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Abstract:  
 
Service and protocol specifications are the basis for the design and implementation of 
distributed computer systems. In the area of OSI communication standards, specifications are 
written in natural language and various description techniques, including ASN.1 and other 
formal techniques. Since the scope of ASN.1 is essentially limited to the definition of data 
structures and coding conventions, these aspects must be combined with other aspects in 
order to obtain complete protocol and service specifications. The issues related to the 
integration of ASN.1 with specifications written in formal description techniques (FDT's), 
such as Estelle, LOTOS, SDL, or in the object-oriented specification language Mondel, are 
discussed in this paper. In particular, the translation of the concepts of ASN.1, ROSE, and 
entity-relationship modelling into the FDT's and Mondel are considered in some detail. The 
paper also describes the problems that had to be solved for the integration of an ASN.1 
encoding and decoding tool with an Estelle compiler, which together provide support for the 
semi-automatic implementation of OSI Application layer protocols. 
 
 
1. Introduction 
 
Standards for communication protocols and services are being developed for Open Systems 
Interconnection (OSI) [OSI 83] which are intended to allow the interworking of 
heterogeneous computer systems and applications.  In this context, the protocol 
specifications are of particular importance, because they represent the standards which are 
the basis for the implementation and testing of compatible OSI  systems [Boch 90g]. The 
standard specifications are usually written in natural language, augmented with certain 
formalisms such as state tables.  In addition, formal description techniques (FDT's) have also 
been developed and used.  The formal nature of these specifications make it possible to apply 
automated tools during the protocol development life cycle [Boch 87c]. 
 
The protocol specification defines the behavior of a protocol entity in terms of interactions 
with the local service user, called service primitives, and its interactions exchanged with the 
remote peer entity, called Protocol Data Units (PDU's). In the case of OSI Application layer 
protocols, the data structures of the PDU's are usually described in ASN.1 (Abstract Syntax 
Notation One [ASN1]). This notation also includes information about the coding of the 
exchanged information between the communicating computers, according to associated 
encoding rules [ASN1 C]. These rules follow a fixed coding scheme, which permits the 
construction of ASN.1 support tools which generate automatically the required encoding and 
decoding software for a given protocol specification [Boch 90f, Neuf 90b].  
 



The ASN.1 notation covers only aspects of data structuring. As indicated in Figure 1, this 
represents only a part of all those behavior aspects that must be covered by a protocol 
specification: 
(1) Data structures 
(2) Declarations of operations and their parameters 
(3) Semantics of operations and their possible order of execution 
All these aspects are covered by the three formal description techniques Estelle, LOTOS and 
SDL discussed below. However, these description languages also include their own language 
elements for data structures, corresponding largely to the ASN.1 notation. The relation 
between ASN.1 and the corresponding notations of the FDT's is discussed in more detail 
below in Sections 3 and 5.  
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While ASN.1 has been originally developed in relation with the CCITT standard on message 
handling systems and has subsequently been used for most OSI Application layer protocols, 
certain extensions to this notation (using so-called macros) have been developed in relation 
with other standards, such as a notation for defining operations (corresponding to point (2) 
above), called ROSE [OSI RO] and a notation for writing specifications of managed objects, 
including the notion of object classes and inheritance [OSI mb]. These notations, together 
with the basic notation of ASN.1, are used for describing many OSI application layer 
protocols presently under development, as for instance in the area of distributed systems 
management.   
 
The object-oriented concepts, indicated in the last column of Figure 1, are not essential for 
the description of communication protocols and distributed systems, however, they are useful 
for writing descriptions of complex systems in a more structured manner. They also fit easily 
with the data modelling concepts of the entity-relationship model [Chen 76, OSI ER]. In a 
joint research project with the Computer Research Institute of Montreal (CRIM) and Bell-
Northern-Research on network management, we have defined an object-oriented 
specification language, called Mondel, which is intended to cover all the specification 
aspects shown in Figure 1 in a simple framework, which should make it easy to be used. Our 
experience with this language and the associated simulation and validation tools has been 
encouraging [Boch 91i, Mond 90, Boch 91].  
 
 
This paper deals with the problems that arise through the presence of these different 
specification languages. The notations ASN.1 and ROSE, and the notation for managed 



objects used for the description of OSI protocols are defined in a relatively ad hoc manner 
without a precise definition of their semantics, and they do not cover all aspects of 
specifications, as mentioned above. In order to build tools for the validation of specifications, 
for the development of their implementations and testing, it is necessary to have a precise 
language definition, preferably with a formal semantics. Such definitions exists for the FDT's 
and certain other specifications languages, such as Mondel. However, if one wants to use 
these languages for OSI protocols, a translation from the notations used in the protocol 
definitions into these formal specification languages must be provided. This translation issue 
is the topic of this paper.  
 
Section 2 gives a short introduction to ASN.1 and associated notations, FDT's and Mondel. 
In the subsequent section, we discuss the general strategies that can be used for an 
integration between ASN.1 and the formal specification languages. An overview of possible 
translation from ASN.1 to several of these languages is also given. In Section 4, we discuss 
the integration of the concepts of entity-relationship modelling into an object-oriented setting 
including ROSE, using Mondel as an example language. Section 5 deals with the details of 
translation from ASN.1 into Estelle and the implementation language C, which is generated 
by some Estelle compilers. The integration of ASN.1 encoding and decoding tools with an 
Estelle compiler is also described.  
 
