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A Test Design Methodology for Protocol Testing
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Abstract—Communication protocol testing can be done with a test
architecture consisting of remote Lower Tester and local Upper Tester
processes. For real protocols, tests can be designed based on the formal
specification of the protocol which uses an extended finite state ma-
chine model. The specification is transformed into a simpler form con-
sisting of normal form transitions. It can then be modeled by a control
and a data flow graph. The graphs are decomposed into subtours and
data flow functions, respectively. Tests are designed by considering pa-
rameter variations of the input primitives of each data flow function
and determining the expected outputs. The methodology gives com-
plete test coverage of all data flow functions and control paths in the
specification. Functional fault models are proposed for functions that
are not formally specified.

Index Terms—Extended finite state automata, fault models, formal
specification, normal form transitions, symbolic execution, test se-
quences.

I. INTRODUCTION

IDE range use of public data networks linking com-

puters and terminals makes it possible to intercon-
nect heterogeneous systems for the purpose of distributed
applications. Interconnection of ‘‘open’’ systems is done
by implementing standard protocols as defined by ISO
standards. As the number of implementations of higher-
level protocols in line with the OSI Reference Model [4]
increases, it must be verified that the implementations ad-
here to the protocol/service specification. NPL in En-
gland [11] and Project RHIN in France [1] have done pi-
oneering work in this respect. The verification of
adherence is also called assessment. In general it is based
on testing.

Reference [12] proposes an architecture (known as dis-
tributed single layer test architecture) to be used in testing
protocol implementations of level N in the OSI Reference
Model (see Fig. 1). The protocol upper layer interface is
assumed to be accessible through a user task which pro-
vides stimuli to the implementation under test (IUT in
short). This task is called the upper tester (UT in short).
The major part of the architecture (also called lower tester
or LT in short) resides remotely in another computer. The
LT and the UT stimulate the IUT with a given sequence
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Fig. 1. An architecture for testing protocol implementations.

of input interactions and observe the resulting output from
the IUT.

We consider an IUT as a black box and assume that a
formal specification of the protocol which defines the re-
quired behaviour of an IUT in a concise and precise man-
ner is available. A particular formal specification lan-
guage Estelle [5] for communication protocols and
services is used throughout the paper; however, the test

“design method described in the paper can be adapted to

other specification languages.

Functional program testing views a program as an in-
tegrated collection of functions and selects test data so as
to verify that the program correctly implements these
functions. This method is known to give best results for
discovering errors [6]. In this paper we show that func-
tional program testing can be applied to protocols.

The paper proceeds as follows. Section II introduces
the Estelle specification language and its underlying
model. In Section III we simplify Estelle specifications
and obtain an equivalent form which can be modeled with
control and data flow graphs. Determination of protocol
functions is the subject of Section IV. Section V details
the test methodology. A real protocol is used as an ex-
ample to illustrate the methodology throughout the paper.
Finally, Section VI gives some conclusions.

II. ESTELLE SPECIFICATION LANGUAGE

To meet the goals of open system interconnection
(OSI), formal description techniques (FDT) have been
developed to provide unambiguous, clear, and concise
specification of communication protocols and services
[17]. Important specification concepts are modules and
channels. A module is a unit of specification whose be-
havior may be defined using an FDT language, or it may
be defined in terms of a structure of interconnected sub-
modules (stepwise refinement). Modules (and/or submod-
ules) interact with each other through channels. FDT’s
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differ in their underlying model and the specification lan-
guage. We describe here the FDT called Estelle.

A. The Model

The underlying model of Estelle is an extended finite-
state machine (EFSM). The state space of a module is
determined by a set of variables; a state is determined by
the values assumed by each of these variables. One of
these variables is a distinguished variable called the
““STATE”’; it represents the state of a finite-state machine
(FSM). It is also called the ‘‘major state’’ to distinguish
it from the other variables which are called ‘‘context vari-
ables.”” STATE is often used to encode the status of a
connection, e.g., closed, opening, etc., while the context
variables are often used to store sequence numbers, qual-
ity of service, data, and the like.

Transitions are specified from a major state to a major
state. These transitions may depend on predicates on the
context variables, and they may depend on an input.
Transitions that do not depend on any input are called
spontaneous transitions. Associated with each transition
is an operation to be executed as part of the transition. It
may change the values of the context variables, and it may
initiate output interactions with the environment of the
module. The operation is assumed to be atomic.

The EFSM model allows the specifications to be non-
deterministic in the sense that for a given state and input
interaction, more than one enabling predicate may be true
and thus several different transitions may be possible. If
one or more transitions are enabled, then exactly one of
these will be nondeterministically chosen for execution.

B. The Language

To specify transitions and the operations associated with
them, a language that is based mainly on Pascal was de-
veloped. A specification comprises three major parts: the
channel type definitions, the module definitions, and the
system structure definition.

