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Abstract 
 
With wide-spread acceptance of the ISO-OSI reference model and its standardized 
protocols in the areas of computer communication and information exchange, formal 
specifications have become an area of active research and development.  This paper 
surveys issues and recent developments obtained mainly from our undergoing research.  
The discussion includes four important aspects of the area:  protocol design and 
specification languages, validation of the resulting design and specification, 
implementation development and finally conformance testing and implementation 
assessment. 
 
1.  Introduction 
 
Communication protocols are the rules that govern the communication between the 
different components within a distributed computer system.  In order to organize the 
complexity of these rules, they are usually partitioned into a hierarchical structure of 
protocol layers, as examplified by the seven layers of the standardized OSI Reference 
Model [Somm 89, Larm 88]. 
 
As they develop, protocols must be described for many purposes.  Early descriptions 
provide a reference for cooperation among designers of different parts of a protocol 
system.  The design must be checked for logical correctness.  Then the protocol must be 
implemented, and if the protocol is in wide use, many different implementations may 
have to be checked for compliance with a standard.  Although narrative descriptions and 
informal walk-throughs are invaluable elements of this process, painful experience has 
shown that by themselves they are inadequate. 
 
The informal techniques traditionally used to design and implement communication 
protocols have been largely successful, but have also yielded a disturbing number of 
errors or unexpected and undesirable behavior in most protocols.  The use of 
specification written in natural language gives the illusion of being easily understood, but 
leads to lengthy and informal specifications which often contain ambiguities and are 
difficult to check for completeness and correctness.  The arguments for the use of formal 
specification methods in the general context of software engineering [Somm 89] apply 
also to protocols. 
 



The following activities can be identified within the protocol development process.  
These activities can be partially automated if a formal protocol specification is used 
[Boch 87c]. 
 
(a)  Protocol design:  The protocol specification is developed based on the 
communication service to be provided by the protocol.  The protocol also depends on the 
underlying (existing) communication service; e.g. the protocol may have to recover from 
transmission errors or lost messages if the underlying service is unreliable.  The design 
process is largely based on intuition. 
 
(b)  Protocol design validation:  The protocol specification must be checked (1) for 
logical consistency, (2) to provide the requested communication service, and (3) to 
provide it with acceptable efficiency. 
 
(c)  Implementation development:  The protocol implementation must satisfy the rules of 
the protocol specification; the implementation environment and the user requirements 
provide additional constraints to be satisfied by the implementation.  The implementation 
may be realized in hardware or software. 
 
(d)  Conformance testing and implementation assessment:  The purpose of conformance 
testing is to check that a protocol implementation conforms to the protocol specification, 
that is, that it satisfies all rules defined by the specification.  This activity is especially 
important for interworking between independently developed implementations, as in the 
case of OSI standards.  The testing of an implementation involves three sub-activities:  
(1) the selection of appropriate test cases, (2) the execution of the test cases on the 
implementation under test, and (3) the analysis of the results obtained during test 
execution.  The sub-activities (1) and (3) use the protocol specification as a reference. 
 
In the context of the OSI standardization process [OSI 83, Larm 88], so-called formal 
description techniques (FDT) have been developed to be used for the writing of formal 
specifications of OSI protocols and services.  They are called Estelle [Budk 87], LOTOS 
[Bolo 87] and SDL [Beli 89].  After arousing initially much expectations, their use is still 
quite limited in the work of the standardization committees and in the wider context of 
industrial protocol development (for a discussion, see for instance [Boch 89n]).  
 
Much research and development efforts have gone into the development of tools to be 
used in relation with these languages. Some of these efforts will be mentioned in the 
sections below.  Some of the results obtained from these efforts are quite interesting and 
useful.  In the following sections, we try to give an overview of the important results 
relevant to the different phases of the protocol development cycle, and to highlight the 
issues that must be addressed to make the use of formal specifications for communication 
protocols a practical approach.  
 
This paper is written from the perspective of our own ongoing research projects, which 
are partly funded by a collaborative grant from the Natural Sciences and Engineering 
Research Council of Canada.  We do not pretend to give a general overview of this broad 
area, but hope to provide a critical discussion of our research and its relevance in the 
general context of protocol engineering. 



 
2.  Protocol design and specification languages 
 
2.1  Formal description techniques and their use 
 
The purpose of the two FDTs that most concerns us in this paper, Estelle and LOTOS, 
was to support OSI's standardization process.  The third comparable FDT, SDL, was 
developed at first as a specification language for telephony, and was enhanced to include 
protocol specification concepts for OSI at the same time that Estelle and LOTOS were 
developed. 
 
Since the purpose of these languages was OSI specification, they should have been 
available much before the beginning of OSI standardization.  What happened, instead, 
was that their design was started at the same time as OSI standardization, and they 
became 



available only when the standards for the first six layers of OSI were substantially 
completed.  This simple chronological problem explains partly the relatively low level of 
acceptance of these FDTs in the OSI context. 
 
