
E x t e n s i o n o f t h e K a r p a n d M i l l e r P r o c e d u r e t o L o t o s S p e c i f i c a t i o n s 1

Michel Barbean, Gregor V. Bochmann

Universit6 de MontrSal, D$partement d'IRO

C.P. 128, Succ. "A' , Montrdal, Canada, H3C 337

Abstract

In a companion paper [Barb 90a,b], we proposed a Place/Transition-net (P/T-net) seman-
tics for a subset of Lotos. This subset is such that Lotos .specifications can be translated into
finite structure Petri nets. It is therefore possible to apply P/T-net verification techniques
since they require finite structure. It this paper, we demonstrate that it is possible to apply
P/T-net verification methods without an a priori construction of the P/T-net associated to
the Lotos specification to be analysed. In particular we consider a weU known reachability
analysis technique for P/T-nets, namely, the Karp and Miller procedure.

1 I n t r o d u c t i o n

The goal of this work is to investigate verification techniques for basic Lotos specifications [Bolo 87a].

Basic Lotos is presented in § 4. It can be demonstrated that this language has the computational

power of Turing machines. Therefore, generally non-trivial properties are undecidable.

Our verification method is based on Petri nets. Petri net verification techniques are transfered to

Lotos. So far, two transfe.r approaches have been proposed. A first approach consists of translating

Lotos specifications into Petri nets and evaluating the properties' on the equivalent Petri net models.

Presently, there are at least two tools based on this approach ([March 89] and [Gara 90]),

We found that the Lotos to Petri nets translation step is, in many cases, as complex, in terms

of time and space, as the verification step itself. In this paper, we propose a second approach which

involves no translation from one formalism to another. We adapt Place/Transition-net (P/T-net)

verification algorithms to Lotos. We consider a well known P/T-net reachability analysis technique,

the Karp and Miller procedure [Karp 69].

The main difficulty in these approaches is to make shure that the P/T-net, that models the Lotos

specification, has a finite structure. That is, a bounded number of places and transitions. We model

Lotos local process states as Petri net places. We put syntactical constraints so that the number of

local process states is bounded. Moreover, the number of alternatives to make a transition, from

a given local state, is also bounded. Consequently, the Petri net has a finitre structure. However,

these constraints do not bound the number of identical parallel processes. Therefore, finite structure

Petri nets does not necessarily mean finite state systems. Consequently, the "Lotos" that can be

analyzed with our method is computationaly more powerful than the "Lotos" that can be verified

with finite state/transition system based methods (e.g. [Bolo 87b]).

Petri nets can represent, with finite structures, infinite state systems. This means that classical

finite state system reachabihty analysis [Boch 78] is not applicable. Karp and Miller trees and

graphs are finite and partial representations of, in general infinite, Petri net reachability trees and

graphs. P/T-nets are introduced in § 2. Reachability analysis for P/T-nets is discussed in § 3.

Modelling of Lotos by P/T-nets is presented in § 5. The extension of Petri net teachability analysis

to Lotos is discussed in § 6.

IThis work has been funded by the Natural Sciences and Engineering Research Council of Canada, the Centre de
recherche informatique de MontrEal and Bell Notthen Research.

334

2 P/T-ne t s

We slightly deviate from the usual notation for P/T-nets [Pete 81]. We represent a P/T-net as a

tuple (P, T, Act, Mo) where:

• P is a set of places {Px, -.-,P,,),

• T C_ .N "P × Act × Ale, is a transition relation,

• Act is a set of transition labels, and

• Mo E H i*, is the initial marking.

A P/T-net has a f ini te s t r u c t u r e if the sets P, T and Act are finite.

Jr" is the set of non-negative integers. A/"p denotes the set of multi-sets over the set P. A multi-

set is a set that can contain multiple instances of the same element. An element t = (X, a, Y) E T

is also denoted as X - a --~ Y. Its preset pre(t) is X, its pos tse t post(t) is Y and act ion act(t)

is a. The multi-sets X and Y are also called, respectively, the input and output places of t. We

denote as pre(t)(p) (post(t)(p)) the number of instances of the element p in the preset (postset) of

t.

A Petri net marking is also a multi-set. We denote by M(p~) the number of instances of the

element Pi in the multi-set M. A marking M is also denoted as a n-tuple (M(pa),...,M(pn)).

