
Adding performance aspects to specification languages

 Gregor v. Bochmann and Jean Vaucher
Departement d'Informatique et RO, Universite de Montreal,

CP 6128, Station "A", Montr�al,
Canada H3C 3J7

Email: Bochmann@videx.udem.cdn

January 1988

Adding performance aspects to specification languages6

 Gregor v. Bochmann and Jean Vaucher
Departement d'Informatique et RO,

Universite de Montreal, Canada

Email: Bochmann@videx.udem.cdn

 Abstract

In the area of communication protocol design, so-called Formal
Description Techniques (FDTs) are used to describe the behavior of the
system components executing the communication protocol. Such formal
specifications can be executed in a simulated mode in order to detect any
remaining logical errors in the specification. If a specification language is
extended with performance primitives which allow the description of such
performance aspects as time delays, resource usage and stochastic
behaviour, then simulation can be the basis for the performance evaluation
of a complete system. The paper discusses this combination of logical and
performance aspects in a single specification, and the choice of appropriate
language elements for expressing the performance aspects. Such language
elements are presented for several FDTs, namely Estelle, SDL and Lotos.
Emphasis is placed on the justification of the chosen language elements and
their relation with other well-known performance models, such Markov
models, queuing networks, timed Petri nets and simulation.

1. Introduction

In the area of communication protocol design, so-called Formal Description Techniques
(FDTs) are used to describe the behavior of systems. Estelle [Este 87], Lotos [Loto87]
and SDL [SDL�87] are formal specification languages which have been proposed as
standards for the specification of OSI protocols and services [NBS 85]. SDL has also
been used for the description of switching systems. The basic goal of such formal
specifications is to ensure the correct specification and implementation of communication
protocols. The formal nature of the specifications allows the application of partially
automated methods for the validation of the specifications, for the implementation process,
and for the systematic testing of resulting implementations [Boch 87c].

These formal specifications are intended to describe precisely the "logical" behaviour of
systems, that is, the possible order of interactions and allowed parameter values of these.
Most properties relating to performance aspects are, however, not addressed. A complete
specification system should also address these questions. What is the maximum

6 The work described here was funded by the Department of Communication of Canada
through research contract OST83-0031 and by the Natural Sciences and Engineering
Research Council Canada. Part of the notation described here was presented in 1984 to
the ISO TC97/SC21/WG1 ad hoc group on FDT.

throughput of a link, what is the end-to-end delay on transmission, what degradation of
service is introduced by a given error rate, etc...? Furthermore, protocols usually have
many parameters which have to be tuned for optimum performance, such as duration of
time-outs or number of buffers (window size) to be used. For these reasons, it would be
useful to have operational specifications (simulations) that would allow the real-time
behaviour to be measured. To do this, a specification language must include performance
aspects which allow the description of such things as time delays, resource usage and
stochastic behaviour.

The approach taken in this paper is to extend a given specification in order to address the
performance question. This is in contrast to most traditional approaches where a new
performance model is created in a different formalism to deal with performance issues. In
that case, some of the "logical" properties of the system are often lost.

Estelle and SDL have many similarities, in particular, both use the concepts of Finite State
Machines (FSM) to describe systems, but they also have important differences, most of
which are related to the way system components can be created and interconnected. These
languages allow certain performance elements to be specified. First, they have some basic
means for talking about time. In the case of SDL, a global TIME variable is accessible
and can be used for decisions and updating of variables. In the case of Estelle, so-called
"delayed" transitions with minimum and maximum time limits can be defined. However,
these primitives are insufficient for meaningful simulations.

The paper discusses the choice of appropriate language elements for expressing
performance. Such language elements are presented for several FDT's, namely Estelle,
SDL and Lotos. Emphasis is placed on the justification of the chosen language elements
and their relation with other well-known performance models, such Markov models,
queuing networks, timed Petri nets and simulation.The selection of language features for
performance specification follows similar objectives as the selection of programming
language features in general. On the one hand, one wants a small set of primitives with
simple semantics (meaning) and easily interpreted, and on the other hand, one needs
sufficient features to express the real system properties which are to be modelled. One
therefore has to find the right compromise between these two objectives.

