

TEST SELECTION BASED ON SDL SPECIFICATIONS WITH SAVE

Gang LUO, Anindya DAS and Gregor v. BOCHMANN

Department d'IRO, Universite de Montreal, C.P. 6128,Succ.A, Montreal, P.Q., H3C 3J7,
Canada. E-mail:luo@iro.umontreal.ca, Fax: (514) 343-2155 .

Abstract
 The signal SAVE function is one of the characteristics distinguishing SDL from
conventional high-level specification and programming languages. However, this feature
increases the difficulties of testing SDL-specified software. This paper proposes a method for
developing tests for system testing based on SDL specifications including the SAVE
construct. It also investigates the effects of the input queue of SDL.

1. INTRODUCTION

 During the development of SDL, the first feature added to SDL which considerably
increased the difficulty of transforming SDL to CHILL was the SAVE construct[1].
However, the SAVE function increases SDL's descriptive power considerably by providing a
concise formalism for expressing the indeterminate order of arrivals of input signals. Its
presence raises a challenge in testing SDL-specified software. Some initial efforts have been
made to tackle this issue [2,3]; a formal method was proposed in [2] and a similar
framework was introduced informally through examples in [3]. However they did not address
the case where the SAVE construct has several SIGNALs, a case which is quite common.
 This paper investigates software testing based on SDL specifications when SAVE
constructs contain several signals. Our approach is to transform an SDL description
containing SAVE to an equivalent SDL description without SAVE which preserves the same
relationship between input signal sequences and output signal sequences. The testing methods
for the finite state machine can then be applied [4,5,6,7]. In the case of an SDL description
which does not have an equivalent finite state machine (FSM) without SAVE, an alternate
approach is proposed.
 Our approach assumes that the SDL description is a FSM with the SAVE extension. Such
a description can be obtained from a general SDL specification in the following fashion. The
variable extension can be eliminated by transforming conditions which cause branches at the
DECISION construct; the combinations of inputs and conditions can be used to create a FSM
with new inputs being the combination of conditions and original inputs. The details can be
obtained from [3]. By ignoring parameters and other variables, we obtain a finite state
machine containing SAVEs and an input queue, which we call an "SDL-machine".
 The rest of the paper is organized as follows. Section 2 is devoted to the fault model and
gives a brief introduction to the SDL-machine formalism. Section 3 investigates the relations
between SDL-machines and FSMs in order to adopt the testing methods for FSMs to test
SDL-machines. We propose an algorithm to transform an SDL-machine to an equivalent FSM

which preserves the input/output relation. For the SDL-machine which cannot be transformed
to an equivalent FSM leaving the input/output relation unchanged, another algorithm is
given to transform it to a FSM which approximates the original SDL-machine. Section 4
handles the test case selection methods based on the results of section 3, and analyzes the test
coverage thus obtained.

2. SDL SIGNAL SAVE AND A FAULT MODEL

 A brief introduction to SDL and its signal SAVE construct[1,8,9] is given in this section,
and a fault model for SDL-machine is proposed.
 The SDL-machine consists of a FIFO queue and a finite control. Arriving inputs are placed
in the input queue. The following cases arise if in state A the input b is the first element of the
input queue:
 Case 1: The input b can initiate a transition. The input b is removed from the queue (it is
consumed) and the corresponding transition is performed.
 Case 2: The input is a SAVE signal for state A. The input is stored in the queue for future
use.
 Case 3: Neither of the above cases holds. In this case we have an explicitly unspecified
reception. The input is discarded and an "implied transition" to state A is said to have taken
place.
 There are two types of input queues, one assumes that if an input is consumed immediately
after its arrival only a queue of zero length is needed; the other assumes that the length of the
queue needed for above case is at least one. We make the latter assumption.

S1

S2

a

x
state

input

output

save

order of signal
arrival

"a" arrives. It is
putted into queue
and is saved.

a

"b" arrives, and is
consumed. b

Upon arriving S2,
the FSM
consumes the "a"
in the queue.

