
Fairness in LOTOS

Cheng Wu, Gregor v. Bochmann

Departement d'informatique et de recherche operationnelle

Universite de Montreal

Montreal, P.Q., Canada

Abstract

Fairness is an important concept related to specification languages which are based on

concurrent and non-deterministic computation models; it is related to liveness. In this paper

we formally introduce fairness to the LOTOS specification language by employing the

standard LOTOS semantics together with a formalism which states restrictions on fair

infinite execution sequences. We extend three fairness concepts of CSP, namely process,

guard and channel fairness, to LOTOS. Certain features of LOTOS, such as the dynamic

creation of processes, the dynamic relation between gates and processes, and related

membership in multi-way rendezvous, not present in CSP, make the definition of fairness

difficult. We introduce the concept of "transition groups", which leads to a general notion

of fairness, and use LOTOS action indexes to define the concepts of process, alternative

and channel for LOTOS. We explain how a fair execution model for LOTOS can be

obtained, and demonstrate the use of these concepts by showing how fairness assumptions

can be used to prove liveness properties for a given LOTOS specification.

1. Introduction

Specification languages such as LOTOS[LOTOS87], CSP[Hoar78], etc. are used to

describe distributed systems which are based on concurrent and non-deterministic

computation models. Fairness is an important property related to such models, which is

related to liveness [Fran86]. Liveness properties are usually described as "good things will

eventually happen" and fairness properties are usually described as "if something is always

or infinitely often ready then it will eventually happen". So, if one can show that a "good

thing" meets some conditions such as being always or infinitely often ready, then fairness

assumptions will lead to the related liveness properties, that is, "it will eventually happen".

For example, a fairness property of an unsafe channel could be "if a sender insist (always)

2

putting messages into the channel, the receiver will receive infinitely many messages". It is

obvious that the liveness property of "message A will eventually reach its receiver through

the unsafe channel" holds if the sender repeatedly puts message A into the channel.

Besides to obtain proof systems, another motivation for studying fairness properties is to

design execution models or algorithms which provide fair execution. This makes sure that

properties, which are proved to hold at the specification level based on fairness

assumptions, will also hold for the implementation.

A variety of fairness properties have been proposed in the context of different specification

languages. For example, three kinds of fairness, namely process fairness, guard fairness

and channel fairness, are defined for CSP [Kuip83]; process fairness has also been defined

in CCS [Cost84, Cost84a]. So far, little work has been done about fairness in LOTOS.

LOTOS [LOTOS87][Bolo87] is an FDT (Formal Description Technique) which is

standardized within ISO (International Standard Organization). It was developed for

formally specifying communication protocols and services in the context of the OSI (Open

System Interconnection) standards. However, it is suitable for many other applications in

distributed systems. A LOTOS specification usually describes two aspects. The aspect of

interaction parameters and associated data structures and operations is described using an

abstract data type formalism. The aspect of the temporal ordering of the interactions is

described using a formalism close to CCS [Miln 80]. In this paper, we are principally

concerned with the latter aspect.

LOTOS prescribes infinite execution sequences without regard to fairness. For example,

for the specification of an unsafe channel

process unsafe_channel[send, receive]:noexit:=
send; (i; unsafe_channel[send,receive]

[]
receive; unsafe_channel [send,receive])

endproc

the execution sequence send, i, send, i, ... is allowed by LOTOS semantics, which

means the channel may loose all input messages.

Certain features of LOTOS make the definition of fairness difficult. Recursion in LOTOS

can be used to define a loop (e.g. P[g]:= g;P[g]), as well as the dynamic creation of

processes (e.g. P[g]:= g; (g; stop) ||| P[g]). Gates in LOTOS do not uniquely

determine the process performing the action (e.g. P[g]:= (g; stop) ||| (g;stop)). In

addition, multi-way rendezvous is allowed in LOTOS and the number of processes

3

involved in a rendezvous may change dynamically from one occurrence of a rendezvous to

another. Because of all of these aspects, it is not very clear what fairness means in the

context of LOTOS specifications.

In this paper, we introduce fairness to LOTOS. We do not mean by this to change the

current standard definition of LOTOS, but rather to introduce fairness restrictions. We

follow the approach of the so-called 'two level semantics', that is, we first introduce an

unfair model, and then define certain restrictions which must be satisfied for fair execution

sequences. We employ the standard LOTOS semantics [LOTOS87] at the first level. We

define process, alternative (guard) and channel fairness in LOTOS by defining suitable

restrictions. They are extensions of the corresponding fairness concepts in CSP [Kuip83].

We also show the application of the fairness definitions, namely the proof liveness

properties and the construction of fair execution models.

The paper is organized as follows. Section 2 is a short introduction of linear temporal logic

and labelled transition systems, two formal systems which are used in this paper. In

Section 3, we introduce the concept of "groupings transitions", which provides a

framework for defining fairness. We describe the intuitive meanings of our fairness

definitions for LOTOS in Section 4, and define these concepts formally in Section 5.

Section 6 shows the proof liveness properties based on fairness assumptions. Section 7

discusses the construction of fair execution models. Finally, Section 8 contains some

conclusions.

2. Theoretical framework

2.1. Linear Temporal Logic

Fairness are properties related to infinite execution histories. Usually so-called "weak

fairness" and "strong fairness" properties are described informally as "if permanently

(always) A then eventually B" and "if infinitely often A then eventually B" respectively.

Temporal Logic can be used to describe temporal concepts such as permanently(always),

infinite often and eventually [Fran86][Kuip83][Parr85]. In the following we will give a

brief introduction to Linear Temporal Logic [Pnue79] which will be used to define fairness

in the rest of this paper.

Besides ordinary logical operators 3(or), £(and), ~(not), and ⇒ (imply), Linear Temporal

Logic uses two temporal operators ◊ and []. The expression [] P (read "henceforth P")

means that P is true now and will always be true in the future, and ◊ P (read "eventually

4

P") means that P is true now or will be true sometimes in the future. They are usually

interpreted based on a computation model of state sequences. Let σ = <s1, s2, ... > be the

sequence of states for a particular execution history of the system, and P be a boolean

assertion on si (i= 1,2, ...). We have the following definitions:

P iff P is true for s1
[] P iff ∀ i (P is true for si)

◊ P iff ∃ i (P is true for si)

The temporal concepts mentioned above can be described by the two temporal operators

and their combinations. For example, ◊[] P means from a certain time onwards permanently

P. Its formal interpretation is

◊[] P iff ∃ j ∀ i>j (P is true for si);
[]◊ P means infinitely often P. Its formal interpretation is
[] ◊P iff ∀ j ∃ i>j (P is true for si);

And ◊ P means eventually P. Its formal interpretation is given above.

Now we are able to define the concepts of "weak fairness" and "strong fairness",

mentioned above, in terms of temporal logic. A property of the forms ◊[] A ⇒ ◊B is a weak

fairness assertions, and a property of the form [] ◊A ⇒ ◊B is a strong fairness assertions.

2.2. Labeled transition systems

In this section, we consider Labeled Transition Systems, the model in which the LOTOS

semantics is defined[LOTOS87]. We will show how the concepts of temporal logic can be

used in this context to define fairness properties.