The paper is organized as follows. First, classical performance models are reviewed to
bring out concepts useful in modelling performance. Then, the finite state machine model
which serves as the basis for the existing specification languages is explained and two
possible extensions to handle time duration are considered. Next, a complete set of
performance primitives is proposed in the framework of an extension to Estelle. The use
of these primitives is illustrated by the formal description of a simple network and its
protocol. This is followed by a discussion of the application of similar primitives in the
context of SDL and Lotos. We close with some comments on our experience with the use
of an extended formal specification language.

2. Classical performance models

Models are often used to study the behaviour and performance of complex dynamic
systems. For simple idealized systems, analytical models are appropriate; for more
complex situations, one must resort to simulation. These models indicate what language
features are useful to describe performance aspects in a formal specification language.

2.1 Analytical models

The following are classical models for that have been used to describe the performance of
systems:

a) Markov models and probabilistic finite state machines (FSM):

In such models, a system is characterized by a set of possible states in which the
system can be and probabilistic state transitions that lead from state to state. Solving
the model gives steady state probabilities of being in any given state.

b) Queuing models:

These models are particularly suited for the description of the performance aspects
resulting from shared resources. A specified system is characterized by a number of
resources which process service requests. The execution of each service request
takes a certain amount of time and each resource processes only one request at a
time. When a resource is busy, further requests wait in a queue associated with the
resource. Arrival of new requests and the service times may have random
distributions.

c) Models with real time constraints:

Some real-time systems require guaranteed response times for certain requests. To
achieve this, these systems include so-called "time-outs" or timers. When started,
timers will invoke some predefined action after a given "time-out" period, unless
they are stopped by some other system activity. A simple model for this kind of
behaviour is the "timed" Petri net [Merl 86] where the execution time for each
operation has a minimum and maximum bound.

Each of performance models described above has a semantic which allows analytical
modelling, at least for simple system descriptions. However, with real systems, often an
exact analytical solution is not possible and simulation studies are required to obtain
performance data.

2.2. Discrete event simulation

A simulation imitates system behaviour and system performance is estimated by
measurements on the model. In computer simulation, the elements of a real system are
represented by subroutines and records in a program in such a way that running the
program produces results analogous to the behaviour of the system. In discrete event
simulation, the activity of the entities in the system is viewed as a sequence of events (or
instantaneous changes of state) separated by intervals of time. For instance, the loading of
a truck would be modelled by a "start-load" event followed by a "stop-load" event after a
delay representing the duration of the action. Parallel activity is imitated by interleaving
the events of various entities and executing them in chronological order.

Simulation can be used to model systems of arbitrary complexity and size. However,
simulation is expensive and simulation methods only provide approximate solutions (the

more precise a solution is sought, the more computer time is required). Often, simulation
is not used to get precise estimates of system performance; rather simulation is used to get
understanding of the system and to identify bottle-necks. Once a system is understood, the
simulation can be discarded and performance obtained from simple analytical models of
the identified bottle-necks.

GPSS, one of the oldest simulation languages, introduced many concepts that are useful
in modelling [Schr 74]. GPSS conceives reality in terms of transactions (processes)
moving through a system and requesting the use of resources. The passage of time is
modelled by an advance dt primitive. Transaction use a seize operation to try and obtain
the resources they need and they are blocked if the resources are busy. They hold them for
a given service time and release them to be used by the next transaction. GPSS also has
facilities to analyze performance: statistics pertaining to all resources are gathered
automatically and transit times through various parts of the systems can be measured. The
concepts of processes, resources and time advance are all very pertinent to protocol
specification languages.

3. Finite State Machines

Several formal description techniques are based on finite state machines (FSM). We
consider here a FSM with one or several input and output streams, as shown in Figure 1.
Each FSM is characterized by a finite set of internal states and sets of possible inputs or
outputs for each stream. Two kinds of transitions are considered: (a) An input transition
consumes a particular input interaction from a particular input stream; it can only be
executed if the given kind of input is at the head of the given stream and the machine is in
a particular state. (b) A spontaneous transition consumes no input; it can be executed if
the machine is in a particular state. Both kinds of transitions lead to a new state and may
produce output over one or several output streams.

