
FORMAL METHODS FOR DESCRIBING DISTRIBUTED SYSTEMS:

A DISCUSSION OF THE EXPERIENCE IN OSI STANDARDIZATION*

Gregor v. Bochmann

Département d'informatique et de recherche opérationnelle
Universite de Montreal, Canada

Abstract

Distributed systems are difficult to design and implement because of concurrent activities
in the different system components. The use of formal specifications for describing the
behavior of these components facilitates the systematic analysis of the system and its
implementation. So-called formal description techniques (FDT's) have been developed in
recent years for the formal description of the communication protocols and services
developed in the context of the Open Systems Interconnection (OSI) standards. However,
so far they have not been widely used. This paper gives an introduction to this area,
presents the description techniques used for writing the OSI protocol standard
specifications, and discusses the reasons that limit a wider use of formal specifications in
this context.

1. Introduction

Communication protocols are the rules that govern the communication between the
different components within a distributed computer system. In order to organize the
complexity of these rules, they are usually partitioned into a hierarchical structure of
protocol layers.

As they develop, protocols must be described for many purposes. Early descriptions
provide a reference for cooperation among designers of different parts of a protocol system.
The design must be checked for logical correctness. Then the protocol must be
implemented, and if the protocol is in wide use, many different implementations may have
to be checked for compliance with a standard. Although narrative descriptions and informal
walk-throughs are invaluable elements of this process, painful experience has shown that
by themselves they are inadequate. The informal techniques traditionally used to design
and implement communication protocols have been largely successful, but have also
yielded a disturbing number of errors or unexpected and undesirable behavior in many
protocols.

A collection of standards of communication protocols and services are being developed for
Open Systems Interconnection (OSI) [OSI 83, Knig 88] intended to allow the interworking
of heterogeneous computer systems for a variety of applications. In this context, the

* This work is partly supported by the Natural Sciences and Engineering Research Council of
Canada.

protocol specifications are of particular importance, since they represent the standards
which are the basis for the implementation and testing of compatible OSI systems. The
standard specifications are usually written in natural language, augmented with certain
limited formalisms.

In addition, formal description techniques (FDT's) have been developed for application to
OSI and have been used for the description of certain OSI protocols and services. The
formal nature of these specifications make it possible to apply certain automated tools
during the protocol development life cycle. After being developed over a period of
approximately 8 years, these techniques are now ready for being applied. However, so far
they have only found relatively limited use.

After an overview of formal specifications for communication protocols, this paper
explains the present trends in relation with the description of OSI standards and discusses
certain factors that seem to limit the application of formal methods in this area.

2. Formal specification of communication protocols and services

2.1. The protocol engineering life cycle

Similar to the well-known software life cycle, the development and implementation of
communication protocols involves a number of steps and activities listed below. The
protocol specification plays a key role in all these activities, and the use of formal
specifications allows the partial automation of some of these activities [Boch 87c].

(a) Protocol design: The protocol specification is developed based on the communication
service to be provided by the protocol. The protocol also depends on the underlying
(existing) communication service; e.g. the protocol may have to recover from transmission
errors or lost messages if the underlying service is unreliable. The design process is largely
based on intuition.

(b) Protocol design validation: The protocol specification must be checked (1) for logical
consistency, (2) to provide the requested communication service, and (3) to provide it with
acceptable efficiency.

(c) Implementation development: The protocol implementation must satisfy the rules of the
protocol specification; the implementation environment and the user requirements provide
additional constraints to be satisfied by the implementation. The implementation may be
realized in hardware or software.

(d) Conformance testing and implementation assessment: The purpose of conformance
testing is to check that a protocol implementation conforms to the protocol specification,
that is, that it satisfies all rules defined by the specification. This activity is especially
important for interworking between independently developed implementations, as in the
case of OSI standards. Implementation assessment is a more general term and includes
testing of other implementation requirements. The testing of an implementation involves

three sub-activities: (1) the selection of appropriate test cases, (2) the execution of the test
cases on the implementation under test, and (3) the analysis of the results obtained during
test execution. The sub-activities (1) and (3) use the protocol specification as a reference.