Definition 2.1

A labeled transition system is a triple LTS=(S,T,{-t->} t∈T) where,

- S is a countable set of states

- T = {t1, t2, ...} is a set of labeled transitions

- {-t->}t∈T is a set of binary relations on S (S×S⊇ -t->) in bijection with the labeled

transitions.

A sequence of transitions, starting from some initial state of the transition system, defines

at the same time a sequence of states, which are reached after each of the transitions. This

sequence of states may be used to defined temporal properties, using the formalism of

temporal logic. One particular state predicate, we are interested in, indicates whether a

5

transition of a given label is enabled in a given state, as defined in Definition 2.3.

However, we are also interested in the question whether a given type of transition has been

executed, as defined in Definition 2.4, however, this information is not directly visible

from a given state. Therefore we introduce the concept of "transition state" which

corresponds to the pair of a transition label and a state, where the label corresponds to the

last executed transition which led to the state in question.

Definition 2.2

An execution history h is a sequence of transition states s0(ε),s1(t1),s2(t2),... , where

si∈S, ti∈T and <si-1,si>∈ -ti->, and s0(ε) is an initial transition state.

Definition 2.3

For a given state s∈S, a transition labelled t is said to be enabled iff ∃s' (s -t -> s'). For

a given transition state s(t'), a transition labelled t is said to be enabled, written as

ENABLED(t), iff t is enabled at s.

Definition 2.4

For a given transition state s(t') in an execution history h, a transition labelled t is said to

be executed, which is denoted as EXECUTED(t), iff t = t'.

We can combine the two assertions ENABLED and EXECUTED with the two temporal

operators [] and ◊, which are defined in Section 2.1. For instance, ◊[] ENABLED(t) means

transition t is (from a certain time onwards) always enabled; []◊ ENABLED(t) means

transition t is infinitely often enabled; []◊ EXECUTED(t) means transition t is

infinitely often executed. For the example of Figure 1, for the execution history h =

s 1 (ε) ,s2 (t3) ,s1 (t3) ,s2 (t3),. . . (that is alternatively s 1 (t3) and s 2 (t3)), ◊ []

ENABLED(t1)= false, []◊ENABLED(t1)=true, and []◊ EXECUTED(t3)=true.

S1 S2

S3 S4

t1 t2t3

t3

Figure 1: A labeled transition system

Therefore the following definitions are reasonable:

6

Definition 2.5 (Weak fairness for a labeled transition t)

An infinite execution history h respects weak fairness for a labeled transition t if it satisfies

◊[] ENABLED(t) ⇒ []◊ EXECUTED(t)

Definition 2.6 (Strong fairness for a labeled transition t)

An infinite execution history h respects strong fairness for a labeled transition t if it

satisfies
[]◊ ENABLED(t) ⇒ []◊ EXECUTED(t)

2.3 Serialized models vs overlapping models

In some literature (e.g. [Fran86]), two types of models, namely a serialized model and an

overlapping model, are considered to specify distributed systems. Distributed systems

usually involve a collection of processes. Each process can do local actions as well as

communicate with other processes in the system (here we consider that the communication

mechanism is rendezvous). Each process in turn is in one of the following two kinds of

states: a communication state where it is waiting to rendezvous with other processes, an

execution state where it executes a rendezvous or local actions.

In the serialized model, all processes synchronize in a communication state, and then

exactly one communication (rendezvous) is selected for execution, advancing the execution

to the next state, where again all processes are in a communication state. Thus, only the

processes executing the current communication are active, while all the others are idle until

the next transition.

In the overlapping model, concurrent execution is captured by not requiring all processes to

be synchronized in their respective communication states. A communication can be chosen

for execution if the corresponding processes are in their communication states and willing

to communicate. If a communication is executed, processes which involve in the

communication enter their execution states and they are not available for another

communication until they reach their next communication states.

The overlapping model is closer to the nature of distributed systems, while the serialized

model is easier to reason about. The two models are different as far as fairness is

concerned. Caused by a so-called conspiracy phenomenon in the overlapping model, a fair

execution history for the overlapping model may not be fair for the serialized model (see

7

[Fran86]). In the rest of this paper, we only consider the serialized model, because LOTOS

semantic is defined on a interleaving (serialized) model [LOTOS87].

3. Grouping labeled transitions

In certain papers (e.g.[Quei83]), fairness properties are related to the idea of "grouping

interesting events". That is, properties are described in the following form: "if a group of

events, which are of interest, become possible infinitely often, then events of this group

will happen infinitely often". In this section, we introduce several concepts which are

related to grouping labeled transitions. They will provide later the basis for defining

fairness for LOTOS specifications.

3.1. Grouping labeled transitions

The following definitions, theorems and corollaries are always in respect to a labeled

transition system LTS=(S,T,{-t->} t∈T), as defined in the previous section.

Definition 3.1

We call a transition group g any non-empty sub-set of T. We call a grouping G={g1,

g2,...} any set of groups such that T = ∪g∈G g. (Note: groups need not be disjoint)

Definition 3.2

A transition group g of T is said to be enabled at state s∈S, denoted as ENABLED(g), if

∃t∈g such that ENABLED(t).

Definition 3.3

Let h be an execution history, a labeled transition group g of T is said to be executed in h,

denoted as EXECUTED(g), if ∃t∈g such that EXECUTED(t).

Definition 3.4 (g-fairness)

The followings are fairness properties with respect to a transition group g

(weak g-fairness) ◊[] ENABLED(g) ⇒ []◊ EXECUTED(g)

(strong g-fairness) []◊ ENABLED(g) ⇒ []◊ EXECUTED(g)

Definition 3.5 (G-fairness)

The followings are fairness properties with respect to a grouping G of transitions

(weak G-fairness) ∀g∈G (◊[] ENABLED(g) ⇒ []◊ EXECUTED(g))

(strong G-fairness) ∀g∈G ([]◊ ENABLED(g) ⇒ []◊ EXECUTED(g))

8

Theorem 3.1

strong g-fairness ⇒ weak g-fairness

strong G-fairness ⇒ weak G-fairness

Proof (omitted).

Theorem 3.2

Given a finite number of transition groups gi (i = 1,...,n) and g= g i∪
i=1

n

. Any execution

history h which is strongly gi-fair for all i=1,...,n is also strongly g-fair.

Proof (by contradiction)

Suppose there exist an execution history h such that

I) strong g-fairness is not satisfied, that is, there are infinitely many states s∈h for which

there is t∈g such that t is enabled and there are only a finite number of occurrences of s(t)

in h where t is an element of g;

II) strong gi-fairness is satisfied for i=1..n.

From II) we have either

(i) there is a gi which is infinitely often enabled. Then there is an infinite number of

occurrences s(t) in h where t is an element of gi. Because gi⁄g, (i) contradicts with I).

or (ii) there is not any gi which is infinitely often enabled(for i=1..n). Then g is not

infinitely often enabled, because g= gi∪
i=1

n

 . But this contradicts with I) .

Note the theorem above is not true for weak fairness, which is shown by the example in

Figure 1. Let g={t1,t2}, g1={t1}and g2={t2}, the execution history h = s1(ε),s2(t3),

s1(t3),s2(t3),... (that is alternatively s1(t3) and s2(t3)), respects weak g1-fairness as

well as weak g2-fairness, but not weak g-fairness.

