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Abstract: 

The paper describes a model for executing LOTOS 
specifications (temporal control part). The execution model is 
based on an activity tree with attributes. The activity tree 
reflects the dynamic relations between the process invocations 
and activations of behavior expressions in the specified 
system, while functions related to the attributes control the 
execution of interactions and the growing and updating of the 
tree. The problem of infinite branching, which is caused by 
non-well guarded specifications or specifications containing 
generalized choices, is discussed based on the strategies for 
growing the activity tree. 

1. Introduction 

LOTOS [LOTOS 87, Bolo 871 is an FDT which is 
standardized within I S 0  for formally specifying 
communication protocols and services of Open System 
Interworking (OSI). It is also applicable to distributed systems. 
LOTOS consists of two parts: Abstract Data Types and the 
Temporal Control part (related to CCS [Miln 801). This paper 
concems implementation issues of the latter part. 

LOTOS is designed as an executable specification language. 
Execution of a specification plays an important role in 
development process of communication software [Turn 891. 
Some interpreters (or simulators) have been or is being 
developed based on high level programming languages [Bria 
861 [Logr 881 [Mana 891 [Gilb 891. They allow users to 
simulate the execution of a LOTOS specification and check 
whether it behaves correctly. Some work also has been done 
on translating LOTOS to state machines and restricted form of 
LOTOS to efficiently execute LOTOS specifications [Karj 881 
[Dubu 891 [Boga 891 [Quem 893. But there are still several 
questions which need further attention, such as distributed 
implementation and infinite branching. Concerning these 
questions, there are certain difficulties for LOTOS 
specifications which contain 'non-well-guarded' recursion, 
generalized choices, or dynamic rendezvous matching. A 
specification containing 'non-well-guarded' recursion or 
generalized choices may cause an implementation into an 
infinite loop, and the dynamic rendezvous matching of LOTOS 
makes the distributed implementation a challenge. 

In LOTOS, distributed systems are described in terms of 
processes. A system as a whole is a single process, in the 
following called 'system process', which may consist of 
several interacting sub-processes. These sub-processes may in 
turn be refined into sub-sub-processes etc., so that a 
specification of a system in LOTOS is essentially a hierarchy 
of process definition. In LOTOS, the realtion between two 
processes is defined by operators I;' '>>I, '[]I, Ill', 'Ill', or 

'[>I, which represent sequential, enabling, alternative choice, 
dependent parallelism, independent parallelism and disabling 
respectivelylJ0TOS 871. 

In a LOTOS specification, a process is said to be active if it is 
the system process or it is called by its super-process which is 
active. For the specification P:=Pl * P2 (where * is one of 
operators [I, II, 111 and [>), for example, if P is active, the sub- 
processes P1 and P2 are also active. However, for P:= g;P1 or 
P:= P2>>P1, P1 is not active when P is active, since it has to 
wait for the interaction at gate 'g' or the successful termination 
of P2. According to the LOTOS semantics, all active processes 
must be considered at each given time for possible execution of 
interactions. 

There are two cases in which a LOTOS specification will result 
in an infinite number of active processes. One is a specification 
which contains 'non-well-guarded' recursion, for example in 
the case of a specification of the form P[a](x:int):=a!x; stop * 
P[a](x+l) (where * is one of the operators [I, II, 111 or [> etc). 
Another case is a specification which contains a generalized 
choice, such as P:=choice xl:tl, ..., xn:tn [I B(x1, ..., xn) 
where one of the types ti (i=l, ..., n) defines an infinite set of 
possible values. A specification with one of the two cases 
above defines a behavior allowing for ari infinite number of 
active processes, and when executed, the implementation or 
interpreter may create infinitely many process instances, which 
practically means that the system loops or uses up all system 
resources. 

LOTOS uses multi-way rendezvous for communication among 
processes, which is useful for system specification [Char 871. 
However, multi-way rendezvous is more complex than the 
two-way rendezvous used in many other languages. In the case 
of LOTOS, it is difficult to tell in gemeral, by static analysis, 
how many processes, and which processes take part in a 
LOTOS rendezvous. As an example, we consider the 
following specification: 
P:= hide a, b in 
Pl[a,b] II P2[a,b] 
where 
P2[a,b]:= hide c in 
(a; stop) [I ((a; stop [I c; stop) II P4[a,b,cl) 

For an interaction at gate 'a', there are two choices within P2: 
(1) P1 may rendezvous with a; stop. 
(2) P1 may rendezvous with (a; stop [I c; stop) II P4. 
In case (11, there are two processes involved in the 
rendezvous, while in case (2), there are at least three 
processes, or more, if P4 contains several subprocesses 
participating in the interaction. 