2. Overview of ASN.1 and formal description techniques 
 
2.1. ASN.1 and related notations for OSI protocols 
 
ASN.1 [ASN1] is a notation which allows the definition of data types, similar to the data 
type definitions available in programming languages such as Pascal or ADA. The notation 
includes a number of predefined types such as integers, reals, booleans, bit strings etc ... It 
also allows the definition of composed types , such as groups of elements (called 
SEQUENCE, corresponding to the Pascal RECORD), groups of elements of the same type 
(called SEQUENCE OF), a list of alternative types (called CHOICE, corresponding to 
Pascal's variant records). A TAG can be used to for distinguishing different alternatives or 
optional elements within a group and refers to the coding of the items during transmission. 
 
The main reason for the success of ASN.1 as specification language is probably the fact that 
it is combined with a standard encoding scheme for PDU's [ASN1 C] which has been 
adopted for OSI Application layer protocols. Based on the information contained in the 
ASN.1 definition of the PDU structure, this scheme completely determines the PDU 
encoding, and can be used for implementing he coding and decoding functions automatically 
(see for instance [Neuf 90b].  
 
A so-called macro notation has been defined for ASN.1. In contrast to macro expansion rules 
defined for other languages, however, the ASN.1 macros have no semantic meaning. 
Nevertheless, this notation has been used to introduce certain additional notations, such as a 
notation for defining "Remote Operations" and managed OSI objects, which are further 
discussed in Section 4. 
 
2.2. Overview of Formal Description Techniques  



 
Most protocol specifications are written in natural language, sometimes augmented with state 
tables and other forms of organized information.  In addition, a number of formal techniques 
have been used to describe protocols in a more precise manner [Boch 90g].  The use of such 
formal specifications leads to the possibility of automating certain activities of the protocol 
development cycle [Boch 87c], such as the validation of the protocol specification [Pehr 90], 
the implementation process [Boch 87h], and the conformance testing of protocol 
implementations [Sari 89c].  
 
In view of these advantages,  ISO and CCITT have developed standardized specification 
languages,  so-called formal description techniques  (FDT's), which are intended to be used 
for the description of OSI protocols and services.   They are respectively called  Estelle, 
LOTOS, and SDL (for tutorial introductions, see [Budk 87, Bolo 87, Beli 89]).  Although 
these languages were developed for use within OSI, they have potentially a much broader 
scope of application.  
 
In Estelle, a specification module is modelled by an extended finite state machine (FSM).  
The extensions concerning the range of possible values for interaction parameters, and rules 
for interpreting and selecting values of these parameters are covered by type definitions, 
expressions and statements of the Pascal programming language.  In addition, certain "Estelle 
statements" cover aspects related to the creation of the overall system structure consisting in 
general of a hierarchy of module instances.  Communication between modules takes place 
through the interaction points of the modules which have been interconnected by the parent 
module.  Communication is asynchronous, that is, an output message is stored in an input 
queue of the receiving module before it is processed.    
 
SDL, which has the longest history, is also based on an extended FSM model.  For data 
types, it uses the concept of abstract data types with the addition of a notation of program 
variables and data structures, similar to what is included in Estelle.  However, the notation 
for the latter aspects is not related to Pascal, but to CHILL, the programming language 
recommended by CCITT.  The communication is asynchronous and the destination process 
of an output message can be identified by various means, including process identifiers or 
channel names.  
 
LOTOS is based on an algebraic calculus which includes the concepts of finite state 
machines plus parallel processes which communicate through a rendezvous mechanism 
which allows the specification of rendezvous between two or more processes.  Asynchronous 
communication can be modelled by introducing queues explicitly as data types.  The 
interactions are associated with gates which can be passed as parameters to other processes 
participating in the interactions.  These gates play a role similar to the interaction points in 
Estelle.  Data types are described in an algebraic notation for abstract data types, called ACT 
ONE, which is quite powerful, but would benefit from the introduction of certain abbreviated 
notations [Scol 87, Boch 89h] for the description of common data structures.  
 
In contrast to the other FDT's, SDL was developed, right from the beginning, with an 
orientation towards a graphical representation.  The language includes graphical elements for 
the FSM aspects of a process and the overall structure of a specification.  The aspects of data 
types are only represented in the usual linear, program-like form.  In addition, a completely 



program-like form is also defined called (SDL-PR) which is mainly used for the exchange of 
specifications between different SDL support systems. 
 
In this paper, we are largely concerned with issues related to the implementation process. 
The languages Estelle and SDL can be considered high-level implementation languages; in 
fact, a number of FDT compilers exist which translate formal specifications into program 
code written in a conventional programming language, such as Pascal, C or ADA. For 
Estelle, such systems are described in [Boch 87h, Vuon 88].  
 
2.3. An object-oriented specification language 
 
We have developed an object-oriented specification language called MONDEL which 
supports an object-oriented  development methodology [Boch 90l].  In many respects, 
MONDEL resembles other existing object-oriented languages. It has, however, certain 
properties which make it particularly suitable for describing distributed OSI applications.  
 