Figure 2. Illustration for SDL signal SAVE
Figure 1.
Illustration for SDL
Graphic Symbols

b

S3

y

a

arrival of
signals

2.1. Notation
 Figure 1 shows graphic representations of some constructs used in an SDL-machine.
Figure 2 illustrates the SAVE function. For the example shown in Figure 2, we assume that
the SDL-machine is in state S1, a signal "a" arrives first and is kept in the queue because the
symbol "a" appears in the SAVE; then "b" arrives , is consumed in state "S1", triggering a
transition leading to state "S2" with a signal "x" sent as output. The "a" in the queue is
consumed in state "S2" and the SDL-machine transfers to state "S3" with a signal "y" sent as
output.
 For the sake of convenience, several notations are introduced. Let K be the set of states, I
the set of input signals, and O the set of output signals. Several functions are defined as
follows:
(1) @: K x I* --> K (note: I* is the transitive closure of I.)
Let A be a state and x an input sequence; we write <A>@[x] for a state reached from A by
inputting x. For the example shown in Figure 2, <S1> @ [a.b] = <S3> means that the SDL-
machine in state "S1" consumes the input signal sequence "a.b" and transfers to state "S3".
(2) op: K x I* --> O*
Let A be a state and x an input sequence; we write op(A,x) for the output sequence produced
by the transitions from A to <A>@[x] after inputting x in state A. For the example shown in
Figure 2, op(S1, a.b)=x.y means that the SDL-machine in state "S1" consumes the input
signal sequence "a.b" with the signal sequence "x.y" sent as output.
(3) save: K --> powerset(I)
Given a state A, save(A) is the set of input signals which are contained in the SAVE
constructs associated with state A. For the example shown in Figure 2, save(S1)={a}. The
save(S1) contains all signals attached to the SAVE constructs of state "S1". No SAVE
construct is attached to state "S2"; the save(S2) is an empty set.
(4) out: K --> powerset(I)
Given a state A, out(A) is the set of input signals attached to state A. For the example shown
in Figure 2, out(S1)={b}.

2.2. Fault Model for SDL-machines
 We consider two categories of faults which can occur in SDL-machines. The first category
corresponds to the usual output and transfer faults considered in FSMs: the output
corresponding to a state transition is erroneous or there is a fault in the next state reached by
a transition.
 The second category of faults is related to the SAVE construct. The faults related to the
SAVE construct for a given state are: (a) The SAVE inputs associated with the given state in
the implementation under test (IUT) do not correspond to the SAVE inputs in the
specification; (b) for a fixed N, the SAVE construct is not correctly implemented for all valid
input sequences of length at most N.
 We now formalize the fault model for SDL-machines. Let SP be a specification and IUT
its implementation. We assume that they have the same K,I, and O. The fault types are
defined as follows.
(1) Output fault. If there exists A belonging to K, "a" belonging to I, such that the op(A, a)
of SP is not equal to the op(A,a) of IUT; we say that the IUT has an output fault.
(2) Transfer fault. If there exists A belonging to K, "a" belonging to I, such that <A>@[a] of
SP is not equal to <A>@[a] of IUT; we say that the IUT has a transfer fault.
(3) Save input fault. If there exists a A belonging to K such that the save(A) of SP is not
equal to the save(A) of IUT; we say that the IUT has a save input fault.

(4) Multiple saved inputs fault (up to N). If there exists A belonging to K, "a" belonging to
I, x belonging to (save(A))*, and the length of x is less than N such that <A>@[x.a] of SP is
not equal to <A>@[x.a] of IUT , or op(A,x.a) of SP is not equal to op(A,x.a) of IUT; we say
that the IUT has a multiple saved inputs fault (up to N).

3. TRANSFORMING SDL-MACHINES INTO FSMs

 In this section, we consider the transformation of a given SDL-machine into an equivalent
FSM. We assume that the SDL-machine and the transformed FSM have infinite input
queues.

3.1. An Example of an SDL-machine without an equivalent FSM
 In general the SDL-machine is not equivalent to a FSM in that it may have an infinite
number of states. In most cases of practical application, however, there is an equivalent FSM.
Figure 3 shows an example for which we cannot find an equivalent FSM without SAVE
which preserves the relation between the input and output signal sequences.

