consider some 
properties of distributed systems such as blocking. 

5. Conclusions 
We have studied dynamic modifications within an 

object-oriented language that is particularly suitable for 
distributed systems modeling and specification. Dynamic 
module and type modification is a difficult problem. Using 
module hierarchies and performing associated structural 
consistency checks is well researched and practiced for non 
object-oriented systems. Its application for dynamic 
modification of object-oriented systems is equally fruitful. 
We believe that object-oriented systems in conjunction 
with reflection, allow us to approach problems that 
conventional systems have not been able to address in a 
uniform way. A generic model with two levels for 
dynamic modification of distributed systems specifications 
is presented. This model allows for the evolution of large 
specifications at both the type and the module levels. 

We have shown how such a model is supported by the 
RMondel reflective language. Therefore, we gain more 
flexibility for the modification of large specifications by 
considering that both types (classes) and units (modules) 
are objects, and by defining the modification operations at 
a meta-level. In order to maintain the consistency of a 
specification after its modification, we have introduced a 
set of constraints at both levels. In order to validate the 
actual effectiveness of our approach, we are implementing 
an interpreter of RMondel using Mondel environment. Our 
approach gives an interesting framework based on a formal 
approach, for the development of corresponding CASE 
tools. 
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