OSI standards were developed without using the FDTs, by the usual well-established 
informal specification methods:  English text, combined with various types of diagrams 
and semiformal notation [Boch 89d].  Subsequently, small groups of experts set about to 
specify some OSI layers, and as of today the following layers have been specified by 
using the FDTs:  A draft specification of the transport protocol has been developed in an 
earlier version of Estelle, however this project has been abandoned within ISO.  This 
work has been completed within a SEDOS project in Europe [Diaz 89].  Specifications in 
LOTOS have been completed in the form of ISO Technical Reports for the Session 
protocol and service [ISO/IEC/TR9572 and ISO/IEC/TR9571].  Work is continuing, 
although at a slow pace, on Technical Reports for LOTOS specifications of the Transport 
protocol and service [Working Draft SC6/WG4 N421 and ISO/IEC/DTR10023].  As far 
as we know, no firm decisions have been taken yet to undertake the formal description of 
other layers, or to use the FDTs in the standards, such as application layer standards, that 
are currently being developed. 
 
Experts who have used the existing formal specifications have reported that they are 
difficult to read.  No real attempt has yet been made to use such specifications for other 
purposes, such as test case generation or verification.  It is important to remember, 
however, that the complexity of these specifications is largely due to the inherent 
complexity of the described protocol standards, which are the result of many 
compromises.  The use of FDTs during the standardization process could be helpful for 
avoiding such unnecessary complexity, since the complexities would immediately 
become apparent in the formal specifications of the standard proposals. 
 
In order to provide a readable and reasonable complex example of a protocol 
specification, we have developed specifications in Estelle and LOTOS of a simplified 
class 2 Transport protocol [Boch 90]; a sketch of a specification in SDL is also given.  
The similarity of these different specifications provides some basis for the comparison of 
the three specification languages. 
 
We believe that the following factors have a strong impact on the acceptance of formal 
methods in the area of protocol development, and similarly in the more general context of 
software engineering: 
 
(1)  User training:  Assuming interest to learn a new specification language, it is 
important to provide adequate learning material.  Tutorials for Estelle and LOTOS have 
only been available recently.  Most complete example specifications of OSI protocols 
have been considered difficult to understand by the layperson, while some of the 
pedagogical examples, e.g. [FDT GL], have been considered irrelevant. 
 
(2)  Intuitive language features:  It is very useful if the basic language features are easily 
understandable by the layperson.  Also the use of graphic representations facilitates the 
initial acceptance of the language because of its intuitive flavor, especially for smaller 
specifications (although graphics often becomes cumbersome for larger specifications).  



Some examples of such features are FSM diagrams, entity-relationship diagrams for 
describing database structures, and inheritance relations in object-oriented languages.  
Graphic representations in SDL and the table-oriented structure of TTCN also provide an 
easy initial access to these languages.  Currently, a graphic representation for LOTOS is 
being standardized. 
 
(3)  Relation between formal and informal specifications:  Even the best formal 
specification will not replace an informal description of the specified system.  The 
informal description will probably always remain the easier part to understand by the 
(human) designer and implementor.  A straightforward relation between the informal and 
formal specifications will provide for easy cross-referencing between the two 
descriptions and promote the integration of the information provided by the two 
descriptions. 
 
(4)  Wide applicability:  The FDTs seem to be applicable to other areas, in addition to the 
area of communication protocols; however, it is not clear how easily they can be adapted 
for writing object-oriented specifications.  A wide applicability is an advantage, since the 
costs for development of support tools could be shared for a wide user community. 
 
(5)  Simple tools:  Corresponding to intuitive language features (point (2) above), the 
functions provided by support tools should be intuitively easy to understand.  In addition, 
it seems that the provision of a simple tool, possibly restricted in its functions, is better 
than the provision of a general tool which is difficult to use.  For example, the 
reachability analysis tools based on FSM models have been found quite useful, although 
they are based on a restricted model and are not able to provide in practice a full analysis 
including interaction parameters. 
 
(6)  Integration into the general software/hardware development life cycle:  
Specifications are not used alone; as explained in Section 2.1, they are used throughout 
the protocol development cycle.  Therefore the methods and tools related to formal 
specifications must be integrated with the other methods and tools used in the general 
software CASE or hardware CAD environment. 
 
We expect that increased and more effective use of FDTs will result from increased 
knowledge of the languages in the community of protocol designers.  It can then be 
expected that the specifier will start using FDTs early in the product or standard design 
phase, and the formal description will suit the product or standard much better than with 
the current "after-the-fact" methodology. 
 
In the long term, as experienced with the FDTs increases, it will become more clear what 
are the desirable characteristics of such languages.  Enhancements will be included in 
existing FDTs, and eventually better FDTs will be produced.  However, judged by the 
example of what happened for programming languages, this evolution can be expected to 
be neither rapid, nor straightforward. 
 
2.2  Example specifications 
 



The results that we have had in our own work of application and enhancement of the 
existing FDTs have been encouraging and support the above conclusions.  Following is a 
brief discussion of some of these experiences. 
 
2.2.1  An industrial application of LOTOS 
 
Gandalf is a Canadian supplier of communication equipments.  Many types of 
standardized and proprietary protocols to coordinate and facilitate communication are an 
integral part of Gandalf's products. Informal or semiformal methods, such as various 
mixtures of English text, finite state machines, message diagrams, and program code 
fragments have previously been used to specify the protocols Gandalf has developed.  
These methods have resulted in errors, omissions and ambiguities being discovered 
during implementation and have 



increased the cost of integrating new products and features into existing product lines.  
The errors appeared to be due at least in part to the imprecise semantics of the 
specification techniques mentioned above. 
 