In contrast to many other object-oriented languages, MONDEL distinguishes between 
persistent and non-persistent objects. Persistent objects are like entries in a data base; they 
remain present until they are explicitly deleted, and they can be interrogated by database-
oriented statements which identify the object instances in the database which belong to a 
given class and have specified properties. Entities and relationships are usually represented 
as persistent objects. 
 
In contrast to many object-oriented languages, communication between objects is 
synchronous, that is, an object instance calling the operation of another object is blocked 
until the called object executes a RETURN statement, which may include the delivery of a 
result. Synchronous communication is better suited for specifications of higher level of 
abstraction, since cross-over of messages at interfaces can be largely avoided [Boch 88h]. 
MONDEL provides a number of statements to express the order in which the operations can 
be accepted by an object, or for specifying the actions to be performed when an operation 
call is accepted by the object.  
 
The concept of an ATOMIC operation is introduced which represents a "transaction" in the 
sense of databases, that is, it represents a set of actions which are either all performed 
without interference from other "transactions", or undone if an exception condition is 
encountered. The language has exception handling similar to ADA. The actions of different 
objects are usually performed in parallel; it is also possible to define several parallel 
activities within a single object.  
 
The statements of the language have the flavor of a high-level programming language, except 
for the database-oriented statements mentioned above. However, it is also possible to write 
assertional specifications by defining input and output assertions for operations, or by 
defining INVARIANT assertions which must be satisfied at the end of each "transaction". 
 
 
3. Combining ASN.1 with other description techniques 
 



In order to take advantage of the tools available with formal specification languages for OSI 
Application layer protocols, in conjunction with the ASN.1 notation and the associated 
automatic generation of coding and decoding routines, it is necessary to clearly define the 
relationship between the ASN.1 data structure definitions and the corresponding concepts in 
the respective formal specification languages. The relationship must be defined at two levels. 
First, the correspondence between the respective language constructs for defining data 
structures must be defined.  Secondly, issues related to the combination of the respective 
tools must be addressed. 
 
3.1. Strategies for integrating the ASN.1 notation with other specification languages 
 
3.1.1. Integration at the language level 
 
The following three approaches can be envisioned for the integration of ASN.1 with other 
languages (e.g. FDT's): (1) substitution, (2) combination, and (3) translation.  
 
In the substitution approach [Alve 87], the ASN.1 notation is used instead of the 
corresponding FDT concepts for describing the data structures in the specification.  It is 
important to note, however, that ASN.1 does not provide any notation for accessing 
individual elements contained in a given PDU data structure, and such a notation is required 
for writing those parts of the specification that describe the semantics of the operations.  
Therefore, this approach requires the definition of extensions to the ASN.1 notation. Then it 
is possible to use such an extended notation instead of the data type definition and access 
constructs provided by the FDT. 
 
In the case of the combination approach [Hase 88], the situation is similar, except that the 
constructs of the FDT remain valid and the extended ASN.1 notation is allowed as an 
alternative description method within the same language.  Clearly, this leads to a duplication 
of functionality in the specification language. 
 
In the translation approach [Boch 89h], no access extension for ASN.1 needs be defined. 
Instead, the ASN.1 notation is translated into equivalent constructs of the FDT. The formal 
specification of an OSI application layer protocol will therefore include the definition of the 
PDU structure as obtained by translation from the given ASN.1 definition contained in the 
protocol standard.  For the access to the individual elements of this structure, the available 
constructs of the FDT can be used. 
 
The substitution and combination approaches require a redesign of the FDT, which is a major 
undertaking.  In the case of the translation approach, the FDT remains unchanged.  In order 
to make this approach successful, however, it is necessary to define the translation in such a 
manner that the resulting PDU data type definitions are simple to read and natural for the 
designer of the FDT protocol specification.  An overview of possible transitions is given in 
the next subsection. Details of the translation approach in the case of the Estelle specification 
language are discussed in Section 5. For the case of LOTOS, the issues are discussed in 
[Boch 89h].  
 
3.1.2. Integrating language tools in the case of ASN.1 translation 



 
As mentioned above, various tools have been developed independently for ASN.1 and the 
associated encoding rules, on the one hand, and for the FDT's and other specification 
languages, on the other hand.  The integration of these languages should therefore also lead 
to an integration of the associated tools.  In the case of the translation approach described 
above, the main issue for tool integration is the compatibility of the respective 
implementation data structures used in the tools for representing the PDU's.  The ASN.1 
definition of the PDU, taken from the protocol standard document, is used for generating the 
ASN.1 encoding routines which translate between the communication format and an internal 
data structure format used by the ASN.1 tool.  The same ASN.1 definition is also translated 
into FDT data type definitions which become part of the formal protocol specification.  This 
specification is then translated by the FDT tool.  For the integration of these tools, it is 
therefore necessary that the implementation data structures representing the PDU's obtained 
by the translation from the FDT tool are the same as those used by the encoding routines 
generated by the ASN.1 tool. 
 
An example of such an integration is discussed in the Section 5.  Another example, for the 
case of LOTOS, is described in [Boch 89h].  In the latter case, the existing systems were 
basically incompatible; the existing LOTOS interpreter used internally Prolog data structures 
and LOTOS source code for externally representing constant data structures, while the 
ASN.1 tools used an internal value tree in C (similar to the ENODE structure described in 
[Neuf 90b]).  Nevertheless, an integration was realized by providing the automatic generation 
of a translation module which transforms, during run-time, between the internal C value trees 
of the ASN.1 tool and the external source code supported by the LOTOS interpreter. 
 