Figure 1b shows possible transitions for the machine of Figure 1a. There are three
possible states S1, S2 and S3. In the notation used here, "A:IN / B:OUT" means that a
transition requires the input "A" to be present at the head of the input stream "IN" and as a
result of the transition, "B" will be output on stream "OUT". In the example, there are 2
input streams IN1 and IN2 and one OUTput stream. The transition from S1 to S2 as well
as that from S3 back to S1 both require "a" to be present at the head of "IN1". The
transition from S2 to S1 requires a "b" on stream "IN2". The transition from S2 to S3 is
spontaneous, consuming no input. The transition from S1 to S2 produces "b" on the
output stream; the one from S2 to S1 produces an "a" and none of the other transitions
produces any output.

A set of FSMs becomes a system of interconnected FSMs if some of the output streams
are identified or connected with some of the input streams.

In the specification language Estelle, the machine of Figure 1 would be described as a
module:

module M1_type;
ip In1, In2, Out ;
state S1, S2, S3 ;

trans from S1 to S2 when IN1 . a
begin output OUT.b end;

trans from S2 to S1 when IN2 . b ;

trans from S2 to S3
begin output OUT.a end;

trans from S3 to S1 when IN1 . a
begin end ;

end;

First, the possible states and the interaction points (streams) are declared. Each transition
is described by a trans statement with from and to clauses indicating initial and final
states. A transition which is triggered by availability of input has a when clause;
instantaneous transitions have none. Finally, output statements specify the creation of
messages. The notation for IO is "interaction_point . message". The notation used
above is based on that of Estelle and it will be extended to include performance aspects.

A set of FSMs becomes a system of interconnected FSMs if some of the output streams
are identified or connected with some of the input streams. For example, this would occur
if the output stream OUT of M1 in Figure 2 were to be connected to the input of another
FSM. Then an output as a result of a transition in M1 could trigger a further transition in
the connected machine. A possible notation for the creation and interconnection of the
FSMs in the example could be:

M1, M2 : M1_type;

connect M1. OUT to M2.In2 ;
...etc...

3.1 Performance models for interconnected FSMs:

The first step in specifying performance is representing the passage of time. There seems
to be basically two ways in which an FSM model can be extended to do this: with Markov
transitions or lengthy transitions.

(1) Markov performance model for FSMs:

Here a transition is instantaneous but some time elapses between the instant when it could
occur and that when it does occur. For each transition t of the machine, a distribution
function Pt (T) defines the probability that the machine does this transition within T time
units after the transition has become possible, and assuming that no other transition has
been executed.

(2) Transition execution performance model:

Here, transitions start as soon as possible. However, a transition takes some amount of
time and the execution of one blocks the execution of others. To deal with the case when
several transitions become possible at the same time, each transition is assigned a

probability and one of the possible transitions is selected at random according to the
probabilities. The transition execution time may be a random variable, where a distribution
function St (T) indicates the probability that the execution of the transition t will terminate
within T units of time.

The first model is conceptually simpler. The second model has the advantage that it can
be used to naturally model shared resources with FIFO queuing of requests. The requests
wait in the input stream until they are processed, and the processing is modelled by the
transition and its execution time. Only one request (transition) is processed at a time by
any given FSM. Various other performance models have been described in the literature,
e.g. [Moll82] and [Krit 86].

4. Performance models for Estelle/SDL

Estelle and SDL can be considered as extensions of the "interconnected FSM model"
described previously. The extensions are related to the definition of input/output
parameters, local variables (in addition to the STATE variable which identifies the FSM
state), data types and procedures/functions for defining the transition operations in more
detail. The two languages have many similarities, in particular the basic state transition
model, but also important differences, most of which are related to the way component
modules are created and interconnected.

4.1. An example

To illustrate the use of performance description and motivate the proposed extensions, we
shall consider the specification of the simple system shown in Figure 2. A formal
description of this system is given figure 3. In the system, several users are inter-
connected via a Network Service Provider. The users send messages at random intervals
to other users. Several typical situations will be considered such as receiving messages
and responding with acknowledgements as well as retransmitting messages if no
acknowledgement arrives within a specified time-out period. The description will express
transmission delays, the possibility of message loss and the maximum throughput capacity
of the user links.

In order to focus on the language aspects relevant to the present discussion, many details
in both the model and the description are omitted: the messages have neither headers nor
content, message recipients are chosen at random and some declarations and initializations
will be missing. We describe first the aspects of the specification which do not concern
performance. The performance aspects will be discussed later when the relevant
specification primitives are introduced.