Definition 3.6 (Minimal Liveness)

Weak T-fairness is called Minimal Liveness.

The Minimal Liveness ensures that as long as there are transitions possible, the system will

make a move, that is, execute a transition. In other words, the Minimal Liveness ensures

that the system stops only if it enters a terminal or blocked state.

9

Corollary 3.1 (of Theorem 3.1 and Theorem 3.2)

Let T be finite and G be any grouping, then

strong G-fairness ⇒ Minimal Liveness.

Proof

From Theorem 3.2 we have strong G-fairness ⇒ strong T-fairness, and from Theorem

3.1 we have strong T-fairness ⇒ Minimal Liveness.

Corollary 3.2 (of Theorem 3.2)

Let T be finite and let G' and G" be two groupings such that for all g"∈G" , there exists

G⁄G' such that g"= ∪g∈G g, then

strong G'-fairness ⇒ strong G"-fairness

3.2. Process fairness

In this section, we define process fairness for a distributed system based on the concepts of

Section 3.1. Distributed systems usually involve a collection of processes. Process fairness

is informally described as "if a process is always (or infinitely often) enabled, then it is

infinitely often executed".

We use a Labeled Transition System to describe a distributed system. A transition is local if

it is contributed by one process, that is, it specifies a local action of that process; a

transition is joint if it is contributed by more than one process, that is, it corresponds to

communication among several processes (rendezvous). Then we have the following

definitions:

Definition 3.7 (Process)

Given a process P, we call p = {t | fP(t)} the transition group of process P , where fP:

T-> {true, false} is the process assignment function for process P which is defined as

fP(t) = true if t denotes either a local action of process P or a communication

in which process P is involved, or

 false otherwise.

Definition 3.8 (Fairness for process P)

1) Weak fairness for process P is weak fairness in respect to the transition group of P;

2) Strong fairness for process P is strong fairness in respect to the transition group of P.

1 0

4. Process, alternative and channel fairness in LOTOS

It is known that different fairness properties can be defined for a given computation model

or specification language. For LOTOS, for instance, "gate fairness" can be defined as

follows: if a gate is always (infinitely) enabled, it will be eventually executed. But gates in

LOTOS do not uniquely determine the process or the alternative performing the action. For

example, the "gate fairness" above does not ensure that the LOTOS program P[a]:= a;

P[a] [] a; stop will eventually terminate when gate a is always enabled. So, the question

turns out to be : What kind of fairness concepts are suitable for LOTOS?

"Process", "guard" and "channel" are three important concepts in CSP[Hoar78]. Related

fairness definitions were given in [Kuip83]. We believe that such concepts are also

important for LOTOS. In this paper we show how these concepts can be defined using the

concept of transition groups, and how their definition can be extended to the more general

conext of LOTOS specifications.

4.1. Process, guard and channel fairness in CSP

Process, guard and channel are three important concepts which are related to the syntax of

CSP. The syntax of a subset of CSP used in [Kuip83] is showed as follows, where neither

the parallel operator ([...||...]) nor the choice operator (*[...]) is allowed to be used in a

nested fashion.

Statements: S::= skip | x:=t | *[b1,c1 -> S1 [] ... [] bm,cm -> Sm] | S1;S2

where t is an integer expression, b is a boolean expression and c is either

Pi!x or Pj?y, i,j ∈{1, ...n}

Programs: [P1::S1 || ... || Pn::Sn]

where Pi, i∈{1...n}, is called a process. Processes have no shared

variables.

The parallel operator [...||...] defines parallelism, that is, in the expression [P1::S1 || ...

|| Pn::Sn], Pi (i = 1, ..., n) are called processes and can be executed in parallel with any

Pj (j = 1, ..., n and j ≠ i), that is, the actions of Pi and Pj can be executed in any sequence

(interleavings). The choice operator *[...] defines alternatives, that is, for the expression

*[b1,c1 -> S1 [] ... [] bm,cm -> Sm], bi and ci (i = 1, ..., m) are called guards

and if bi and ci are true Si is said be enabled and may be executed, and if there are more

than one Si that are enabled then there is non-determinism. A pair of guards <g', g"> is

called a channel if g' and g" are syntactically matching communication commands (e.g.,

Pi!x in Pj and Pj?y in Pi).

1 1

Informally, the related fairness concepts defined in [Kuip83] for CSP can be described as

follows:

Weak (Strong) Process Fairness: Any process that becomes permanently (infinitely

often) enabled, must execute infinitely often.

Weak (Strong) Guard Fairness: Any alternative, the guards of which become

permanently (infinitely often) true, must be chosen infinitely often.

Weak (Strong) Channel Fairness: Any channel that becomes permanently (infinitely

often) enabled, must be chosen infinitely often.

If a labeled transition system is given for a CSP program, then the concepts process, guard

and channel of CSP defined in [Kuip83] can be viewed as three ways of grouping

transitions from the "grouping transition" point of view. More specifically, if we consider

the transition system where each transition is labeled by either an action (denoting a local

action of a process) or a pair of actions (denoting a rendezvous) (see the example of Figure

2), then we call a "process" the group of transitions containing an action which belongs to

a syntactic CSP process; a "guard" the group of transitions containing an action which is in

a specific position (of one syntactic CSP process) in the text of the CSP program; and a

"channel" the group of transitions whose pair of actions (two syntactically matching

actions) are in two specific positions (of two syntactic CSP processes) in the text of the

CSP program. Then process, guard and channel fairness can be defined based on the

framework of Section 3.

For example, the CSP program in Figure 2 defines three processes, six guards and five

channels. The execution history h1 = s0(ε),s0(t5),s0(t5),s0(t5),... (that is, h 1

consists of an infinite sequence of t5 transitions) does not respect process fairness, because

P2 is infinitely often enabled, but is not executed. The execution history h2 =

s0(ε),s0(t5),s0(t1),s0(t5),s0(t1),... (that is alternatively t5 and t1) does respect

process fairness, but does not respect guard fairness, because AP2!2 = {t3, t4} is infinitely

often enabled and is not executed. The execution history h3 = s0(ε),s0(t1),s0(t3),

s0(t5),s0(t1),s0(t3),s0(t5),... (that is, repeated sequence of t1,t3, and t5) does

respect guard fairness, but does not respect channel fairness, because C<P2!1,P1?y> = {t2}

is infinitely often enabled and is not executed.