It is clear that these problems can be avoided when new tools are designed for an integrated 
ASN.1-FDT environment. 
 
3.2. Overview of ASN.1 translations 
 
Most concepts of ASN.1 can be translated in a straightforward manner into the different 
specification languages, as shown in the following table.  



 
ASN.1 Estelle SDL Lotos Mondel 
INTEGER integer Integer NaturalNumber integer 
BOOLEAN boolean Boolean Boolean boolean 
NULL ... NEWTYPE Null 

ENDNEWTYPE 
  Null; 

type Null is  
endtype 

none 

ANY ...  type Any is  endtype object 
BIT STRING array [1..N] of boolean String(Boolean,") BitString sequence [boolean] 
OCTET STRING array [1..N] of Octet; 

 (where Octet=0..255) 
String(Octet, ") 
(where 
Octet=0..255) 

OctetString sequence [Octet] 
  (where octet = 
integer with 
invariant 0 <= self 
<= 255) 

SET 
 { x XType, 
    y YType } 

record 
  x: XType; 
  y: YType end; 

STRUCT 
   x XType; 
   y YType; 

TUPLE xyz COMP 
   x: XType, 
   y: YType 
{abbrev. notation} 

passive{object} 
with 
   x: XType; 
   y: YType 

SEQUENCE 
 { x XType, 
    y YType } 

same as SET same as SET same as SET same as SET 

CHOICE 
 { x [0] XType, 
    y [1] YType } 

record (* variant *) 
 case choice: integer of 
  0: (x: XType); 
  1: (y: YType) end; 

STRUCT 
   choice Integer; 
   x XType; 
   y YType; 

ONEOF  
   XType, 
   YType 
{abbrev. notation} 

choice XType or 
YType 
{the tags [0] and [1] 
are coding issues} 

SET OF XType generic list with 
pointers: 
 LIST=record 
  item: Xtype; 
  next: ^LIST; end; 

String (XType,") STRINGOF 
   XType 
{abbrev. notation} 

sequence [XType] 

SEQUENCE OF 
XType 

same as SET OF same as SET OF same as SET OF same as SET OF 

 
As this table shows, the correspondence between ASN.1 and the other languages is in most 
cases quite straightforward. (For more details, the reader may refer to the references [Boch 
90f], [Boch 89h], and [Boch 90z], respectively). There are, however, certain aspects of 
ASN.1 which are not directly present in the other languages, such as different kinds of 
character strings (e.g. PrintableString, NumericString). For enumeration types, such as "color 
= (red, blue, green)", ASN.1 uses generally an integer representation, such as "Color = 
Integer { red (0), blue (1), green (2)}", while in the other languages one would prefer a more 
abstract representation, such as a discriminant union of the form "Color = Choice red or blue 
or green" without reference to the integer coding of these values. 
 
It is important to note that the ASN.1 notation, although it is defined separately from the 
ASN.1 data encoding rules, contains certain information elements that relate to coding, such 
as the "tags" mentioned above. This coding-related information is not required at the logical 
design level, and is therefore not included in the translations shown in the table above. This 



information is, however, essential for the compatibility of interworking system, and could be 
added in a similar manner within the context of the other languages. 
 
The following aspects of the translation may be considered "problematic": (a) Except for 
Mondel, the ASN.1 concept of "OPTIONAL" leads to somehow lengthy descriptions. (b) 
The data type definitions in LOTOS, in general, become very lengthy, the translation in the 
Table is given in terms of an abbreviated notation [Boch 89h]. (c) The ASN.1 list construct 
"SEQUENCE OF" does not have a correspondence in Estelle and must be "programmed" in 
a data structure with pointers (see Section 5 for more details).   
 
 
4. Object-oriented specifications 
 
For applications where many standards and other documents must be considered during the 
system design, it is important to find a common description formalism which is suitable to 
express all relevant design issues, which is close to the formalism used in the standard and 
other documents, and which is formal enough to allow computer-aided design tools. We have 
tried to make Mondel compatible with several notations used in the context of OSI 
standardization and other areas, such as explained in the following subsections (see [Boch 
90z] for further details).  
 
An important concern is the representation of the entity-relationship (ER) model [Chen 76, 
OSI ER] which is often used for describing database related applications. It is assumed that 
the reader is familiar with the ER approach. In addition, various extensions to ASN.1 have 
been developed within the OSI standardization community for describing such issues as: (a) 
ports through which connections can be established with other system components [X.407], 
(b) "Remote Operations" [OSI RO] which correspond to the well-known concept of remote 
procedure calls, and (c) classes of object with inheritance relations [OSI mb].  
 
4.1. Classes, objects and inheritance 
 
Like object-oriented languages, the ER approach makes the distinction between classes of 
objects, called types in Mondel, and objects which are the instances of such types. However, 
the object-oriented approach has the notion of inheritance, which in the area of 
specifications, we consider in the sense of subtyping [Amer 89, Boch 89f]. This notion 
corresponds to what is sometimes called the "is-a" relationship. It is important to distinguish 
this relation between types from the relationships between object instances, which are the 
usual relations considered in the ER approach. 
 