The specification (figure 3) start by declaring the message types (line 1) that can be
exchanged over channels (line 2) between the modules in the system. Essentially, the
system will be composed of one "NS_provider" module whose description starts at line 3
and several "users" described in lines 11-19.
The actual creation of the modules and their connection is not shown. During this phase,
the relevant "interaction points" or ip defined at lines 4 and 12 will be linked with
statements such as:

connect U1.Inq to Network.NS_out [1] ;
connect U1.Outq to Network.NS_in [1] ;

The NS_provider module defines three transitions (lines 8,9,10). The first two deal with
reception of a message from a user over a NS_in port: in the first case (line 8), the
message is sent out over the network, in the second case (line 9), nothing is sent out and
there is loss of the message. The expression in the when clause of a transition serves 2
purposes. First, it identifies the stream and message type that will trigger the transaction.
Secondly, it allows extraction of information from the message into local variables. For
the transactions considered, addr will be assigned the ip address on which the message
was received and kind will be set to the actual parameter of the message. In Prolog
parlance, one could consider the operation as a unification between the message and the
when clause. The final transition (line 10) passes on a received message to the correct
user.

The user module defines two states basic and waiting (line 13) and four transitions (lines
16,17,18,19). The machine is in the waiting state after it has sent out a message and until
an acknowledgement is received; otherwise, it is in the basic state. The first transition (line
16) handles the reception of unsolicited messages. These are acknowledged. The next
transition (line 17) generates messages spontaneously. The third transition treats
acknowledgements returning to the basic state. The final transition specifies that messages
are retransmitted if no acknowledgement is received within a time-out period.

4.2. Performance parameters for Estelle specifications

This section defines some extensions to Estelle for defining performance parameters of
specifications. These extensions are mainly based on the transition execution performance
model described earlier.

4.2.1. Resources

An instance of an Estelle module is considered a resource. Input interactions arriving at an
interaction point of the module enter a "common" input queue or an individual queue
associated with the particular interaction point. The selection of the next transition to be
executed is assumed to take no time. During the execution of a transition the module
resource is held and no other transition may be performed by the same module. The
outputs generated by the transition are available at the end of the transition. The execution
time of a transition is indicated by a HOLD clause (extension of Estelle) of the form

 hold for <expression>

where <expression> is an real value expression in time units.

For certain applications, it was found convenient to introduce the concept of declared
resources. In this case the HOLD clause of the transition has the form

 hold <resource> for <expression>

and <resource> is a variable access expression referring to a variable of type resource.
The performance semantics of this clause is as follows: the transition has an additional

enabling condition, which requires that the <resource> must be free. If and when the
execution of the transition is decided, the transition is executed in zero time and the
outputs are produced; however, the resource remains occupied the amount of time
specified by <expression>. It is therefore possible that immediately after the execution of
the transition, another transition associated with another resource could execute, while a
transition associated with the same resource must wait.

For instance, the Network module defined in Figure 3 receives input packets over a
number of interaction points. In order to model the maximum throughput available for a
given interaction point, a corresponding resource (IP_resource[i]) is declared within the
module (line 6) and the input transitions receiving a packet hold the corresponding
resource for the time proportional to the length of the packet received (lines 8,9). The
reception of packets over different interaction points may proceed in parallel.

If the resource exists in a certain number of identical units, it may be convenient to
indicate for a given transition how many units of the resource are required for the
execution of that transition. This may be expressed by the notation

 hold <number of units> units <resource> for <expression>.

4.2.2. Transition probabilities

As discussed in Section 3.1, it is sometimes necessary to indicate with which probability
the different transitions which are possible in a given system state will be executed. Due to
the extensions that Estelle provides in respect to the simple FSM model, a transition, in
Estelle, has parameters: they include the parameters of the input (if any) and the present
values of the local variables. These transition parameters may influence whether the
transition is possible. In addition, if executed, they may also influence the values of output
parameters and updated variables. The present (FSM) STATE and available kinds of
inputs at the heads of the input streams do not completely determine which transitions are
possible. Therefore it is not clear how transition execution probabilities (as in the
transition execution performance model) can be associated with the transitions in a
straightforward manner.