1 2

P:: [P1 || P2 || P3]
where
P1:: *[P2!1 -> a:=1
 []
 P2!2 -> a:=2
 []
 P3!3 -> a:=3]
P2:: *[P1?x -> b:=1
 []
 P1?y -> b:=2]
P3:: *[P1?z -> c:=3]
(a) CSP specification

t1 = <P2!1 P1, P1?x P2>
t2 = <P2!1 P1, P1?y P2>
t3 = <P2!2 P1, P1?x P2>
t4 = <P2!2 P1, P1?y P2>
t5 = <P3!3 P1, P1?z P3>

S0

t1 t2

t3 t4

t5

Figure 2: A CSP specification and its transition system

P P1 = {t1, t2, t3, t4, t5}
P P2 = {t1, t2, t3, t4}
P P3 = {t5}

A<P1, P2!1> = {t1, t2}
A<P1, P2!2> = {t3, t4}
A<P1, P3!3> = {t5}
A<P2,P1?x> = {t1, t3}
A<P2,P1?y> = {t2, t4}
A<P3,P1?z>= {t5}

C<P1, P2!1>,<P2,P1?x> = {t1}
C<P1, P2!1>,<P2,P1?y> = {t2}
C<P1, P2!2>,<P2,P1?x> = {t3}
C<P1, P2!2>,<P2,P1?y> = {t4}
C<P1, P3!3>,<P3,P1?y> = {t5}

(c) Processes

(d) Guards
(e) Channels

(b) Transition system

4.2. Process, alternative and channel fairness in LOTOS

In the conext of CSP, as discussed above, the syntactic structure of the program reflects the

structure of processes, alternatives and gates, directly. The process structure is static. This

is not the case in LOTOS, where process instances may be created dynamically, possibly

leading to complex communication relation between these processes, as defined by

dynamically identified gates and multi-party rendezvous. In this dynamic setting, it is not

so clear what the natural grouping of transitions is, related to the dynamically changing

structure of processes.

In the following we propose groupings, which correspond to the CSP groupings described

above for the case of static process structure, and which seem also natural in the case of

dynamic processes, as discussed below. For process fairness, we introduce a process

hierarchy, where each process instance is the "father" of the process instances it creates.

The transitions of the "child" processes are considered part of the "father's" transitions, as

far as fairness for the "father" process is concerned. Concering alternative fairness, we

distinguish not only the syntactic alternatives shown in the program text, but also

distinguish between a given alternative being executed by one or the other process instance.

This allows a finer kind of alternative fairness, related to a particular process instance.

Similar considerations apply for channel fairness. Note that such distinctions are not

1 3

necessary in the static context of CSP were each alternative belongs to only one process

instance.

In LOTOS, the keyword process is used to introduce a so-called process definition, that

is, a process identifier and a behavior which it represents. In order to create a process

instance, the process identifier must be invoked in a behavior expression. An initial process

is defined which executes the behavior of the specification. We consider the following

example:

specification two_processes[a]:noexit:=
behavior P[a](1) || P[a](2)
where
process P[a](x:int) :noexit:=

 a!x; P[a](x:int) [] a?y:int; P[a](x)
endproc

endspec

It contains one processes definition and two process instances executing in parallel, namely

P[a](1) and P[a](2). The process definition contains two alternatives (a!1) and (a?y:int); we

distinguish whether these alternatives are executec by the process instances P[a](1) or

P[a](2). The specification contains three channels <a!1, a?y:int>, <a?y:int, a!2>, and

<a?y:int, a?y:int> between P[a](1) and P[a](2); the fourth (syntactic) channel <a!1, a!2>

does not allow any rendezvous, since the parameter values do not match.

In general, however, these concepts are not very clear because, in contrast to CSP, process

instances can be created dynamically in LOTOS, possibly an unlimited number in the case

of recursion (for example P:= a; ((b;stop) |||P)). Two process instances, possibly created by

different father processes, may refer to the same process definition. For example, in the

example above, P[a](1) and P[a](2) are two process instances of P[a](x:int); in the example

of Figure 3, Q[a,b] creates P1[a,b], P2[a], and P3[b]. Note process creations are

introduced by the parallel operator || and |||. In the following, one process instance is called

super-process of the other if the former creates directly or indirectly the latter. Analogously,

we have the concept of sub-process. As mentioned above, we consider that a super-process

contains the transitions of its sub-processes. In the following, we introduce the concepts of

"process", "alternative" and "channel" at the (dynamic) instance level, instead of at the

(static) syntactic level (as done above for CSP). We will use again the idea of "grouping

labeled transitions" to define these concepts and the corresponding fairness concepts.

For a given LOTOS specification, we assume that a labeled transition system is given

according to the semantic definition of LOTOS, and that each of its transitions is labeled by

a list of actions (LOTOS gates) <ap1,ap2, ...,apn>(n>0). Transition <api> denotes a

1 4

local action of process instance pi, and <ap1,ap2, ...,apn>(n>1) denotes a rendezvous

which involves the process instances pi (i=1..n) which do the action api. For example,

Figure 3(b) shows the transition system of the specification of Figure 3(a), which defines

the same behavior as the CSP program shown in Figure 2.

behavior Q[a,b]
where
process Q[a,b]:=
 P2[a] |[a]| P1[a,b] |[b]| P3[b]
 where
 process P1[a,b]:=
 a!1; P1[a,b]
 []
 a!2; P1[a,b]
 []
 b!3; P1[a,b]
 endproc
 process P2[a]:=
 a?x:int; P2[a]
 []
 a?y:int; P2[a]
 endproc
 process P3[b]:=
 b?z:int; P3[b]
 endproc
endproc

t1 = <a!1 P1[a,b], a?x:int P2[a]>
t2 = <a!1 P1[a,b], a?y:int P2[a]>
t3 = <a!2 P1[a,b], a?x:int P2[a]>
t4 = <a!2 P1[a,b], a?y:int P2[a]>
t5 = <b!3 P1[a,b], b?z:int P3[b]>

P Q[a,b] = {t1, t2, t3, t4, t5}

P P1[a,b] = {t1, t2, t3, t4, t5}
P P2[a] = {t1, t2, t3, t4}
P P3[b] = {t5}

A <Q[a,b], a!1> = {t1, t2}
A <Q[a,b], a!2> = {t3,t4}
A <Q[a,b], b!3> = {t5}
A <Q[a,b], a?x:int> = {t1, t3}
A <Q[a,b], a?y:int> = {t2,t4}
A <Q[a,b], b?z:int> = {t5}

A <P1[a,b], a!1> = {t1, t2}
A <P1[a,b], a!2> = {t3,t4}
A <P1[a,b], b!3> = {t5}
A <P2[a], a?x:int> = {t1, t3}
A <P2[a], a?y:int> = {t2,t4}
A <P3[b], b?z:int> = {t5}

C <Q[a,b], a!1>, <Q[a,b], a?x:int> = {t1}
C <Q[a,b], a!1>, <Q[a,b], a?y:int> = {t2}
C <Q[a,b], a!2>, <Q[a,b], a?x:int> = {t3}
C <Q[a,b], a!2>, <Q[a,b], a?y:int> = {t4}
C <Q[a,b], b!3>, <Q[a,b], b?z:int> = {t5}

C <P1[a,b], a!1>, <P2[a], a?x:int> = {t1}
C <P1[a,b], a!1>, <P2[a], a?y:int> = {t2}
C <P1[a,b], a!2>, <P2[a], a?x:int> = {t3}
C <P1[a,b], a!2>, <P2[a], a?y:int> = {t4}
C <P1[a,b], b!3>, <P3[b], b?z:int> = {t5}