To express the relation between types, MONDEL has two constructs corresponding to 
multiple inheritance and non-deterministic choice, respectively. For instance, the definition  
 
 type S = A and B endtype S 
 
means that the class S inherits all properties of A and of B; it is therefore a specialization of 
both. The definition  
 



 type G = choice A or B entype G 
 
means that an instance of type G is either of type A or of type B. This construct corresponds 
to the discriminate union of types, as found in many programming languages. 
 
 
4.2. Modelling an "entity" and its attributes 
 
MONDEL distinguishes between three basic classes of objects: actors, persistent, and 
inactive objects. Actors typically represent application programs, users, or system interfaces; 
persistent objects correspond to instants of entities and relations, which are involved in 
transactions and for which a persistent copy is retained until the current transaction 
successfully terminates; inactive objects, finally, include the predefined objects of integers, 
strings, etc. as well as common data structures and other user-defined objects.  
 
Each MONDEL object has a certain number of fixed acquaintances (usually called 
"attributes" in MONDEL). Their value does not change during the entire lifetime of the 
object. It seems natural to model an ER entity type as a persistent MONDEL type where the 
entity attributes are modelled as inactive acquaintances. In the case that the entity attribute 
value may change, an acquaintance of type VAR [T] may be used which means that the 
acquaintance is a variable, to which new values of type T may be assigned during system 
evolution. 
 
 
4.3. Modelling relationships using the "database approach"  
 
A relationship between object instances can be most directly be modelled in MONDEL as an 
object type which has an acquaintance for each role of the relation, as shown for the 
construct "SEQUENCE" in the table of Section 3. For instance, the notation "type R = 
persistent with X: XType; Y: Ytype endtype" defines a type of relationship between objects 
of type XType and YType. 
 
This approach of modelling relationships has the following properties: 
 
(1)  Referential integrity (i):  An instance of a relationship can not be created without the 

existence of the related entities. 
 
(2)  Referential integrity (ii):  If one of the related entities is deleted, the corresponding 

instance(s) of a relationship is (are) also deleted. 
 
(3)  Dynamic relationship:  The creation and deletion of instances of a relationship do not 

affect the existence of the related entities. 
 
(4)  Independence:  The relationship and the related entities are specified as separate 

types. 
 



(5)  Specialization and relationship attributes:  A basic relationship (as exemplified 
above) may be refined by adding attributes or other pertinent information to the 
definition of the relation type.  For example: 

 
 
It is possible to specify further properties by defining a subset of the acquaintances to form a 
key, or by adding an invariant condition which must be satisfied during the creation of each 
occurrence of the type.  
 
 
4.4. Modelling relationships using the "data structure approach" 
 
In the context of high-level programming languages, relationships may be represented using 
various data structures. MONDEL provides certain predefined structures, such as VAR, SET, 
BAG, and SEQUENCE, which may be used for this purpose. However, the symmetry 
between the different roles of the relationship is lost in these representations. For instance, 
the relationship R of Section 4.3 may be represented as an acquaintance of type SET 
[YType] in each object of type XType. With this approach, the aspects (2), (4) and (5) of 
Section 4.1.3 are lost. In the case that a type is related to at most one instance of another 
type, which we call a functional relation, the acquaintance may be of type VAR [], instead of 
a SET [], which simplifies its use and implementation. 
 
An aggregation relationship, such as "an entity instance of type AType is composed of 
entities of type BType", is a particular case of a functional relation from BType to AType, 
and can be modelled as explained above.  
 
 
4.6. Remote Operations and other object-oriented notations 
 
The "remote operations" [OSI RO] can be modelled naturally in MONDEL in the form of 
operation calls. In MONDEL, as in any object-oriented language, all communication 
between objects proceeds through the call of operations which are associated with an object, 
which must be known to the object that executes the call. In MONDEL, the calling object has 
to wait for the return of the operation, which may include the result of the operation, or may 
occur immediately after the acceptance of the operation by the called object. This allows the 
modelling, in MONDEL, of the synchronous and asynchronous communication foreseen for 
"remote operations" (see [Boch 91, Boch 90z] for more details). In the languages Estelle and 
SDL, which have queued interaction primitives, a synchronous remote operation must be 
represented by two successive queued interactions "request" and "result".  The concept of 
operation errors, as defined for ROSE, can be modelled through exception handling in 
Mondel. 
 
 
5. Translation from ASN.1 into Estelle/Pascal and C 
 
In this section we discuss in more detail the translation from ASN.1 into Estelle and C. Since 
ASN.1 only covers aspects related to the range of possible PDU parameter values and data 



structures of PDU parameters, the result of the translation will be data type definitions in the 
target language. In the case of Estelle, data types are defined in the same notation as in the 
Pascal programming language.  The data typing facilities in many other modern 
programming languages are similar.  This is also the case for C.  In the following, we 
therefore mention the translation into C only in certain cases where its form is not evident 
from the corresponding discussion for Estelle. 
 
 
5.1. Overview of translation difficulties 
 
Most constructs of ASN.1 are similar to constructs existing in programming languages, such 
as Pascal.  For these constructs, a natural translation into Estelle and C is relatively 
straightforward, as discussed in Section 5.2.  However, certain particular aspects are often 
difficult to match, for instance the arbitrary precision of integers in ASN.1 is not compatible 
with the fixed size integers in Pascal or C.  Certain other constructs of ASN.1, such as 
SEQUENCE OF, have no equivalent in Estelle. It is therefore necessary to build data types 
in Estelle (and C) which correspond to these ASN.1 structures, as discussed in Section 5.3.  
A discussion and a translation tool are presented in Section 5.4 and 5.5. 
 