Since a given transition may "compete" with different sets of other transitions depending
on the available inputs and the module state, its probability of execution may be specified
indirectly by assigning a WEIGHT to the transition through a clause of the form

weight (<expression>)

where <expression> is a real value expression. The semantics of this clause is that the
probability of selection of this transition for a particular system state is equal to the value
of this <expression> divided by the sum of the weights of all transitions enabled in that
system state.

In the example, weight clauses (lines 8,9) are used to indicate that on the average one
message out of 1000 is lost .

4.2.3. Interaction queues with transmission delays

For modelling the transmission delays in telecommunication networks, it is convenient to
introduce transmission delays for input/output streams. A similar approach is often taken
in reachability analysis for protocol design validation where ad hoc models are used for
the communication medium between the two communicating protocol entities. Properties
such as FIFO discipline, and transmission error and loss possibilities are important not
only for the performance but also for the logical aspects of protocol operation.

The basic performance parameters of a transmission medium are the delay and maximum
throughput. The latter can be modelled by associating a resource with the input to the
medium (sect 4.2.1.). Its service time will limit the number of transmission requests that
can be handled. For the description of transmission delays, an extension to Estelle is
introduced by which additional properties can be defined for the input queue associated
with a given interaction point. The syntax of the interaction point declaration becomes

<interaction point> <properties> ":" <interaction point type>

where <properties> can be of the forms

delay <expression>
or

fifo delay <expression>.

The meaning of the first form is that an output generated for the given interaction point is
delayed by the amount specified by <expression> before it is entered into the input queue
of the interaction point. In the case of a constant <expression> the implicit FIFO property
of the Estelle queues remain valid. However, if the <expression> contains random
distribution functions, the order of arrival of interactions in the queue may be different
from the order in which the outputs where generated. In other words, some interactions
may overtake others. When the second form of the <properties> is used the delays will be
lengthened, if necessary, in order to maintain FIFO order.

In the example of figure 3, transmission delays are modelled by using a FIFO
transit_queue. Incoming messages are not sent out immediately to their receivers; rather,
they are first placed in the transit_queue which has been declared to operate in FIFO mode
with normally distributed random delays (line 5). Only on exit from the transit_queue are
the messages placed on outgoing streams through the transition of line 10.

 4.2.4. The DELAY clause

The DELAY clause for spontaneous transitions is already defined in Estelle. The proposal
here is slightly different. It is assorted with an enabling condition of the form:

provided <enabling_condition>
delay <expression>

where <expression> is a real value expression in time units. The semantics of this clause
is as follows: the transition is scheduled for execution when its <enabling_condition> has
been satisfied for at least <expression> time (if transitions are executed during this time
interval, the condition must remain true in between the transition executions). An example

is shown at line 17 for the transition which generates the messages coming into the system
and at line 19 with a constant delay to model a time-out.

 4.2.5. Use of random distribution functions

It is important to note that probability distributions may be used for describing non-
deterministic behavior of the specified module. The simplest notation for such
distributions seems to be the use of pseudo-random functions that return (random) values
which have a given distribution. For simulation studies, it is important to allow for the
use of independent streams of random numbers. Random functions are used at line 5 to
specify transmission delays and at line 17 to compute intervals between spontaneous
incoming messages.

 4.3. Performance parameters in SDL

As mentioned above, SDL and Estelle are similar in many aspects. The following
discussion indicates to what extent the same performance concepts can be used in the
context of SDL.

Resources: An SDL process instance corresponds to a module instance in Estelle. An
SDL transition corresponds to all Estelle transitions for a given STATE and type of input.
Within an SDL transition, different cases (possibly depending on input parameters) may
be considered. Like in Estelle, a resource may be associated with a process which can be
held during a transition. However, the declaration of multiple resources seems to be less
useful, since an SDL process has only a single common input queue (while an Estelle
module instance may have individual input queues for all its interaction points). Therefore
the parallelism in the system of Figure 3 cannot be directly obtained in the SDL context.

Transition probabilities: SDL has no possibility for implicit non-determinism,
and therefore there is always at most one SDL transition to be executed. Different
probabilities for different branches of execution can, however, be introduced by defining
decisions which may depend on random functions, or which are not completely defined,
leaving thus room for different decision outcomes. This is similar to sequential
programming languages where the conditions used in IF or CASE statements may not be
deterministic. Instead of introducing transition probabilities, like in Estelle, it may
therefore be useful to introduce the possibility of non-deterministic decisions with
probabilities for each of the possible decision outcomes.

