
Some experience with the use of formal specif ications-f

G.V. Bochmann, E. Cerny, M. Gagne, C. Jard*, A. Leveille,
C. Lacaille, M. Maksud, K.S. Raghunathan, and B. Sarikaya**
Departement d'informatique et de recherche operationnelle

Universite de Montreal
C.P. 6128, Succursale A

Montrlal, P.Q.
H3C 3J7

Abstract

Experience with the use of formal descriptions of
communication services and protocols is described. The paper
focusses on the experience by the authors with the extended state
transition model which is proposed as a standard formal
description technique (FDT) for the services and protocols in the
OSI environment. The first part of the paper refers to various
example specifications, including Transport protocol and service
specifications, and discusses the suitability of the specification
method and possible extensions. In the remaining part, the use of
such formal specifications during the phases of system design,
implementation and testing is described. Various approaches to
protocol design validation, implementation, and assessment of
implementations are discussed, with emphasis on the last point.
The experience with several of these approaches is described in
the paper, while further details may be found in the references.

•work partly supported by the NSERC and research contracts
from the Departement of Communications of Canada.
*CNET, Lannion, France
**School of Computer Science, McGill University, Montreal

1. Introduction

Formal methods are considered important tools for the
reliable design and implementation of communication protocols.
These methods are always based on some formal specification of the
communication protocol and/or services given in some appropriate
formal description technique (FDT). Among the different FDT that
have been proposed and used (see for example fBoch 80]), we
consider in this paper mainly the extended state transition model
[FDT 81] developed by Subgroup B of the ISO TC97/SC16/WG1 ad hoc
group on FDT (or similar dialects) . This is a descriptive model
which combines the state transition nature of finite state
machines with the power of a high-level programming language
(Pascal) . Similar approaches to the specification of protocols
have been described in the literature [Boch 77, Boch 80b, Tenn
81] .

The different activities during the design and
implementation of protocols where formal specifications can be
useful are summerized in [Boch 81 J. The main activities are:

a) The elaboration of a reference specification of the
communication protocols or services,

b) The validation of the design of a protocol specification,

c) The design and development of a protocol implementation based
on the protocol specification obtained under point (b),

d) the' validation of a protocol implementation obtained under
point (c) .

•

In this paper we discuss some experience we had in the
use of the extended state transition FDT for the above mentioned
activities. We also make- some reference to similar work that is
proceeding at other places, although we do not pretend to give a
complete review of this area.

The paper is structured as follows: Section 2 relates
our experience with the use of the ISO extended state transition
model (or similar local dialects) for the writing of formal
protocol and service specifications. Some critical comments based
on this experience are given in section 2.5. The sections 3, 4,
and 5 deal with the activities (b), (c), and (d) mentioned above.
The main part of each of these sections gives a description of
recent work done by our group in 'these areas. Due to lack of
space, the discussions are relatively short, and references are
provided for more detail.

- 2 -

2. Example specifications

2.1. The Transport layer as a test case

The ISO ad hoc group on FDT has chosen the Transport
layer as the principal test case for comparing different FDT's
proposed for the specification of OSI protocols and services. As a
result, many different formal and semi-formal specifications of
the Transport protocol and service have been developed (see for
example the papers presented at the ad hoc group's meetings).

The Transport layer service [CCITT/ISO a] is a
connection-oriented communication service that supports normal and
expedited data transfer. Different classes of protocols [CCITT/ISO
b] are defined, each providing a different set of functions. The
available functions are

a) connection establishment with the selection of an appropriate
protocol class and options,

b) addressing of Transport service access points (TSAP),

c) multiplexing,

d) error detection, and (possibly) recovery,

e) independent flow control for normal and expedited data over
different connections,

f) recovery of Network connection failures, etc.

Since the above mentioned CCITT/ISO documents are
relatively recent, most work with FDT's is based on previous
CCITT, ISO or ECMA documents, and are often restricted to the
protocol classes 0 and 2.