... 

In order to provide a framework for discussing problems of 
distributed implementation and infinite branching, an execution 
model is suggested in this paper . The execution model is 
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based on an activity tree with attibutes. The activity tree 
reflects the dynamic relation between the process invocations 
and activations of behavior expressions in the specified 
system, while the functions related to the attibutes control the 
execution of interactions and the growing and updating of the 
activity tree. In this paper, we only discuss the problem of 
infinite branching by presenting different growing strategies 
based on the execution model. The growing strategies have 
different properties concerning the handling of non-well- 
guarded specifications. In [Boch 89?] there is a detailed 
discussion of the problem of distributed implementation also 
using this execution model. 

In Section 2, we will present the execution model. In Section 
3, we will discuss the problem of infinite branching based on 
different growing strategies. Section 4, finally, contains the 
conclusions. 

2. Execution Model 

The execution model is based on an activity tree with attributes. 
In Section 2.1, we present the activity tree and its growing and 
updating rules. In Section 2.2, we define the evaluation rules 
for attributes. In Section 2.3, we present the three phases for 
the execution of interactions of the execution model. Finally, in 
Section 2.4, we discuss several aspects of the execution model 
which are particularly interesting. 

Figure 1 shows a LOTOS specification of the 'Example' 
system, which will be used as an example in rest of this paper. 
After dropping money into a VM (vending machine), a boy 
may obtain a candy, if the latter is not be consumed by one of 
the two little devils that are included in the VM. In Figure 1, 
'm' denotes 'money', 'c' denotes 'candy', and 'e' denotes 
'eat-candy '. 

Specification Example: = 
hide m. c in 
Boy[m. c] II VM[m, c] 
where 
process Boy[m, c]:noexit:= 

m; ( c; Boy[m. cl 
[I 
Boy[m, cl) 

endproc 
process VM[m. c]:noexit:= 
hide e i n  
Machme[m. c, e] 
I [el I 
(Devil[e] Ill Devil[e]) 
where 
process Machine[m. c. e]:noexit:= 
m; ( c; Machine[m. c, e] 

11 
e; Machme[m, c. e] ) 

endproc 
process Devii[e] : noexi t : = 
e; Devil[e] 

endproc 
endproc 

endspec 

Figure 1: Example system - Boy and VM 

2.1: Activity tree 

Trees have been used to present LOTOS specifications. For 
example, a so-called action tree in [LOTOS 871 (also called 
behavior tree in [Logr 881) is used to show all possible action 
sequences defined by a LOTOS specification. A syntax tree can 
also be used to show the structure of a LOTOS specification 

and the relations among its actions. Below is the context-free 
grammar of a simplified syntax for the temporal control part of 
LOTOS, which is the basis on which we will define our 
activity tree. In the next section, we will define 'attributes' to 
deal with interaction offers involving parameters. 

In the following, 'B' is a non terminal (and also the starting) 
symbol of the grammar, and ([I, ( I ,  [>, ;, >>, stop, exit, i, g l ,  
..., gn) is the set of terminal symbols. Each ge (i. g l ,  ..., gn) 
denotes a gate in the system, each rE ([I, II, [>, ;, >>) denotes 
a LOTOS operator, and 'stop' and 'exit' denote the STOP and 
EXIT processes respectively. 
(1) B+ t for each tE [ stop, exit) 
(2) €3 -+ g;B 
(3) B + B >>B 

( 5 )  B 4 B I1 B 
(6)B + B [>B 

for each gate gE (i, g l ,  g2, ..., gn) 

(4) €3 4 €3 11 B 

In contrast to the syntax tree of a LOTOS specifiction which 
represents the static structure of the text of the specification, the 
activity tree represents a dynamic changing system state during 
the execution of the specification. Nevertheless, it has certain 
similarities with the syntax tree in so far as the production rules 
of the activity tree correspond to the above syntax rules. The 
major difference is that the activity tree is normally not 
completely expanded. It is grown in a top-down fashion, as 
explained below, starting with the root node which represents 
the system specification. 