2.2. Overview of specification methods

Descriptions of communication services and protocols must be both easy to understand and
precise - goals which often conflict. The use of specifications written in natural language
gives the illusion of being easily understood, but leads to lengthy and informal
specifications which often contain ambiguities and are difficult to check for completeness
and correctness. The arguments for the use of formal specification methods in the general
context of software engineering [Parn 77] apply also to protocols.

Many different formal specification languages have been developed for various purposes,
and many of them have been applied to the description of distributed systems and
communication protocols. Certain description methods, such as finite state machines
(FSM), grammars, Petri nets, process algebras and data types, have been used successfully
for the description of certain aspects of the behavior of communication protocols, however,
they do not seem suitable for describing all aspects of typical OSI protocols. Other
methods, such as high-level programming languages, abstract data types, logic
programming (e.g. Prolog), and temporal logic, seem to be capable to describe all aspects
of such protocols, however, none of these methods is generally recognized as the best
choice for writing formal protocol specifications. Further details can be found in [Boch
89d, Boch 87c, TSE 88] and in the proceedings of the yearly IFIP conferences on "Protocol
Specification, Testing and Verification" and "FORTE" (e.g. [Brin 89], [Vuon 90]).

With the beginning work on the standardization for OSI at the end of the seventies, some
people recognized that formal specifications could be useful in the development of OSI
standards. Special groups discussing "formal description techniques" (FDT) for application
to OSI were formed within ISO and CCITT in 1980 [Viss 86, Sara 86]. These groups
developed three specification languages, Estelle, LOTOS, and SDL, further described in
the next subsection, which are suitable to cover all aspects of communication protocols and
services. However, the effective use of these languages in the OSI area, so far, has been
relatively slow. This may be partly explained by the competition between these three
languages, which each have certain advantages, and by the difficulty many people have in
learning a new language.

2.3. Formal description techniques (FDT's) for OSI

In Estelle [Budk 87, Este 89], a specification module is modelled by an extended FSM.
The extensions concerning the aspects of interaction parameters and state variables are
covered by type definitions, expressions and statements of the Pascal programming
language. In addition, certain "Estelle statements" cover aspects related to the creation of
the overall system structure consisting in general of a hierarchy of module instances.
Communication between modules takes place through the interaction points of the
modules which have been interconnected by the parent module. Communication is

asynchronous, that is, an output message is stored in an input queue of the receiving
module before it is processed.

SDL [Sara 87, SDL 87] has the longest history; a subset of the present language was
already recommended by the CCITT in 1980. It is also based on an extended FSM
model. For the aspects of interaction parameters and state variables, it uses the concept of
abstract data types with the addition of a notation of program variables and data
structures, similar to what is included in Estelle. However, the notation for the latter
aspects is not related to Pascal, but to CHILL, the programming language recommended
by CCITT. The communication is asynchronous and the destination process of an output
message can be identified by various means, including process identifiers or channel
names.

LOTOS [Bolo 87, Loto 89] is based on an algebraic calculus for communicating systems
(CCS [Miln 80]) which includes the concepts of finite state machines plus parallel
processes which communicate through a rendez-vous mechanism which allows the
specification of rendezvous between two or more processes. Asynchronous
communication can be modelled by introducing queues explicitely as data types. The
interactions are associated with gates which can be passed as parameters to other
processes participating in the interactions. These gate play a role similar to the
interaction points in Estelle. The aspects of interaction parameters and state variables are
covered by an algebraic notation for abstract data types, called ACT ONE [Ehri 85],
which is quite powerful, but would benefit from the introduction of certain abbreviated
notations [Scol 87, Boch 89h] for the description of common data structures.

In contrast to the other FDT's, SDL was developed, right from the beginning, with an
orientation towards a graphical representation. The language includes graphical elements
for the FSM aspects of a process and the overall structure of a specification. The aspects
of interaction parameters and state variables are only represented in the usual linear,
program-like form. In addition, a completely program-like form is also defined (called
SDL-PR) which is mainly used for the exchange of specifications between different SDL
support systems. Presently, there is also a joint work item in ISO and CCITT for the
development of a graphical representation of LOTOS.

