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Correspondence

Some Comments on "Transition-Oriented" Versus
"Structured" Specification of Distributed
Algorithms and Protocols

G. v. BOCHMANN AND J. P. VERJUS

Abstract-Formal description techniques (FDT's) are being devel-
oped for the specification of communication protocols and other dis-
tributed systems. Some of them (namely SDL and Estelle) are based on
an extended state transition model and promote a "transition-ori-
ented" specification style. Another one (namely Lotos) and most high-
level programming languages promote a style which is called "struc-
tured." The correspondence compares these two specification styles in
the framework of rendezvous interactions between different system
modules. The advantages of each of the two styles are discussed in re-
lation with an example of a virtual ring mutual exclusion protocol.
Transformation rules between the two approaches are given. An ex-
tension to the state transition oriented FDT's is also suggested in order
to allow for a structured specification style.

Index Terms-Distributed algorithms, Estelle, exception handling,
extended state machines, mutual exclusion, SDL, structured program-
ming.

I. INTRODUCTION
Formal description techniques (FDT) for the specification of

communication protocols and services are being developed by ISO
and CCITT to be used in the area of Open System- Interworking
[14], [3]. It is expected that these techniques could also be used as
specification language in other areas of application. One of the
FDT's, called Estelle [5], [13], uses a descriptive model based on
Pascal and the concept of finite state machines; a similar model is
also used by the CCITT specification language SDL [15] (for ref-
erences to related work, see for instance [1]). Using this FDT, a
system is described as consisting of a certain number of "mod-
ules," each specified as an extended state machine. The system
structure is defined by a (usually static) interconnection pattem,
and two interconnected modules may interact through the exchange
of "signals" (also called "interactions") which may include pa-
rameters. Originally, two options were foreseen in Estelle for the
interactions between two given modules: 1). rendezvous interac-
tion, where the "sending" module must wait until the "receiving"
module is ready for the reception of the signal, and 2) interaction
with queueing, where the signals generated by the sending module
are put into a (conceptually) infinite queue and-are received by the
"receiving" module in FIFO order as soon as it is ready. Only this
latter option is now provided in Estelle and SDL. Another FDT,
called Lotos [8], is based on CCS [9] and provides only rendezvous
as interaction primitive of the language.

At the same time, much research in the area of distributed sys-
tem specification methods is aimed at a better understanding of the
basic problems of distributed system design through the study of
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such language concepts as CSP [7] and CCS [9]. Other work con-
cems the systematic derivation of distributed algorithms from the
specification of requirements which is often given in a centralized
view (see for example [12] and [16]). In this kind of work, a dis-
tributed algorithm or protocol is often given in a style, usually
called "structured," which corresponds to structured programming
practice and its familiar nested, program structure, as supported by
most modem programming languages.,

The purpose of this correspondence is to compare two specifi-
cation styles which we call "transition-oriented" and "struc-
tured," respectively. The first is promoted by Estelle and other
state-machine oriented specification methods, where a specification
consists essentially of a list of possible state transitions. The sec-
ond style is related to "structured programming" with appropriate
facilities for specifying parallelism, as exemplified by languages
such as Ada@, CCS, or Lotos. For this comparison, we assume-the
original rendezvous option of Estelle, which provides an interpro-
cess communication semantics similar to those of Ada, CCS, and
Lotos, based on the concepts of "rendezvous" and ''guarded com-
mands." It is -shown that a simple extension to Estelle could be
defined in such a way as to allow "structured" specifications in
Estelle, and such that the "transition-oriented" specification style
would appear as a special case of the more general "structured"
style.

The correspondence is organized as follows. Section II presents
a simple example system and the specification of one of the system
modules in the "structured" specification style using (slightly) ex-
tended Estelle. A definition of the semantics of this version of Es-
telle is then given in Section III. The relation between the "struc-
tured" and the "transition-oriented" specification styles, is explored
in Section IV, where transformnation rules between the two ap-
proaches are discussed. This section also includes a discussion of
advantages and disadvantages of these two approaches. Some con-
cluding remarks are given in Section V.