It is important to note that Estelle is not an implementation language.  For implementation, 
Estelle specifications can be automatically translated into parts of the implementation code 
[Boch 87h].  In Section 5.5, an integrated tool set for the implementation of ASN.1/Estelle 
specifications in the C language is described.  In this case, the PDU definitions written in 
ASN.1 are translated by the ASN.1 tool directly into C.  They are also translated into Estelle 
and incorporated into the complete Estelle specification of the protocol entity.  This 
specification is then also translated by an Estelle compiler into the C language.  As shown in 
Figure 2, it is important in this context, that the two PDU data type definitions in C obtained 
by the different translations be identical in order to make the generated encoding and 
decoding routines compatible with the C data structures used by the remaining part of the 
protocol entity. 

ASN.1
PDU

definition

Estelle
type

definition

C
type

definition

C 
encoding and 

decoding 
routines

 
 

Figure 2 - General overview of translation 



 
5.2. ASN.1 constructs allowing a natural translation  
 
5.2.1. Predefined data types 
 
The predefined data types of INTEGER and BOOLEAN have a corresponding representation 
in Estelle.  The ANY type of ASN.1 is a choice of an arbitrary number of types which is 
defined at runtime.  This type can be represented in Estelle by the notation "..." which means 
that the type is not yet defined and more information would be provided for an 
implementation.  In the implementation in C, it would correspond to a pointer to any kind of 
value. 
 
The ASN.1 types representing time (Generalized Time and Universal Time) can be 
represented in Estelle and C by a predefined record data structure, containing the fields year, 
month, day, hour, minute, second, time-difference, and zone. 
 
5.2.2. SEQUENCE and SET 
 
An ASN.1 SEQUENCE or SET contains a certain number of elements of different types. The 
only difference between the two constructs is the order of transmission of these elements, 
which is sequential in the case of a SEQUENCE, and not defined in the case of a SET.  This 
difference has only an impact on the encoding, not the meaning of the structures.  Therefore 
they can be translated into identical structures in Estelle or C.  The natural translation in 
Estelle is a "record", or a "struct" in C. For example, the ASN.1 definition 
 
Type1 ::= SEQUENCE { a INTEGER,  b BOOLEAN } 
would be translated into Estelle as: 
Type1  =  record 
 a: INTEGER; 
 b: BOOLEAN; end; 
or into C as: 
typedef struct Type1 { 
 int a; 
 boolean b } Type1; 
where "boolean" is a type already defined as a "short" integer. 
 
The translation of type structures from ASN.1 into Estelle also determines how the elements 
of the data types can be accessed by the body of the Estelle specification.  Since Estelle 
includes a notation for accessing Estelle data structures, nothing has to be provided by the 
translation process.  In the case of the above example, for instance, with an additional type 
definition 
Type2 ::= SET { x Type1,  y BOOLEAN } 
and a variable K2 of type Type2, one would use the Pascal "dot" notation to access the 
SEQUENCE x by the expression "K2.x", and the integer of x by "K2.x.a".  
 
5.2.3. CHOICE 
 



The ASN.1 type CHOICE indicates that a data item must be of one of several possible types.  
For instance, a value of the following type Type3 may be either an integer, a boolean or an 
octet string. 
Type3 ::= CHOICE { 
 id1 INTEGER, 
 id2 [UNIVERSAL 1] IMPLICIT BOOLEAN, 
 id3 [APPLICATION 1] OCTET STRING } 
 
The natural translation in Estelle (and Pascal) is a record with variants, such as the following: 
 
Type3 = record 
 case choice: integer of 
 Type3_id1_tag: (* = 0x2 *) 
  (id1: integer); 
 Type3_id2_tag: (* = 0x1 *) 
  (id2: boolean); 
 Type3_id3_tag: (* = 0x60000001 *) 
  (id3: OCTSTRING); 
 end; 
 
while in C the corresponding structure is a so-called union structure of the form 
 
typedef struct Type3{ 
 int choice; /* indicate the choice of data */ 
 union { /* choices */ 
  int id1; /* INTEGER */ 
  boolean id2; /* BOOLEAN */ 
  OCTS id3; /* OCTET STRING */ 
  } data 
 } Type3; 
#define Type3_id1_tag 0x2 
#define Type3_id2_tag 0x1 
#define Type3_id3_tag 0x60000001 
 
5.2.4. Tags 
 
Tags are introduced into ASN.1 definitions in order to specify the identifier values that are 
inserted into the encoded form of the data values.  They have no influence on the meaning of 
the data structures.  However, they are clearly important for the encoding and decoding 
routines, but also for the distinction between the different cases of a CHOICE data structure.  
The latter is the reason why identifiers have been introduced in the above translation 
representing the different possible tag values for the given ASN.1 CHOICE.1  These 
identifiers can be used in the body of the Estelle specification (or the C-code 
implementation) to determine the value of a received CHOICE value. 
 

                                                 
1This is not necessary if the target language has types as first-class values.  Certain languages have statements 
for testing the type of a value. 