The activity tree reflects the possible activities and the dynamic 
relationships between the active behavior expressions during 
the execution of the specified system. An activity tree consists 
of leaf nodes and internal nodes. An internal node represents 
the relation between its descendent nodes, i.e. one of the 
LOTOS operators [I, I I ,  111, and [> etc., or contains the 
description of the behavior to be activated after the successful 
termination of its descendants, i.e. >>B (where B is a behavior 
expression). There are two kinds of leaf nodes: terminal and 
non-terminal. A terminal node corresponds to a behavior 
expression 'g;B', where 'g' is called an active gate and 'B' is 
the behavior expression which will be activated after a 
rendezvous happens at 'g'. A non-terminal node cannot 
directly participate in an interaction, it must first be expanded. 
A non-terminal node corresponds to a behavior expression 
'Bl#B2', where # is one of the operators 11, 111, [I, [> and >>, 
and 'BI' and 'B2' are behavior expressions. During the 
growing phase, a non-terminal node may be expanded and may 
thus lead to new terminal nodes that may participate in 
interactions. Figure 2(a) shows the activity tree of the Example 
system before any money is dropped in. Figure 2(b) shows the 
tree after the expansion of the node N12 representing the 
vending machine (VM). Note that in the node N121, the 
invocation of the 'Machine[m, c, e]' process is replaced by its 
definition, as given in Figure 1. 

terminal (lean node non-terminal ( l e 4  node 
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(b) growing node 
N12 of (a) Nl(system) 

AJN122)=(} 

A&Nl21)= () 

(c) updating after 
rendezvous happens 
at gate 'm' 

Notation: 0 node cannot be expanded (internal or terminal leaf node) 

0 
(7 

node can be expanded (non-terminal leaf node) 

internal node which can be replaced by its son 

Figure 2: Different stages of the activity tree 
for the system of Figure 1. 

When executing a LOTOS specification, the system behavior 
changes dynamically. So does the activity tree. The activity tree 
can be grown and updated. By growing, we mean that the 
system expands non-terminal nodes in order to find terminal 
nodes with possible interactions. By updating, we mean that, 
after a rendezvous, the system prunes those sub-trees of the 
activity tree which represent alternative behavior not possible 
any more and let some behaviors (next behaviors) be active. 
Figure 3 shows the rules for growing. A non-terminal (leaf) 
node 'Bl*B2' (* is one of [I, II, 111, and [>) can be expanded to 
become an internal node '*' and with two son (terminal or non- 
terminal nodes) 'Bl' and 'B2', as shown in Figure 3(a). 
Figure 3(b) shows a non-terminal node 'Bl>>B2' can be 
expanded to become an internal node '<<B2' with a son 
(terminal or non-terminal) node 'B 1'. We note that there is no 
growing rule corresponding to the syntax rule of process 
invocation. If the LOTOS behavior expression of a non- 
terminal node contains a process invocation, this invocation 
will be replaced by the behavior of the corresponding process 
definition with a substitution of its parameters, as defined by 
the LOTOS semantics. The so obtained behavior is then the 
basis for further expansion of the node. 

Figure 4 shows two of the rules of updating. After 
participation a rendezvous at gate 'g', a terminal node 'g;B' 
become (terminal or non-terminal) node 'B', as shown in 
Figure 4(a). Figure 4(b) shows a tree with root node '[I' and 
two sub-trees 'Bl' and 'B2'. When a rendezvous happens in 
'B2', 'Bl' is pruned and 'B2' is updated to "B2"'. That is, the 
original tree become one with empty root node (which can be 
replaced by its son) and a sub-tree "B2"'. The full updating 
rules are given in [Wu 891 by comparing them with LOTOS 
semantics as defined by the transition system given in [LOTOS 

871. The growing and updating of the activity tree will be 
discussed in more detail in Section 2.3. 

-b& growing 

growing 

(a) updating after a rendezvous 
happens at 'g'. 

(b) updating after a rendezvous 
happens in BZ 

0 terminal or non-terminal node A subtree 

Figure 4: Two updating rules 

2.2.Attributes 

Attributes are defined in the activity tree. Their functions are to 
determine which nodes participate in a rendezvous on a given 
gate. Similar as in the case of attribute grammars [Boch 76~1, 
the attributes are associated with the nodes of the tree. In 
contrast to attribute grammars, however, where the values of 
the atmbutes are evaluated once and for all for each given 
syntax tree, the values of the atmbutes associated with a node 
in the activity tree may change over time, as the structure of the 
activity tree changes. 