II. AN EXAMPLE
The example considered here is an algorithm which attributes a

privilege (for example, access to a resource) in mutual exclusion
to a number of user modules which communicate with one another
in the form of a virtual ring which is supported. by a physical net-
work to which the modules are connected. The description given
here is based on an original algorithm of Dijkstra [4] further dis-
cussed and modified in [10]. A description of the algorithm using
Estelle was also given in [6].

The overall system structure is shown in Fig. 1. Each user mod-
ule is .connected to the. virtual ring through an ME_controller
(mutual exclusion controller) which determines when the user in
question may obtain the privilege. The implementation of the vir-
tual ring is not considered in this paper; details about the main-
tenance of the virtual ring structure in the presence of faults may
be found in [10] and [6].

The idea of the mutual-exclusion algorithm is that each
ME_controller module can consult the "state" of its left neigh-
bor on the ring and is able to determine whether it may give the
privilege to the user from the knowledge of its own and the neigh-
bor's state. The own state is updated after the privilege has been
used.

The possible interactions of the ME_controller module are
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specified below using Estelle syntax. For each of the two channels
through which the ME_controller module may interact, the types
of possible interactions are listed with an indication which module
may initiate the interaction and select the values of the parameters.
For the ME_service channel, for example, the two roles ME
user and ME provider are specified. The module playing the
ME_user role initiates the four interactions mentioned in the
channel specification, while the other module plays a passive role,
receiving these interactions.

channel ME service (ME_user, ME_provider);
by ME__user: ME begin; ME_end; F_begin; F_end;

In the case of the VR_service channel below, both modules have
some active part to play. Only the two interactions S resp and
S_conf have a parameter, which is used to convey state informa-
tion between adjacent modules on the ring.

channel VR service (ring, user);
by user: F begin; F end; S_req; S resp (S : state__type);
by ring: S ind- S conf (S : state type);

It is noted that the user initiates the ME begin interaction when
it wishes to obtain the privilege. When the ME_controller exe-
cutes this interaction in rendezvous with the user the "privilege"
is passed to the user. When the user does not require the privilege
any more, it initiates the ME_end interaction. In the case of a
failure, the user initiates the F begin interaction. The termination
of a failure situation is indicated by the F_end interaction. Simi-
larly, the ME_controller module may indicate failures to the vir-
tual ring. The order of interactions for the-exchange of state infor-
mation between an ME_controller module and its "left" neighbor
is indicated by the time-sequence diagram in Fig. 2: An S_req
interaction initiated by the module in question is followed by an
S_ind initiated by the virtual ring to its neighbor; the state infor-
mation is retumed through the S resp and S_conf primitives.

The mutual-exclusion algorithm can be described by the follow-
ing program which defines the behavior of a ME_controller mod-
ule.

module ME_controler; ip up : ME service (ME_provider);
down: VR service (user) end;

body ME for ME_controler;
var my_S : state_type;

begin output down.S req; while true do begin
normal:: select

when down.S conf (left S)
begin

if somepredicate(my S, left_S)
then begin

privileged:: select
when up.ME begin
ME :: begin select

when up.ME end begin end;

S_ind

S_resp

(state-info)

Virtual Ring ME controller
_ i4-l

S req

S con f

(s tate-info)

Fig. 2.

'end select
end;

otherwise begin end;
end select;
change state (my S);
end

else;
output down.S req

end;
when down.S_ind

begin output down.S_resp(my_S) end;
when up.F begin

begin
output down.F begin;
F:: select when up.F__end

begin output down.F_end;
output down.S req end;

end select;
end;

end select;
end;

The interpretation of the algorithm given above is relatively
straightforward. The module sends periodically an S_ind over the
ring to its left neighbor and waits for one of the following events
to happen.