Transmission delays: The same concept as for Estelle could be used.

DELAY clause: SDL does not have such a construct. Instead, as mentioned
previously, a global TIME variable can be read, and its value can be used to influence the
system behavior.

5. Performance parameters in Lotos/CCS

5.1. Short introduction to Lotos

In contrast to SDL and Estelle, Lotos uses rendezvous interactions. The rules for the
sequential ordering of interactions in Lotos are largely based on CCS [Miln 80]; however,
more than two processes may participate in a single rendezvous interaction. In Lotos,
there are no implicit queues associated with interaction points. The Lotos "gates" play the
role of interaction points, and an interaction at a gate can only be executed if all Lotos
"processes" coupled to the gate are ready for that interaction. For example the process
simple defined below uses the gates a, b, x, and y for its interactions.

 process simple [a, b, c, x, y] : noexit :=
 y ; (a ; suite_a [x, y]
 [] b ; suite_b [x, y]
 [] i ; suite_c [x, y]
 [] i ; suite_d [x, y]
 [] i ; x ; simple [a, b, x, y])
 endprocess

The body of this process definition indicates that the simple process will first execute the
interaction y and then may either execute in rendezvous with its environment the
interactions a or b, in which cases it will continue with the behavior defined by suite_a or
suite_b, respectively (the "suite" behaviors will only involve the visible interactions x and
y), or it will make an internal transition, indicated the action i. In the case that it choses the
last alternative, the process will execute the interaction x and thereafter start again with the
interaction y.

Lotos also has facilities for defining data types as well as process and interaction
parameters. Algebraic data type definitions can be written, similar to [ACT ONE]. The
notation for interaction parameters is similar to CSP [Hoar 78] and not further explained
here.

5.2. Performance parameters

It seems only two performance concepts are sufficient in Lotos to express most practical
performance questions. These concepts correspond to the execution time of transitions and
transition probabilities. The following notation could be used. The notation

wait <expression>

can be associated with an internal action "i" and means that the interaction requires the time
period specified by the <expression>. A similar notation has also been used in [Quem 87].
The notation

weight <expression>

can be associated with an internal action which introduces an alternative of a choice. The
<expression> defines the weight of that alternative (similar as described in Section 4.2.2)
among all those alternatives that start with an internal action "i". For example the behavior
expression

 (a; suite_a [x, y]
 [] b; i wait 50; suite_b [x, y]

 [] i weight 2; suite_c [x, y]
 [] i weight 1; suite_d [x, y]
 [] i weight 1 wait 100; x ; simple [a, b, x, y])

defines a process which may participate in actions a or b (depending on its environment)
or may choose one of the last three alternatives. Among the cases that one of the latter are
chosen, suite-c will be executed with probability 1/2, suite_d and suite_e with probability
1/4. In case that the last alternative is chosen, a delay of 100 units is introduced before the
execution of the simple process starts again. A delay is also introduced if action b is
executed, such that suite_b can only start 50 time units later. In the other cases, the
subsequent actions would start immediately provided, however, that the environment of
the process does not introduce additional delays.

These basic performance primitives can be used, together with the normal features of the
Lotos language, to construct processes that behave like resources with queuing delays or
like communication media, as shown below. Therefore the above basic performance
features seem to suffice for most typical applications.

A resource which remains reserved for t time units can be written as a process of the form

 process resource [G] : noexit :=
 G ; i wait t ; resource [G] endprocess

which participates in the action G, then waits t time units and starts again. It can be used to
limit the speed of execution of a very fast process executing interactions at the gate a by
invoking the resource process in parallel, coupled with the former. This can be written as

 very_fast_process [a] || resource [a]

A transmission medium with random transmission delay can be written as

 process medium [In, Out] : noexit :=
 hide Middle in
 delay [In, Middle] || queue [Middle, Out]
 endprocess

where queue is defined as a normal FIFO queue; In and Out are the gates where the
messages are entered into the medium and received, respectively. The gate Middle is
externally not visible and is used to transfer the messages from the process delay to the
process queue. The latter keeps the messages in FIFO order until the user gets them. The
process delay may be defined as follows

 process delay [In, Out] : noexit :=
 delay_a_message [In, Out] ||| delay [In, Out]
 where process delay_a_message [In, Out] : noexit :=
 In ?x:message ; i wait <expression> ;
 Out !x; stop endprocess
 endprocess

This definition shows that a delay_a_message process instance is available for each
message that is entered. The process waits a specified delay and then presents it at its Out

gate. This gate is in fact the Middle gate through which the message is entered into the
queue process and available for the user.