Without restriction of generality, we may assume that each 
node 'B' of an activity tree corresponds to a specification with 
the general structure 'P[Sl]:= hide S2 in < expression>, where 
S1 and S2 are the gate lists. Here all free gates of 
<expression> must either be in S1 or S2. In most cases S2 will 
be empty, for instance, a node representing the behavior 
'g1;Bl [I g2;B2' will be written as 'P[gl, 821 := hide in g1;Gl 
[I g2;B2'. An attribute Ag is defined in node 'B' for each 
ge S luS2.  An attribute Ag is also called a 'hide attribute' 
(denoted as Ahg ) if ge S2. The value of attribute Ag is a set of 
interaction offers concerning the gate 'g'. 
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The attributes of the activity tree are 'synthesized', that is, they 
are evaluated by applying the evaluation rules from the bottom 
of the tree towards the top. The precise definition of these 
evaluation rules is given in the following table. In the table, 
'Ag(B)' denotes the attributes of gate 'g' in node 'B', og' 
denotes the interaction offer of gate 'g', 'S '  denotes a gate list, 
and 'B+ Bl#B2' denotes an internal node 'B' which has two 
son nodes, the left son 'Bl' and the right son 'B2, where ' #  
is one of operators [I, II, [>, and >>. In the table, there are two 
functions matched and derived. Their formal definitions are 
given in [Wu 891. Matched(ol,o2) is true if the two offers 
'01' and '02' are compatible for a rendezvous, and derived 
(01,02) is a single offer including the constraints imposed by 
'01' and '02'. For instance, matched('g?x:int!3?z:int', 
'g?x:int?y:int!S ) = true and derived('g?x:int!3?z:int', 
'g?x:int?y:int!S) = 'g?x:int!3!5'. 

Attribute evaluation rule 
For leaf nodes: 
Ag(g;B) =( og 1 

=@ 
For internal nodes: 
Ag(B) = Ag(B 1) 
Ag(B) = Ag(Bl)uAg(B2) 
Ag(B) = Ag(Bl)uAg(B2) 
Ag(B) =( otg lo'g=derived(01~,02~), 

if B is non-terminal node 

ifB+ Bl>>B2 
ifB+ B1 [I B2 
if B+ B1 IS1 B2 and ge S 

olgE Ag(Bl), O ~ ~ E  Ag(B2) and matched(olg, 02~)=true) 
if B+ B1 IS1 B2 and ge S 
ifB+ B1 [>B2 Ag(B) = Ag(B l )~Ag(B2)  

(Note: Ag(B) =+ if gate 'g' is not defined in node 'B') 

It is clear that a rendezvous is possible at gate 'g' if the attribute 
Ah at the node where 'g' is hidden contains an offer '0 '. All 
n d e s  that participate in the derivation of '081 will invofve in 
the rendezvous. For example in Figure 2(b), a rendezvous can 
only happen at gate 'm' because Ah,(Nl)=(m), Ahc(N1)=( ), 
and Ahe(N12)=(). Nodes N11 and node N121 will be 
involved in the rendezvous. 

2.3 Three phases for the execution of interactions 

The activity tree changes dynamically during the execution of 
LOTOS specifications through the repetition of the following 
three phases: growing, matching and updating. In the growing 
phase, the system expands non-terminal nodes until all or some 
terminal nodes with possible interactions are reached. After 
that, the system goes into the matching phase, by evaluating 
attributes, to find possible rendezvous usually involving 
several terminal nodes of the tree. If a possible rendezvous is 
found and executed, the matching phase is followed by the 
updating phase during which the system updates the tree, 
according to the rules discussed in Section 2.1 to reflect the 
state change implied by the rendezvous. If the matching phase 
does not lead to any rendezvous, the growing phase is 
resumed. 

An example of growing is given by Figure 2(b) which shows 
the activity tree obtained by expanding the non-terminal node 
N12 of the Example tree of Figure 2(a). Figure 2(b) also 
shows the values of attributes in each node of the tree, which 
are obtained in the matching phase. An example of updating is 
given by Figure 2(c) which shows the Example tree of Figure 

2(b) after a rendezvous at gate 'm' in which the terminal nodes 
N11 and N121 participated. 

2.4. Interesting aspects of the model 

The execution model describe above can support parallel 
processing and selective, possibly time-dependent, creation 
processes (activities). It provides also a framework for 
discussing the problems of distributed implementation and 
infinite branching. 