2.2. Specifications of the Transport protocol

Different versions of Transport protocol specifications
have been produced by our group as contributions to the discussion
on FDT's. We mention here only the following two versions which
are of different scope:

The class 0 protocol specification in [TP a] is written
in a local dialect [FDT 81b], and was later rewritten according to
the ISO syntax [TP b] . The purpose was' the description of the
basic rules of the Transport protocol in a most simple manner.
Therefore the specification considers only a single Transport
connection (multiplexing is not allowed for class 0), and only the

- 3 -

"abstract protocol" (see [ISO 81a] section 4.3) is defined,
ignoring the mapping of the protocol data units into the Network
service primitives. The transitions may either be grouped by major
states [TP a] or by incoming interaction [TP b]. .

Reference [TP c] contains a quite complete protocol
specification for classes 0 and 2. It considers an arbitrary
number of simultaneous Transport connections over an arbitrary
number of Network connections, including the possiblity of
multiplexing. The mapping of PDU's into Network service primitives
is also defined, except for the detailed coding of the different
PDU parameters. The mapping function considers possible
concatenation of several PDU's to form a single Network service
data unit, and the priorities of different connections and
different kinds of PDU's. It seems that the possible non-
determinism of the FDT (see section 2.5.1 below) is an essential
feature for leaving certain implementation choices undefined.

Many diffirent formal Transport protocol specifications
have been written using Pascal [Lefe 81J, Ada [Buhr 81], extended
Petri raets [Bert 81] and other methods [FDT 81c, Vogt 82]. Space
limitations prevent us from providing further references and
comparisons.

2.3. Specifications of the Transport service

The Transport service may be specified with the same FDT
giving a specification of the Transport layer and the layers below
considered as a black box (see figure 1, dashed box). This
approach has been taken for the specification of [TS a] which
describes the properties of the Transport service as seen by the
users through the service access points. As in [TP c] , an
arbitrary number of simulataneous Transport connections is
considered. A simplified version, considering only a single
connection, and ignoring the problem of addressing, is given in
[TS b] using a local dialect [FDT 81b] of the FDT.

Many other Transport service specifications have been
written by different groups [FDT 81c, Burt 81, Vogt 82]. There is
not enough space to discuss them all. However, we would like to
mention here the question whether it is useful to separate, in the
service specification, the local and global [Boch 80b] sequencing
rules for the execution of service primitives. A general framework
for such a separation is given in [Boch 82]. While the state
transition model seems adequate for the specification of the local
rules [FDT 82a], its use for the global rules is more
questionable. While reference [Boch 80c] uses a different
specification language (related to temporal logic) for the global
rules, we are presently experimenting with separate specifications
for the local and global rules using the extended state transition

- 4 -

model for both [Ragu 82].

2.4. Other example specifications

As mentioned in the Introduction, the general approach
of using an extended state transition model for protocol
specifications is not new. Some of our previous work on HDLC [Boch
77b], X.25 [Boch 79], and the Message Link Protocol [Boch 79b]
lies on this line. More recently, the NBS (USA) has funded the
developement of a FDT (similar to [FDT 81]) for use in their
protocol development project [Tenn 81]« The formal protocol
specifications developed in this context are interesting examples.

Another example is some effort [Boch 81b] for developing
a formal specification of the Teletex control procedures. In this
effort the Teletex Session and Document layers where described
using the local FDT dialect [FDT 81b]. In order to clarify the
relation between the different layers (including the underlying
Transport layer), an attempt was first made to give a formal
description of the services provided by the Session and Document
layers. The protocol specifications are then given in reference to
these service specifications. It may be interesting to note that
the .selection of the Document service primitives seems to
necessitate some arbitrary choices. Some of these primitives are
related to a document file store.Some kind of "virtual file store"
was defined in a semi-formal manner (see section 2.5.5 below). A
last example is the specification [Boch 81 c,d,e] .of a Virtual
File system developed by the Hahn-Meitner-Institute, Berlin. The
specification is given in two parts: The first part is the
specification of a virtual file server, i.e. it defines the local
input/output behavior of a file server in terms of file service
primitives exchanged with it local environment. This part of the
specification defines the meaning of such primitives as OPEN,
READ, WRITE, etc. The specification uses a dialect of the extended
state transition model, however, several extensions to the syntax
of [FDT 81] seemed necessary for this example, as explained in the
section below. The second part of the specification defines the
communication protocol used for the evocation of the file service
primitives over distance. The system is characterized by three
protocol sub-layers (above the Transport service) which are
specified separately.