In the case that the medium loses messages occasionally, the delay process body could be
defined by the body

 In ?x:message ;
 ((i weight 99 wait <expression> ; Out !x)
 [] i weight 1 (* loss *))
 ; stop endprocess

5.3. The Network example

Using the concepts introduced in Section 5.2, it is not difficult to write a Lotos
specification of the Network example discussed in Section 4. Figure 4 gives the definition
of the user process and Figure 5 shows the interconnection of the different system parts,
similar to the structure given in Figure 2. This specification is believed to be equivalent to
the one given in Figure 3, not only concerning the logical behavior of the system, but also
for its performance aspects.

The definition of Figure 4 indicates that the user process remains in the basic state until a
normal message is output (first line of body definition). The second line of the definition
introduces a delay for this output to occur. In the basic state, messages that are not of type
"acknowledgement" are acknowledged. If the process receives an acknowledgement in the
waiting state, it goes back to the initial state; however, after a time-out delay it will send a
"retransmission" message.

6. Discussion

The performance concepts described above are closely related to the performance models
of simulation languages such as GPSS [Schr 74] and Simula [Dahl 71]. The concepts
have, however, been adapted to the particular context of the FDT's used for the
description of communication systems. Similar approaches can be used for adding
performance aspects to other specification languages.

 The characteristic feature of the performance extensions to the FDTs described here is the
possibility of combining the analysis of logical correctness of a specification with the
evaluation of its performance. A case study has been done for the OSI class 0/2/4
Transport protocol [Boch 87e]. The same Estelle specification of the protocol was used
for both the simulation and a semi-automatic implementation [Boch 87i]. For the
simulation studies, an Estelle compiler generated Pascal code that was linked to a
simulation package also written in Pascal [Vauch84b].

User processes and an underlying Network service similar (but more complex) to Figure 3
were also written in Estelle to provide an environment in which the Transport protocol
processes could be simulated. Simulation runs were compared to the real Transport
protocol running on our VAX-VMS environment, and all experimental results could be
reproduced. These simulations were useful for several reasons:

(a) Some errors in the specification (and therefore in the implementation) were found
and corrected.

(b) The simulation showed that the performance bottleneck was CPU usage; this had
not been expected.

(c) We could find optimal values for certain protocol parameters, like the number of
credits allowed for each user and some retransmission time-outs.

Our experience has shown that the extensions described here are both practical and useful.
The simulations helped to improve both the reliability and the performance of protocol
implementations.

�
7. References

[ACT ONE] H.Ehrig and B.Mahr, Fundamentals of Algebraic Specifications 1, Springer
Verlag, 1985.

[Boch 87c] G.v.Bochmann, "Usage of protocol development tools: the results of a
survey" (invited paper), 7-th IFIP Symposium on Protocol Specification,
Testing and Verification, Zurich, May 1987.

[Boch 87e] G.v.Bochmann, D.Ouimet and J.Vaucher, "Simulation for validating
performance and correctness of communication protocols", Tech. Report,
Department d'IRO, Universite de Montreal, 1987.

[Boch 87i] G.v.Bochmann, "Semi-automatic implementation of Transport and Session
protocols", Computer Standards and Interfaces 5 (1987), pp. 343-349.

[Dahl 71] O-J. Dahl, B. Myhrhaug and K. Nygaard, "SIMULA Common Base", Publ.
Norwegian Computing Center, Blindern, Oslo (1971).

[Este 87] ISO DIS9074 (1987) "Estelle: A formal description technique based on an
extended state transition model".

[Hoar 78] C.A.R. Hoare, "Communicating sequential processes", Comm. ACM 21, 8
(Aug. 1978), pp. 666-677.