The three phases of growing, matching and updating in 
different parts of the activity tree could be processed largely in 
parallel. For example, when a rendezvous happens in one sub- 
tree, the system may update the sub-tree while the other sub- 
trees may continue the 'growing ' or 'matching' activities. This 
feature allows us to discuss the problem of distributed 
implementation of LOTOS specifications based on the 
execution model. By distributed implementation, we mean an 
implementation of a system specified in LOTOS involving a 
given number of sites, communicating with one another by the 
exchange of messages through an underlying reliable 
communication medium. At present, some work has been done 
about the implementation of multi-way rendezvous in 
distributed environment [Gao 891 and distributed 
implementation of LOTOS [Boch 89?]. In [Boch 89?], the 
different sub-trees of the activity tree reside on different 
physical sites and do 'growing' and 'updating' independently, 
and the procedure of evaluation of attributes is replaced by a 
so-called virtual ring algorithm [Gao 891 which deals with the 
implementation of distributed rendezvous interactions. 

As discussed in Section 1, all active processes are considered 
as candidates for participating in interactions at the same time 
(time independence) in LOTOS semantics. However, in the 
execution model, we could specialize the LOTOS semantics by 
considering only selective creation of active processes, and 
possibly time dependent activation by designing different 
growing strategies for the activity tree (see Section 3). 

\ 
\ 

Figure 5: The activity tree of P:=choice x:t [I B(x) 

\ 
\ 

Figure 6: 
The activity tree of 
P[a](x:int):=(a!x;stop) * P[a](x+l), 
where * is one of the opertors [I, II,111 or [> etc. 
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The two cases of infinite branching mentioned in Section 1 can 
be modeled by the activity tree as follow: in the case of a 
specification of the form P:=choice x: t [I B(x) where 't' is an 
infinite (enumeratable) set, we consider an activity tree of the 
form shown in Figure 5, which results in a finite number of 
nodes for any finite depth of the activity tree. For the case of a 
specification of the form P[a](x:,int):= a!x;stop * P[a](x+l) 
(where * is one of the operators [I, II  or [>), we obtain an 
activity tree of the form shown in Figure 6. In Section 3, we 
will discuss the infinite branching problem in the context of 
different growing strategies for the activity tree. 

Time dependent process creation can be used as a basis for 
defining the semantics of performance parameters, such as 
proposed in [Boch 88bl. For example, the behavior expression 
'a; suite-a[x,y] [I b; wait 50; suite-b[x,y]' defines a process 
which may participate in actions 'a' or ' b  (depen'ding on its 
environment). A delay is introduced if action b is executed, 
such that suite-b can only start 50 time units later. This can be 
modelled by delaying the creation of the process representing 
suite-b by 50 units. 

3. Growing Strategies 

We discuss in this section several strategies for the growing 
phase of the LOTOS execution model. Some of these strategies 
are only suitable for the restricted class of well-guarded 
specifications. We are also interested to know whether the 
execution model interprets the LOTOS specifications correctly. 
For this purpose we give in the first subsection some 
definitions concerning desirable properties of LOTOS 
interpreters. 

3.1. Desirable properties of interpreters 

Let S be any LOTOS specification and M[S] be an execution 
model (interpretation) of S.  Let a denote a state of MIS], and 
dint  denote the initial state. Let G be a set of observable 
actions, g l ,  g2, ... ranging over G, i be an invisible action. Let 
6 range over G u ( i ) ,  and a denote a string 6162...~3~ of 
actions. 

A transition relation - 6 -> is defined as: Q - 6 -> a' iff after an 
action 6 happened in Q, the system state changes to a'. An 
extension transition relation = a => is defined as : a=a=> 0' 
iff there exist ai, 0 I i I n, such that <T=ao-8i->~i...~n-i-6n- 
>Bn=O'. 

Let a - 6 -> denote that there exists a a' with a - 6 -> a'; 
o=a=> is defined analogously. Let a - 6 ->* and a=a=>* be 
the negations of <T - 6 -> and o=a=> respectively. 

Let Tr(M[S]) =(OllOint=C1=> ) denote the set of possible 
traces of MIS]. 

Defjnition of soundness: 
Let M1 and M2 be execution models. M1 is said sound based 
on M2 iff VS (Tr(M2[S]) a Tr(Ml[S])). M1 is sound if M1 is 
sound based on the ideal execution model as defined by the 
LOTOS semantics. 