 
5.3. Special translation structures 
 
While the above translations are relatively straightforward, the following ASN.1 concepts 
have no immediate correspondence in Estelle, and must therefore be modelled by appropriate 
composed data structures.  
 
5.3.1. Strings 
 
Estelle has no data type directly suitable for strings.  Annex B1 of the Estelle standard 
proposes a set of procedures for manipulating values of a so-called "data_type", which would 
be natural to consider as the translation of the ASN.1 type OCTET STRING. 
 
But in the case of translation into C, it is important to obtain an efficient implementation for 
string storage and manipulation.  Whereas the "data_type" structure of Estelle keeps the 
entire string in an array, such an array structure is not very effective since first, the total 
length of a string is often not known in advance, and second, concatenation would require 
copying at least one of the two parts.  Therefore we have adopted a data structure for strings 
which consists of one or more so-called "chunks", each containing a part of the string.  An 
OCTET STRING in ASN.1 is therefore translated into a pointer to a structure (called OCTS) 
containing the following three fields:  an octet string representing one chunk of the OCTET 
STRING, an integer specifying the length of that chunk, and a pointer to the next chunk. In 
order to simplify the translation from Estelle to C, we have adopted a similar data structure to 
represent OCTET STRING in Estelle.  Data manipulation routines are defined for data 
access in the body of the Estelle specification, and are similar to those defined for 
"data_type" in the Annex B1 of Estelle standard. 
 
In order to store and manipulate bit strings, we have adopted an approach similar to the case 
of octet strings with a pointer structure (called BITS). 
 
5.3.2. SEQUENCE OF and SET OF 
 
A value of type SEQUENCE OF <element type> is a sequence of values, each of type 
<element type>.  A value of type SET OF <element type> is similar, except that the order of 
the elements has no significance.  Because of this slight difference, the same representation 
could be used in Estelle or C.  
 
In order to simplify the manipulation of the list structure, we have adopted a translation 
which is based on a generic list structure including additional information, and a set of 
standard list manipulation routines which can be used for all lists, independently of the type 
of the element type.  A corresponding structure can be used in C. 
 
The generic list structure in Estelle has the following form: 



UNIV    = ...; (* universal type, can represent any type *) 
LIST_ITEM = record 
 item: UNIV; 
 next: ^LIST_ITEM; (* next item in the list *) 
 end; 
LIST = record 
 count: integer; (* number of items in the list *) 
 top: ^LIST_ITEM;(* first item in the list *) 
 current: ^LIST_ITEM; (* next item to be accessed *) 
 end; 
LIST_OF  = ^LIST; (* SET/SEQUENCE OF *) 
 
The fields "count" and "current" are useful for the list manipulation.  In order to keep them 
consistent, however, a set of manipulation routines have been defined which should be used 
in the body of the Estelle specification for accessing or updating the list structures. 
 
Using the data structures above and the predefined manipulation routines, we may access the 
number of items in the list with "C_ListCount (X, result)", and the first element of the list is 
obtained by the expression "C_ListFirst (X, result_item)".   However, the genericity of the 
data structure poses some problems in Estelle and Pascal because of strong typing.   In fact, 
the items in the list structure are of type UNIV, which is "implementation dependent".  They 
can be converted into elements of the appropriate type by using type casting routines 
generated by the ASN.1-Estelle compiler.   For each type definition of the form SEQUENCE 
OF  <element type>,  the routines  PutItem_<element type>  and GetItem_<element type>  
are defined which provide type casting from  <element type>  to UNIV and UNIV to  
<element type> ,  respectively. 
 
5.3.3. OPTIONAL  
 
An element within a SEQUENCE or SET may be declared OPTIONAL.  In this case, a 
SEQUENCE value may contain this element, or may not.  The presence of the element 
within the data structure may be represented in different manners in Estelle or C.  The 
following two approaches are possible: 
 
(1) There is an additional boolean field included in the data structure for each element which 
may be optional.  The boolean value indicates whether the element is present. 
 
(2) If the element is represented by a pointer to the element value, the value NIL of the 
pointer means that the element is not present. 
 
The first approach seems more natural.  This approach has also been used for translation into 
LOTOS [Boch 89h]. For example, the ASN.1 definition 
Type5 ::= SEQUENCE { a INTEGER OPTIONAL } 
would be translated into: 
Type5 = record 
 a_IsPresent: BOOLEAN; 
 a:  INTEGER; 



 end; 
 
 
5.4. Discussion 
 
The above list of ASN.1 constructs covers the basic part of ASN.1.  The so-called macros 
and certain recent extensions are not addressed, however.  It is interesting to note that most 
features of ASN.1 can be translated in a natural manner into specification and programming 
languages, as shown above.  The ASN.1 construct that encountered most difficulties is 
clearly the SEQUENCE/SET OF construct for which no corresponding concept exists in 
Estelle and most programming languages.  This difficulty does not appear for the translation 
to LOTOS which contains a corresponding "String" construct [Boch 89h]. However, the data 
structure adopted for the translation into Estelle was partly influenced by considerations for 
implementation efficiency, since a natural translation into C implementation data structures 
was a concern.  This concern is not addressed by the "String" data structure of LOTOS.  
 