A comparative evaluation of the three FDT's is difficult to do. The following subjective
statements address some of the issues: It seems that Estelle and SDL have the advantage
of using well-known concepts of FSM and programming languages which make the intial
understanding of the languages easier. The graphics aspects of SDL are also helpful in
this respect. On the other hand, LOTOS has relatively few, but powerful language
constructs which makes the learning of the complete language easier. LOTOS
specifications often tend to be more abstract than specifications written in Estelle or SDL,
which are often implementation-oriented. The concepts in the latter languages can be
more directly related to typical implementation constructs. For the description of service
access points, the rendezvous mechanism of LOTOS is better than the asynchronous
message passing of Estelle and SDL, since the latter do not allow a complete
specification without including implementation choices [Boch 88h]. The LOTOS syntax
seems to be more natural than the FSM-oriented syntax for the description of test cases.
The formal definition of Estelle and LOTOS seem to be more readily usable for the

construction of tools than the formal definition of SDL (which is given as an annex of the
Recommentation). An attempt of a critical evaluation and comparison of the three
languages can be found in [Brui 87].

3. Specification methods for describing OSI standards: present trends

3.1. Use of FDT's

As mentioned earlier, the use of the FDT's has been limited. Certain standardization
subcommittees have developed a "guideline" document [FDT GL] which shows how the
concepts of the OSI Reference Model can be described by each of the three FDT's. It also
includes some tutorial example specifications. Formal specifications in LOTOS have also
been developed for the Transport and Session protocols and services (see for instance [Eijk
89]). Many other specifications have been developed outside the standardization groups,
largely by research groups experimenting with the use of FDT's.

An ISO/CCITT policy statement concerning formal specifications of OSI protocol
standards indicates that it is up to the group defining a protocol standard to decide whether
they want to develop a formal specification, and which FDT should be used for this
purpose. A formal specification can be included in the standard document (otherwise
written in natural language) in the form of an annex, which in some cases may have no
standard status, while in other cases it could play the role of the standard reference.

3.2. The "Abstract Syntax Notation One" (ASN.1)

This is a notation for describing data structures [ASN1], similar to the data type definitions
available in programming languages such as Pascal or ADA. It is applied to the description
of OSI Application layer protocols, where it is used for the definition of the protocol data
units (PDU's, that is, the messages exchanged between different protocol entities). The
notation includes a number of predefined data types, such as integers, reals, booleans, bit
strings, octet strings and various kinds of character strings. It also allows the definition of
composed data types, such as groups of elements (called SEQUENCE, corresponding to
"record" in Pascal), a list of identical types (called SEQUENCE OF), a type of alternatives
(called CHOICE, corresponding to Pascal's variant records), a TAG defining a code to
distinguish between different alternatives, and others.

The main reason for the success of ASN.1 as specification language is probably the fact
that it is combined with a standard encoding scheme for PDU's [ASN1 C] which has been
adopted for OSI Application layer protocols. Based on the information contained in the
ASN.1 definition of the PDU structure, this scheme completely determines the PDU
encoding, and can be used for implementing the encoding and decoding functions in a
systematic manner, possibly automatically.

3.3. Finite state machines (FSM's)

FSM models are often used for describing protocols. The inputs and outputs of the FSM
correspond to the PDU's exchanged with the remote entity and also to the service
primitives exchanged with the local user of the protocol entity. Various notations can be
used to represent FSM's, such as transition diagrams, regular grammars, or transition
tables. OSI protocol standards often include (sometimes as annexes) a transition table or
diagram which describes the allowed order of interactions. FSM models are also used to
define the order of interactions that are allowed to occur at a given access point of a
communication service. It is important to note that these descriptions do NOT define the
parameter values of the interactions.