Instances of the element pl are also called tokens inside place Pl. The operators <, + and - denote

respectively multi-set inclusion, summation and difference.

pre(t)(p) is the number of tokens that place p must contain to enable transition t. A transition

t E T is enabled in marking M ifFre(t) < M. This is denoted as M(t >. An enabled transition can

be fired and the successor marking M' is defined as: M' = M-pre (t)+pos t (t) , this is represented

as M(t > M'.

A P/T-net is illustrated in Fig. 1, places are shown as circles, transitions as bars and tokens as

dots inside places. There is a directed edge from place Pl (transition tj) to transition tj (place p;)

i f f p~ E pre(tj) (Pl E post(tj)). If pre(t)(p) > 1 (post(t)(p) > 1) we may label the corresponding

edge with the value of pre(t)(p) (post(t)(p)). The initial marking of this particular net can be

denoted as the multi-set {Pl, P2} or as the 6-tuple (1,1, 0, 0, 0, 0).

3 Reachabil i ty Analysis for P /T -ne t s

With respect to Holzmman's classification [Holz 89], the Karp and Miller tree construction procedure

is a stack search strategy. It is a depth-first technique that minimizes memory usage at the expense

of run time. The whole state space does not have to be maintained in memory, only the path

starting from the initial marking to the current marking. I n general, Petri nets are not finite state

systems. The Karp and Miller tree is also called the coverabi l i ty t ree because for every reachable

marking M of a Petri net, there exists a marking M' in the Karp and Miller tree such that M < M ~.

Def in i t ion 1 The coverabi l l ty t ree (CT) associated to a P/T-net N = (P, T, Act, Me) is a tree,

where vertices are labelled with markings of N and edges are labelled with elements in T. The CT

can be recursively defined as follows:

I. The root is labelled with Mo;

335

pl p2

t l a

Ngure 1: A P/T-net

~. Let x denote a vertex with label M,

(a) if there exists a vertex y such that y -~ z and label(y) = M, then x is a leaf;

(b) else, the successors of z are in one-to-one correspondence with the elements o] the set:

S = { (t , M ') : t e T A M(t > M'}

Let (t, M') e S, we create the successor vertex z and the edge (~c, t, z). The label of z is

determined as follows: For i = 1, .. . ,n (n is the number of places),

i. i f there exists a vertex y such that y -< z, label(y) < M' and label(y)(p~) < M'(p~)

then labeI(z)(p~) = w;

ii. else, label(z)(p,) = M ' (p ,) ;

The symbol w denotes infinity. If the whole CT is maintained in memory, the cove rab i l i t y

g r a p h (CG) can be obtained by merging vertices with identical labels. In that case, more memory

is required but full connectivity information is stored and can be used to analyse loops.

E x a m p l e 1: For the net of Fig. 1, the CG is shown in Fig. 2.

With the CT and the CG, the following six problems [Fink 90] become decidable:

1. Termination Is the reachability tree finite?

2. Finiteness Is the teachability set finite?

3. Coverabiligy Given a marking M, is there a reachable marking M ' such that M < M'?

4. Quasi-tiveness Given an action a, is there a reachable marking M such that a is executed

from M ?

5. Boundedness Is the number of tokens in a given place bounded?

6. Regularity Is the Petri net language recognizable by a finite state automaton?

The language of a Petri net is the set of transition sequences starting from the initial marking. If

the language is regular the Petri net can be simulated by a finite state automaton. The Karp and

Miller tree and graph constructions do not necessarily detect every deadlock in a nonfinite state

system.

336

(1 , 1 , 0 , 0 , 0 , 0) - - t l ~ (0 ,0 ,1 ,1 ,0 ,0) - - t , .-* (1,1,Q,O,w,w) * ' - t , - (O,O, l , l , to,¢o)

©
t3 14 (~) . Figure 2: Coverahi] i ty G r a ~ '"-~ t3,t4

4 Lotos

A basic Lotos behavior expression is formed out of the

Inaction
Action pref lz

Choice
Process instantiation

Pure interleaving
General parallel composition

Successful termination
Sequential composition

Disabling
Hiding

following terms:

s top
a; B

B,~B,
p[gl,...,g.]
B, IIIB=
Bll[gl ,g.] lB,
exi t
BI > > B~

B~[> B2
hide gl , . . . ,g , in B1

where B, B1 and B2 are behavior expressions. The semantics of Lotos is given in [Bolo 87a].
This subset of Lotos has the computational power of "luring machines (proved in [Barb 90a]).