As a consequence, Gandalf wished to evaluate more formal specification methods.  A 
pilot project was set up to this effect.  In the first phase of this project, the language 
LOTOS was used for the specification of an existing Gandalf protocol, to see whether the 
language could be easily learned by protocol experts and to evaluate it as a specification 
method.  In the second phase, LOTOS would then be used in the design of a new product.  
This application is, as far as we know, the first industrial application of LOTOS in North 
America. 
 
The Gandalf project now has successfully passed the first phase. Gandalf specialists have 
learned LOTOS and have used it in order to specify certain aspects of a major company 
protocol, part of a distributed data PBX.  It was not a simple protocol to specify, since it 
involved both software and hardware aspects, and since it had been developed 
incrementally over the years.  LOTOS was found adequate for describing the architecture 
of the data switch both "in the large" (macro system design) and "in the small" (micro-
system design).  The project is now at the beginning stages of the second phase, where 
LOTOS are being applied in the development of a new protocol.   
 
From this project, we are gaining valuable experience on the applications of LOTOS in 
an industrial environment [Logr 89].  In collaboration with Gandalf, we are planning to 
develop methodologies for the use of LOTOS through the whole life cycle of product 
development.  Software tools and industrial methods will have to be developed, to help in 
the production and maintenance of specifications, in the development of implementations 
from specifications, and in the derivation of test suites for implementation.  These are all 
current research topics, in which we hope that the continuation of the Gandalf project 
will provide contributions. 
 
2.2.2  Different styles of LOTOS specifications 
 
As most languages, LOTOS allows for a variety of different styles of using the language.  
The following styles have been identified in [Viss 88]. 
- Monolithic, where the specification is represented as a tree of choices.  The 
parallel  composition operator is not used in this style. 
- State-oriented, where states are explicitly represented by using state variables. 
- Constraint-oriented, where the specification is designed as the parallel 
composition  of processes where each process separately enforces some set of behavior 
 constraints. 
- Resource-oriented, where parallel processes are chosen in such a way as to 
 correspond to implementation modules. 
 
The constraint-oriented style appears to be the most frequently used in the published OSI 
specifications mentioned above.  It is our experience, however, that while this style 
works very well for specifying certain types of well-structured systems (such as the 
Transport Service or the telephone systems described in [Logr 90]), it leads to hard-to-



read specifications when applied to complex systems where many cases have to be 
considered. 
 
A researcher in our group has produced a complete LOTOS specification for the X.25 
link layer protocol, LAP-B, including all options [Guer 89, Guer89a].  The specification 
consists of about 2 300 LOTOS lines.  This specification constituted a useful exercise in 
LOTOS styles.  In this specification, a mixture of resource-oriented, state-oriented, and 
monolithic styles was used.  While unfortunately the unavailability of differently 
structured LAP-B specifications makes it impossible to make comparisons, our 
specification appears to be fairly readable and has a reasonable degree of correspondence 
with the standard LAP-B specification.  Furthermore, as mentioned in Section 5, the 
specification was successfully used for the derivation of test cases. 
 
In view of these observations we believe that more experimentation is necessary on the 
question of LOTOS styles and their suitability in different contexts. 
 
2.3  Semiformal description techniques in OSI 
 
The semiformal techniques ASN.1 and TTCN are much more used in OSI than the FDTs.  
For the application of FDTs, it is therefore important to consider their relation with these 
semiformal techniques.  As discussed below, there are still many unresolved issues. 
 
2.3.1  ASN.1 (Abstract Syntax Notation One) 
 
This is a notation for describing data structures [ASN.1, Neuf 90], similar to the data type 
definitions available in programming languages such as Pascal or ADA.  It is applied to 
the description of OSI Application layer protocols, where it is used for the definition of 
the protocol data units (PDU's that is, the messages exchanged between different protocol 
entities).  The notation includes a number of predefined data types, such as integers, 
reals, booleans, bit strings, octet strings and various kinds of character strings.  It also 
allows the definition of composed data types, such as groups of elements (called 
SEQUENCE, corresponding to "record" in Pascal), a list of identical types (called 
SEQUENCE OF), a type of alternatives (called CHOICE, corresponding to Pascal's 
variant records), a TAG defining a code to distinguish between different alternatives, and 
others. 
 
The main reason for the success of ASN.1 as specification language is probably the fact 
that it is combined with a standard encoding scheme for PDU's [ASN.1 C] which has 
been adopted for OSI Application layer protocols.  Based on the information contained in 
the ASN.1 definition of the PDU structure, this scheme completely determines the PDU 
encoding, and can be used for implementing the encoding and decoding functions in a 
systematic manner, possibly automatically. 
 
ASN.1 does not have the scope of an FDT, since it only describes data structures.  
However, it directly relates to the corresponding data structure definition facilities of the 
respective FDTs.  Different scenarios for the interworking between ASN.1 and an FDT 
can be considered [Boch 89h]:  (1) translation from ASN.1 into the corresponding FDT 



language constructs, (2) addition of the ASN.1 notation to the FDT, or (3) replacement of 
the corresponding FDT language constructs by the ASN.1 notation.  The translation 
approach has been explored for Estelle [Boch 90c, Barb 89] and LOTOS [Boch 89h].  A 
similar approach could also be used for SDL.  The approach allows the combination of 
tools for PDU encoding and decoding, based on ASN.1, with tools for 
implementation/simulation of Estelle, SDL or LOTOS specifications.  
 