3.4. The "Table-Tree Combined Notation" (TTCN)

This notation is relatively recent, and has been developed for the description of test cases
for OSI conformance test suites [OSI C3]. As its name indicates, the language includes
several different notations. The overall organization of the language is in terms of a
collection of tables defining different aspects of a test case, such as service primitives,
PDU's, and their parameters, order of interactions, and constraints on parameter values.
The interaction ordering is defined in terms of a conceptual tree where each branch
represents a possible execution order. In addition to the tabular notation, a linear form of
TTCN is being developed for the exchange of test cases in machine-readable form. The
ASN.1 notation can also be used for certain aspects of test descriptions.

When the need for a notation for OSI test cases arose around 1985, the responsible
standardization subcommittee was not ready to adopt one of the developping FDT's for this
purpose, which in the author's opinion would have been a reasonable choice. Instead, a new
language TTCN was developed, which seems in many respects quite "ad hoc". Its
semantics is defined informally. In order to formally relate the defined test cases to the
corresponding protocol specification, a definition of its semantics in terms of one of the
FDT's would be desirable.

3.5. Object-oriented specifications

In the OSI standardization work on management of distributed systems and "Open
Distributed Processing" (ODP), object-oriented description models are being used. For this
purpose, two extensions of the ASN.1 notation are of particular interest:

(a) The notation for "remote operations" (ROSE) [OSI RO] which is used to define the
operations which are provided by an object and can be invoked by other (remote) objects.

(b) A notation for defining object classes [OSI MO] including the concepts of object
attributes and inheritance of properties among classes.

ASN.1, TTCN, and the notations for objects have in common that they were developed by
standardization committees that felt the need for a formalized notation in relation with their
main task, namely the development of a particular protocol standard, or sets of standards.
While the syntax of these notations is defined in a formal manner, the semantics of the
language constructs are described informally, sometimes not very precisely [Kest 89].

3.6. Other developments

Independently from the standardization area, formal protocol specification are sometimes
used in the industrial sector. In many cases, the existing formal specification of protocol
standards are used for protocol implementations. In other cases, non-standard protocols are
developed using a formal specification language. In certain cases, one of the standardized
FDT's is used, in other cases certain in-house languages [Schu 80, Holz 88].

In the FDT context, ongoing research centers around the semi-formal specification
languages ASN.1 and TTCN, and the FDT's Estelle, LOTOS and SDL. Main issues are the
relation between the semi-formal languages with the FDT's, and their use for the formal
specification of the protocols and services. Based on experience with the different FDT's, it
is also expected that some pragmatic decision on the use within OSI of one or the other
FDT will be made.

In the meantime, certain researchers propose improvements to the existing, standardized
FDT's. Such proposals include for instance the introduction of rendezvous interactions to
Estelle together with certain simplifications concerning parallel processes [Cour 88], the
introduction of abbreviated notations for defining common data stuctures, such as
enumerations, records and arrays, in LOTOS [Scol 87], and the extension of SDL to handle

non-determinism and separate input queues [Orav 88]. It is not clear what impact these
proposals will have on the use of the respective FDT's.

4. Difficulties with using FDT's in practice

As mentioned earlier, the use of FDT's so far has been quite limited. The discussion of this
section is intended to provide a better understanding of how successful the use of FDT's
has been to date, and what the reasons are that have limited their application.

4.1. How successful are the FDT's ?

It is not clear what is the best measure to determine the success of a specification language,
in particular for a specification language intended for describing standards. The following
points, each, shed some light on the success of the FDT's described in Section 2.3. The
order in the list does not necessarily reflect the importance of these points.

(1) Selection of one FDT for use in the OSI area: The standardization committees have not
(yet) agreed to give preference to one of the three FDT's. This complicates their application
to OSI standards; the possibility of having to support several FDT's reduces their value.

(2) Application to the description of standards: The number of formal specifications of OSI
standards developed by standard committees is very limited. The application of the FDT's
to the OSI Application layer protocols (layer 7) presents the problem that ASN.1 is used in
these standards and no translation between ASN.1 and the FDT's has been defined within
the standardization community, although such translations have been proposed by the
research community. Most existing FDT specifications have been developed by research
groups, including those groups that were involved in the development of the FDT's.
However, these specifications are often incomplete, and have not necessarily been checked
for consistency with the (informal) protocol standard.