The type of interactions that may occur over the chan-
nels and their parameters are defined in the channel type
definitions. The interaction primitives received from/sent
to the peer entities are called protocol data units (PDU).
The module definitions specify the actual transitions and
their operations. The transitions of a module are defined
by the specification of a number of transition types (or
transitions in short). The enabling part of a transition type
and its operation are specified using the Estelle clauses
explained below (a complete description of Estelle can be
found in [5]):

The FROM clause defines the present major state and
has the form:

FROM state-list

where state-list is a list of major states.
The WHEN clause defines the input interaction and has
the form:

WHEN interaction-reference

FROM idle
TO walt_for_T_connect_resp
WHEN mapping.CR(credit,source_reference,dest_reference,variable_part)
PROVIDED (/ Transport Entity able to provide the quality of service asked for/)
BEGIN
remote_reference:==source_reference;
if variable_part.max_TPDU_size <> undefined
then
TPDU_size := variable_part.max_TPDU_size
else
TPDU_size := 128;
remote_address := variable_part.calling_T_address;
called_address := ...;
calling_address := ...;
QOTS_estimate := ...;
output TSAP.T_CONNECT _ind
(TCEPI,called_address,calling_address, QOTS_estimate, normal, ...);

~ END;
Fig. 2. A transition type in Estelle.

where interaction-reference has the form:
AP I(formal-parameter-list)

and AP stands for an access point identifier and I is the
interaction primitive which may be followed by its param-
eters.

The PROVIDED clause defines an enabling predicate
which must be satisfied when the transition is executed.
Its syntax is defined as:

PROVIDED boolean-expression

The operation of a transition type is specified in two parts,
a TO clause and an action. The TO clause defines the next
major state after the execution of the transition. The syn-
tax of this clause is: ’

TO to-list

where to-list is a state identifier or SAME making the next
major state equal to the present major state. An action to
be performed when the transition is executed is specified
in a BEGIN block. Pascal executable statements such as
assignment statements IF, WHILE, CASE statements and
the like can be used. The generation of output interactions
is specified using an OUTPUT statement which has the
form:
OUTPUT AP.I(actual-parameter-list)

An example transition type appears in Fig. 2. It de-
scribes the module’s behavior upon the reception of an
interaction primitive called ‘‘Connect Request’’ (CR) and
is extracted from a formal specification [9] of the trans-
port protocol which represents level 4 in the OSI reference
model. :

C. Incomplete Specifications

-”* and the
-’ may be used as a type, constant or expression to
indicate that the specifier is leaving the interpretation to
the implementor, as shown in Fig. 2. Often this is accom-
panied by a comment of the form:

Estelle identifiers may be defined as a *“- -

66, .

(/binding comment/)

to guide the implementor in his choice. We call specifi-
cations containing ‘‘- - -’’ or binding comments incom-
plete specifications.
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III. ANALYZING SPECIFICATIONS

This section deals with analysis and transformations of
a protocol specification which allows the decomposition
of the specification into its ‘‘functions,’” which is further
explained in the following section. This functional anal-
ysis is the basis for the testing methodology described in
Section V.

A specification can be modeled using graphs, one rep-
resenting the flow of control and the other the flow of
data. Functions of the protocol can be identified using
these graphs. In order to simplify the determination of the
control and data flow graphs of a formal specification
given in Estelle, it is convenient to first transform the
specification into an equivalent form containing only the
so-called ‘‘normal form transitions’’ (NFT). NFT’s do not
use certain Estelle language constructs which would make
the determination of the control and data flow graphs more
complicated.

A. Transformations

We apply the transformations described below in order
to avoid the following Estelle constructs:
- ® Maijor state lists in FROM and TO clauses,

o Conditional IF and CASE statements,

® Procedure/function calls.

Major state lists such as:

[AKWAIT, OPEN, OPEN_WFEA]

are eliminated from the FROM and TO clauses by gen-
erating more than one NFT corresponding to each possi-
ble state value (state values of AKWAIT, OPEN and
OPEN__WFEA in the above example).

To remove conditional statements and local procedure/
function calls we adopt the techniques from symbolic ex-
ecution of sequential programs [3]. The idea is to create
a new transition for every distinct path in the BEGIN block
and to modify the PROVIDED clause to reflect the con-
ditions for taking these paths. Local procedure/function
calls in the BEGIN block are translated by symbolically
executing the local procedure/function body. IF and
CASE statements are removed by generating an NFT for
each path they define. For example, the IF statement in
Fig. 2 may be removed by writing the following two NFTs
which are equivalent to the transition of Fig. 2:

FROM idle

TO wait__for__T__CONNECT__resp
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BEGIN
remote___reference : = source__reference;
TPDU__size : = 128;

We assume that the local procedures are not recursive
and the specification does not contain any loops with vari-
able bounds. These transformations are applied to all tran-
sition types of all the modules. In addition, modules may
be combined by making textual substitutions. A method
of combining Estelle modules is explained in [15].

Applying these transformations to the Estelle specifi-
cation of [9] we obtain an equivalent normal form speci-
fication which appears in Appendix A. The NFT’s of this
specification are identified as P1 through P19 for further
reference.