We conclude that nontrivial properties are generally undecldable. P/T-nets (with finite structures)
do not have the computational power of Turing machines as Lotos does. In the rest of this section we
define a subset of Lotos, PLotos, that can be modelled by finite structure P/T-nets, and conversely
into which P/T-nets can be simulated. The mapping from PLotos to P/T-nets is introduced in the
next section whereas P/T-nets simulation in PLotos is discussed in [Barb 90a,~].

We assume that PLotos specifications satisfy the following constraints:

1. Guarded recursive processes. A process instantiation term is guarded if it is in the scope of a
prefixing operator ";" or in the right sub-expression B2 of a sequential composition BI > > B2
or of a disabling BI[> B~.

2. No combination of recursion and general parallel composition. The general parallel operator
"][gl,-.-,g~]l" is not allowed on recursive paths.

3. Tail recursion. The process in which B1 > > B2 (or BI[> B~) is defined may not be called
from sub-expression B1. And, in B1 combination of recursion and parallelism is not allowed.

4. "Noezit" functionality in pure interleaving. Operands B1 and B2 in parallel composition
BII[IB2 must have the noezit functionality.

Paths are defined by choice alternatives and can be illustrated as a tree with behavior expressions
labelling nodes, as in the following example:

process p[a, b, c] : noex i t :=
(a; stoplllb; stop)

e; p[a, b, c]
endproc

p[a,b,cJ

(a;stop Ill b;stop) c;p[a,b,c]

337

u Q I[ullu;st°p

,~vlt°Pllu]l

Figure 3: Example

The path number 1 is not recursive whereas the path number 2 is because the process p is re-

cursively called at node labelled "c;p[a, b, c] ' . A process that does not contain pa~rallel operator

"Ill" and "[[gl ,g.]]" on recursive paths can be modelled by a finite state system. If the operator

"l[g~, .-.,g-]l" is disallowed on recursive paths, whereas "HI" is allowed with functionality ~zoezit
operands, the system is not finite state but can still be represented by a finite structure P/T-net .

The f u n c t i o n a l i t y of a behavior B is equal to ezlt i f f it terminates with the successful termination

action 5, otherwise it is equal to noezlt, [Boto 87a].

PLotos specifications are rewritten into simpler forms. Non-recursive paths are expanded, that

is, process definitions are substituted for process calls. Then we distinguish every parallel com-

position B~l[gl , ...,g,]]B2 by labelling the operator with an unique value k. This is represented as
Hg~ , g J I , .

5 Modelling of Lotos with P /T-ne t s

The mapping from Lotos to P/T-nets is based on the work of Olderog [Olde 87] for CCSP. In gen-

eral, a Lotos behavior expression B represents the composition of several concurrent components.

The expression B is explicitly decomposed into its parallel components that become tokens when

this behavior is activated. Parallel components and states of parallel components are respectively

modelled by Petr] net tokens and places. The place in which a token is contained denotes the

component state. Lotos gates are modelled by Petrl net transitions. Tokens, contained in transi-

tion input places, represent components synchronized on this gate. Tokens deposited into output

places represent the successor components after the transition has occurred. Several tokens, con-

rained in the same place, represent several identical components. This models unbounded process

instantiation with finite structure P/T-nets.

For example, the Lotos expression u; ~; s~ol~[[u][u; s~op represents two concurrent components.

The first component executes actions u and v and then stops. The second component executes action

u and becomes inactive. Both components are coupled on gate u and are therefore dependent on

each other with respect to the occurrence of u. The decomposition of u;z,;8$opt[~]lu;s$o P into
components is denoted as the set {u; v; s~opl[u][, [[u][u; 8top}. In this syntax, we represent explicitly

the fact that components are coupled on gate u by concatenating the symbol l[u]l to the right of

u; v; stop and to the left of u; s~o'p.

Fig. 3 depicts the corresponding P/T-net model. Places modelling states of components are

labelled with the corresponding expression components. Transitions are labelled with gate names.