1) The answer from the left neighbor in the form of an S_conf
interaction: If some_predicate is true, the privilege can be given
to the user module, since this predicate can only be true for at most
one site. The predicate depends on the state of the module itself
(variable my S) and the state of the left neighbor which is passed
as parameter left S through the S conf interaction. (As ex-
plained in [10], the state of a site is composed of two parts: the site
number, and a counter variable. The latter is updated by the op-
eration change state which has the effect that the predicate be-
comes true for the neighbor to the right. In this example the cir-
culation of the privilege is assured by the periodic status requests
to the left neighbors; other approaches to ensuring this circulation
are described in [6].)

If the predicate is true the privilege is passed to the user only if
the latter requested it. Whether the privilege was requested is
checked by determining whether the ME_begin interaction with
the user can be executed or not. If yes, the privileged region (mu-
tual exclusion) is entered until its end is indicated by the execution
of the ME__end interaction. Otherwise the privilege is immedi-
ately passed on to the next site through the execution of the
change state operation.

If the predicate is not true there is nothing to do, except a peri-
odic retry of the status request to the left neighbor.

2) Reception of a status request from the right neighbor: A re-
sponse is returned immediately. Note that the structure of the pro-
gram implies that such a request cannot be received when the site
is in the privileged or failure state.

3) Entrance into a failure state, indicated by the user through
the F_begin interaction: The module waits that the failure is ter-
minated, as indicated by the reception of a F end interaction from
the user over the channel identified by the up port. The F begin
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Fig. 3.

and F_end indications are propagated to the virtual ring through
the down port. Note that it is assumed that a failure never occurs
directly within the privileged state (see discussion in Section IV).

III. LANGUAGE DEFINITION
This section provides an informal definition of the language used

for describing the example above. The definition is given in com-
parison to Ada and Estelle (queueing option).

A. The Nature ofModule Interaction
Module interactions have the rendezvous semantics as defined

for Ada or CSP. This implies that an interaction between two mod-
ules can only take place when one module is ready for the execu-
tion of an output statement, and the other module is ready for
executing an input reception of an interaction of corresponding type
and over the same channel. If the latter module is not ready (i.e.,
executing internal operations, outputting, or waiting for another
type of input or over another channel) then the former module has
to wait. This may well lead to a deadlock if the system specification
allows such a situation to happen.

In contrast to Ada, each interaction allows the transfer of param-
eters only in one direction, from the outputting module to the re-
ceiving one. This is also the case for the queuing option of Estelle.

B. Language Definition
The syntax for the definition of the channels and the heading of

the module is taken from Estelle [5], as well as the syntax for the
input and output. The only extensions to Estelle is the select state-
ment which is described below.
A select statement is introduced (replacing the trans construct

of Estelle). The semantic of this statement is as in Ada, namely the
selection of one of the possible "choices" given inside the state-
ment. Two kinds of choices may be included in a select statement:
1) input choices which correspond to the reception of an interaction
of a specific type over a particular channel, or 2) spontaneous
choices which may be chosen based solely on the internal state of
the module. (No example of a spontaneous choice is given in this
paper.)
A spontaneous choice begins with provided <boolean expres-

sion > where the expression indicates the condition which must be
true for this choice to be selected. If it is selected the following
"begin ., end" statements are executed.
An input choice begins with a when clause which indicates the

kind of interaction to be received for this choice to be selected. It
may also be followed by a provided clause which indicates an ad-
ditional condition depending on the internal module state and the
parameters of the received input interaction. The following "be-

gin... .end" statements indicate the actions to be taken if the choice
in question is selected.

If several choices are possible in a given system state, an imple-
mentation of the specification will select one of the possible
choices; which one is not specified.