B. Flow Graphs

We distinguish two types of flow in a normal form spec-
ification: _

® Flow of control which reflects the changes of the
value of the major state variable, and

o Flow of data which reflects how the input primitive
parameters determine the values of the context variables
and they in turn determine the parameter values of the
output primitives. ‘

1) Control Graph: The control graph (CG) is easily
constructed from the FROM/TO clauses of the NFT’s by
drawing an arc from the present state to the next state.
The arcs are identified by the corresponding labels of the
NFTs. These labels are short-hand notations for:

input/output

as used in the FSM’s. The CG for the specification in the
Appendix A appears in Fig. 3.

Sequences of NFT’s in correct state order may be ob-
tained from the CG. Those which start and end in the ini-
tial state are called subtours. Subtours of the CG in Fig.
3 are listed in Table I. In communication protocols, cer-
tain sequences of NFT’s represent distinct control phases
such as connection establishment, data transfer, connec-
tion freeing, etc. Each subtour contains some of them.

WHEN mapping. CR(credit,source__ reference,dest__reference,variable__ part)
PROVIDED (/Transport Entity able to provide the quality of service asked for/)
and variable__part.max__TPDU__size < > undefined

BEGIN

remote__reference : = source__reference;
TPDU__size : = variable__part.max__ TPDU__size;

FROM idle

TO wait__for__T__ CONNECT__resp

WHEN mapping.CR(credit,source__ reference,dest__reference,variable__ part)
PROVIDED (/Transport Entity able to provide the quality of service asked for/)
and variable__part.max__TPDU__size = undefined
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Fig. 3. A control graph for the class 0 TP.

TABLE 1
SUBTOURS OF THE CLASS O TP

P1(P6 + PT)(P13 + P14 + P15 + P16)*(P17 + P18 + P19)
(P3 + P4) P10(P13 + P14 + P15 + P16)*(P17 + P18 + P19)
P1(P8 + P9)

(P3 + P4)(P11 + P12)

P2 + P5

For instance, in Table I, the following control phases can
be identified for each of the five subtours in top-to-bottom
order: _

¢ user initiated connection establishment, data trans-
fer, freeing,

® peer initiated connection establishment, data trans-
fer, freeing,

o call refusal by peer,

¢ call refusal by user,

e call refusal by protocol entity.

C. Data Flow Graph

A data flow graph (DFG) models the flow of informa-
tion in a normal form specification, excluding major state
changes. Four types of nodes are used in a DFG: I-nodes
to represent input primitive parameters, D-nodes to rep-
resent context variables and constants, O-nodes to repre-
sent output primitive parameters, and F-nodes to repre-
sent data operations (functions). Assuming that the
information flows from top to bottom, I-nodes are drawn
on top, D- and F-nodes in the middle, and O-nodes on
bottom. Arcs are used to represent the flow as derived
from the BEGIN block of the NFT’s. Each arc of the DFG
is labeled with the identifier of the NFT to which it be-
longs. The enabling conditions of the transitions are not

reflected in the DFG, however, they are considered in the

test sequence design (see also Section V).

Assignment statements in NFT’s are modeled by draw-
ing an arc from the node representing the right hand side
(of type D, F, or I) to the node representing the left hand
side (of type D or O). We furthermore define 3 types of
F-nodes. Type 1 F-nodes are used to represent incom-
pletely specified function calls (see Section II-C). Con-
sider for example the assignment statement in P15 of Ap-
pendix A:

in__buffer.append(DT.user__data)

521

DT.user_data

in_buffer

[assign_
ocal_ref/

®

|

©
Fig. 4. Example DFG’s.

where in__buffer is a context variable (in this case an ab-
stract data type), DT is an input primitive with user__data
being one of its parameters and append is a local function
(an operation on abstract data type) whose body is left
unspecified. A DFG for this statement is given in Fig.
4(a). Type 2 F-nodes represent assignment statements
whose right hand side is of the form:

local __reference := - - -

(taken from P1 of Appendix A) where local__referencc
is a context variable. The corresponding DFG appears in
Fig. 4. Type 3 F-nodes are used to represent assignment
statements containing arithmetic or Boolean expressions.
For example the assignment statement:

TR:=TR + 1
where TR is a context variable is transformed as shown

in Fig. 4(c).
The output statement in the BEGIN block of an NFT is
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modeled by creating an O-node and treating the parameter
list as assignments to the parameters of the primitive.

A complete DFG for the specification in Appendix A
appears in Appendix B.

IV. ProTtocoL FUNCTIONS

A data flow graph, as described above, can algorith-
mically be partitioned into smaller blocks, and then these
blocks can be combined into larger blocks representing
various protocol functions. These resulting blocks give
structural information about the protocol functions, and
are used for designing tests of the corresponding function,
as explained in Section V.

A. Decomposition of the DFG

A DFG of even a simple protocol (e.g., Appendix A)
can be quite complicated, as can be observed in Appendix
B. This is because each I- or O-node may contain complex
‘parameters. Similarly, D-nodes may be of record type
where each component takes part in a different function
of the protocol. We define a block Bi as a collection of
nodes and the associated arcs. The sets of these nodes
belonging to the block are identified as: set of I-nodes
SIN(Bi), set of F-nodes SFN(Bi), set of D-nodes
SDN(Bi), and set of O-nodes SON(Bi).