2.5. Suitability of the FDT and possible extensions

We conclude from the above mentioned experience of
writing formal specifications that the FDT of [FDT 81] is a
flexible tool which leads to relatively readable specifications.
One of the main problems to be decided for each specification was

- 5 -

the overall order in which the different transitions of the
specification should be arranged, in order to arrive at a most
understandable presentation. Such decisions are sometimes quite
arbitrary, often related to the personal taste and prejudices of
the person writing the specification. Consequently, some informal
guidelines would be useful for this purpose. Reference [Chun 82]
tries to give some objective arguments for a particular
organization of the transitions (ordering by incoming
interactions) and shows how such a discipline can be useful for
the systematic development of protocol specifications during the
design phase.

The following subsections contain comments on certain
points of the specification language and its use, and they point
out some possible extensions.

2.5.1. Non-determinism

The FDT of [FDT 81] is based on a model of a non-
deterministic state machine. It is sometimes argued that non-
deterministic behavior is not required, or desirable, for protocol
specifications. We have found non-determinism an important element
of the specification language in the case of service
specifications, where the relation between the interaction at the
different service access points is not deterministic, as well as
in the case of protocol specifications, where (in [TP c] for
instance) the priority of certain possible operations of the
protocol entity is not always defined; for example priority of
different multiplexed connections, extent of concatenation of
multiple PDU's into service data units, possible overtaking of
data by disconnects, etc.

2.5.2. Incomplete specifications

A specification of a protocol entity or a communication
service makes usually some assumptions on the behavior of other
modules in the system. Under these assumptions not all possible
interaction patterns will occur. Therefore, it seems reasonable to
give specifications that are incomplete in the sense that they
define the behavior of the specified system module only for the
case that the above mentioned assumptions are satisfied. We assume
the following convention concerning completeness of a module
specification: If for some given input interaction (with some
particular parameter values) and some given module state no
possible transition is defined, then the specification is
incomplete and the behavior of the module is not defined for this
situation.

- 6 -

Such a situation should not occur under the assumptions
mentioned above. In the case that "in the real world" no
transition is specified for an input that occurs we can therefore
say that the above mentioned assumptions are not satisfied, and
that an "unforeseen error" occured in the environment of the
specified module.

It is certainly desirable to foresee some of the
possible errors of the environment, in particular misbehaviors of
the peer protocol entity. Transitions for these error cases should
therefore be included in the formal specification and not be left
as "unforeseen errors". How much of such error cases should be
included seems to be a matter of taste. Some, but not all,
protocol specifications try to specify actions for every possible
misbehavior of the peer entity. In the OSI environment,
transitions treating user misbehavior should probably not be
defined, since they may be considered part of the service
interface which is a local implementation issue.

The above discussion of the meaning of incomplete
specifications becomes more subtle in the context of non-
determinism. We propose the following definition: An input
interaction from the environment to the specified module is an
unforeseen misbehavior if the specification of the module provides
for the possiblity that the sequence of preceeding interactions
leads to a state of the specification for which there is no
transition specified for the interaction under consideration [Jard
81].

2.5.3. Special syntax for major states

We are not convinced that the special syntax for the
major module state (FROM and TO clauses) are warranted for the
specification of protocols and services, since the PROVIDED clause
and assignment statements could be used instead. This seems to be
more flexible for specifying multiple connection endpoints.

2.5.4. Use of assertions

The use of assertions for the specification of software
is well known. We found that this method could naturally be
incorporated into the extended state transition model by using
assertional specifications in the following three cases:

a) The meaning of procedures and functions used in transitions
can be specified by input/output assertions on the parameter
values.

b) Sometimes, individual statements within a transition may be
considered largely implementation dependent; however, the
specification may state some essential properties. These
properties may be defined by assertions on the module state
variables (possibly relating the values before and after the
execution of the statements).

c) There are situations where the action of a whole transition
may be best defined by assertions which relate the state
values before and after the transition (instead of defining a
statement sequence which performs the state transformations).
Such an approach is similar to the definition of 0-functions
in Special [Robi 79] .