(a) LOTOS specification

(b) Transition system

Figure 3: A LOTOS specification and its transition system

(c) Process transition groups

(d) Alternative transition groups (e) Channel transitions groups

S0

t1 t2

t3 t4

We define a process transition group Pp to be the group of transitions containing an action

which belongs to a specific process instance p or its sub-process instances. We define an

alternative transition group A<p,l> to be the group of transitions containing an action which

is defined at a specific position l in the text of the LOTOS program and belongs to a

specific process instance p or its sub-process instances. Finally, we define a channel

1 5

transition group C<p1,l1>,<p2,l2>, ...,<pn,ln> (n≥1) to be the group of transitions

containing an action which is defined at a specific position li in the text of the LOTOS

program and belong to a specific process instance pi or its sub-process instances for each i

(i=1..n). For example, the specification of Figure 3 defines four process transition groups,

twelve alternative transition groups and ten channel transition groups (see Figure 3(c)). In

this example, we use the interaction parameters (1 and z:int, etc.) to distinguish the

different positions in the text of the specification. As the behavior of this specification is the

same as for the CSP specification of Figure 2, it is not surprising that the process,

alternative and channel transition groups of Figure 3 include those of Figure 2. However,

Figure 3 also contains the groups belonging to the super-process Q, corresponding to the

initial behavior of the specification.

Now we can defined fairness properties as follows: For a given LOTOS specification, an

execution history h is said to respect process (alternative, channel) fairness if it respects

process (alternative, channel) transition group fairness for each process (alternative,

channel) transition group defined for the LOTOS specification.

It is obvious that the above concepts are extensions of the ones for CSP. The sub-set of

CSP of Section 4.1 only allows two-way rendezvous and does not allow for process

creation.

5. Formalization of LOTOS fairness concepts

In this section, we will formalize the fairness concepts for LOTOS. For a given LOTOS

specification, we first define a (syntactic) index for each action (gate) in the specification.

Then, we build a labeled transition system with each of its transitions being labeled by a list

of indexed actions. Finally, we characterize the groups of transition which we are interested

in, based on action indexes, and define related fairness concepts based on the framework of

Section 3.

5.1. LOTOS action indexes

In this section we define an index for each action in the LOTOS specification. For this

purpose, we first consider the abstract syntax of the specification which is a set of trees.

Each tree represents a process definition in the specification. We call each tree a reference

tree and the set of trees the reference forest. In a given tree, internal nodes are LOTOS

operators and leaf nodes are either actions (LOTOS gates) or process names which denote

process instantiations (the word process here is a LOTOS term) (see Figure 4 (a) and

1 6

(b)). Then we define reference indexes for each node of the reference forest. Reference

indexes are assigned in such a way that no reference index occurs more than once at

different nodes. Actually reference indexes define positions in the text of the LOTOS

specification. For example, Figure 4(a) and (b) show reference forests with reference

indexes. Let RI be the set of reference indexes for a given LOTOS specification. It is

obvious that RI is finite.

[]

;;

a bexit exit

[]

>> >>

P PQ Q

Q P1

2 3

4 5 6 7

8

9 A

B
C D E

(a)

behavior Q[a,b]
where
process Q[a,b]:=
 (P[a,b]>>Q[a,b]) [] (P[a,b]>>Q[a,b])
 where
 process P[a,b]:=
 a; exit [] b; exit
 endproc
endproc

Figure 4: Reference forests and indexes

[]

;;

a bexit exit

|||

>> >>

P PQ Q

Q P1

2 3

4 5 6 7

8

9 A

B
C D E

(b)

behavior Q[a,b]
where
process Q[a,b]:=
 (P[a,b]>>Q[a,b]) ||| (P[a,b]>>Q[a,b])
 where
 process P[a,b]:=
 a; exit [] b; exit
 endproc
endproc

behavior

behavior

0

0
Q

Q

Secondly we define a reduction tree for the given LOTOS specification. A reduction tree is

obtained by replacing the process names (leaf nodes) of the reference tree with their (tree

form) definitions (see Figure 5(a) and (b)). It is obvious that the reduction tree may be

infinite due to recursion. Then we define indexes for the nodes of the reduction tree based

on the reference indexes of the related reference forest. The following table shows the rules

of building a reduction tree as well as the rules of indexing nodes of the tree, where lB
denotes the reference index of the related definition of B in the reference forest, l1.l2 is

the concatenation of l1 and l2, and ε denotes the empty string. For example, Figure 5(a)

and (b) show reduction trees with indexes. The leaf nodes of the reduction tree represent

actions and their indexes are so-called action indexes which will be used in the rest of this

paper. An index of an action is a tuple <p,l>, where p and l are strings in RI*. We call p

1 7

a process index (p-index), which is a process instance identification to which the action

belongs, process instance p1 is a super-process of process instance p2, written p2≥p1, if

p1 is prefix of p2. We call l a location index (l-index), which records the position of the

action in the text of the LOTOS specification (l has a similar meaning as the control point of

CSP in [Kuip83]).

0) behavior → B (initial behavior) B is indexed as <ε,ε>;

1) B → a; B1 (sequential execution) if B has index <p,l> then a is indexed

as <p, l.la>, B1 is indexed as <p ,

lB1>;

2) B → B1 >> B2 (sequential execution) if B has index <p ,l> then B1 is

indexed as <p, l.lB1>, B2 is indexed

as <p, lB2>;

3) B → B1 [] B2 (alternatives)

 B → B1 [> B2 (B1 possibly disrupted by B2) if B has index <p ,l> then B1 is

indexed as <p, l.lB1>, B2 is indexed

as <p, l.lB2>;

4) B → B1 || B2 (coupled parallelism)

 B → B1 ||| B2 (independent parallelism) if B has index <p,l> then B1 is

indexed as <p.lB1, l>, B2 is indexed

as <p.lB2, l>;

5) P → Bp (process invokation) if P has index <p ,l>, then Bp is

indexed as <p, l>

The rational for the above rules are as follows. For the rules concerning sequential

execution and alternatives (in a broad sense, namely for the LOTOS operators ;, >>, [],

and [>) the process index does not change, but the location index records the position

corresponding to the LOTOS text. For the operators || and |||, two subprocesses are

created, identified by a process index which has the index of the father process as prefix. In

the case of a process invokation, neither the process index nor the location index are

changed, since this construct corresponds to tail recursion and is normally used to define

same form of looping behavior (conceptually no new "process").

In the example of Figure 5(b), for instance, the action a with index <2,49B> means that a

belongs to the process instance 2, as well as to process ε which is the super-process of the

former. In the example of Figure 5(a), the index <ε,249B> of action a means that it

belongs to the alternative 24 in the definition of Q as well as to the alternative 9B in the

1 8

definition of P (see Figure 4(a)). The Q node indexed by <ε,5> appearing more than once

in Figure 5(a) shows a loop in process ε.