A DFG can be partitioned into n disjoint blocks B1,
B2, - - -, Bn, each representing flows over a D-node, or
directly to an O-node in cases where the O-node is as-
signed by an I-node or an F-node. The following algo-
rithm finds such a partition, the inclusion of a node in one
of the blocks is guided by the flow of data. A block in the
resulting partition includes the nodes participating in a
distinct flow of data from I- to D- nodes and finally to O-
node(s). A node A is said to feed node B if there exists an
outgoing arc from A4 to B.

Algorithm 4.1: Input: DFG Output: The sets SIN, SFN,
SDN, and SON for each block.

e All variable D-nodes in the DFG are processed by
creating a block for the D-node, or including it in one of
the blocks already created if it feeds another D or a shared
O-node. All I-, F- and D-nodes feeding the D-node are
included in the sets SIN, SFN and SDN, respectively. O-
nodes that are assigned by the D-nodes are included in the
SON.

¢ For all O-nodes in the SON of the block, the I-, F-
and D-nodes feeding the O-node are included into its SIN,
SFN and SDN, respectively.

® F-nodes are processed as follows:

If the D-nodes feeding the F-node are already included in
the same block, the F-node is added to the SFN and the
O-nodes that are assigned by the F-node are included in
the SON of the block. In all other cases the F-node is
added to the SFN of the block created by the O-nodes
assigned by the F-node.

* When input primitive parameters are directly as-
signed to output primitive parameters, a block is created
to include only I- and O-nodes.

® Blocks containing only F- and O-nodes and (possi-
bly) constant D-nodes are created by coustant assign-
ments to the O-nodes or through F-nodes which are not
included in any of the blocks created before.

An application of the algorithm to the DFG in Appen-
dix B creates the blocks shown by dotted lines.

B. Functional Partitioning of the DFG

The level of block refinement obtained from Algorithm
4.1 is not appropriate for testing purposes, since a very
high number of blocks is usually obtained and relatively
complex concepts such as quality of service provided, ad-
dressing, etc., that are generally specified using several
D-nodes create several blocks. These blocks, however,

__should be treated together as a unique function of the pro-

tocol. Therefore, several of these elementary blocks may
be combined to form what we call functional blocks. In-
teraction with the test designer is usually necessary to
identify the elementary blocks which should be merged.
Let SIL (SOL) be the set of labels associated with the
input (output) arcs of a node. Then the SIL(B) (SOL(B))
of a block B is the set of labels formed by the union of
the SIL (SOL) of the block’s D-nodes (O-nodes if B con-
tains no D-nodes; however, in that case SOL(B) is empty).

Block Merging Procedure: Considering the types of the
nodes and SIL and SOL of the blocks and nodes, less re-
fined partitions can be obtained by iterative application of
the following steps (possibly through interaction with the
test designer). The application terminates when a parti-
tion is obtained in which blocks can not be further com-
bined.

Step 1: Two blocks Bi and Bj are combined if SON(Bi)
and SON(Bj) contain parameter(s) of the same type.

This step combines the blocks in which the same pa-
rameters but of different output primitives are assigned,
since O-nodes of the same type are considered as being
part of the same protocol function.

Step 2: Independent blocks (blocks with no incoming
arcs from other blocks) Bi and Bj are combined if the
types of all the nodes in SIN(Bi) are also contained in
SON(Bj). ,

Here, two blocks are combined if one block contains in
its O-nodes all the I-nodes of the other block, since the
two blocks generally represent the same protocol func-
tions, but in different control phases.

Step 3: Let Bi and Bj be independent blocks. Bi and Bj
can be combined if SON(Bi) and SON(Bj) contain differ-
ent but ‘‘related’’ parameters of the same primitive, and

SIL(Bi) = SIL(Bj) holds.

Which parameters of a primitive are related is determined
by the test designer based on the type and use of the pa-
rameters.

Since some output primitives can have more than one
parameter of the same function, Step 3 is used to combine
blocks that assign similar parameters of a given primitive
in the same NFT’s.

Step 4: The blocks that contain only O- and F-nodes
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with F-nodes having incoming arcs from D-nodes of dif-
ferent blocks are combined with one of the blocks that
contain the D-nodes.

This step is used to combine the blocks of some of the
data transfer primitive parameters (O-nodes) with the
blocks of the input and output buffers (D-nodes).

Step 5: Blocks Bi and Bj are combined if SDN(Bi) and
SDN(Bj) contain related D-nodes (variable or constant)
that are used to specify different features of a relatively
complex concept (such as quality of service, addressing,
etc.), and

SIL(Bi) = SIL(Bj) holds.

Which D-nodes are related must be determined by the test
designer, considering the D-nodes used to specify the
complex concept in question.

Step 5 is a generalization of Step 3 to D-nodes. It may
be used to combine those blocks that contain different pa-
rameters (O-nodes) assigned in the same NFT’s by related
D-nodes.