Most ASN.1 concepts can be easily translated into corresponding FDT concepts.  
However, the ASN.1 list structure (i.e. SEQUENCE OF) leads in Estelle to partly 
implementation-oriented data structures. 
 
The experience with LOTOS [Boch 89h] shows that the abstract data type notation ACT 
ONE [Ehri 85], used in LOTOS, is very cumbersome for the description of simple data 
structures because of the lack of suitable notations.  Unless an abbreviated notation for 
data 



structures (see proposals in [Scol 87, Boch 89h]) is introduced into LOTOS, the 
definitions of data structures in LOTOS are of the order of 8 times longer than the 
corresponding definitions in ASN.1.  This leads to very lengthy and unreadable 
descriptions of the PDU data structures. 
 
2.3.2  TTCN (The Tree and Tabular Combined Notation) 
 
This notation is relatively recent, and has been developed for the description of test cases 
for OSI conformance test suites [OSI C3].  As its name indicates, the language includes 
several different notations.  The overall organization of the language is in terms of a 
collection of tables defining different aspects of a test case, such as service primitives, 
PDU's and their parameters, order of interactions, and constraints on parameter values.  
The interaction ordering is defined in terms of a conceptual tree where each branch 
represents a possible execution order.  In addition to the tabular notation, a linear form of 
TTCN is developed for the exchange of test cases in machine-readable form.  The ASN.1 
notation can also be used for certain aspects of test descriptions. 
 
When the need for a notation for OSI test cases arose around 1985, the responsible 
standardization subcommittee was not ready to adopt one of the developing FDTs for this 
purpose, which in the authors' opinion would have been a reasonable choice.  Instead, a 
new language TTCN was developed, which seems in many respects quite "ad hoc".  Its 
semantics is defined largely informally.  In order to formally relate the defined test cases 
to the corresponding protocol specification, a definition of its semantics in terms of one 
of the FDTs would be desirable [Sari 88f]. 
 
As in the case of ASN.1, the application of FDTs in the context of OSI, requires a 
translation between TTCN and the FDT used for the protocol specification.  As discussed 
in Section 5, translation from the FDT into TTCN is required when test cases are 
developed from the formal specification of the protocol.  The validation of test cases in 
respect to a formal protocol specification also requires a translation.  In some of our work 
we have explored the use of an intermediate formal language (so-called charts, see 
Section 5) which can provide a bridge between the different description techniques. 
 
2.4  Object-oriented languages and other techniques 
 
Object-oriented programming seems to be a buzz-word at the present time.  
Independently of its popularity, it seems that the object-oriented concepts of "object" and 
"inheritance" are in fact quite useful in the context of specification languages.  Systems 
are conceived by humans in terms of "objects" which have an intuitive meaning, and the 
inheritance relations among the specified object classes provide a clear structure for 
specialization and generalization.  
 
In the OSI standardization work on management of distributed systems and "Open 
Distributed Processing" (ODP), object-oriented description models are being used.  For 
this purpose, two extensions of the ASN.1 notation are of particular interest: 
 



(a)  The notation for "remote operations" (ROSE) [OSI RO] which is used to define the 
operations which are provided by an object and can be invoked by other (remote) objects. 
 
(b)  A notation for defining object classes [OSI MO] including the concepts of object 
attributes and inheritance of properties among classes. 
 



The writing of object-oriented specifications is not necessarily well supported by the 
FDTs [Cusa 89a, Blac 89].  In a research project in collaboration with BNR, we have 
developed an object-oriented specification language which combines certain aspects of 
LOTOS (e.g. rendezvous interactions) with inheritance and the view that "everything is 
an object"; in particular, no syntactic distinction is made between "data structures", 
abstract data types, and processes [Boch 89e].  We have also integrated certain concepts 
from (object-oriented) databases, which is important for real-time control applications.  
The intended initial application of this language is in the network management area; the 
development of a larger trial specification is in progress.  A description of the 
architecture of the OSI reference model is discussed in [Mond 90].  
 
At this point, one may wonder whether it is a good idea to develop a new language, 
instead of using an existing one.  In particular, high-level logical descriptions can often 
be interpreted by logic programming languages, such as Prolog.  Prolog has been found 
useful for the development of protocol validation and test selection tools [Sidh 88a], 
although as a specification language for communication protocols, it has certain 
disadvantages [Boch 85].  It has the advantage of being a general purpose language for 
which many tools already exist. We are presently experimenting with the use of Prolog 
for a knowledge-based approach to the specification of OSI application layer protocols, 
which facilitates the creation of a simple user interface for browsing through different 
parts of the specification, and the use of the same specification for simulation, test suite 
development and test result analysis [Boch 89j].  We also try to identify a process which 
leads in a systematic manner from the informal specification documents to the formal 
specification in Prolog. 
 
3.  Design validation 
 
Several different techniques are known to do design validation.  Most of them presuppose 
that the protocol is at least partly specified in some formalism.  For example, some 
techniques content themselves with  validating the general structure of the system.  In 
such cases, only the aspects that should be verified need to be formally specified. 
 
Other techniques attempt to verify all aspects of the system.  In this case, the system 
needs to be entirely and rigorously specified in some FDT.  No technique in this latter 
category, however, comes even close to validating real-life systems.  Complete proofs 
have been developed for "toy" examples such as the well-known alternating bit protocol.  
Larger proofs become quickly extremely cumbersome. 
 