S1

b a

x

S2

a

y

A

b a

x

B

a

y

C

A

b

x

B

a

y

C

a

x

C"

b

y

C

Figure 4. An example to illustrate the
transformation

Figure 3. An example of an
SDL-mchine without equivalent
FSM

 The following arguments show that the SDL-machine shown in Figure 3 does not have an
equivalent FSM. From Figure 3, op(S1,a**i.b)=x.y**i (note: a**i denotes a sequence of
signals "a" of length i and y**i denotes a sequence of signals "y" of length i) in which the "i"
may be any natural number. The output signal sequence "x.y**i" can come out only after the
"b" is input; therefore the FSM has to have the capacity to memorize "a", "a.a","a.a.a",......, an
infinite number of sequences. This is contrary to the definition that the FSM has only a finite
number of states.

3.2. Equivalent Transformation
 In the following, we describe an algorithm for transforming a given SDL-machine into an

equivalent FSM. First a simple example is given to illustrate the idea of the transformation,
then an algorithm for the transformation is presented. The algorithm is illustrated by an
example.
 The example shown in Figure 4 illustrates the key concepts of the transformation although
the comprehensive method is more complex. In order to present the algorithm, we require the
following definitions.

DEFINITION: An SDL-graph of an SDL-machine is a labeled directed graph where each
edge corresponds to a transition of the SDL-machine with its label being a pair <Inputlabel,
Outputlabel> which represents the "input signal" and "output signal sequence" of the
transition; each node corresponds to a state, with the label of the node being a pair <Stateid,
save(Stateid)> which represents the state name and the set save(Stateid).

DEFINITION: A Save-Subgraph of state A is the largest directed subgraph of the SDL-
graph in which every edge has an input label which belongs to save(A), and can be reached
from one of the states of W, where W is the state set containing all next states of state A.

 For the example shown in Figure 5, the Save-Subgraph of state A, without output labels, is
shown in Figure 6.
 We now present an algorithm to obtain what we call the Corresponding Subgraph of the
Save-Subgraph of a state A. The Corresponding Subgraph will then be substituted for the
appropriate SAVE construct in the SDL-graph. When this procedure is carried out for every
state containing a SAVE we obtain an equivalent SDL-graph which does not contain any
SAVE.

f c, d

x

H

g

H

a

A

b

y

B

c

y

C

e

x

D

c

x

C

d

F

b

A

c

F

a

A

z

G

c

E

c

x

F

d

E

f

d

z

F

D G HB

C E

F

d

c cc

c

c

d

d

Figure 5. An example of SDL-machine Figure 6. Save-subgraph

D

F

F

F

D

C

F

a a

d

c
d

<a,F>

<a,F> <a,F><a,F>

<a,C>

c

c

G

E

F

e

<e,F>

<e,E>

c

c

B

C

F

b

<b,F>

<b,C>

c

c

G

E

F

e

<e,F>

<e,E>

c

d

H

E

F

f

<f,F>

<f,E>

d

d

H

E

F

f

<f,F>

<f,E>

d

c

Figure 7. Splitting, extending and marking

<a,C>
<b,C>
<e,E>

<a,F>
<f,E>

<a,F>
<b,F>
<e,F>

<e, F> <a,F>
<f,F>

<a,F>
<f,F>

Figure 8. Merging

c
d

c d
c d

 The algorithm given below terminates after a finite number of steps and determines the
Corresponding Subgraph of a Save-Subgraph if the following conditions are satisfied for the
given state A (conditions for constructing the Corresponding Subgraph):
Condition (I). There is no directed cycle in the Save-Subgraph of "A";
Condition (II). For each state S of the Save-Subgraph, the intersection between save(S) and
save(A) is empty.

a/op(A,a.c.c)

F

S2 S3 S5
S6

F

F

F

e/op(A,e.c.d)

b/op(A,b.c.c)

e/op(A,e.c.c)
F

a/op(A,a.d.c)

F

f/op(A,f.d.c)

F

F

a/op(A,a.d.d)

f/op(A,f.d.d)

A

S1
S4C

C

E

a/op(A,a.c)

b/op(A,b.c)

e/op(A,e.c) c d

c

d

c
d

F

E

a/op(A,a.d)

f/op(A,f.d)