The otherwise choice indicates that a "begin. end" construct
is to be executed if on the entry to the select statement none of the
explicitely defined choices is possible. This can be considered a
special case of static "priorities" associated with input interac-
tions, as defined in Estelle.
Some labels are included in the example of Section II using the

notation " label_id :: ". They are only introduced in order to
show the relation of the "structured" specification of Section II
with the "transition-oriented" specification given in Section IV
and shown in Fig. 3.

C. Considering Estelle as a Special Case
Estelle (rendezvous option) may be considered a special case of

the language described above. The transitions defined in an Estelle
specification may be considered to correspond, one by one, to
choices in a single select statement which is repeated indefinitely,
according to the following program structure. Such a program
structure is called "transition-oriented" in this correspondence.

body ... .for . .;
var .. .;
begin while true do select

<transition 1 >;
< transition 2 >;

<last transition>;
end;

IV. TRANSFORMATION BETWEEN "STRUCTURED" AND
"TRANSITION-ORIENTED" SPECIFICATIONS

The relation between "structured" and transition-oriented"
specifications are considered in this section, as well as transfor-
mations that go from one specification style to the other. The trans-
formation from a "structured" specification to an equivalent
"transition-oriented" one is discussed below. On the other hand,
Section III-C takes the view that a "transition-oriented" specifi-
cation may be considered as a special case of a "structured" one.
However, this view ignores the possibility that an equivalent spec-
ification may be found with additional structure. Methods for find-
ing such structure are outside the scope of this correspondence.

As far as the transformation of a "structured" specification into
a "transition-oriented" one is concerned, it is important to note
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that several methods for automatic transformation may be envis-
aged. Depending on the complexity of the control structures in the
programming language used for the "structured" specification,
such transformation will become more or less complex.

If the "structured" specification uses no GOTO statements, a
transformation methods may be developed using the following ap-
proach: A control state variable is introduced, sometimes called
"major state" and usually represented by the variable name state.
The possible values of this variable correspond to places in the
program text of the "structured" specification. (In the example,
they are indicated by the labels.) The beginning of each select
statement, in particular, corresponds to a value of this variable.
There is at least a transition for each choice of a select statement.
The action of a transition will usually extend up to the beginning
of the next select statement in the program text. If a loop of the
" structured" specification contai-ns a select statement then the loop
will be "cut" leading to one or several transitions to be executed
for each iteration of the loop. This approach has been used for the
example given below.

A. The Example
Using the transformation approach described above, the mutual ex-
clusion algorithm described in a "structured" style in Section II
may be rewritten in a "transition-oriented" style as follows. The
notation from < present major state > to < next major state > [5]
used below indicates that a given choice (i.e., "transition") is only
possible if the present state has a particular value, and it indicates
the value of the state variable (also called "major state") after the
execution of the "begin...end" statements of the choice. An
overview of the major states and "transitions" of the specification
is given in the diagram of Fig. 3.

body ME for ME controller;
var my_S : state__type;

STATE normal, privileged, ME, F;
initialize to normal begin output down.S_req end;

begin while true do select

when down._S conf (left S)
provided some_predicate (my S, left_S)

from normal to privileged
begin end;

when down.S_conf (left_S)
provided not some_predicate (my S,left_S)

from normal to normal
begin output down.S req end;

when up.ME begin
from privileged to ME
begin end,

provided true priority lower
(* normally if no ME begin is waiting *)
from privileged to normal
begin change state (my S); output down.S req end;

when up.ME end
from ME to normal
begin change state (my S); output down.S req end;

when down.S ind
from normal to normal
begin output down.S_resp (my S) end;

when up.F_begin
from normal, privileged, ME, F to F
begin output down.F begin end;

when up.F end
from F to normal
begin output down.F_end;

output down.S_req end;
end select; end;

The transition indicated in Fig. 3 by the dashed line is not in-
cluded in the "structured" specification given in Section II. In fact,

for the specification of Section II, it is assumed that a user module
never initiates a fault indication when it is in the mutual exclusion
state. This assumption is not necessary for the "transition-ori-
ented" specification given above. It is interesting to note that the
introduction of the dashed transition poses no "structural prob-
lem" in the specification. It is simply "another transition," in this
case actually included in the before last transition as one of the
cases for the present major state.