However, if the entire specification is executable or may be simulated in some 
appropriate environment, it is possible to validate it by executing tests, that is, by 
performing and validating certain selected execution paths [Zafi 80].  This method will 
not cover all possibilities, however, by selecting appropriate paths to be tested, many 
errors can be found without too much effort. 
 
Various execution and simulation environments have been developed for FDTs and other 
specification languages.  In the case of Estelle and SDL, where tools for the semi-
automatic generation of implementation code exist (see for instance [Boch 87c]), these 



tools may also be used for the validation of the specifications.  Certain environments also 
provide for the simulation of performance parameters [Boch 87e] and/or provide facilities 
for observing the interactions exchanged between the different components of the 
specified system [Jard 85b].  It is also possible to combine the execution with the 
validation of predicates which are specified by the designer and should be satisfied in any 
execution of the system [Graf 89]. 
 
For the specification language LOTOS, two simulators have been developed 
independently [Eijk 88, Guil 88].  They both allow to execute the system in a step-by-
step fashion, with the user providing the role of the environment and resolving 
nondeterministic choices.  In an ongoing project [Saba 90], the simulation approach is 
used to validate a simplified specification of the Transport protocol [Boch 90] in respect 
to the OSI Transport service [OSI TS] written in LOTOS.  A system of two interacting 
Transport entities and an underlying Network service are simulated by the LOTOS 
interpreter, and the resulting sequence of service primitives is validated against the 
service specification by using a trace analysis tool TETRA [Bell 89] initially developed 
for the automatic analysis of conformance test results (see Section 5.5). 
 
In contrast to the simulation approach, the well-known reachability analysis explores 
systematically all possible execution paths. However, for realistic protocols, this 
technique is only applicable to an approximated specification restricted to a finite state 
machine model.  In the case of LOTOS, certain tools only consider the so-called "basic 
LOTOS" subset which ignores interaction parameters. Related to CSP [Hoar 85] and 
CCS [Miln 80], this subset allows the application of similar exhaustive validation 
techniques, if the system is not too large [Najm 89]  (also [Shir 89]).  
 
A method in between reachability analysis and testing through simulation has been 
explored with a tool which provides for the generation of partial execution trees for 
LOTOS specifications including symbolically evaluated interaction parameters.  This 
facility performs a sort of "eager evaluation" where all possible execution paths are 
explored, with symbolic values in lieu of the values to be provided by the environment.  
The symbolic tree evaluator has been enhanced to identify certain situations of repeated 
behavior [Guil 89].  A further step is a tool which provides the monolithic LOTOS 
specification corresponding to the tree [Quem 89, Ashk 90]. 
 
In the case of simple specifications, where the entire execution tree or monolithic 
specification can be calculated, these tools will provide a complete analysis of all 
possible behaviors of the specification.  For example, deadlocks will be explicitly 
revealed by the tool, while other undesirable behaviors would be revealed by inspection.  
With larger specifications, however, the usefulness of this tool is greatly diminished by 
two factors.  First of all, most such specifications branchout too quickly for the whole 
execution tree to be completed.  Even worse, tests involving symbolic values cannot 
usually be evaluated to "true" or "false", thus a great number of unfeasible paths is 
generated.  This problem can be reduced or limited by the use of appropriate 
specification styles [Guer 89a, Guer 89]. 
 
For the comparison of LOTOS specifications, several notions of equivalence may be 
used.  Much work has been based on bi-simulation equivalence (e.g.[Miln 80, Miln 89, 



Brin 88, Najm 89, Shir 89]).  However, the notion of testing equivalence, which is related 
to the "traces and refusals" of CSP [Hoar 85], seems to be more realistic, since it is based 
on whether two processes can be distinguished by executing testing experiments.  Using 
such methods, it is possible to prove directly properties of traces (i.e. sequence of 
actions), such as:  "the number of interactions at gate g will always exceed by one the 
number of interactions at gate h".  Properties of this type are frequently stated for 
processes.  Corresponding proof rules for LOTOS specifications have been developed 
[Gall 89].  Important immediate applications of verification principles have been found in 
the area of equivalence-preserving transformations.  In LOTOS, a theory is being 
developed, supported by software tools, on how a specification written in one style can 
be transformed into an equivalent one written in another style.  For example, one may 
wish to transform a specification written in an abstract, implementation-independent 
style, into another one that can be easily coded [Ashk 90, Quem 89, Viss 89, Eijk 89a, 
Leon 89]. 
 
Unfortunately by using these methods, it has only been possible so far to prove the 
correctness of small didactical examples.  Semi-automated verification tools are being 
devised, but on the basis of what has been seen in the case of verification methods for 
functional programming languages, it can be assumed that the power of such tools will 
not go beyond proofs of specifications of a few hundred lines.  This is an area where 
research is very active, however, some fundamental problems exist, by which progress 
can be expected to be slow. 
 
4.  Implementation development 
 
The requirements to be satisfied by a protocol implementation include the protocol 
specification and usually additional constraints which are particular to the 
implementation project.  These additional constraints may define such questions as "how 
does the implementation react to unexpected (invalid) user interactions?", "how many 
simultaneous connections should be supported?", or "what should be the performance of 
the implementation?".  Based on these requirements, the implementation is usually 
developed in several steps of refinement using the standard software or hardware design 
and implementation methods. 
 