Figure 9. Naming and Adding

ALGORITHM 1: Construction of the Corresponding Subgraph of the Save-Subgraph.
Input: Save-Subgraph of a state A.
Output: Corresponding Subgraph of the Save-Subgraph of A.
Conditions of applicability: Save-Subgraph of A satisfies Conditions(I) and (II) above.
 Step 1 (splitting): Enumerate all maximal directed paths of the Save-Subgraph to get a
forest with each chain corresponding to a maximal directed path; the nodes labels and input
labels of the edges are left unchanged. (See the plain lines part of Figure 7, which are chains.)
 Step 2 (extending): Let L be the length of the longest chain. Extend all chains whose length
is shorter than L to trees in the following way. A tree (initially a chain) is extended by
adding |save(A)| directed edges with different input labels of save(A) to the leaves of the
tree(note: |save(A)| denotes the cardinality of the set save(A).); this extension sub-step is
applied repeatedly until the length of the tree is equal to L. (See Figure 7, the dashed edges
are the extended edges)
 Step 3 (marking): First, mark each root of the forest with the input label leading to the root
from A through a transition. Then, mark each node which is not a root with a ordered pair <i,
S> in which i is the mark of its root and S is the state name of the node. (See Figure 7).

 Step 4 (merging): First, merge all roots of the forest to obtain a single root. Second, in a
top-down fashion starting from the root, for every node, if the node has several outgoing
edges with the same input label, say "a", merge all such edges and their corresponding end
nodes into one edge and one end node; the edge thus obtained is given the label "a" and the
mark of its end node is the set of the different marks (pairs) of the merged nodes.(Note that
the end node thus obtained does not contain any duplicate pairs) Continue the second phase
until no further progress can be made. (See Figure 8).
 Step 5 (naming and adding): First, assign name A to the root of the merged tree. Then
assign distinct names to the other nodes in the merged tree -- these names should be different
from those in the set K. Next, for every node P and for every pair <i, S> of the node P, add a
directed edge leading from the node P to state S with the input label being i and output label
being op(A, i.Iseq) where the Iseq is the input label sequence leading from the root of the tree
to the node P. (See Figure 9)

THEOREM 1: If the Save-Subgraph of state A satisfies Conditions (I) and (II), then its
Corresponding Subgraph is a deterministic FSM.
Proof: See Appendix.

ALGORITHM 2: SDL-machine transformation for one state with SAVE.
Input: SDL-machine and state A.
Output: SDL-machine.
Conditions of applicability: Save-Subgraph of A satisfies conditions(I) and (II).

 For the state A in an SDL-machine:
 1) Find its Save-Subgraph;
 2) Find its Corresponding Subgraph;
 3) Replace the save(A) by the empty set and add the Corresponding Subgraph.

 For the example shown in Figure 5, using Algorithm 2, we obtain the equivalent SDL-
machine shown in Figure 10. The FSM of the lower part in Figure 10 is equivalent to the
FSM in Figure 9.

THEOREM 2: Given an SDL-machine M and a state A, the input/output behavior of the
SDL-machine obtained using Algorithm 2 is equivalent to M if Conditions (I) and (II) are
satisfied for state A.
Proof: See Appendix.

 If each state of the SDL-machine satisfies Conditions (I) and (II) then the following
algorithm produces an equivalent FSM.

ALGORITHM 3: SDL-machine transformation.
Input: SDL-machine with SAVE's.
Output: SDL-machine.

 1) Check each state of the SDL-machine to find a state which satisfies Conditions (I) and
(II), then eliminate it by using Algorithm 2.
 2) Continue this procedure until no such state is found.

 It is easy to see from Theorem 2 that if an SDL-machine can be transformed to a FSM by
Algorithm 3, then they have the same input/output property. If Algorithm 3 terminates and
the resulting SDL-machine still contains SAVEs, we have to use the approach presented in
Section 3.3.
 The following result shows that Conditions (I) and (II) are both necessary and sufficient if
the SAVE constructs associated with each state can have at most one input signal.