[]

>>

Q

[]

;;

a bexit exit

P

[]

;;

a bexit exit

P

[]

>> >>

[]

>> >>

Q

(a) partial reduction tree with indexes of the example in Figure 4(a)

<ε, ε>

<ε, 2> <ε,3>

<ε,24>
<ε,5>

<ε,249> <ε,24A>

<ε,249B> <ε,24AD><ε,C> <ε,E>

<ε,36>

<ε,369> <ε,36A>

<ε,369B> <ε,C><ε,36AD> <ε,E>

<ε,7>

>>

|||

>>

[]

;;

a bexit exit

[]

;;

a bexit exit

|||

>> >>

|||

>> >>

behavior

(b) partial reduction tree with indexes of the example in Figure 4(b)

<ε, ε>

<2, ε> <3,ε>

<2,4>
<2,5>

<2,49> <2,4A>

<2,49B> <2,4AD><2,C> <2,E>

<3,6>

<3,69> <3,6A>

<3,69B> <3,C> <3,6AD> <3,E>

<3,7>

>>

<23,5><22,5> <32,7> <33,7>

Figure 5: Two examples of reduction trees

<ε,24>

<ε,5>

<ε,36>

<ε,7>

<2,5> <3,7><3,6>

<2,4>

P Q P Q

P Q P Q

<ε,52> <ε,53>

Q

<ε,5>

Q

behavior

1 9

5.2. Process, alternative, and channel transition groups, and the

formalization of LOTOS fairness concepts

We can easily have a labeled transition system for a given LOTOS specification by directly

applying the standard inference rules[LOTOS87]. But here we are interested in having a

labeled transition systems where each of its transitions is labeled by a list of indexed

actions, instead of being labeled by a single LOTOS gate. This can be done by changing the

standard inference rules as shown in the following two examples:

The standard LOTOS rules:

1) g; B - g -> B

2)
B1 - g -> B1'and B2 - g -> B2'and g∈S

B1 |S| B2 - g -> B1' |S| B2'

are rewritten as:

1) gs; B - <gs> -> B

2)

B1 - <gs1,...,gsn> -> B1'and B2 - <gr1,...,grm> -> B2'and g∈S
B1 |S| B2 - <gs1,...,gsn,gr1,...,grm> -> B1' |S| B2'

where the si and ri denote the indexes defined in the previous section.

Now we group transitions by using the action indexes and give related fairness definitions.

The following definitions are in respect to a labeled transition system with a set of

transitions T whose elements are lists of indexed actions. In the following definitions, t

denotes an element of T.

Definition 5.1 (Process)

Given a process P, we call the group {t | fP(t)} the process transition group of process P

where fP: T -> {true, false} is the process assignment function for process P which is

defined as

fp (<a <p1, l1> ...,a<pn, ln>>) = true if there is a a<pi,li>such that pi≥p, or

false otherwise

Definition 5.2 (Alternative)

Given an alternative <p,l> (the alternative l in process p), we call the group {t |

f<p,l>(t)} the alternative transition group of alternative <p,l> where f<p,l>: T ->

{true, false} is the alternative assignment function for alternative <p,l> which is

defined as

f<p,l>(<a<p1, l1> ...,a<pn, ln>>) = true if there is a a<p i,li>such that pi≥p and

li=l, or

2 0

false otherwise

Definition 5.3 (Channel)

Given a channel <p1,l1>,...,<pm,lm>, we call the group {t | f<p1,l1>,..., <pm,lm>

(t)} the channel transition group of channel <p1,l1>,...,<pm,lm> w h e r e

f<p1,l1>,...,<pm,lm>: T -> {true, false} is the channel assignment function for

channel <p1,l1>,...,<pm,lm> which is defined as

f<p1 , l1> ,...,< p m , l m > (<a <p'1, l'1> ...,a<p'n, l'n>>)

= true if n≥m and for all <pi,li> there is a a<p'j,l'j> such that

p'j≥piand l'j=li ,or

false otherwise

Definition 5.4 (Process fairness)

Weak (strong) fairness for process P is weak (strong) fairness in respect to the transition

group of process P. Weak (strong) process fairness is weak (strong) fairness in respect to

the transition groups of all process instances defined by the LOTOS specification.

Definition 5.5 (Alternative fairness)

Weak (strong) fairness for alternative <p,l> is weak (strong) fairness in respect to the

transition group of alternative <p,l>. Weak (strong) alternative fairness is weak (strong)

fairness in respect to the transition groups of all alternatives defined by the LOTOS

specification.

Definition 5.6 (Channel fairness)

Weak (strong) fairness for channel <p1,l1>,...,<pm,lm> is weak (strong) fairness in

respect to the transition group of channel <p1,l1>,...,<pm,lm>. Weak (strong)

channel fairness is weak (strong) fairness in respect to the transition groups of all channels

defined by the LOTOS specification.

Corollary

From Theorem 3.1, we have the following:

Strong process (alternative, channel) fairness implies weak process (alternative, channel)

fairness

From the above definitions, it is obvious that for each process transition group pg there

exist a set of alternative transition groups AG' such that pg= ∪ag∈AG' ag and for each

alternative transition group ag there exist a set of channel transition groups CG' such that

ag= ∪cg∈CG' cg. Therefore, if T is finite, from Corollary 3.2, we have the following:

2 1

Strong channel fairness implies strong alternative fairness, and the latter implies strong

process fairness.

6. Proving liveness

As discussed in Section 1, for concurrent and non-deterministic computation models, such

as LOTOS, fairness properties (sometimes called fairness assumptions) are important for

proving liveness properties. We will show, in this section, how to prove liveness

properties for LOTOS specifications based on our fairness assumptions.

To build a proving system, one first needs to formalize the underlying computation model

and its related fairness assumptions in a common formalism. Then the interesting liveness

properties can be described in the same formalism. Finally, one uses the axioms and

inference rules of the formalism to prove, manually or mechanically, the liveness properties

of the specified system.

Temporal logic provides various axioms and inference rules [Pnue77][Owic82]. Together

with certain fairness assumptions, which are defined in terms of temporal logic, this

formalism can be used to prove liveness properties for concurrent and non-deterministic

computation models [Kuip83][Fant89]][Owic82]. LOTOS semantics can be defined in

terms of labeled transition systems [LOTOS87] as well as temporal logic [Fant89][Fant90].

We believe that the fairness formalisms given in Sections 3 and 5, given in the framework

of temporal logic, can be used as a basis for building a proof system for LOTOS

specifications.

As a very simple example, we consider the specifications of Figure 6 which represent two

vending machines: VM1 and VM2 . VM1 consists of two sub-machines, a good-

machine and a bad-machine. After dropping a coin into VM1, little Tom may obtain a

candy, if (and only if) his coin is accepted by the good-machine of VM1. VM2 is

obtained from VM1 by replacing the good-machine by a machine, called better-

machine, which has a storing function. After getting a coin, the better-machine may

store the coin or may dispense n candies corresponding to the n-1 coins accepted

previously by the better-machine. We consider the following liveness property of the

VM's: Little Tom will eventually get some candy if he insists putting coins into the vending

machine.

