
 1

RMondel: A Reflective Object-Oriented
Specification Language

(Extended Abstract)

M.Erradi, G.v.Bochmann

Département d'Informatique et de Recherche

Opérationnelle

Université de Montréal

C.P. 6128, Succ. "A", Montréal,

P.Q., Canada, H3C-3J7

E-mail: {erradi bochmann } @iro.umontreal.ca

Abstarct: In this paper we describe our work in the computational reflection area. We

first discuss the motivation that leads us to the choice of reflection which we use to

enhance our object-oriented language Mondel. After a brief introduction to Mondel, we

discuss RMondel (Reflective Mondel) which was designed to help developing

modifiable specifications.

1. Introduction and motivations

Our goal is to design support for modifiable specifications by enhancing the language

Mondel, an object-oriented database specification language [Boch 89a]. Looking at the

database aspect of this language, modifying a specification means altering the structure

of a database schema [Bane 87],[Skar 86],[Rous 85]. One step in this direction, is to look

for developing a meta-level structure which consists of modeling the basic structure of

the language which is that of a type (called "class" in most object-oriented languages).

This modeling process leads us to defining the structure of certain meta-concepts and

constraints that must hold to allow a smooth transition between the actual state of a

system and its new state after the modification of the specification. The system must

transit to a consistent state with respect to the previous one.

 2

As our starting language Mondel is object-oriented, our need can be formulated as

follows: In order to allow users to make some type structure alterations within a runing

system, we have to enhance the object model to provide a uniform treatment within a

system by considering that a type is an object of type TYPE. This consideration provides

a uniform treatment for object attributes and type parameters for generic types. This is

useful in the context of dynamically changing type definitions, as considered in the

context of systems evolving over long periods of time [Card 86], [Bane 87],[Skar

86],[Rous 85].

To allow users the construction of modifiable specifications, we have developped

RMondel, an extension of Mondel, to provide means for assisting the evolution of

specifications. One step in this direction is to consider that a type is an object of type

TYPE [Erra 90], and to provide a uniform treatment for types and other objects in the

language. This leads us to adapt the reflection technique [Maes 87] in a maner similar to

ObjVLisp [Coin 87] and ObjVProlog [Male 90]. In contrast to the latter approaches,

RMondel supports object persistence, and considers not only types as objects, but also

operations (methods), attributes and the behavior. The fact to consider the behavior,

language constructs, as objects is also considered in KSL approach [Ibra 88].

2. Mondel overview

We have developed an object-oriented database specification language, called Mondel

[Boch 89a], particulary suitable for specifying applications in the network management

area. Mondel has certain interesting features, such as multiple inheritance, type checking,

rendez-vous communication between objects, the possibility of concurrent activities

performed by a single object and object persistence. Mondel has also a formal semantics,

expressed by means of a translation to a state transition system, which is the basis for the

verification of Mondel specifications, and for the construction of an interpreter.

Each Mondel object has an identity, some attributes, some operations, and a behavior

which provides certain details as constraints on the order of execution of operations by

the object. The Mondel object model is appropriate for defining small objects such as

integers, characters and booleans as well as large objects such as a whole system (i.e. a

compiler). Each Mondel object is of a given type. A type definition specifies the

 3

properties of an object type and each created object of that type has all properties defined

for the type.

Moreover, types can be related to each other by means of inheritance. It is important to

note that for many authors the concept of inheritance is only concerned with the names

and parameter types of the operations offered by the specified object type [Blac 87],

[Card 88], [Meye 88]. However, there are other important aspects to inheritance which

considers comparing the dynamic behavior of objects [Boch 89b], including constraints

on the results of operations, the ordering of operation execution, and the possibilities of

blocking.

Mondel is a strongly typed language. It uses a type checking mechanism based on type

compatibility. Type checking is important for the construction of correct specification,

and it allows the detection of a large fraction of specification errors during the

compilation phase. Mondel imposes type checking for effective parameters for called

operations, attribute assignments during object creation and similar situations.

3. RMondel : Reflective Mondel

The principle of considering types as objects within a system, leads us to look at

reflection and reflective architectures as a promising choice. Reflective facilities has

shown a powerful expressiveness, while they encourage modular descriptions of

computation, for several object-oriented programming languages [Maes 87],[Ibra

88],[Coin 87],[Yone 89],[Male 90]. The reflection principle was defined by Pattie Maes

in [Maes 87] as the behavior of a reflective system, where a reflective system is a

computational system able to act upon itself.

In conventional computational systems, computation is performed on data that represent

entities which are external to the system. In contrast, a reflective computational system

must contain some data which represent the structural and computational aspects of itself,

and such data must be accessible and modifiable within the system itself, and hopely, the

changes made to such data must be causally reflected in the actual computations being

performed. The great interest of computational reflection is to allow a dynamic

modification of the internal organization of the system.