A

S2
C

c

S1

d

S4

a

x

x

C

b

y

y
E

e

z

c

F

a

x

x

F

b

y

y

F

e

z

x

F

e

z

z

d

S3 S5

c

F

a

x

F

f

x

x

d

S6

F

a

x

F

f

x

z

F

a

x

E

f

x

Figure 10. An Equivalent FSM

f

x

H

g

H

a

A

b

y

B

c

y

C

e

x

D

c

x

C

d

F

b

A

c

F

a

A

z

G

c

E

c

x

F

d

E

f

d

z

F

THEOREM 3: If each state A of the SDL-machine has |save(A)|<=1 and there is an
equivalent FSM, then Conditions (I) and (II) are satisfied at least for one state, and Algorithm
3 will terminate with an equivalent FSM.
Proof: See Appendix.

3.3. Approximately Equivalent Transformation
 For those SDL-machines which are not equivalent to FSMs, we try to transform them into
FSMs by cutting the cycles of the Save-Subgraphs in order to adopt the testing methods for
finite state machines. For this purpose, we define in the following a transformation procedure
using three algorithms which are similiar to those of Section 3.2. In the first algorithm
below, we assume that the Save-Subgraph of a given state A may contain cycles. The
algorithm cuts the cycles in the subgraph to obtain directed paths in its first step. The
remaining steps are the same as in Algorithm 1. We call the resulting subgraph the
Corresponding Subgraph-B of the Save-Subgraph of A.

ALGORITHM 1B: Construction of the Corresponding Subgraph-B of Save-Subgraph by
cutting cycles.
Input: Save-Subgraph and a state A.
Output: Corresponding Subgraph-B.
 Step 1 (splitting): Let U be the length of a longest elementary path in the Save-Subgraph.
Enumerate all maximal directed paths of the Save-Subgraph with their lengths less than or
equal to U to get a forest with each chain corresponding to a path, and keeping the labels of
nodes and input labels of edges unchanged. (See Figures 11, 12, 13, where the U=2.) The U
should be selected to make every edge of the Save-Subgraph be one of the edges of the forest.
 The remaining four steps of this algorithm are the same as steps 2,3,4,and 5 of Algorithm
1.

 The above splitting step implies cutting the cycles of the Save-Subgraph. The following
algorithms, Algorithms 2B and 3B are similar to Algorithms 2 and 3 respectively.

a,bc

B

A

ac

F

d

C

D

b

D

a

D

b

E

a

C

Figure 11. An example of an
SDL-machine

B C

D E

a a

b

a

Figure 12. Save-subgraph
of State A

B C

D
E

a a b

D

C

a

C

Figure 13. Splitting
when U=2

ALGORITHM 2B: SDL-machine transformation for one state with SAVE by cutting paths.
Input: SDL-machine and and a state A.
Output:SDL-machine.

 For a state A in an SDL-machine:
 1) Find its Save-Subgraph;
 2) Find its Corresponding Subgraph-B;
 3) Replace save(A) by the empty set and add the Corresponding Subgraph-B.

ALGORITHM 3B: SDL-machine transformation to an approximately equivalent FSM.
Input: SDL-machine with SAVE's.
Output: SDL-machine without SAVE.

 1) First, apply Algorithm 3 ;
 2) Check each state of the SDL-machine to find a state A with save(A) <> empty, then
eliminate it using Algorithm 2B. Continue this procedure until no such state is found.

4. TEST DESIGN

 The FSM of SDL has an infinite input queue, but its implementation can only have a finite
input queue. Therefore if there is no flow control for the input queue, the implementation is
incorrect according to its SDL specification. The fault coverage should be analyzed based on
both the test selection methods for FSM's and the flow control for the input queue. The flow
control criteria should be given in the specification. For ease of representation, we assume
the following definitions.

DEFINITION: A prime input sequence (P-sequence) of a given input signal sequence at

state A. For an input signal sequence a1.a2......an, its P-sequence at the state A is an input
signal sequence which is obtained by eliminating all input signals in a1.a2.......an which can
only trigger implied transitions when the sequence is applied to state A. An input sequence
a1.a2......an is a P-sequence at state A if no implied transition occur when a1.a2......an is
applied at state A.
 For the example shown in Figure 5, let the SDL-machine be in state A, (1) the P-sequence
of a.a.b.b.b is a.b.b, (2) the P-sequence of a.a**i.b.b**j(i,j are any two of natural numbers
with j>o) is a.b.b, (4) f**i is a P-sequence at state A, and (4) the P-sequence of f**i.d is f.d.