Step 6: Let Di be a D-node with SOL(Di) = ¢, i.e.,
Di is internal not assigning any other node (usually used
in enabling predicates). An independent block Bi contain-
ing an inteérnal Di is combined with another block Bj if

SIL(Di) < SIL(Bj).

The block Bi is chosen such that the D-nodes of the
block and the internal D-node are assigned in the same
NFT’s, except possibly for the initialization of the inter-
nal D-node. )

C. An Example

When Step 1 of the block merging procedure is applied
to the DFG in Appendix B, the block containing
“‘source__ref’’ of the DR primitive is combined with the
block containing ‘‘local __ref’’, and the block containing
‘“‘disconnect __reason’’ of DR is combined with the block
containing ‘‘disc__reason’’. Also, the block of
“‘called __address’’ is combined with the block of ‘‘call-
ing__address’’.

Step 2 combines the block of ‘‘local__ref’’ with the
block of ‘‘remote__ref’’. Similarly, the block of ‘‘addi-
tional __clear__reason’’ is combined with the block of
‘‘user__reason’’.

In Step 3, the blocks containing the O-nodes of ‘‘ad-
ditional __clear__reason’> and ‘‘disconnect__reason’’
parameters of the DR are combined.

Steps 4 and 6 do not apply to Appendix B example, but
are useful in more complex protocol such as the transport
protocol class 2 [8].

In Step 5, the blocks containing the O-nodes of
“TPDU__size’’, ““QOTS__estimate’’, ‘‘max_TPDU__
size’’, ‘‘class__0’’ and ‘‘normal’’ are combined to obtain
a block associated with quality of service (qos). Simi-
larly, .the blocks containing ‘‘calling_T__addr’’,
““called _T__addr’’, “‘remote__address’’, ““call-
ing__address’’, and ‘‘called__address’’ are combined
giving a block associated with the addressing function.

The resulting partition blocks are delimited in Appen-
dix B using dashed lines.

D. Data Flow Functions

Every DFG block resulting from the merging procedure
is considered as a data flow function (DFF). Usually, they
coincide with specific protocol functions such as connec-
tion referencing, endpoint identification, quality of ser-
vice, user-to-peer or peer-to-user data transfer, etc.

The partition in Appendix B reveals seven data flow
functions for the protocol in Appendix A. These functions
and the control phases in which they occur are the follow-
ing:

connection referencing

transport user EPI [connection establishment}

quality of service protocol phase

addressing

{user—to-peer data transfer} {data transfer}

peer-to-user data transfer phase

{disconnection } {connection [freeing phase }

1) Spontaneous Transitions: Through the transition la-
bels on the arcs, a DFG shows the allowed order of exe-
cution of self loop NFT’s in the CG. For instance, in the
block of user-to-peer data transfer of Appendix C, we can
see that the NFT labeled P14 (spontaneous) must follow
the NFT labeled P13 (WHEN transition). Depending on
the length of the data placed in ‘‘out__buffer’’, P14 may
be executed one or more times. If the buffer is empty, P14
can no longer be executed. A similar execution order ap-
plies to P15 and P16.

E. Data Flow Dependencies

The blocks that have incoming arc(s) from other blocks
are called data dependent blocks. All other blocks are in-
dependent. For example, user-to-peer data transfer block
in Appendix B is data dependent on the quality of service
block.

Data dependent blocks are usually created when D-
nodes assigned in one control phase (dependency causing
D-nodes) are used in the operations of the NFT’s in other
control phases.

V. TEST METHODOLOGY

Test sequences for protocols can be generated using
various test methods designed for FSM’s (see for example
[13]). However, these techniques ignore the data flow in
a protocol. The methodology to be described handles the
control as well as the data flow.

We assume the existence of the graph models of normal
form transitions (NFT) and the decompositions of the
graphs, in terms of the subtours for the control graph (CG)
and data flow functions (or functions in short) for the data
flow graph (DFG), as described in the preceding sections.

The methodology draws ideas from other test sequence
selection methods such as FSM, software, and hardware
testing. The resulting test sequences are based on the sub-
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meration type in the DFG of Appendix B are:

options of T__CONNECT__req and T_CONNECT__resp,
class, options, max__TPDU__size of CR and CC, and

disconnect __reason of DR.

tours of the CG, i.e., the transition tours of a FSM [13].
Parameter values of input primitives are selected as in
software testing [10], [7]. For incompletely specified
functions, we propose the use of fault models as in mi-
croprocessor testing [16] (see Section V-E). Therefore the
test of a function of the protocol involves the following
steps:

A subtour of the CG (giving a sequence of transitions
to be applied to the IUT) is selected. From the DFG, the
parameters of the input primitives that belong to the func-
tion are determined. These parameters are enumerated
while all others are fixed to certain values.

The next step is the determination of the output primi-
tives and parameters corresponding to the subtour se-
lected and the function to be tested since they are the only
way of observing the effects of parameter variations. The
expected values of the remaining parameters (belonging
to other functions) are determined from the fixed values
assigned to the input primitive parameters.

Note that the enabling conditions of NFT’s in the sub-
tour selected must be satisfied in order to be able to exe-
cute the subtour. This in turn means that the individual
elementary expressions in the NFT’s’ PROVIDED clauses
have to be satisfied.