[Krit 86] P.S.Kritzinger, "A Performance Model of the OSI Communications
Architecture", , IEEE Trans. on Communications, Vol.�Com-34, No.�6,
(June�1986), pp. 554-563.

[Loto 87] ISO DIS8807 (1987), "LOTOS: a formal description technique".

[Merl 76] P.M.Merlin and D.J.Farber, "Recoverability of communication protocols -
Implication of a theoretical study", IEEE Trans. on Communications,
Vol.�Com-24 (Sept. 1976), pp. 1036-1043.

[Miln 80] R.Milner, "A calculus of communicating systems", Lecture Notes in CS, No.
92, Springer Verlag, 1980.

[Moll 82] M.K. Molloy, "Performance analysis using stochastic Petri
Nets", IEEE Trans. on Computers, vol. C31, pp.913-917, 1982.

[Quem 87] J.Quemada and A. Fernandez, "Introduction of quantitative relative time into
Lotos", Proc. Specification, Testing and Verification of Communication
Protocols, VII (IFIP), North Holland Publ. 1987.

[SDL 87] CCITT SG XI, Recommendation Z.100 (1987)

[Schr 74] T.R.Schreiber, "Simulation using GPSS", Wiley & Sons (1974).

[Vauc 84b] J. Vaucher, "Process-oriented simulation in standard
Pascal", Proceedings of the Conference on Simulation
in Strongly Typed Languages, San Diego, February 1984.

[Viss 86] C.Vissers, "Formal description techniques for OSI", Proc. IFIP Congress
1986, Dublin.

 Figure 3: Simplified Network Service Specification

 To test and demonstrate Simulation extensions to FDT
 - Channels with delays
 - Spontaneous transitions
 - Resources and the Hold construct
 - Delay for random times in spontaneous transitions

Definition of channel and messages

1. type message_kind = (normal, retransmission, acknowledgement);

2. channel NSAP_primitives (provider, user);
by user, provider : MESSAGE (kind : message_kind);

Service provider module

3. module NS_provider;
4. ip

NS_in,
NS_out : array [N_address_type] of NSAP_primitives (provider);

5. internal ip
 transit_queue fifo delay normal(avg_transit, std_dev)
 : NSAP_primitives (user);
 6. var

IP_resource : array [N_address_type] of resource;
7. initialize

begin
IP_resource[1] := newresource (' User-1 channel',1);
...etc....etc...�

 end;

8. trans when NS_In [addr] . MESSAGE (kind)
weight 1000
hold IP_resource[addr] for K1 * message length

 begin
 output transit_queue . MESSAGE (kind)
 end;

9. trans when NS_In [addr] . MESSAGE (kind)
weight 1
hold IP_resource[addr] for K1 * message length

 begin (* loss *) end;

10. trans when transit_queue . MESSAGE (kind)
 begin
 output NS_Out [dest_address] . MESSAGE (kind)
 end;
 end NS_provider;

 USER DEFINITION: a module

11. module user;
12. ip Inq, Outq : NSAP_primitives (user);
13. state basic, waiting;

14. initialize to basic;

16. trans from basic to same
when Inq. MESSAGE (kind)

 begin if kind <> acknowledgement
then output Outq . MESSAGE (acknowledgement)

 end;

17. trans from basic to waiting
 provided true (* spontaneous *)
 delay uniform(a,b,U)

 begin
output Outq . MESSAGE (normal);

 end;

18. trans from waiting to basic
when Inq. MESSAGE (kind)
provided kind = acknowledgement

 begin end;

19. trans from waiting to same
provided true (* spontaneous *)
delay timeout
begin
output Outq . MESSAGE (retransmission);
end;

end user ;

process user [In, Out] : noexit :=
 ((basic [In, Out] |> Out !normal)
 || (i wait uniform (a,b,U); Out !normal))
 ; waiting [In, Out]

where process basic [In, Out] : noexit :=
 In ? m:message_type ;

([m <> acknowledgement] -> Out !acknowledgement
[] [m = acknowledgement] -> i)
basic [In, Out]

endprocess
endprocess

process waiting [In, Out] : noexit :=
 (In !acknowledgement ; user [In, Out])
[] (i wait timeout ; Out !retransmission ; waiting [In, Out])

endprocess

Figure 4: Specification of the User Process in LOTOS