Definition of completeness: 

Let Mi and M2 be execution models. Mi is said complete 
based on M2 iff VSVaVg(3~l'(~lint=~=>Q1'-g->*)~ 
~~2(~2i,t=ol=>~2'-g->*)). MI is complete if Mi is complete 
based on the ideal execution model as defined by the LOTOS 
semantics. 

It is noted that the soundness of the execution model described 
in this paper is based on the characteristics described in Section 
2. In this respect, we note the similarity of the LOTOS 
semantics with the updating rules for the activity tree (see Wu 
891) and the rules for rendezvous matching described in 
Section 2.2. This similarity suggest that our execution model is 
sound. In the next sections, we will only discuss the 
completeness of the execution model in the case of different 
growing strategies. 

3.2. Interactive interpretation 

A typical LOTOS Interpreter is described in [Bria 86, Logr 
881. When executing a LOTOS specification, the interpreter 
creates, during the growing phase, all possible nodes and, in 
the corresponding matching phase, makes a list of all possible 
rendezvous. An interactive user must select one of these 
interaction for execution. Then, the system prunes the nodes 
which are out of date and does the growing and matching 
again. In this case, the non-determinism of a LOTOS 
specification is implemented by the user choosing one of the 
possible interaction. 

The LOTOS interpreters can execute all well-guarded LOTOS 
specification as long as enough memory space is available for 
all active nodes. However, the interpreter can not handle all 
non-well-guarded LOTOS specifications because the growing 
step may loop indefinitely. To deal with such cases, an 
interpretation parameter N may be introduced which limits the 
number of nodes in a system. However, this may lead to 
blocking in cases where a possible rendezvous could have been 
found if a larger value had been chosen for N; this means, the 
interpretation algorithm is not complete. 

An interactive LOTOS interpreter can be transformed into an 
automatic interpreter by making an automatic random choice 
among the possible rendezvous at each step of the 
interpretation process(see for instance mechanism MO in @Ion 
881). 

3.3. Breadth first and random growing 

M1, another interpretation mechanism presented in [Hori 881, 
controls the growing by 'random choice'. It improves the 
interpreters described above by reducing the space, but it can 
not model a non-well-guarded specification such as 
P[a](x:int):= a!x 111 P[a](x+l), because the growing phase will 
loop. As a matter as fact, in [Hori 881, both MO and M1 are 
presented for executing only well-guarded specifications. 

We present here a simple random growth strategy which can 
handle infinite branching caused by non-well-guarded 
expressions or general CHOICE statements. The strategy is as 
follows: in each growing phase, a subset of all the non- 
terminal leaf nodes of the activity tree is selected randomly. All 
these selected nodes will be expanded. The non-terminal 
descendent nodes resulting in that expansion are not further 
expanded. 

Together with this growing strategy, the LOTOS execution 
model described here is complete, that is, it will find a possible 
rendezvous if there is one according to the LOTOS semantics. 
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If there is no possible rendezvous in the interpreted 
specification, there is either a detected deadlock, that is, all leaf 
nodes of the activity tree are terminal (non expandable) and no 
rendezvous is possible, or the activity tree always allows for 
further expansion, which implies that the specification contains 
some non-well-guarded recursions. In the latter case, the 
interpretation process loops. 

Because of the random selection process, the completeness 
property mentioned above only holds statistically, however, 
with probability one, which means it is satisfied for all practical 
purposes. In the case that &l non-terminal nodes are expanded 
in one growing phase, the growing strategy becomes breadth- 
first and the interpretation is deterministically complete. A more 
detailed discussion of these issues is given in [Wu 901, where 
additional growing strategies are presented with considerations 
of both completeness and faimess. 

4. Conclusions 

We have described an execution model for simulated execution 
of LOTOS specifications which supports the selective creation 
(possibly time dependent) of LOTOS processes, and parallel 
processing. It also provides a framework for discussion 
various execution strategies. In this context, strategies which 
can handle non-well-guarded specifications are discussed with 
considerations of completeness. 

The general execution model described here can also be used as 
a basis for designing LOTOS implementation strategies for 
distributed environments or for systems with parallel 
processors. In this context, it is important to limit the growing 
of the activity tree in order to reduce the number of messages to 
be transmitted between different sites. This is still an area for 
further study. 
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