(3) Use during standard development: The advantage of using an FDT during the design of
a new protocol standard has been pointed out by the FDT developers. For the development
of the OSI protocols of layers 2 through 6, the FDT's could not be used because when these
protocols were developed, the FDT's were not completely defined. Now that they are
defined, they are still not much used for the new standards that are presently developed for
the OSI Application layer. As mentioned in Section 3, other ad hoc languages are mainly
used instead.

(4) Support tools: It has sometimes been argued that a new language is not accepted by the
community unless good support tools (e.g. compilers) are available, and that good support
tools are only developed once the language has many users, thus justifying the investment
in the tool development; a chicken-and-egg problem. Although few professional support
tools are now commercially available for FDT's, there are a good number of tools that were
developed in the research environment and which are sufficiently well designed and
implemented to be suitable for real protocol development projects, in particular for the
creation of specifications, their validation and implementation (see [Boch 87c] for a
survey).

(5) Application of tools to protocol development: As FDT's were not used in the
development of OSI standards, FDT tools for protocol design validation could not be used
directly. However, certain FSM-based validation tools were successfully used for
debugging the transition tables of several OSI protocol standards, including the Transport
and Session. Certain implementation tools based on Estelle (and some of its precursors)
were used for obtaining implementations of OSI protocols (including Transport, Session
and FTAM) from formal specifications which were developed partly outside the
standardization committees.

(6) Stability of language: As mentioned in Section 3.6, certain changes have been proposed
to the FDT's. Nevertheless, it seems that the FDT's cover essentially the requirements for
communication protocol and service specifications [Brui 87, Boch 90]. However, for use
with the OSI Application layer protocols, their relation with the data structures of ASN.1
and the object-oriented concepts used for these protocols must be clarified.

(7) Awareness about language: It seems that the members of OSI standardization
committees and many practitioners in the field of communication protocols are aware of
the existance of the FDT's, but few are enough familiar with them in order to use them.
Many people find them hard to understand. It is to be noted that, in contrast to ASN.1 and
the object-oriented notations, the FDT's were developed by standardization subcommittees
which had only limited contact with those groups working on protocol standards; this
makes their acceptance more difficult.

Overall, the above points seem to indicate that the FDT's are not well accepted. It is hoped
that further experience with the use of FDT's will make them more acceptable.

4.2. Factors influencing the use of formal methods

In view of promoting their use, it is important to understand what the reasons for the low
acceptance are. We believe that the following factors have a strong impact on the
acceptance of formal methods in the area of protocol development, and similarly in the
more general context of software engineering:

(1) User training: Assuming interest to learn a new specification language, it is important to
provide adequate learning material. Tutorials for Estelle and LOTOS have only been
available recently. Most complete example specifications of OSI protocols have been
considered difficult to understand by the layperson, while some of the pedagogical
examples, e.g. [FDT GL], have been considered irrelevant.

(2) Intuitive language features: It is very useful if the basic language features are easily
understandable by the layperson. Also the use of graphic representations facilitates the
initial acceptance of the language because of its intuitive flavor, especially for smaller
specifications (although graphics often becomes cumbersome for larger specifications).
Some examples of such features are FSM diagrams, entity-relationship diagrams for
describing database structures, and inheritance relations in object-oriented languages.
Graphic representations in SDL and the table-oriented structure of TTCN also provide an
easy initial access to these languages.

(3) Relation between formal and informal specifications: Even the best formal specification
will not replace an informal description of the specified system. The informal description
will probably always remain the easier part to understand by the (human) designer and
implementor. A straightforward relation between the informal and formal specifications
will provide for easy cross-referencing between the two descriptions and promote the
integration of the information provided by the two descriptions.