The cases (a) and (b) have been used in [NS a, TS a, TP
c], and the case (c) would have been useful in the specification
of the Virtual File server [Boch 81d] for defining the meaning of
the PDS primitive which positions a pointer in the hierarchical
structure of a file.

2.5.5. Abstract data types

Certain aspects of a specification are usually left
informal, since the specification language is not well suited to
describing these aspects (it would usually lead to unnatural,
lengthy descriptions). Such is often the case with data buffers
that are used in the descriptions of the Transport protocol [TP
a,b,c] or service [TS a,b] . In the example of the Teletex Document
protocol [Chow 82b], the "virtual file store" mentioned above and
a "document manager" were described along similar lines. Usually
semi-formal descriptions are given, declaring a number of
"primitive" procedures and/or functions that may be called and
explaining their meaning in natural language.

These are examples where formal descriptions based on
the formalism of abstract data types (as developed for software
engineering) may be useful. Note, that these difficulties could
possibly be avoided by adopting an FDT that is different from the
extended state transition model assumed in this paper. However, we
have not been convinced that such an approach is preferable.

3. Protocol design validation

The objective of protocol design validation (see for
example [Boch 80]) is to verify that a given protocol
specification for layer N, together with the given service
specification for layer (N~l) imply that the (N)-layer service is
provided by the layered system architecture shown in figure 1.

- 8 -

3.1. Protocol design verification

Under this heading we consider static analysis of the
specifications. A review of different approaches to verification
is given in [Boch 80]. Techniques that are relevant for the
extended state transition model are reachability analysis for
finite state machines, invariant analysis for Petri nets [Azem 80,
Bert 81], and program proving techniques. When a "major state
abstraction" of the system is considered (which ignores the
interaction parameters and additional state variables of the
model) the techniques developed for finite state machines and
Petri nets are applicable, and often provide useful insight into
the possible interaction sequences. For a complete verification,
however, the interaction parameters and additional state variables
must be considered and require usually some verification methods
related to program proving (for example assertions and invariants,
symbolic execution, etc. ; a simple example is discussed in [Boch
771).

We are presently working on the verification of a class
0 Transport protocol based on the specifications given in [TP a,
TS b, NS a] and the standard mapping of PDU into Network service
primitives. Gobally, the verification proceeds through the
following three steps:

1) The three modules shown in figure I (protocol entities and
Network service provider) are combined into a sin-gle machine.
In the "major state abstraction", this combination corresponds
to the formation of a product finite state machine or a Petri
net, where it is important to consider the direct coupling of
the input/output interactions between the combined modules
(see for example [Merl 82] or [Devy 79]). Special attention
must be given to the interaction parameters and additional
state variables in the combined modules.

2) From the viewpoint of the service user, the input/output
interactions between the combined modules may be ignored. This
view may be obtained by projections [Merl], or Petri net
reductions [Bert 76, Devy 79]. In order to reduce the
complexity of the problem, it may also be useful to consider
only a particular service property at a time, as explained in
[Lam 81] .

3) Finally, the abstracted machine specification obtained under
point (2) must be compared with the given Transport service
specification. For the verification of the safanass
properties, it is necessary to show that all execution
sequences obtained from the machine specification of point (2)
are allowed according to the service, specification. In

_ 9 -

(

addition, it is necessary to show that all liveness properties
of the service specification are provided by that machine
(which includes the absence of deadlocks and similar general
properties). It is hoped that the specification obtained in
point (2) is not very different, from the given specification
of the Transport service. Any difference found may point to an
inconsistency in the specifications. The detailed application
of these ideas to the verification of the Transport protocol
may be found in [Laca 82].

3.2. Testing of protocol designs

Under this heading we consider testing of protocols by
directly executing their specification. This is a kind of
simulation approach, where the three modules shown in figure 1 are
executed in some simulated environment and the behavior of the
simulated system is observed and compared with the given service
specification. Such approaches can be used for analyzing the
logical behavior of the system (in which we are interested at this
point), as well as the performance characteristics [Lela 79, Didi
80] .