The liveness property holds for VM1 if it satisfies strong process fairness: by always

putting coins into VM1, the process good-machine is infinitely often enabled, thus it will

2 2

eventually execute, that is, little Tom will eventually get a candy. However, the process

fairness assumption does not ensure the liveness property for VM2 , because the better-

machine may always store coins. However, little Tom will eventually get candies if VM2

satisfies in addition the alternative fairness assumption.

specification VM1[coin, candy]:noexit:=
behavior

good-machine[coin, candy] ||| bad-machine[coin, candy]
where
process good-machine[coin, candy]:noexit:=

coin; candy; good-machine[coin, candy]
endproc
process bad-machine[coin, candy]:noexit:=

coin; bad-machine[coin, candy]
endproc

endspec

specification VM2[coin, candy]:noexit:=
behavior

better-machine[coin, candy](1) ||| bad-machine[coin, candy]
where
process better-machine[coin, candy](n:integer):noexit:=

coin; (candy!n; better-machine[coin, candy](1)
[]
better-machine[coin, candy](n+1))

endproc
process bad-machine[coin, candy]:noexit:=

coin; bad-machine[coin, candy]
endproc

endspec

Figure 6: Two vending machine systems

Concerning the dynamic creation of processes, we consider another specification in Figure

7 which represents a Game system. The Game system allows children login one by one.

For each logged-in child, the system creates a Server to allow the child to make one play

and then logout. The gate stop_game of the system is for parents to stop the game. The

interesting liveness property is: The game will eventually stop (the termination property) if

parents insist trying the interaction stop_game. There may be infinite number of children

that want to login the game (a child who just finished a previous game may try to login

again). Therefore, the liveness property can not be ensured unless the Game satisfies weak

process and alternative fairness. The process fairness ensures that a logged-in child will be

served by a Server process and will eventually logout. The alternative fairness ensures

that the signal of stop_game will eventually be responded by the Game. Thus the whole

system will eventually terminate.

Specification Game[login, logout, play, stop_game]:exit:=
behavior Game[login, logout, play, stop_game]

2 3

where
process Game[login, logout, play, stop_game]:exit:=

login;
(

Server[play, logout]:exit:=
|||
(Game[login, logout, play, stop_game] [] (stop_game;exit))

)
endproc
process Server[play, logout]:exit:=

play; logout; exit
endproc

endspec

Figure 7: A game system

Besides these simple examples, fairness assumptions are also useful for proving liveness

properties for more complex LOTOS specifications. For instance in the case of the OSI

Transport Service specification, communication is provided over a number of parallel

connections. Over each connection, data transfer is possible independently in both

directions. The following liveness property is of interest: After a connection is established,

user data will be eventually transmitted if the sender and receiver are always ready. The

LOTOS specification of [OSI87] foresees at each connection endpoint two processes,

called TCEPHalf, which deal with the two directions of data transfer respectively.

Therefore, weak process fairness will ensure the above liveness property, since the related

TCEPHalf process will always be ready and therefore be eventually executed. However, in

the case of the Transport protocol specification of [Boch90a], which implements the above

Transport service, process fairness is not sufficient to assure the liveness assertion. This

specification contains a process, called AP_open, which handles the data transfer over a

given connection and includes two alternatives for dealing with transfer in the two

respective directions. In this case, process fairness assures the progress of data transfer

over different connections, independently from one another, and alternative fairness is

required to assure the independence of data transfer in both direction over a given

connection.

2 4

7. On the fair execution of LOTOS specifications

In the previous sections, we introduced process, alternative and channel fairness for

LOTOS. In this section, we discuss the construction of a 'fair execution model'. A fair

execution model is one which will only produce finite or infinite execution sequences

which are allowed by the specification and satisfy certain fairness assumptions (see

Sections 3 and 5). Such a fair execution model is therefore a means for executing LOTOS

specifications that satisfy those liveness properties that can be proved based on the

underlying fairness assumptions, as discussed in the section above.

LOTOS is designed as an executable specification language. Several LOTOS interpreters

are described in the literatures [BRIA86][Logr 88]. Usually they work in two modes: user

guided execution and system guided execution. In user guided execution, it is the user who

chooses an action to be executed when there is non-determinism (more than one action

enabled). In system guided execution, it is the system which chooses automatically an

action to be executed. Here, we are interested in fair strategies for choosing actions in the

system guided execution mode.

In the following we will discuss the fair execution of LOTOS specifications in a centralized

environment, based on the execution model described in [WuBo90].

7.1. An execution model for LOTOS

A model for executing LOTOS specifications is suggested in [WuBo90]. It is based on a

so-called activity tree. The activity tree reflects the system state. By growing and evaluating

the activity tree at run time, the system can find enabled actions in a given state. After

choosing one of the enabled actions to execute, the system changes its state by updating the

activity tree according to the LOTOS semantics (updating rules in [WuBo90]), and grows

and evaluates the activity tree again.

The activity tree is a partially developed reduction tree as described in Section 5.1. Some

leaf nodes of the activity tree represent finite or infinite sub-trees of the reduction tree.

These nodes denote behaviors in which the system is presently not interested. For example,

behaviors which are not active in the present state are represented by non-expanded nodes

instead of by the sub-tree in the reduction tree; also loops for non-well-guarded expression

not fully expanded. In addition, those behaviors which are not possible any more after a

given rendezvous happened do not appear in the tree.

2 5

The activity tree consists of leaf nodes and internal nodes. An internal node of the activity

tree represents the relation between its descendent nodes, like in the reduction tree, i.e. one

of the LOTOS operators [], ||, |||, and [> etc. , or contains the description of the behavior to

be activated after the successful termination of its descendants, i.e. >>B (where B is a

behavior expression). There are two kinds of leaf nodes: terminal and non-terminal. A

terminal node corresponds to a behavior expression 'g;B', where 'g' is called an active

action and 'B' is the behavior expression which will be activated after a rendezvous

happens at gate 'g'. A non-terminal node cannot directly participate in an interaction, it

must first be expanded. A non-terminal node corresponds to a behavior expression

'B1#B2', where # is one of the operators ||, |||, [], [> and >>, and 'B1' and 'B2' are

behavior expressions. During the execution of a LOTOS specification, the activity tree is

grown and updated. During growing, the system expands non-terminal nodes in order to

find terminal nodes with possible actions. During updating, the system prunes those sub-

trees of the activity tree which represent alternative behaviors not possible any more after

the choice of the last rendezvous.

One of the characteristics of the execution model is that it can commit enabled actions at an

early stage. As soon as a rendezvous has been determined to be possible, it may be

executed without all alternatives of other actions being explored. This is done by growing

the activity tree step by step and choosing an enabled action to execute as soon as one is

found. By doing so, the execution model can efficiently execute LOTOS specifications and

deal with non-well-guarded expressions (see [WuBo90]).

It is noted, however, that the 'growing' concept in the execution model may implicitly

introduce priorities among the enabled actions. A given growing strategy may allow some

enabled gate to have higher priority than others. For example, the breadth-first growing

strategy described in [WuBo90] always commits gates near the root in the activity tree prior

to the ones further down. This may lead to unfair execution sequences.

7.2. Fair execution: general ideas

A particular fair strategy is random choice: whenever the system has several choices, it

randomly selects one of them. The choices to be considered in the LOTOS execution model

above are (1) selection among several possible rendezvous, and (2) the choice between

execution of a rendezvous and further expansion of the activity tree (up to a limited depth or

until another rendezvous is found). Such a random strategy leads to fair execution

2 6

sequences with probability one. However, in the following, we are interested in strategies

which do not depend on probability for executing LOTOS specifications in a fair manner.