(4) Wide applicability: The FDT's seem to be applicable to other areas, in addition to the
area of communication protocols; however, it is not clear how easily they can be adapted
for writing object-oriented specifications. A wide applicability is an advantage, since the
costs for the development of support tools could be shared for a wide user community.

(5) Simple tools: Corresponding to intuitive language features (point (2) above), the
functions provided by support tools should be intuitively easy to understand. In addition, it
seems that the provision of a simple tool, possibly restricted in its functions, is better than
the provision of a general tool which is difficult to use. For example, the reachability
analysis tools based on FSM models have been found quite useful, although they are based
on a restricted model and are not able to provide in practice a full analysis including
interaction parameters.

(6) Integration into the general software/hardward development life cycle: Specifications
are not used alone; as explained in Section 2.1, they are used throughout the protocol
development cycle. Therefore the methods and tools related to formal specifications must
be integrated with the other methods and tools used in the general software CASE or
hardware CAD environment.

The following factors, specific to the area of OSI standardization, also seem to have a
impact on the acceptance of FDT's:

(7) Economic issues: Certain economic considerations discourage formal specifications.
For instance, certain standard specifications contain intended ambiguities, which would be
difficult to model formally. The existance of recognized formal specifications would also
reduce the required implementation effort, thus increasing competition.

(8) Time frame: If the formal specification of a protocol is developed after the standard,
and not at the same time, most implementation efforts (which occur when the standard
appears) can not take advantage of the formal specification; it comes too late.

(9) Test cases versus specification: There seems to be a certain trend in OSI to consider
standardized test cases (with associated verdicts) as a substitute for a non-ambiguous
specification.

5. Conclusions

In software engineering and in the development of distributed systems, there seems to be a
general trend towards a formalization during the requirements and design phases of system
development. In the area of OSI, various formalisms with limited scope (e.g. FSM models,
ASN.1 data structure definitions) are used for making the specifications of protocol
standards more precise. In addition, three so-called Formal Description Techniques (FDT's)
were developed, namely Estelle, LOTOS, and SDL, which can be used to provide complete
specifications of communication protocols.

After arousing initially much expectations during their development, FDT's are presently
not well accepted in the work of the standardization committees, and in the wider context

of industrial protocol development. A variety of factors, discussed above, can be put
forward to explain this situation. It seems that a larger acceptance of formal description
methods can only be obtained if these factors are considered. In summary, this means that
adequate user training should be provided, the concepts of the specification language
should be simple, the relation between the informal and formal specifications should be
easily made by the reader, the language should have wide applicability, the support tools
should be simple to use, and should be integrated to the general software or hardware
development environment.

REFERENCES

[ASN1 C] ISO IS 8825, "Information Processing - Open systems Interconnection - Basic
 Encoding Rules for Abstract Syntax Notation One (ASN.1).

[ASN1] ISO IS 8824, "Information Processing - Open systems Interconnection -
 Specification of Abstract Syntax Notation One (ASN.1).

[Boch 87c] G.v.Bochmann, "Usage of protocol development tools: the results of a
 survey" (invited paper), 7-th IFIP Symposium on Protocol Specification, Testing
 and Verification, Zurich, May 1987.

[Boch 88h] Gregor v. Bochmann, Alain Finkel, "Impact of queued interaction on
protocol specification and verification", Proc. Intern. Symp. Interoperable Inf.
Systems (ISIIS), Nov. 1988, Tokyo, pp. 371-382.

[Boch 89d] G.v.Bochmann, "Protocol specification for OSI", to be published in
 Computer Networks and ISDN Systems.

[Boch 89h] G.v.Bochmann and M.Deslauriers, "Combining ASN1 support with the
 LOTOS language", Proc. IFIP Symp. on Protocol Specification, Testing and
 Verification XI, June 1989, North Holland Publ.

[Boch 90] G.v.Bochmann, "Specifications of a simplified Transport protocol
 using different formal description techniques", to be published in Computer
 Networks and ISDN Systems.

[Bolo 87] T.Bolognesi and E.Brinksma, "Introduction to the ISO Specification Language
 Lotos", Computer Networks and ISDN Systems, vol. 14, no. 1, pp.3, 1987.