The implementation considerations for the C data structures lead to the use of pointers for 
various list structures.  The access and update routines discussed in the subsections above 
have the property of completely hiding the pointer structures from the user.  However, if the 
user wants to make a complete copy of a given PDU, which is represented in such a pointer 
data structure, he/she has to know its detailed structure.  In order to avoid this difficulty, the 
ASN.1-Estelle compiler provides suitable copying routines for each ASN.1 type definition of 
the form SEQUENCE, SET and CHOICE. 
 
5.5. Overview of a tool environment 
 
In the following, we describe a set of support tools which have the purpose of providing an 
implementation environment for OSI Application layer protocols in conjunction with the use 
of the Estelle specification language.  It is assumed that an ASN.1 description of the PDU's 
exist, and that an Estelle specification of the protocol is used in the implementation process. 
The support tools provide for the following steps: 
 
(1) the automatic generation of encoding and decoding routines for the PDU's, and C type 
definitions. 
 
(2) the automatic translation of the ASN.1 description of the PDU's into corresponding 
Estelle data structures, and the generation of declarations for the corresponding manipulation 
primitives, and 
 
(3) the automatic generation of implementation code from the Estelle specification, and the 
generation of the algorithmic bodies for the corresponding manipulation primitives. 
 
As indicated in Figure 2, this approach requires the compatibility between the data structures 
used in the encoding and decoding routines and the corresponding data structures obtained 
from the Estelle translation.  A more detailed configuration of the support environment is 
shown in Figure 3.  It is important to note that the Estelle data structures obtained by the 
translation step (2) above must be integrated into the Estelle specification of the protocol.  



These structures have an impact on the manner in which the processing of the PDU's can be 
described in the protocol specification.  As indicated in Figure 3, the complete Estelle 
protocol specification is not obtained automatically.  In order to simplify the implementation 
process, it would be useful if formal specifications of the OSI standard protocols would be 
available.  
 
The ASN.1-Estelle implementation environment comprises three tools corresponding to the 
three steps identified above, which provide translation into the implementation language C. 
The first step is provided by the tool CASN1 developed at the University of British 
Columbia [Neuf 90b].  The third step is provided by the NBS Estelle compiler [Este 87b]. 
The ASN.1 to Estelle translation of the second step was specially developed for this purpose. 
The system has been used for several implementations, such as Alternating Bit Protocol, 
ACSE, ROSE.  
 
 
NOTE TO THE EDITOR: Figure 3 goes here; it comes from a PowerPoint document 
 
 
We believe that an integrated set of tools as described here will provide an implementation 
environment which reduces the number of programming errors in the implementation, 
because the PDU encoding and decoding is automatically generated, and the consistency 
with the PDU implementation data structures is automatically enforced. 
 
A number of incompatibilities had to be bridged and a number of implementation restrictions 
imposed by the two existing tools had to be accommodated. The necessary adjustments were 
made for each of these cases by using the following approaches: 
 
(a) Adjusting the ASN.1 to Estelle translation (step (2)) accordingly.  The objective of 
realizing a "natural" translation between the two languages limits the range of possible 
changes. 
 
(b) The automatic introduction of changes into the data structures generated by the CASN1 
tool. This approach was realized through the automatic generation of text editing commands 
during step (2), and the automatic execution of these commands on the source code generated 
in step (1).  The "SED" (standard Unix stream editor) is used for this purpose. 
 
 
6. Conclusion 
 
ASN.1 is widely used for the definition of OSI Application layer protocols, but it lacks 
facilities for defining the access to particular components of the data structure and any 
actions associated with the operations to be performed within the protocol entity. These latter 
aspects are, however, covered by formal description techniques (FDT's) and other formal 
specification languages. In order to take full advantage of the automated FDT tools 
developed for the validation, implementation and testing of communication protocols, it is 
therefore important that the existing ASN.1 PDU definitions for OSI Application protocols 



be related to a complete formal specification of the protocols, which may be written in 
Estelle, Lotos, SDL or any other specification language. 
 
A similar integration problem arises in the context of object-oriented specifications, as they 
are currently used in the development of many OSI Application layer protocols, in particular 
for management, distributed processing and transaction systems. We have indicated in 
Section 4 how the concepts of object-orientation and inheritance can be combined with the 
entity-relationship database model in the context of an object-oriented specification 
language, called Mondel. It is not clear at this point whether a suitable object-oriented 
specification formalism can be obtained based on existing FDT's (see for instance [Cusa 89, 
Moll 87]) or whether a new language, such as Mondel, would be more suitable for the 
development of formal specifications of OSI applications and other distributed applications. 
 
The approach for the integration of ASN.1, as discussed in this paper, is oriented toward 
translation of ASN.1 into a complete formal specification language, e.g. an FDT. This 
approach has the characteristic of largely automating the implementation process when 
support tools for these FDT already exist, without the need of changing them. Such 
automation provides a faster and more reliable implementation process. It is also possible to 
use ASN.1 type definition for other purpose than PDU definition, such as service parameters 
or internal types in a specification. 
 
While this paper focus its attention to the use of Estelle or Mondel as a description technique 
to be combined with ASN.1, a similar approach can be persued for the translation of ASN.1 
into other FDT's such as Lotos and SDL, or other  object-oriented specification languages. In 
particular, SDL includes type constructs similar to those of Estelle.  Therefore the translation 
of ASN.1 described in Section 5 could be adapted for SDL as the target language. 
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