The proposed test methodology covers all the control

I-nodes of continuous type can be divided into the fol-
lowing five groups:

Parametric I-nodes: The values -of these I-nodes are.
determined by each particular implementation and their
values are then fixed. For instance, the I-nodes corre-
sponding to the addresses of the user and peer entities
belong to this group. The parametric I-nodes of Appendix
B are:

calling__T__addr, called__T__addr of CR and CC,
to__T__addr, from__T__addr of T_CONNECT__req.

Reference Value I-nodes: For instance the I-nodes used
as source and destination reference values for the connec-
tions can be selected arbitrarily, but must be nonzero. The
methods of test data selection for software testing [7] can
be applied here. Three specific values are selected: the
two end points and some interior point of the domain. The
following I-nodes of Appendix B are in this group:

source__ref, dest__ref of CR, CC and DR.

Large Integers: The I-nodes that are integers consist-
ing of one or more octets belong to this group. Test data
can be selected in the same manner as for reference value
I-nodes. Appendix B contains the following I-nodes in this
group:

QTS__req of T_CONNECT__req and T__CONNECT __resp.

paths in the specification and verifies the data flow in each
function.

The methodology is now detailed in the following sub-
sections and illustrated by the test design for a single block
of the protocol of Appendix A.

A. Selecting a Subtour

The subtours of a block are those subtours of the CG
which include NFT’s in the SIL of the block. For exam-
ple, peer-to-user data transfer block in Appendix B has
the first two subtours of Table I in its set. A given block
should be tested using all the subtours of the block. In
cases where the same set of arcs is covered by more than
one subtour, the subtour initiating the connection from the
Lower Tester is selected.

B. Parameter Types and Enumerations

As in software testing, different types of inputs must be
varied in the tests. An input variable may be of enumer-
ation type or have a continuous domain (integer, array of
octets, etc.) [7].

The input variables of enumeration type can be tested
exhaustively, i.e., data generated for each possible value,
while for the variables of continuous domain exhaustive
test data generation is not possible. The I-nodes of enu-

User Data: The data exchanged between the commu-
nicating parties are usually specified as a record contain-
ing the length and data (the contents) fields. Due to the
importance of error-free user data transmission we sug-
gest the following enumeration scheme:

Length is enumerated exhaustively, starting with the
smallest value, i.e., 1 byte. At the same time the contents
are varied systematically. An algorithm implementing this
scheme is given in Section V-E, it also verifies the correct
delivery of every data octet. The following I-nodes in Ap-
pendix B are in this group:

length and data of TSDU__fragment of T__DATA __req,
length and data of user__data of DT.

End Point Identifiers (EPI): The interaction with the
user of a protocol takes place over an (N)-service access
point [4]. An interaction parameter is used to identify the
connection end point which the interaction refers to. This
parameter is called EPI and its value is locally decided.
EPI’s are verified in multiple connection tests, since dif-
ferent values are used for different parallel connections.

The following I-nodes of Appendix B are in this group:
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TCEPI of T_CONNECT__req and T_CONNECT __resp.

C. Data Flow Considerations

The flow over all variable D-nodes of a block (i.e., the
assigning arcs) should be tested by properly selected sub-
tours. In cases where a D-node is assigned by both an I-
and an F-node, two tests are designed: One of the tests
involves parameter variations for the I-node, and the other
tests the variation of values assigned by the F-node.

The F-nodes of a block are treated depending on their
type:

F-nodes of Type 1: The test designer determines the
values returned depending on the inputs given, usually by
consulting the protocol standard. The F-nodes of
““get__next__fragment’’ and ‘‘append’’ in Appendix B
are of Type 1.

F-nodes of Type 2: F-nodes which assign implemen-
tation dependent values to D- or O-nodes are observed
through the O-nodes and verified by consulting the stan-
dard for the allowed values. An F-node may also initialize
a D-node. In this case, the transitions that occur after the

the blocks which may be shared by multiple connections
(blocks containing data buffers, etc.) are tested. The
choice is left on the test designer, unless an exact speci-
fication of these shared parts is provided.

E. Test Design for a Block of The Example Protocol

A complete test design for Appendix A is given in [14].
Results of the application of the tests to two implemen-
tations are reported in [2]. Here we apply the test design
methodology to the peer-to-user data transfer block of
Appendix B.

The second subtour in Table I is selected, since its
NFT’s (P15 and P16) cover the block and the connection
establishment is initiated by the LT (see Section I). The
I-node of the block is the ‘‘user__data’’ parameter of the
DT primitive. It is a continuous domain I-node of type
‘“‘user data’’. As discussed in Section V-B, the length and
contents of this parameter can be varied using the follow-
ing procedure:

procedure prepare__data(var user__data:string of octets;

var start__value:octet;

var remaining __length:pos__ integer;
current__TPDU__size:pos__integer);

var i,ml:pos__integer;
begin

ml: =min(current__TPDU__size-data__header,remaining __length);

user__data.length: =ml;

remaining__length: =remaining __length-ml;

fori:=1 to ml do
begin

user__data.contents[i]: =start __value;
start___value: =(start_value+1) mod 256

end;
end prepare__data;

initializing transition are used to observe the value of the
D-node. In Appendix B, the F-node of ‘‘as-
sign__local__ref’’ assigns implementation dependent
values to ‘‘local __ref’’.