The "stop" expression represents inaction and does not appear in the P/T-net . In our construction,

3 3 8

edges from place to transition are always one valued and every place has a distinct label. W e

u n a m b i g u o u s l y deno t e a p lace by i t s label . The above %" labelled transition is represented

as the triple:

{~';"; s~oPl["]), I["]l"; ~top} - ,, --, {,,; ,~opl[~,]l}

To derive such triples, we define i) a function decomposing PLotos expressions, and ii) a system

of inference rules. The head of each rule matches a term of the form:

{ P l , " " , P ra } - - ~ ~ { q l , . . . , q n }

A rule can be used to infer, as a function of place label structures, a transition with preset

{p,, ...,P,n}, action a and postset {q~, ..., q,}. For instance the rule:

if M, - a ~ M~ and a ¢ {S, 5}

then M~.I[S]Ik - o, - - , M~.l[S]lk

has been used to infer the transition:

{,.,; s~opl[~,]t} - - - , { }

We substituted {v; stop}, u and v to respectively M1, S and a. M~ is empty because the decompo-

sition of %top" is defined as the empty set. We first introduce the decomposition function in §5.1,

then we present in §5.2 the inference rules.

5 . 1 D e c o m p o s i t i o n F u n c t i o n

The decomposition function is denoted as dec. Its domain is the set of well-formed PLotos behavior-

expressions. Its range is the set of all possible multi-sets of place labels.

Let B2, B2 denote syntactically correct PLotos behavior expressions, a denote an action name

and S = gl, --.,g- a list of synchronization gates,

(d l) deeCstop)
(d2) dec(a; B1)
(d3) dec(BlilB,)
Ca4) dec(pig1 g,])
(dS) dec(B, HIB,)
(do) dec(B~l[S]IkB,)
(d7) dec(B1 > > B,)

(as) dec(B1[> B,)
(dg) dec(hide S i,~ B ,)
(dl0) dec(e~0

where

:= (}

:= (a; B1}
:= {Bli1B,}
:= decC B,[gl lhl , ..., g./h.])
:= dec(B~) + decCB2)
:= dec(Bx).l[Sll~ + liS]lk.dec(B2)

:= {B~ > > B2}
: = { B ~ [> B , }

:= hide S in.dec(B1)
:= {exit}

• Bp represents the body of process definition p,

• in (d4), gl, ...,go is a list of actual gates,

• hi, ..., h,, i s a list of formal gates,

• [gl/hl 9,,/hn] is the relabelling postfix operator, gate h~ becomes gate gl (4 = 1, .. . ,n), and

339

• the expression dee(B~).l[S]lk denotes {=I[S]I, : = ~ dec(B~)), similarly for I[S]lk.dec(B,) and

the expression hide S in.dec(B~) denotes {hide S in z : z G dec(B1)}.

The dec function is deterministic, taking into account operator precedences. The restriction
to guarded recursive processes is required to stop reeursion in the dec function. The relabeUing
operator is not user accessible and exists for the semantic description of process instantiation. In
Lotos, relabelling is dynamic. Gates are renamed at the execution time. We show in [Barb 90a]
that for injective relabelling operators, static and dynamic relabeUing are equivalent. For the sake
of simplicity, hereafter we consider solely injective rdabdlings and perform static renaming.

5 . 2 I n f e r e n c e Rules

This section presents the inference rules of the mapping from PLotos to P/T-nets. The P/T-net

N = (P, T, Act, Mo) associated to a PLotos behavior B is such that:

a. Mo = d~c(B) , (Vp)[Mo(p) > 0 ~ p c P] ,

2. if x c_ p and X - ~ -~ Y then (Vp)[Y(p) > 0 ~ p e P], (X, ~, Y) e T , . e A n , and

3. only the elements that can be obtained from items 1 or 2 are in P, T and Act.

The transition instances are inferred from the rules bellow.
For all PLotos expressions Bx, B~, B2, B~, action name a, list S = gl, ...,g, of synchronization

gates and place multi-sets MI, M2, M~, M~:

(rl) {a; Ba} - a -~ dec(B1)

(r2) i f B l - a ~ B ~

then {B~[IB~} - ~ - . d e c (E)

(r3) i f B 2 - a ~ B ~
then (B~[}~) -a -- aeo(B~)