[Brin 89] Protocol Specification, Testing and Verification IX, E.Brinksma et al. (eds.),
 North Holland Publ., 1989.

[Brui 87] The SPEC Consortium and J.Bruijning, "Evaluation and integration of
 specification languages", Computer Networks and ISDN Systems 13 (1987), pp.
 75-89.

[Budk 87] S.Budkowski and P.Dembinski, "An introduction to Estelle: a specification
 language for distributed systems", Computer Networks and ISDN Systems, vol.
 14, no. 1, pp.25, 1987.

[Cour 88] J.P.Courtiat, "Estelle*: a powerful dialect of Estelle for OSI protocol
 description", Proc. IFIP Symposium on Prot. Spec., Verif. and Testing, Atlantic
 City, 1988.

[Ehri 85] H.Ehrig and B.Mahr, Fundamentals of Algebraic Specifications 1, Springer
 Verlag, 1985.

[Eijk 89] P.H.J. van Eijk, et al., "The formal description technique LOTOS", North
 Holland Publ. 1989.

[Este 89] ISO IS9074 (1989) "Estelle: A formal description technique based on an
 extended state transition model".

[FDT GL] ISO Tech. Report, Guidelines for the use of formal description techniques
for OSI specifications, 1989.

[Holz 88] G.J. Holzmann, "An Improved Protocol Reachability Analysis Technique",
 Software-Practice and Experience, Vol. 18 No. 2, February 1988, pp. 137-161.

[Kest 89] S.Kesti and K.Ronka, "Use and applicability of ASN.1", Proc. 2-nd Int.
 Workshop on Protocol Test Systems, Berlin, Oct. 1989 (North Holland Publ.).

[Knig 88] K.G.Knightson, T.Knowles and J.Larmouth, Standards for Open Systems
 Interconnection, McGraw-Hill, 1988.

[Loto 89] ISO IS8807 (1989), "LOTOS: a formal description technique".

[Miln 80] R.Milner, "A calculus of communicating systems", Lecture Notes in CS, No.
 92, Springer Verlag, 1980.

[OSI 83] Special issue on Open Systems Interworking, Proc. of the IEEE, Dec. 1983.

[OSI C3] ISO DP 9646-3, Information Processing Systems - Open Systems
Interconnection - Conformance Testing Methodology and Framework - Part 3: The
Tree and Tabular Combined Notation (TTCN).

[OSI MO] ISO/IEC JTC1/SC6 N5402 "Guidelines for the definition of managed objects"
 Draft 1989).

[OSI RO] ISO IS 9072, Remote Operations.

[Orav 88] F.Orava, "Formal semantics of SDL specifications", Proc. IFIP Symp. on
 Protocol Specification, Testing and Verification VIII, North Holland Publ.
1988.

[Parn 77] D. Parnas, "The use of precise specifications in the development of software",
 in Proc. IFIP Congress 1977, pp.861-867.

[SDL 87] CCITT SG XI, Recommendation Z.100 (1987)

[Sara 86] R.Sarraco, Proc. IFIP Congress 1986, Dublin.

[Sara 87] R.Sarraco and P.A.J.Tilanus, "CCITT SDL: Overview of the language and its
 applications", Computer Network and ISDN Systems, 13 (1987), pp. 65-74.

[Schu 80] G.D.Schultz, D.B.Rose, C.H.West, and J.P.Gray, "Executable description
 and validation of SNA", IEEE Trans. COM-28, no.4 (April 1980), pp.661-677.

[Scol 87] ISO 97/21 N1540, "Potential enhancements to Lotos", 1986.

[TSE 88] "Special Issue on Tools for Computer Communication Systems", IEEE Tr.
 Software Engineering, Vol. 14, March 1988.

[Viss 86] C.Vissers, "Formal description techniques for OSI", Proc. IFIP Congress
 1986, Dublin.

[Vuon 90] Formal Description Techniques (FORTE '89), S.Vuong (ed.), North
 Holland Publ., 1990.