F-nodes of Type 3: Test design for blocks containing
these nodes is based on the types of the D-nodes assigned
and the set of arcs relating these D-nodes. Appendix B
contains no such nodes.

D. Multiple Connection Tests

Handling multiple parallel connections is an important
aspect of protocol implementations. Usually, D-nodes
representing the connection array sizes define separate
blocks in a decomposed DFG, e.g., the TCEP block of
Appendix B.

The enumeration of the D-nodes representing the con-
nection array sizes is done to determine the maximum
number of parallel connections supported. Testing all
other blocks using parallel connections may not be prac-
tical due to the increased number of tests. Instead, only

Connection establishment sets the variable ‘“TPDU__
size’’ which limits the length of the ‘‘user__data’’ of the
DT. The I-node ‘‘max__TPDU__size’’ of the CR PDU
is of enumeration type. Therefore, the test for the peer-
to-user data transfer block should be repeated for every
TPDU__size supported by the IUT.

Predicates of the NFT’s of the block contain binding
comments on flow control such as:

(/flow control from the Network layer is ready/).

Since flow control is not formally specified, a fault model
may be used to test this function: If there is an error in
flow control, it is assumed that the implementation will
either stop or deliver the data to the UT in wrong order
or with losses. To test for this fault, the LT sends DT
PDUs to the IUT independently of the responses re-
ceived, creating a continuous flow of data. The UT checks
the delivered data for any errors, and sends then a report
to the LT.

The peer-to-user data transfer block contains 3 F-nodes:
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‘‘append’’ and ‘‘get__next__fragment’’ of type 1, and
“‘clear’’ of type 2. The F-nodes of type 1 are operations
on ‘‘in__buffer’’ which is an abstract data type. These
operations can be observed from the O-nodes that they
assign directly (get__next__fragment) or indirectly (ap-
pend). The F-node of ‘‘clear’’ initializes ‘‘in__buffer’’.
The data transfer phase is terminated when TSDU size
reaches a predetermined value and the connection is freed.
Since the subtour contains an uncontrollable input, i.e.,
““Network __reset’” (see P19 in Appendix A). the data
transfer phase can be terminated unexpectedly. In this case
the LT repeats the test after resynchronizing with the UT.

VI. CONCLUSIONS

An approach to testing protocol implementations was
introduced. It is based on a formal specification of the
protocol. Control and data flow graphs for the protocol
are obtained from the simplified form of the specification

and the graphs are decomposed to obtain various func-
tions of the protocol. These functions are tested by param-
eter variations and by stimulating all the control paths that
exist in the specification. A simple protocol was chosen
as an example to illustrate the methodology. Detailed test
design for one of the functions of the protocol was given.
A more complex example of the class 2 TP was treated in
[14].

The flow graphs of the protocol specification are also
helpful in protocol design validation. Syntactic and se-
mantic errors in the specification can be detected during
the construction of these graphs [15].

In order to derive tests for complex protocols, there is
a need for at least partially automating the different steps
of the methodology. A prototype implementation is de-
scribed in [18]. More research is needed for automatically
generating the tests from the flow graphs. It may also be
interesting to investigate whether the methodology is ap-
plicable in other areas of software development.

APPENDIX A
NorMAL ForM TRANSITIONS OF THE CLass 0 TP

(* Data Definitions are as in [9] %)

WHEN TSAP.T_CONNECT_req
FROM idle

PROVIDED (/Transport entity able to provide the quality of service asked for/)

TO wait_for_CC

P1 :BEGIN
local_reference:=...;
TPDU_size:=...;
variable_part_to_send:=...;

output CR(0,local_reference,class_0,normal,variable_part_to_send);

END;

WHEN TSAP.T_CONNECT_req
FROM idle

PROVIDED (/Transport entity not able to provide the quality of service asked for/)

TO idle
P2 :BEGIN

output T_DISCONNECT_ind(TCEPI,inability_to_provide_the_quality);

END;

‘WHEN mapping.CR
FROM idle

PROVIDED variable_part.max_TPDU_size <> undefined and

(/able to provide the quality of service/)

TO wait_for_T_CONNECT_resp
P3 :BEGIN
remote_reference:=source_reference;

TPDU_size:=variable_part.max_TPDU_size;

remote_address:=variable_part.calling_T_address;

TCEP:=...;
called_adress:=...;

output T_CONNECT_ind(TCEP,called_address,calling_address,QOTS_estimate,normal);

END;

WHEN mapping.CR
FROM idle

PROVIDED variable_part.max_TPDU_size = undefined and

(/able to provide the quality of service/)

TO wait_for_T_CONNECT_resp

P4 :BEGIN
remote_reference:=source_reference;
TPDU_size:=128;

remote_address:=variable_part.calling_T _address;