In the case that a formal protocol specification is used, the additional constraints may be 
defined in the same formal specification language, and, depending on this language, may 
be translated into implementation code.  The semi-automatic implementation based on 
Estelle specifications has been used in a number of cases.  This topic has been covered 
relatively well in the existing literature [Boch 87h, Sidh 89].  Similar translation 
approaches can be used with other languages.  In the case of LOTOS, it seems reasonable 
to impose certain language restrictions for the translation [Mana 89]. 
 
In the case that a multi-layer protocol structure is distributed over several operating 
system tasks or computers, that a communication service among several computers is to 
be simulated, or that a specified application is to be implemented in a distributed 
environment, it would be useful to have a uniform distributed implementation 
environment.  In such an environment, a single system specification including multiple 



processes/modules could be automatically implemented by allocating each 
process/module to a particular operating system task or computer. 
 
In the case of Estelle and SDL specifications, such a distributed implementation is 
relatively easy to obtain, since the processes/modules communicate by message passing, 
which is easily mapped on a message transmission communication facility available 
between the tasks/computers [Jard 89].  (For Estelle, the implementation is simplified if 
all dependents of a system activity or system process reside in the same task/computer). 
 
In the case of LOTOS the situation is more difficult because of the rendezvous nature of 
interactions between the processes [Quem 89, Karj 88].  Several distributed algorithms 
for the implementation of rendezvous interactions between remote systems are known.  
The situation for LOTOS is particularly complex because more than two processes may 
participate in an interaction, and the processes involved cannot be determined statically.  
We have shown [Boch 89c] that a tree-oriented execution model for LOTOS can be 
combined with a virtual-ring rendezvous protocol, in order to obtain a scheme for the 
distributed implementation of LOTOS specifications.  Present work is aimed at building a 
prototype implementation of a distributed LOTOS simulation environment, using 
multiple instances of an existing LOTOS interpreter [Logr 88], and at the realization of 
complete and fair interpretations in such a distributed environment. 
 
As mentioned in Section 2, the integration with ASN.1 is an important issue for any 
specification language to be used for the OSI application-layer protocols.  Some of our 
recent research projects were related to this question.  While certain authors suggest the 
enhancement of existing specification languages with the data type notations of ASN.1, 
we have explored the possibility of translating the ASN.1 definitions of the PDU 
structures into the corresponding data type definitions of Estelle [Boch 90, Barb 89] and 
LOTOS [Boch 89h]. 
 
The translation for Estelle is relatively straightforward, except for the SEQUENCE OF 
construct which is translated into a list structure implemented by pointers.  In order to 
obtain tools for supporting protocol implementations for this approach, we have built an 
ASN.1 translator and have adapted an existing ASN.1 tools which generates ASN.1 
encoding and decoding routines [Yang 88] with an Estelle compiler [Este 87b] in such a 
manner that the C-code generated by the different tools is compatible and can be 
combined into a single protocol implementation. 
 
The encoding and decoding of ASN.1 PDU's is a relatively tedious task that can be 
implemented in specialized hardware in order to obtain increased efficiency [Bilg 90].  It 
is to be noted, however, that the encoding/decoding modules (in software or hardware) 
are closely related to the data structures that are used within the implementation of the 
protocol implementation. 
 
Sometimes the protocol specification is written in a form which is either not directly 
implementable by the translation approach discussed above, or would lead to 
implementation code which is not sufficiently efficient.  In such cases, it is possible to 
first derive a more implementation-oriented description from the given specification, and 
then to apply the automatic translation approach to the implementation-oriented 



description.  Much research has been done in the related general area of program 
transformations [Baue 79], where one wants to assure that the transformed program is 
equivalent to the originally given program or specification. Research along these lines is 
going on in relation with the LOTOS language (see Section 4), however, this is a difficult 
problem and it is not clear how useful this approach will be in the future. 
 
5.  Conformance Testing and Implementation Assessment 
 
In the testing area, formal specifications of the protocol can be used for deriving test 
suites, validating manually developed test cases, and for analyzing test results.  The use 
of TTCN for the description of OSI conformance test cases leads to the need for 
translation between various languages.  The following subsections comment on related 
issues. 
 
5.1  Test suite development 
 
There are two main approaches for the design of a conformance test suite:  manual design 
and semi-automatic design based on formal description of the protocol.  There are several 
test suites that are manually developed and are being standardized [ISO 8882, and 
others].  We will concentrate on semi-automatic design from validated formal 
specifications and describe the techniques and tools available presently.  Most of the 
literature deals with test generation from finite state machines [Sari 82, Sabn 85, Vuon 
89, Fuji 90].  Test sequence derivation from FDT specifications has also received 
attention.  First a comprehensive methodology based on Estelle has been developed [Sari 
87].  Recently LOTOS based test derivation research has been active [Brin 88, Weze 89, 
Guil 88, Sari 89e, Trip 89a]. 
 



Estelle based test design methodology first applies syntactic transformations on the 
protocol specification and puts the specification into a form called normal form in which 
transitions contain single paths and local procedures/ functions are in-line replaced.  The 
normal form transformations are applied to all the modules in case of modular 
specifications.  The next step is to apply control flow and data flow abstraction on the 
specification.  In the control flow abstraction the specification is treated as a collections 
of interconnected FSMs.  This representation is easily obtained from the normal form 
transitions.  The data flow abstraction represents the action part of the transitions as a 
data flow graph in which abstract service primitive (ASP) and protocol data unit (PDU) 
parameters become input/ output nodes and the data flow on these are determined from 
the assignment statements. 
 