B. Exception Handling
The introduction of the equivalent of the dashed transition in the

"structured" specification of Section II leads to some statements
concerning the failure interactions in the innermost select state-
ment. This results in a somehow "unstructured" specification since
considerations of failure would be distributed to two places in the
program.
An alternative method for handling this situation is the intro-

duction of an additional control structure to the language for han-
dling "exceptions" with higher priority. Associating an exception
clause with a statement in the language, and assuming that the scope
of the exceptional, high priority choice specified in the clause ap-
plies to the whole statement the specification of Section II may be
rewritten in the following form.

body ME for ME controler;
var my__ : state type;

initialize begin output down.S req end;

begin while true do
begin select

when down.S conf
... see Section 2

when down.S ind
.I. . see Section 2

end select;
end exception select when up.F begin

begin
output down.F_begin;
select when up.F_end

begin output down.F__end end;
end select;

end;
end select;

end;

V. CONCLUSIONS

This correspondence compares the "transition-oriented" speci-
fication style promoted by certain specification techniques, such as
Estelle [5] and SDL [15] and a "structured" specification style
based on programming languages, such as Ada or CSP, using ren-
dezvous primitives for interprocess communication. The similarity
of the transition-oriented style, when combined with rendezvous
for interprocess communication, with the ''structured" specifica-
tion style is pointed out in Section III. The following remarks con-
clude the discussions of this correspondence.

1) Rendezvous Communication: The -rendezvous interaction
primitives have the property that the receiving module may deter-
mine if and when a particular interaction may be executed. This
power is essential for many examples. It allows the writing of
"structured" specifications, but care must be taken to avoid the
possibility of deadlocks. (This power is not provided by Estelle and
SDL, as presently defined.)

2) Nondeterminism: For a specification language, the possibil-
ity of leaving certain properties of the specified system undeter-
mined seems important. In the case of the specification language
considered here, nondeterminism can be introduced by the unde-
termined selection of a choice within a select statement. However,
the nondeterminism is partly reduced by the environment which
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may determine the next interaction. Sometimes the nondetermin-
ism is further reduced by defining priorities among the different
choices, for instance through the otherwise clause used in the ex-
ample of Section II.

It is important to note that the discussion in this paper does not
address the problem of "liveness" (see for example [11]). In the
case that a specification allows a choice between several different
alternatives, how does one specify that the choice between the al-
ternatives should be fair, that is, each of the choices will eventually
be executed, if this is possible at all? It seems that considerations
of liveness, as well as performance are usually part of a specifi-
cation and should be addressed by a specification language.

3) Parallelism: Certain languages allow for the expression of
processes or sequences of statements which are executed in paral-
lel, and may share some common data. Not all "structured" lan-
guages allow for this possibility. However, in the "transition-ori-
ented" style of specification, such a situation may be expressed by
decomposing each of the parallel processes into a number of tran-
sitions, such that these transitions belonging to different processes
may be executed in an interleaved manner. Although this is not
true parallelism, this approach allows nevertheless an arbitrary fine
interleaving of the processes depending on the size of the individ-
ual transitions.

4) Exceptions: The "transition-oriented" style invites the de-
signer to write a transition of the form

provided "some exceptions" from any_state to failed
begin "do exception processing" end;

which will be executed in any circumstances when the specified
exception occurs. This approach is straightforward and easy to use,
however, it covers the fact that for certain systems specific excep-
tion processing is required depending on the context in which the
exception occurs. In the example above, the occurrence of a failure
during the holding of a privilege may require a different processing
than in other circumstances. The "structured" specification style
forces the designer to consider the different circumstances more
explicitly, as discussed in Section IV-C.
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