TCEP:=...;
called_address:=...;
calling_address:=...;

output T_CONNECT_ind(TCEP,called_address,calling_address,QOTS_estimate,normal);

END;

‘WHEN mapping.CR

FROM idle

PROVIDED (/not able to provide the QOS/)
TO idle

P5 :BEGIN

variable_part_to_send.additional_clear_reason:= ...;
output DR(source_reference,0,connection_negotiation_failed,variable_part_to_send);

END;
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‘WHEN mapping.CC

FROM wait_for_CC

PROVIDED variable_part.max_TPDU_size < >undefined

TO data_transfer

P6 :BEGIN
remote_reference:=source_reference;
TPDU_size:=variable_part.max_TPDU_size;
QOTS_estimate:=...;
output T_CONNECT_conf(TCEP,QOTS_estimate,normal);
in_buffer.clear;
out_buffer.clear; .
‘out_buffer.set_max_get_size(TPDU_size);

END;

WHEN mapping.CC
FROM wait_for_CC
PROVIDED variable_part.max_TPDU_size=undefined
TO data_transfer
P7 :BEGIN
remote. reference:=source_xel‘erence;

output T_CONNECT_conI‘(TCEP.QOTS_esv.imave,norma.l);
in_buffer.clear;
out_buffer.clear;
out_buffer.set_max_get_size(TPDU_size);
END;

‘WHEN mapping.DR
FROM walt_for_CC
PROVIDED di T ‘TS_user_initiated_terminati
TO idle
P8 :BEGIN
disc_reason:==disconnect_reason; ‘
user_reuon:=vaﬂable_pm.addl;lonal_ciear_reason;
output N_DISCONNECT_req(...,disc_reason);
output T_DISCONNECT_ind(TCEP,disc_reason,user_reason);
END;

WHEN mapping.DR
FROM walt_for_CC
PROVIDED disc_reason < > TS_user_initiated_termination
TO idle )
P9 :BEGIN
disc_reason:=disconnect_reason;
output N_DISCONNECT _req(...,disc_reason);
output T_DISCONNECT_ind(TCEP,disc_reason,user_reason);
END;

WHEN TSAP.T_CONNECT_resp
FROM wait_for_T_CONNECT_resp
PROVIDED (/quality of service requested <=
quality of service nroposed in T_CONNECT_ind/)
TO data_transfer
P10:BEGIN
local_reference:=...;
TPDU_size:
variable_part_to_send.called_address:=remote_address;
variable_part_to_send.calling_address:=...;
variable_part_to_send.max_TPDU_size: —TPDU size;
output CC(remote_reference,local_reference,class_0,normal,variable_part_to_send);
in_bufler.clear;
out_buffer.clear;
out_buffer.set_max_get_size(TPDU_size);
END;

WHEN TSAP.T_CONNECT_resp
FROM wait_for_T_CONNECT_resp
PROVIDED (/quality of service requested > quality
of service proposed in T_CONNECT_ind/)
TO idle
P11:BEGIN
variable_part_to_send.additional_clear_reason:=...;
output DR(remote_referenée,O,connection_negociav.lon_ralled,variable_part_vo_send);
T_DISCONNECT_ind(TCEP,inability_to_provide_the_quality,...);
END;

WHEN TSAP.T_DISCONNECT_req

FROM wait_for_T_CONNECT_resp

PROVIDED

TO idle

P12:BEGIN
variable_part_to_send.additional_clear_reason:=...;
output DR(remote_reference,0,TS_user_initiated v.erminanon variable_part_to, send)

END;

WHEN TSAP.T_DATA _req
FROM data_transfer
PROVIDED (/flow control from the user is ready/)
TO data_transfer
P13:BEGIN
'out_bufler.append(TSDU_fragment);
END;
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FROM data_transfer
PROVIDED (/flow control to the Network layer is ready/)
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WHEN TSAP.T_DISCONNECT_req
FROM data_transfer

TO data_transfer PROVIDED
P14:BEGIN TO idle
mapping.DT(get_next_fragment(out_bufler)); P17:BEGIN
END; output N_DISCONNECT_req(disconnect_reason,user_reason);

‘WHEN mapping. DT
FROM data_transfer .
PROVIDED (/flow control from the Network layer is ready/)

END;

‘WHEN mapping.N_DISCONNECT_ind
FROM data_transfer

TO data_transfer TO idle
P15:BEGIN P18:BEGIN
in_buffer.append(user_data); disc_reason:=...;
END; . output T_DISCONNECT_ind(TCEP,disc_reason,user_reason);

FROM data_transfer
PROVIDED (/flow control to the user is ready/)
TO data_transfer

END;

‘WHEN mapping.Network_reset
FROM data_transfer

P16:BEGIN :?Q'EEGIN
output TSAP.T_DATA_ind(get_next_fragment(in_buffer)); "
. disc_reason:=...;

END;

CONNECTION REFERENCING

T\
CR.source_ref. .

output T_DISCONNECT_ind(TCEP,disc_reason,...);
END;
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ADDRESSING DATA TRANSFER
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