The FSM model of the specification makes it possible to use certain techniques to derive 
test sequences such as transition tours.  In the case of modular specifications, transition 
tour generation considering the internal queues is rather complicated [Forg 90].  The 
resulting test sequence gives a control flow coverage of all the transitions.  State 
recognition based techniques such as W- and D- methods could also be used; but their 
application to protocols seems to be controversial due to the fact that the choice of the 
state recognition sets/sequences requires the consideration of the context variables, rather 
than just the major state.  There are also problems associated to incompletely defined 
FSMs [Vuon 89].  Since the transition tour coverage does not consider enabling 
conditions, some of the resulting paths are infeasible.  It seems that avoiding these 
infeasible paths will remain in the domain of human intelligence. 
 
The dataflow graph obtained can be used to derive the dataflow associated with "protocol 
functions".  Since protocol functions are related to the understanding of the protocol, the 
derivation of them can only be done by the user. 
 
A tool has been developed implementing this methodology.  The control and dataflow 
graphs are visually displayed on a workstation. The test generation module assists the 
user in eliminating the infeasible paths.  The dataflow graphs can be partitioned and 
named by the user.  Then the test generation module derives the test sequences needed to 
completely cover the dataflow in each function. This way the resulting test sequences 
completely cover the control and dataflow in the specification.  The dataflow coverage 
criteria is simple.  A more involved dataflow coverage considering the definition and use 
of the context variables is studied [Ural 87a]. Presently it is not yet determined which 
coverage technique will yield better test sequences.  The tool implementing the 
methodology has been  applied to generate test sequences for transport protocol [Forg 
89], FTAM [Barb 89], ISDN LAPD [Sari 89d] and ISDN Network layer [Amal 90].  
 
In the case of LOTOS specification, the derivation of test cases is complicated due to the 
parallel composition and the nondeterministic nature of the specifications.  Three 
different approaches to deriving test cases have been described in the literature. 
 
(1)  Canonical test processes:  Given a basic LOTOS specification S of a protocol, an 
"inverse" specification T(S) can algorithmically be developed such that when an IUT is 
parallelly composed with T(S), it will apply all the test cases to establish the 
conformance of IUT to S.  The method is named CO-OP after its main components, the 



sets Compulsory and Optional behaviors [Weze 89].  The T(S)obtained is a choice of all 
the test cases, except robustness tests.  It is shown that T(S) is equivalent to the canonical 
tester defined earlier in [Brin 88].  It is also shown in [Weze 89] that if S is a parallel 
composition S: = B1 |||| B2 (contrary to intuition) we cannot simply obtain T(B1) and 
T(B2) and then parallelly compose them to get T(S). 
 
A canonical tester is not intended for practical testing because T(S) can only be derived 
from basic LOTOS, although some efforts to extend the approach have been reported 
[Tret 89].  T(S) is another specification in LOTOS usually with an infinite behavior, and 
therefore it is difficult to derive a finite test suite. 
 
(2)  Interpretation of specification:  Full LOTOS can be symbolically executed using an 
interpreter.  Symbolic execution derives execution paths that can be used as test 
sequences [Guil 88].  Although such trees or expansions are usually partial, they can still 
contain enough information to be used in test case generation.  In [Guil 89] this idea was 
applied in order to generate test cases for LAP-B based on the specification mentioned in 
Section 2.2.2.  From the execution trees obtained from the interpreter, a FSM model was 
manually derived.  Then traditional test selection methods for FSM's could be applied.  
The authors have not yet considered the dataflow aspects with the interpretation 
approach. 
 
(3)  Analysis of control and dataflow:  Applying an extended FSM interpretation to 
LOTOS semantics, a LOTOS specification can be converted into an equivalent chart 
[Miln 84].  A translation algorithm of a subset of LOTOS into charts is reported [Karj 
88].  This algorithm could be extended to full LOTOS but in some cases, i.e. parallel 
activation of an unknown number of connections, the chart obtained is infinite.  Practice 
indicates that the chart construction algorithm leads to a state explosion even for medium 
size specifications such as [Boch 90] due mainly to state machine interpretation of 
parallel behavior.  However using some heuristics, the number of states could be reduced 
to reasonable size.  The chart obtained represents the overall behavior of the entity 
specified, i.e. the control and dataflow in the specification.  The dataflow can be 
abstracted out and represented in graphical form.  These graphs are similar to the graphs 
obtained from the Estelle specification of the same protocol. The complete traversal of 
the chart yields the test sequences (may-tests), considering nondeterminism (the "i" 
events) the tests can be converted into test cases (must-tests) [Trip 89a].  Another 
approach, also considering the control and dataflow of LOTOS specifications is reported 
in [Sari 89e]. 
 
5.2  Test specification in TTCN 
 
It is important to note that the OSI conformance test cases are described in a newly 
developed notation called TTCN [OSI C3].  Since specifications written in this language 
are presented in the form of tables, screen-oriented editors have been developed, although 
a linear form of the language has also been defined.  
 