(r4) if M~ - a --~ M~ and a ¢ {S, 8}

then Mx.ltS]l~ - a --, mbl iS] l~

(rs) i f M2 - ~ --, M; and ~ ¢ (S , 6}

then l[S]lk.M~ - ~ ~ I{S]I~.M~

(r6) i f M , - a - - * M l a n d M 2 - a - - * M l a n d a E { S , 5}

then MI.I[S]Ik + IIS]lh.M2 - a -* Mbl[S]lk + tIS]I~.M~
(r7) if B , - a --. B i and ~ # 6

then {B1 > > B2} - a ~ {B I > > Bz}
(r8) i f B , - s -~ B i

then {B~ > > B d - S --. dec (B:)

(r9) i f BI - a --. B~ and a # S

then {BI[>]3'2} -a --+ {B~[> B2}
(rl0) if Ba -/~ -* B~

then {B~[>/32} - S ~ dec(B,)

(r l l) i f B2 - a ~ B~
then {B~[> B2} - a --* dec(B~)

(r12) i f M~ - ~ -~ M~ and ~ ¢ { S }

then hide S in.M1 - a ---* hide S in.M~

340

(r13) if MI -- a -* M~ and a ~ {S}
then hide S in.Mx - i --~ hide S in.M~

(r14) {ezit} - 5 ~ {stop}

In the "if part" of inference rnles (r2), (r3), (r¢) (rS), (rg), (rl0) ~ d (r11) behavior B1 (B,) m~es
a transition to behavior Bl (B~) on action a or 5 in accordance with the original Lotos semantics
in [Bolo 87a]. Consistency of this P/T-net interpretation of Lotos is formally proved in [Barb 90a].

Example 2: Consider the following specification2:

specification pl[a, b, c] : noexlt :=

p2[a, b]l[allP2[a, c]
where
process p 2 [z , y] : noexi t :=

• ; ezit > > (~,; st~tllp2[z,y])
endproe
endspec

The P/T-net derived from this specification is identical to the net depicted in Fig. 1 with:

p, = a; e~it > > (t~; stoEl lp2[a, bl)l ia]l ~ = lia]la; ex i t > > (c; stoplllp2[a, el)
ps = e~it >> (b; stoplllp2[a,~,])l[,~]l p. = t[all.~t >> (c; stopllb,2[a, c])
ps = b; s top l [a] l p6 = I[a]lc; stop

6 C o v e r a b i l i t y G r a p h s f o r L o t o s

Given a Lotos specification, it is possible to construct an equivalent P/T-net model by successive
applications of the above inference rules. This P/T-net then becomes the input of the teachability

analysis algorithm to evaluate the properties. In the worst case, the P/T-net can have more vertices
and edges than the coverability graph. In our approach we skip the intermediate Lotos to P/T-
nets translation step. We derive the coverabillty graph directly from the Lotos specification then

properties are evaluated.
The syntax o f Lotos coverability graphs slightly deviates from the usual syntax for Karp mad

Miller graphs. Markings are multl-sets of Lotos behavior expression components. We label the root
of the graph with the decomposition of the Lotos expression that represents the initial behavior.
For example, the decomposition of the initial behavior in Example 2 yields a state represented as

the following box:

l l /a; ezlt > > (b; stop,,]p2[a,b]),[a],]
l/l[,~]ta; e~it > > (c; stovlllv2[~, el)

Every line in the box defines the number of instances of one behavior expression component type
in the current state. In case there is an infinite number of occurrences, the expression component

is paired with the w symbol.
We go from one masking to another by application of the inference rules. An inference rule is

applicable from one marking if a finite subset of the expression component multi-set matches the
. preset of the transition in the head of the rule. The successor state is obtained by removing this

~For the sake of simplicity, labelling of the I/all operator is omitted in this example.

341

ptla,b,¢]

~ 1 a:exn >~ (~:slop III I~.lLbl) Uall

["
I~ /,..> c~'~ ~ ~""' I

I hall ex~ ~ (©:slop III I~ILcl)]

s)

Jl I a;*x~ >:~ Iz):stop III p21a,bl) lia]l E L m

(r4) ~ _ ~v I b;stOp Ila)l J ~ (r5)

S) 8)

t exit >> (D;SIOp II| p2{a,b]) [laJ|
t 7 / r - - - - -J1 I flail exil >~ (©:~op III P2ILcl) ~ t 8 rS) (t4) ~ . [w I b;ztem llell
b ~ I llall c:st~

Figure 4: Coverabi]ity graph of Example 2

preset from the current state and adding the postset defined by the transition (reformulation of the

usual P /T-ne t firing rule). Every edge is labelled with the number of the inference rule which has

been applied to derive the transition and the action name of the transition. The coverability graph

of Example 2 is illustrated in Fig. 4.