For the realization of the simulation, the automatic
implementation approaches discussed in the next section may be
used.. Another problem is the automatic comparison of the behavior
resulting from the simulated system with the given service
specification. In the case that the behavior of the service is
non-deterministic (which is usually the case) , the different
choices possible according to the service specification must all
be explored, in order to check whether one of them corresponds to
the behavior observed. The creation of such a checking module from
the formal specification of the service is explored in [Jard 81].

The simulation requires the generation of user input
interactions which must be chosen in such a way as to maximize the
probability of detecting any possible malfunctions. The problem is
similar to the selection of test sequences for protocol
impl0nenetation testing, as discussed in section 5.

4. Automating protocol implementation

Since the extended state transition model combines
elements from finite state machines and programming languages, it
is relatively easy to obtain an implementation for a given
specification in the form of a program.Implementations of finite
state machines in software ara straightforward, and the other
elements are already in a programming language form. The typical
approach is to implement a specification as a looping program
where each cycle of the loop executes a transition. The transition
is either initiated by some input interaction or by some internal

- 10 -

condition that makes its execution possible. The loop could
consist of a CASE statement with one case per kind of input
interaction (including "no input"). For each of these cases the
internal conditions may be tested again by a CASE statement
testing the major state of the module, or by successive IF
statements to select the appropriate transition to be executed.

The implementation of the interactions with the other
modules in the system (input and output interactions) is very
system dependent. In an implementation of the Transport protocol
on our PDP-11 computer [Leve 82] the Transport service
interactions are realized by the exchange of messages passed via a
shared memory region between the users and the Transport module,
which are separate tasks under the RSX-11M operating system;
whereas the Network layer (X.25 software) is incorporated in the
operating system and accessed through supervisor calls.

Automatic translation of formal specifications into
programs is also possible [Tenn 81,Gagn 82]. Usually the
specifications are translated into some program elements (as
described above) which call upon a system dependent run-time
support implementing interactions with the other modules in the
system, buffer management, time-outs etc.

It is not always desirable to implement each separately
specified module as a separate program or task. It is therefore
interesting to investigate methods by which different separately
specified modules may be combined into a single implementation
module. A method for combining separately specified protocol
phases (which are related by a "hierarchical dependence") into a
single implementation module is described in [Boch 79]. A similar
approach can also be used for combining the protocol entities of
different layers, provided that the condition of hierarchical
dependence between the protocols is satisfied. This is, for
instance, the case for the CCITT Teletex Transport, Session and
Document protocols.

5. Assessment of protocol implementations

We consider here all activities used for verifying
whether a particular protocol implementation^heres to the
corresponding protocol specification. If such checking is
performed by an official organization against a standard reference
specification, then the activity may be called "protocol
implementation certification". The assessment activity consists
of applying tests to the implementation (or "unit . under test",
UUT). The tests are qualitative or quantitative depending on
their objective that is, either checking the logical conformity of
the implementation to its specification, or measuring certain

- 11 -

performance parameters such as throughput, delays, reliability,
etc*

Plans for instituting "certification centers" for OSI
protocols exists in several countries [Ansa 80, NPL 81, McCo].
Different approaches may be considered for the certification of an
Open System for its conformance with OSI protocol standards. The
validation can be made most complete when the system provides
access to the interfaces between the different protocol layers,
such that effectively each layer of the system to the validated
may be tested separately. It is also possible to make some
overall tests involving many layers at once, for example from the
Transport layer up through the Presentation layer using the lower-
level network access protocols and the application interface to
the Presentation layer as "access points" to the module under
test. There may, however, be limitations as to the effectiveness
of such a combined multilayer testing procedure.

Among the various test architectures [Boch 82b] the
Remote tester (Figure 2) and a supplementary Local Tester
(directly connected to the UUT) are receiving currently most
attention. Similarly our efforts are directed towards gaining
experience in constructing a Remote test system. Two versions of
the system are under development, an interactive one and an
automatic one. The following two subsections describe their
objectives and general organization, while the last subsection
explains an effort towards developing meaningful test sequences.

5.1 The interactive tester

Here, the objective is to provide a flexible tool
destined mainly for debugging protocol implementations, and to a
limited extend for qualitative testing.