In the case of semi-automatic test suite design, a translation from the language of the 
protocol specification into TTCN is required.  If one wants to validate a TTCN test case 



in respect to a protocol specification, the inverse translation is necessary.  Together with 
ASN.1, which can be used as part of TTCN, there are many translation issues.  In 
addition, there are many proprietary test description languages for which test execution 
environments exist.  Test cases written in TTCN will therefore often be translated into 
such languages for execution.  The use of an intermediate language, such as the charts 
mentioned above, has been proposed as a common ground for all these translations.  
However, it is not clear what the best approach to this proliferation of specification 
languages is. 
 
5.3.  Test case validation 
 
The tests obtained with the semi-automatic test design tools are expected to be correct (if 
the tool has been sufficiently debugged). However, manually developed test cases can be 



expected to contain certain errors, due to the large amount of information that must be 
considered in their design.  They can be validated against a formal specification of the 
protocol, using automated tools.  
 
First, a test case can be validated by checking certain static conditions by a TTCN 
compiler.  Second, the semantics of the test case must be validated against the protocol 
specification.  In particular, each path in the test case leading to a PASS (FAIL) verdict 
must be shown (not) to be accepted by the formal specification.  Additional validation 
may concern time-out behaviors or buffer sizes. 
 
Two approaches to the automatic validation of test cases have been explored in our 
projects.  After translation into LOTOS behavior expressions, the test case can be 
automatically compared with a given protocol specification written in LOTOS [Boch 
89j].  The tool is an extension of what is described for test result analysis in Section 5.5.  
Another approach is the translation of both the test case and the specification into charts 
(see above) and their comparison at this intermediate level [Naik 90].  
 
5.4  Test case adaptation and execution  
 
Most standardized test cases, as well as most tests derived from formal specifications, 
usually can be classified as generic test cases for the local single-layer test architecture.  
In order to executed them with a test system using a different test architecture, such as 
the distributed test architecture [Rayn 87], they must be adapted.  However, these 
necessary modifications are relatively straightforward in most cases. 
 
The test cases must also be adapted to the implementation parameters of the protocol 
implementation, which are stated in the so-called PICS (protocol implementation 
conformance statement) and the PIXIT (protocol implementation extra information for 
testing).  Certain values of test parameters are not specified in the generic test cases.  
They may be chosen during the test execution within the bounds provided by the 
implementation parameters. 
 
Different approaches can be taken to execute test cases written in TTCN.  Most systems 
for TTCN implementation support translate the test cases into implementation languages, 
such as C or specialized test description languages for which an execution environment 
already exists.  The translation into Estelle can also be considered [Eswa 90], since good 
implementation environments for Estelle exist, and this language seems suitable for the 
specification and implementation of complete test systems [Linn 88].  It is to be noted 
that the use of ASN.1 in the test cases for Application layer protocols implies that ASN.1 
support must be included in the test execution environment. 
 
5.5.  Test Result Analysis 
 
Execution of each test case on an IUT will result in a conformance log containing the 
events that occurred with time stamps.  Trace checking and test result analysis refer to the 
activity in which the conformance log (trace or test results) is analyzed manually, or by 
using the formal specification of the protocol [Boch 89m, Boch 89j] and a verdict of pass 



or fail is produced.  Since TTCN test cases explicitly indicate the pass and fail cases in 
the definition, a test system executing TTCN test cases contains the result analysis 
already in the form of the test cases. 
 
An automatic test result analysis in respect to the protocol specification is useful in the 
following situations: 
 
(a)  In the case that the IUT is subjected to ad hoc or random tests, for instance during 
debugging, or for complementing the standard conformance tests. 
 
(b)  For arbitration testing.  This involves two or more systems that have already been 
tested individually, and which nevertheless turn out to have problems interworking.  The 
testing architecture includes the tester passively observing the PDU's exchanged between 
the different systems.  The tester includes a trace analysis module which checks the 
observed trace in respect to the specifications of all the systems and will notify any 
detected error. 
 
(c)  For validating the defined test cases.  A suite of test cases for a given protocol can be 
very voluminous.  Since most test cases are developed by informal methods, they may 
contain errors, that is, wrong verdicts.  Automatic trace analysis can be used to check the 
verdicts of test cases with the formal specification of the protocol. 
 
6.  Concluding remarks 
 
In our research we have used the three general purpose formal languages called LOTOS, 
Estelle and SDL, the data structure description notation called ANS.1 and the test 
specification language called TTCN for protocol design, validation, implementation 
development and assessment.  While our research concentrated on LOTOS and Estelle it 
seems that presently ASN.1 and TTCN are more heavily used in industry.  We discussed 
several ways in which heavier use of FDTs could be accomplished:  developing easy-to-
use tools, support for object-oriented techniques, pilot projects and so on. 
 
There is a need to research towards arriving at a stage where protocol development 
activities could be supported with an integrated set of tools.  The need to design validated 
specifications arouses the need to incorporate the PICS and PIXIT information in the 
formal specification, this in turn might require modifications in the languages.  For 
example there is a need for an abbreviated notation for LOTOS data structures.  It is 
interesting to investigate incorporation of PICS and PIXIT processing in test generation.  
Regarding ASN.1, it could possibly conclude that the best way to handle ASN.1 is by 
treating it as a tree structured data representation sublanguage instead of translating it 
into other languages.  Finally, we point to the need for implementing protocols in parallel 
environments and by hardware. 
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