DEFINITION (minimum capacity of queue): Let Iseq.a be a longest input sequence
satisfying the following conditions: There exists a state A such that
(1) "Iseq" belongs to (save(A))*,
(2) "a" belongs to out(A),
(3) Iseq.a is P-sequence.
 We say that the length of Iseq.a is the minimum capacity. It can be either a finite integer or
infinite.

 We now present a method for test selection using our transformation approach. Suppose
that the input queue would not have more than U (U is the upper boundary of the queue)
input signals according to the flow control criteria given in the specification; the test suite of
an SDL-machine can be generated as follows.
 Step 1: Transform the SDL-machine to a FSM using Algorithm 3 (direct transformation) if
it is possible; otherwise apply Algorithm 3B (Transformation by cutting cycles).
 Step 2: Generate test cases from the transformed FSM using one of the test suite
development methods for finite state machines, such as the W-method [4], the WP-method
[7] and or those given in [5,6].
 Step 3: Generate a boundary test case which is an input sequence of the form a**(U-1).b
(a sequence of U-1 "a"'s followed by "b") such that "a" belongs to save(A) for some state A,
and "b" belongs to out(A).

 Consider the example shown in Figure 5. Suppose the upper boundary is 3. Then c.c.a
starting from state A is the boundary test case. If the length of the queue is less than 3, the
"a" will be lost after inputting c.c.a and the input flow control fault can be detected by
observing the corresponding erroneous output.
 The fault coverage of the test suite is the following:
 (a) If the upper boundary U is greater than or equal to the minimum capacity and the SDL-
machine can be transformed into an FSM by Algorithm 3 (direct transformation), then the
above test suite can detect any output fault, any transfer fault, any save input fault, and any
multiple saved inputs fault (up to U).
 (b) Otherwise if the upper boundary U is greater than or equal to 2 and the SDL-machine
is transformed into an FSM by Algorithm 3B (transformation by cutting cycles), then the
above test suite can detect the above faults, except for multiple saved inputs faults and
transfer faults.
 In the second case, test case selection is based on the transformed FSM which is an
approximation of the original SDL-machine. Therefore there is no guarantee for complete
fault coverage.

5. CONCLUSION

 This paper proposes a fault model for SDL specifications containing SAVE constructs, and
presents a method for generating a test suite based on the fault model. The most important
step of our method is to transform the SDL-machine to an equivalent FSM which preserves
the relation between input and output sequences. For the case that each SAVE contains only
a single input signal, we can transform every SDL-machine to a FSM if such an FSM exists.
But for the case of SAVE containing several input signals, our algorithm does not work for
all SDL-machines for which an equivalent FSM exists. The method could be implemented by
a software tool.
 Acknowledgements: The authors would like to thank many people, in particular Prof.
Sarikaya, Mr. Cheng Wu, Mr. Mingyu Yao and Mr. Martin Dubuc for helpful discussions.
This work was supported by the IDACOM-NSERC-CWARC Industrial Research Chair on
Communication Protocols at the University of Montreal (Canada).

1 R.Saracco, Course on SDL, CSELT, 1987.
2 Gang LUO & Junliang CHEN, " Investigation & Testing for SDL SAVE Function" ,

Journal of Beijing Univ. of Posts & Telecommunications, Vol.12, No.4, December, 1989.
3 Anne Bourguet-Rouger & Pierre Combes, "Exhaustive Validation and Test Generation in

Elivis", SDL Forum'89.
4 T.S.Chow, "Testing Software Design Modeled by Finite-State Machines, IEEE Trans.

on Software Eng., Vol. SE-4, No.3, 1978.
5 K.Sabnani & A.T.Dahbura, "A New Technique for Generating Protocol Tests", ACM

Computer Communication Review, Vol.15, No.4, 1985, pp.36-43.
6 B.Sarikaya & G.v.Bochmann, "Some Experiences with Test Sequence Generation for

Protocols", Protocol Specifications, Testing, and Verification II, 1982.
7 S.Fujiwara, G.v. Bochmann,F.Khendek,M.Amalou & A.Ghedamsi, "Test Selection Based

on Finite State Models", accepted by IEEE Trans. On Software Engineering.
8 R.Saracco & P.A.J.Tilanus, "CCITT SDL: Overview of Language and Its Application",

Computer Networks and ISDN System, Vol.13, No.2, 1987, PP.65-74.
9 F. Belina and D. Hogrefe, "The CCITT-Specification and Description Language SDL",

Computer Networks and ISDN Systems, Vol. 16, pp.311-341, 1989.