The interactive tester module is placed as a peer entity
with respect to the UUT. Using a computer terminal, the user can
construct arbitrary (also erroneous) interactions (PDU's and
control service primitives) to be sent to the UUT, and examine
those arriving from the tested unit. Hence, the main functions of
the module is to create an easily useable interface for the human
operator, freeing him for performing all coding and decoding
functions for the various PDU's as well as handling the necessary
underlying connections.

A similar module can be connected to the service
interface of the UUT, interacting with the UUT by service
primitives. Alternatively, an automatic responder (see Section
5.2) could be used.

- 12 -

5.2 Automatic Remote Tester

5.2.1 The objective

The objective in this case is to develop an experimental
installation aimed at

a) studying the structure of the Peer Test Module (PTM) and the
Test Module (TM) (See figure 1), so as to obtain a system
least dependent on the type of protocol tested, and

b) providing a vehicle for experimental evaluation of the
techniques used for deriving various test sequences.

Naturally, the ultimate goal is to use the results of the
experimentation towards the development of an assessment system
that is efficient, reliable, and easy to use.

5.2.2 The approach

In order to achieve the flexibility required by the
objectives, we have opted for an organization providing a set of
support modules for applying various tests. One of the modules
takes care of sequencing the various tests, based on a high level
sequencing scenario and the outcome of previous tests.

For each individual test, the behaviour of the TM and
PTM are described using the FDT [FDT 81]. These descriptions are
then compiled (manually or automatically) into executable programs
which are loaded by the support modules, and use their services.

The main support modules in the PTM (Active Tester) are:

- test sequencer,
- report generator,
- test loader/TM protocol handler,
- initial connection establishment test module (needed for

down-loading of detailed tests to the TM),
- PDU mapping module.

In the case of the TM (Passive Responder) the modules are:

- initial connection establishment test,
- test loader/TM protocol handler,
- SDU mapping module.

The implementations at both the PTM and the TM will be
running on a PDP-11 computer under the RSX-11M operating system.
Communication between the various modules is achieved through a

- 13 -

shared memory region and synchronization services of the operating
system. The PDU and SOU mapping modules, and the individual test
sequences are currently adapted towards testing a Transport
protocol implementation*

5*3 Test sequences

Although a wealth of information is available on
software and hardware testing techniques, very little is so far
known about testing protocol implementations, and unfortunately
the hardware and software methods are not directly applicable
here. It is important to note that the protocol implementation
details (software listing, plans, etc.) are not always available.
Consequently, the testing techniques must treat the UUT as a
"black box", and the adherence of the UUT to the specification
must be deduced purely from its responses to appropriate test
sequences. In addition, it is useful to determine the behaviour of
the UUT under unspecified or erroneous inputs in order to obtain a
complete characterization ("friendliness") of the implementation
[Boch. 82b].

The techniques for deriving test sequences for protocols
are thus an open research area. The starting points [Boch 82b]
could be considered the existing approaches in microprocessor
testing [e.g.- That79] , machine identification [Koha 78, Nait 81]
and certain software testing techniques [Chow 78]. It may be
necessary to test an protocol implementation, by functional sub-
modules and/or to introduce a protocol-specific fault model.

In our group, finite state machine testing techniques
are currently being explored. A number of interesting results are
reported in • [Sari 82]. They include the derivation of checking
sequences, transition tours and characterization sequences for
protocol machines. The major problems encountered are related to
the incompleteness of the specification, the synchronization of
the PTM and TM, the length of the test sequences, and the
existence at parameters and secondary state variables in the
specification.

The last two items imply that the tests will not be
complete (except in some trivial cases) in the sense of
completely verifying the absence of design faults in the
implementation [Piat 80].

6. Conclusions

The discussions in the preceeding sections show how a
formal specification of communication services and protocols can
be a used for the various activities during the design and

- 14 -

implementation of distributed systems. Although the discussion
focuses on the experience of our group with a particular formal
description technique [FDT 81] which is proposed to be used in the
OSI environment, we feel that approaches similar to those
described here would be useful in may other situations, including
the design and implementation of non-standard communication
protocols, distributed application development, and modular system
design in general.