The six problems stated in § 3 can be solved as follows:

1. Terrnina~ion The reachability tree is infinite if there is at least one circuit in the CG.

2. Finiteness The teachability set is infinite if the CG contains one marking and one process p

paired with w.

3. Coverabilitz/Given a marking M, there exists a reachable marking M' such that M _< M' , if

there exists in the CG a marking M" with M < M".

4. Quasi-liveness The action a is quasi-live if there exists an edge in the @G labelled with a.

5. Bonndedness Instantistion of process p is unbounded if there exists a mazking M in which

dec(p) is paired with 0o.

6. Regulari~p The lazzguage is regular if every elementary circuit of the GG is labelled by a

sequence of transitions t l , t2, ..., t , such that for every place p:

w , t (~ ,) (p) - p -e (t l) (p) + p o , ~ (t 2) (p) - - w e (t ,) (p) + - " po ,~ (t .) (p) - w e (~ .) (p) _> 0

In general, conclusions can be easily drawn from visual inspection of the CT and the CG. For

instance, the language of Example 3 is not regular since:

pos~(t~)(b;, toplI~] l) - ~e(~s) (b; ,~o~l [~] l) = - z < o

342

7 C o n c l u s i o n

We have presented a reasonable subset of Lotos that can be verified using Petri net teachability
analysis techniques. Our method does not require explicit translation from Lotos to Petri nets.
Analysis is performed in the Lotos world to which the Karp and Miller procedure is extended. To
cope with state space explosion, MCT and MCG can be computed to solve the aforementioned six
problems. We experimented the MCT construction procedure and obtained satisfactory results.
The MCTs were several times less complex than the nonminimal CTs.

8 R e f e r e n c e s

[Barb 90a 1 Barbeau, M., Bochmann, G. V. Deriving Anal!/sable Petri Nets from Lotos Specifi-
cations, Research report no. 707, Dept. d'IRO, Universitd de Montrdal, 1990.

[Barb 90b] Barbean, M., Bochmann, G. V. Verification of Lotos Specifications: A Petri Net
Based Approach, Proc. of Canadian Conf. on Elec. and Computer Eng., Ottawa, 1990.

[Barb 89] Baxbeau, M., Bochmann, G. V. Ezperiences with Automated Verification Tools: Ap-
plication to Discrete Event Systems, Proc. ofWorkshop on Automatic Verification Methods for
Finite State Systems, Grenoble, 1989.

[Boch 78] Bochmnnn, G. V. Finite State Description of Communication Protocols, Computer
Network 2, (361-372), 1978.

[Bolo 87a] Bolognesi, T., Brinksma, E. Introduction to the ISO Specification Language Lotos,
Computer Networks and ISDN, Vol. 14, No. 1, (25-59), 1987.

[Bo!o 87b] Bolognesi, T., Smollm, S. A. Fundamental Results for the Verification of Observational
Equivalence: A Survey, Proc. of PSTV VII, Zurich, 1987.

[Fink 90] Finkel, A. A Minimal Coverability Graph for Petri Nets, Proe. l l th Int. Conf. on
Application and Theory of Petri Nets, Paris, 1990.

[Gara 89] Garavel, H., Najm, E. Tilt: From Lotos to Labelled Transition Systems, in P. H. J. van
Eijk, C. A. Vissers and M. Diaz (Eds.): The Formal Descrip. Tech. Lotos, North-Holland, 1989.

[Holz 89] Holzmann, G. J. [1989]. Algorithms for Automated Protocol Validation, Proc. of
Workshop on Automatic Verification Methods for Finite State Systems, Grenoble, 1989.

[Karp 69] Ka~p, R. M., Miller, R. E. Parallel Program Schemata, J. Computer and System
Sciences 3, (147-195), 1969.

[Mare 89] Marchena, S., Leon, G. Transformation from Lotos Specs to Galileo Nets, in K. J.
Turner (Ed.): Formal Description Techniques, North-Holland, 1989.

[Olde 87] Olderog, E.-R. Operational Petri Net Semantics for CCSP, LNCS 288, Springer-Vedag,
1987.

[Pete 81] Peterson, J. L. Petri Net Theory and the Modelling of Systems, Prentice Hall, 1981.