 4

We have developped RMondel, an extension of Mondel, to adapt the reflection technique

[Maes 87] in a maner similar to ObjVLisp [Coin 87] and ObjVProlog [Male 90]. In

contrast to the latter approaches, RMondel supports object persistence, and considers not

only types as objects, but also operations (methods), attributes and the behavior.

The architecture of RMondel is supported by two graphs: The instanciation graph and the

inheritance graph. The instanciation graph represents the "instance of" relationship, and

the inheritance graph represents the "subtype of" (inheritance) relationship. TYPE and

OBJECT are the respective roots of these two directed graphs shown in Figure 1.

The general structure of RMondel is obtained by the connection of these two graphs. The

initial state of the system contains the objects: TYPE, OBJECT,Attribute, Operation and

others. Some elements of the RMondel model, such as attributes, operations, inheritance,

behavior and procedures, are considered as objects and instances of specific types, for

example the attributes of a type, or those of an instance of such a type, are instances of

the type Attribute. Since types are objects, user defined types and the above mentioned

system types are instances of the type TYPE which is also an instance of itself.

 5

TYPE

OBJECT
Attribute

Operation

Procedure

Inherit from
Instance of

 Figure 1. A model of RMondel (Simplified)

Figure 1 shows the instanciation graph superposed with the inheritance graph. TYPE is

the type which holds the default behavior for types as objects. It defines the New

operation which creates a new object. We have also, a meta operation called NewAttr to

create an attribute for an object (instance as well as type definition). OBJECT is the type

which defines the default behavior for all object instances. Attribute is the type which

defines the default behavior of attributes as objects. Operation, Behavior and

Procedure are the types which defines the default behavior of operations, behavior

statements and procedures as objects respectively.

4. Conclusion

We have presented an overview of a reflective object-oriented specification language

where we consider not only types as objects, but also operations (methods), attributes and

 6

the behavior. Moreover, many aspects of the application of such a model are the subject

of on going work. A prototype of RMondel is currently under development.

References

[Bane 87] J. Banerjee, W. Kim, H. J. Kim and H. F. Korth, Semantics and implementation of schema evolution in
object oriented databases, in Proceedings, ACM SIGMOD Int. Conf. On Management of Data, San Fransisco, CA,
May 1987, pp. 311-322.

[Blac 87] A. Black, N. Hutchinson, E. Jul, H. Levey and L. Carter, Distribution and abstract types in Emerald, IEEE
Trans. on Soft. Eng., Vol SE-13, no.1,1987, pp.65-76.

[Boch 89a] G. v. Bochmann, M. Barbeau, A. Bean, M. Erradi and L. Lecomte, Object-oriented databases: Modelling
and specification of applications in the field of network management, Report for research contract CRIM/BNR, April
1989.

[Boch 89b] G. v. Bochmann, Inheritance for objects with concurrency, Publication departementale # 687, Departement
IRO, Université de Montréal, Septembre 89.

[Card 86] L. Cardelli, A polymorphic lambda-calculus with Type:Type, Technical Report No. 10, Digital System
Research Center, 130 Lyton avenue, Palo Alto, CA 94301, May 1986.

[Card 88] L. Cardelli, A semantics of multiple inheritance, Information and Computation 76 (1988), pp. 138-164.

[Coin 87] P. Cointe, Metaclasses are first class: The ObjVLisp Model, OOPSLA'87, ACM Sigplan Notices 22, 12,
pp.156-167.

[Erra 90] M. Erradi and G. v. Bochmann, Definition de RMondel, rapport technique, Département IRO, Université de
Montréal.

[Ibra 88] M. H. Ibrahim and F. A. Cummins, KSL: A Reflective Object-Oriented Programming Language, IEEE,
Proceedings of the Int. Conf on Computer Languages. 1988, pp.186-193.

[Maes 87] P. Maes, Concepts and Experiments in computational reflection, OOPSLA'87, ACM Sigplan Notices 22, 12,
pp.147-155.

[Male 90] J. Malenfant, Conception et implantation d'un langage de programmation logique, par objets et repartie,
Dept. IRO. Université de Montréal, Janvier 1990.

[Meye 88] B. Meyer, Object Oriented Software Construction, C.A.R. Hoare Series Editor, Prentice Hall, 1988.

[Rous 85] N. Roussopoulos and L. Mark, Schema Manipulation in Self-Describing and Self-Documenting Data
Models, Int. Journal of Computer and Information Sciences, vol. 14, no. 1, 1985.

[Skar 86] A. H. Skarra and S. B. Zdonik, The Management of Changing Types in an Object-Oriented Database,
OOPSLA'86 Proceedings, september 1986.

[Yone 89] A. Yonezawa and T. Watanabe, An Introduction to object-based reflective conccurent computation, ACM
Sigplan Notices, Vol.24, No.4, 1989, pp.50-54.