Many methods are know to ensure fair scheduling of processes in a multi-user computer

operating system. One of these methods uses counters to count the execution time for the

executing process and the waiting time for waiting processes. When the execution time

reaches a pre-defined threshold, the executing process will be disabled and the system

chooses a new process for execution among the waiting processes; the process with the

largest waiting time will be chosen. We can also use counters for fairly executing LOTOS

specifications. The general idea is to count the execution time related to process, alternative

and channel transition groups, as defined in Section 5.

7.3. A growing strategy with strong process fairness

To ensure that the execution model produces only execution sequences which satisfy the

Strong Process Fairness defined above, the system uses a counter for each process

transition group. Whenever a rendezvous is executed related to a given process transition

group, its counter is increased by one. The system indexes the activity tree by the rules

defined in Section 5.1. Based on the index of a given non-terminal node of the activity tree,

the system can tell to which process transition group it belongs. During the growing phase,

the system first calculates for each non-terminal node the sum of its depth from the root and

the counter of the process transition group to which it belongs. Then the system expands

non-terminal nodes which have the smallest values. The growing phase stops when a

rendezvous is found and there are no non-terminal nodes that have a smaller value than the

rendezvous. Then the rendezvous which has the smallest value will be executed. Note that

in the pure breadth-first growing strategy [WuBo90], which is not necessarily fair, only the

'depth' is considered.

It is clear that the growing strategy above respects strong process fairness. The more a

process transition group is executed, the bigger its counter becomes, and the more likely

non-terminal nodes related to other process transition groups will be expanded in the

growing phase. Thus a process transition group will be eventually executed if it is infinitely

often enabled.

We can use the same idea to implement other fairness properties, such as alternative and

channel fairness. In those cases, counters relate to alternative and channel transition

groups, instead of process transition groups.

2 7

8. Conclusions

Fairness has been being studied for in relation with various specification languages. In this

paper, we defined process fairness, alternative fairness and channel fairness for LOTOS.

these concept are extension of those defined for CSP [Kuip83].

Certain features of LOTOS, such as the dynamic creation of processes, the dynamic

relation between gates and processes, and related membership in multi-way rendezvous,

not present in CSP, make the definition of fairness difficult. However, by introducing the

concept of "transitions groups", we generalize the problem of defining fairness. The

introduction of the concept of "action indexes" allows us to define the concepts of

processes, alternatives and channels for LOTOS. We use temporal logic not only for clearly

defining fairness properties, but also for proving liveness properties of LOTOS

specifications, based on underlying farness assumptions. We have discussed a simple

example, and we believe that our fairness assumptions are also useful for proving liveness

properties for LOTOS specifications for complex systems, such as communication

protocols and services.

We have also considered the construction of fair execution models for LOTOS

specifications. The approach of Section 7.3 works in a centralized environment. However,

it turns out to be much more difficult to ensure fairness in a distributed execution

environment [Atti90]. This area needs further study.

Acknowledgements:

This work was partly supported by the Natural Sciences and Engineering Research Council

of Canada, and the Ministry of Education of Quebec.

References

[Atti90] Paul C. Attie, Ira R. Forman, Eliezer Levy, "On Fairness as an abstraction

for the design of distributed systems", 1990.

2 8

[Boch89] Gregor v. Bochmann, Qiang Gao and Cheng Wu, "On the Way of

Distributed Implementation of LOTOS specifications", FORTE'89,

Vancouver, Dec. 1989.

[Boch90a] G. v. Bochmann, "Specifications of a simplified Transport protocol using

different formal description techniques", Computer Networks and ISDN

Systems, Vol. 18, no.5 (June 1990), pp. 335-377.

[Bolo87] T. Bolognesi and E. Brinksma, "Introduction to the ISO Specification

Language LOTOS", Computer Network and ISDN Systems, vol. 14, no.

1, pp. 3- , 1987.

[Bria86] J.P. Briand, M.C. Fehri, L. Logrippo, A. Obaid, "Executing LOTOS

Specifications", in Protocol Specification, testing and verification, B.

Sarikaya and G. v. Bochmann (eds), North Holland, 1986.

[Cost84] Costa, G., Stirling, C., "A fair calculus of communicating systems", Acta

Informatica 21, pp. 417 - 441, Springer - Verlag, 1984.

[Cost84a] Costa, G., Stirling, C., "Weak and strong fairness in CCS", Procs. of

Symposium on Mathematical Foundations of Computer Science, Prague,

LNCS 176, pp. 245 - 254, 1984.

[Fant89] A. Fantechi, S.Gnesi, C. Laneve, "An expressive temporal logic for basic

LOTOS", FORTE'89, Vancouver, Canada, 1989.

[FantT90] A. Fantechi, S. Gnesi, G. Ristori, "Compositional logic semantics and

LOTOS", Tenth International IFIP WG 6.1 Symposium on Protocol

Specification, Testing and Verificaton, Ottawa, Canada, June, 1990.

[Fran86] Nissim Francez, "Fairness", Springer-Verlag New York, 1986.

[Hoar78] C. A. R. Hoare, "Communication Sequential Processes", Comm ACM

21(8), pp. 666 - 677, 1978.

[ISO78] ISO TC97/6/WG4/N317, "Formal Description of ISO8072 in LOTOS",

1987.

[Kuip83] Kuiper R, de Roever WP, "Fairness assumptions for CSP in a temporal

logic framework", In Bjorner D (ed) Proceeding of TC.2 Working

2 9

Conference on the Formal Description of Programming Concepts, Garmisch

Partenkirchen, North Holland, 1983.

[Logr 88] L. Logrippo and e. al., "An interpreter for LOTOS: A specification language

for distributed systems", Software Practice and Experience, Vol. 18(4),

pp.365-385, April 1988.

[LOTOS87] "LOTOS - A formal description technique based on the temporal ordering of

observational behavior", ISO, DIS 8807, 1987.

[Miln80] R. Milner, "A Calculus of Communicating Systems", Lecture Notes in CS,

No. 92, Springer Verlag, 1980.

[Owic82] Owicki, S., "Proving Liveness Properties of Concurrent Programs", ACM

Transactions on Programming Languages and Systems, vl. 4, no.3, July

1982, pp. 455-495.

[Parr85] J. Parrow, "Fairness properties in process algebra", Ph.D. thesis, Dept. of

Computer Systems, Uppsala University, Uppsala, Sweden, 1985.

[Pneu77] Pnueli, A. "The temporal logic of programs", in Proceedings of the 18th

Symposium on the Foundations of Computer Science, IEEE, Providence,

Nov. 1977, pp. 46-57.

[Pneu79] Pnueli, A. "The temporal semantics of concurrent programs", in Lecture

Notes in Computer Science, vol. 70: Semantics of Concurrent Computation.

Springer-Verlag, New York, 1979, pp. 1-20.

[Quei83] J.P. Queille and J. Sifakis, "Fairness and related properties in Transition

Systems - a temporal logic to deal with fairnes", Acta Informatioa 19, pp.

195 - 220, Springer - Verlag, 1983.

[WuBo90] Cheng Wu and Gregor v. Bochmann, "An execution model for LOTOS

specifications", GLOBCOMM'90, San Diego, Dec., 1990.