APPENDIX

THEOREM 1: If the Save-Subgraph of state A satisfies Conditions (I) and (II), then its
Corresponding Subgraph is a deterministic FSM.
Outline of proof:
 1) It is easy to see that Corresponding Subgraph is a tree, and the sub-tree consisting of its
root, its internal nodes and the edges between the nodes corresponds to a deterministic FSM.
 2) After the merging step and eliminating duplicate pair in every node mark, for any node
mark there does not exist two pairs such that the first parts(input signals) are equal and the
second parts (states) are different from each other. Assume the contrary. Then there exist two
pairs <i,s1>, <i,s2> such that s1 <> s2. This implies that there are two directed paths from
same starting state to different object states with the same input sequence; hence the Save-

Subgraph is nondeterministic; this is contrary to the assumption that the original FSM is
deterministic.

THEOREM 2: Given an SDL-machine M and a state A, the input/output behavior of the
SDL-machine obtained using Algorithm 2 is equivalent to M if the Conditions (I) and (II) are
satisfied for state A.
Outline of proof:
 According to the transformation, we only need to prove that for all Iseq.a with Iseq
belonging to (save(A))* and "a" belonging to out(A), there is
 <A>@[Iseq.a] of F1 = <A>@[Iseq.a] of F2 and
 op(A,Iseq.a) of F1 = op(A,Iseq.a) of F2.

First part: We need to show that
 if <A>@[Iseq.a] of F1 = <S> and op(A,Iseq.a) of F1 = Oseq
 then <A>@[Iseq.a] of F2 = <S> and op(A,Iseq.a) of F2 = Oseq
 Let Iseq1.a be the P-sequence of Iseq.a in state A of F1, then we have
<A>@[Iseq.a] of F1 = <A>@[Iseq1.a] of F1 = <A>@[a.Iseq1] of F1 and
op(A,Iseq.a) of F1 = op(A,Iseq1.a) of F1 = op(A,a.Iseq1) of F1 (1)
 From the Conditions (I) and (II), there is an elementary path(without cycles) with its input
label being Iseq1 in the Save-Subgraph. Furthermore, there is a path with its input label being
Iseq1.a in the Corresponding Subgraph and
 <A>@[Iseq1.a] of F2 = <A>@[a.Iseq1] of F1
 and op(A,Iseq1.a) of F2 = op(A,a.Iseq1) of F1 (2)
 From the Corresponding Subgraph, we also have
 <A>@[Iseq1.a] of F2 = <A>@[Iseq.a] of F2
 and op(A,Iseq1.a) of F2 = op(A,Iseq.a) of F2 (3)
 From (1),(2),(3), we have
 <A>@[Iseq.a] of F1 = <A>@[Iseq.a] of F2
 and op(A,Iseq.a) of F1 = op(A,Iseq.a) of F2

Second part: We need to show that
 if <A>@[Iseq.a] of F2 = <S> and op(A,Iseq.a) of F2 = Oseq
 then <A>@[Iseq.a] of F1 = <S> and op(A,Iseq.a) = Oseq.
 The proof of the second part is similar to the first part.

THEOREM 3: If each state A of the SDL-machine has |save(A)|<=1 and there is an
equivalent FSM, then Conditions (I) and (II) are satisfied at least for one state, and Algorithm
3 will terminate with an equivalent FSM.
Outline of Proof: If there is an SDL-machine having |save(A)|<=1 which can not be
transformed into an equivalent FSM by Algorithm 3, we can find a P-sequence of infinite
length for some state A of the SDL-machine where after the P-sequence is received it will be
kept in the queue and cannot trigger any transition before another input signal is input.