References

[Azem 80] P. Azema, B. Berthomieu, P. Decitre, "The Design and
Validation by Petri Nets of a Mechanism for the Invocation of
Remote Servers", Proc. IFIP Conf. 1980, pp. 599-604.

[Boch 77] G.V. Bochmann and J. Gecsei, "A Unified Model for the
specification and verification of protocols", in Proc. IFIP
Congress, 1977, pp. 229-234.

[Boch 77b] G.V. Bochmann and R.J. Chung, "An Formalized
Specification of HDLC Classes of Procedures," in Proc. Nat.
Telecommun. Conf., Los Angeles, CA, Dec. 1977, Paper 3A.2.

[Boch 79] G.V. Bochmann and T. Joachim, "Development and
Structure of an X.25 Implementation," IEEE Trans. Software Eng.,
vol. SE-5. pp. 429-439, Sept. 1979.

[Boch 79b] G.V. Bochmann, "Formalized Specification of the MLP",
"Specification of the Services Provided by the MLP", and "An
Analysis of the MLP". Departement d'informatique et de recherche
operationnelle, Universite de Montreal, June 1979.

[Boch 80] G.V. Bochmann and C.A. Sunshine, "Formal Methods in
Communication Protocol Design", IEEE Trans. COM-28,4 (April 1980),
pp. 624-631. '

[Boch 80b] G.V. Bochmann, "A General Transition Models for
Protocols and Communication Services", IEEE Trans. Com. 28, 4
(April 80), pp. 643-650.

[Boch 80c] G.V. Bochmann, "Concept for the Specification of
Protocols and Services", INWG Note; contribution to ISO
TC97/SC16/WG1 ad hoc group and FDT meeting, Amsterdam 1980.

[Boch 81] G.V. Bochmann, "The Use of Formal Description
Techniques for OSI Protocols", Proc. National Telecom. Conf., New
Orleans, December 1981, pp. F8.6.1-6.

[Boch 82] G.V. Bochmann and M. Raynal, "Structured Specification
of Communicating Systems", Publ. 428, Departement d'informatique
et de recherche operationnelle, Universitk de Montreal, 1982.

[Boch 82b] G.V. Bochmann and E. Cerny, "Protocol Assessment",
Dendronic Decision Ltd., 1982, prepared under contract for DOC,

- 15 -

Canada.

[Bert 76] G. Berthelot, G. Roucairol, "Reductions of Petri Nets",
Proc. of the MFCS 1976 Symp., Lecture Notes in Computer Science
45, Springer Verlag ed.

[Bert 81] G. Berthelot and R. Terrat, "Modelisation et validation
de protocoles de Transport par reseaux de Petri a predicats",
Techn. Report (Sept. 1981), Institut de programiaation, Universite
Curie, Paris.

[Buhr 81] R.J.A. Buhr and D.A. MacKinnon, "The Transport Laryer
in OSI", Research report DOC-CR-CS-1980-0008 prepared for
Department of Communications of Canada (1981).

[CCITT/ISOa] "Draft Connection-Oriented Transport Service", ISO
TC97/SC16 N860 (1982).

[CCITT/ISOb] "Draft Connection-Oriented Basic Transport Protocol
Specification", ISO TC97/SC16 N861 (1982).

[Chow 78] T.S. Chow, "Testing Software Design Modeled by Finite
State Machines", IEEE Trans. Software Eng. SE-4, No. 3 (May 1978).

[Chung 82] R. Chung and G.V. Bochmann, "Principles and
Application of a Formal Description Technique to Teletex
Protocols", Techn. Report, in preparation.

[Chun 82b] R.J. Chung and G.V. Bochmann, "A Formal Specification
of the Teletex Session and Document Procedures", Document de
travail, Departement d'informatique et de recherche
operationnelle, Universit£ de Montreal, 1982.

[Devy 79] M. Devy, M. Diaz, "Multilevel Specification and
Validation of the Control in Communication Systems", 1st Int'l.
Conf. on Distributed Computing Systems, Alabama, October 1-4,
1979.

[Didi 80] M. Didic and B. Wolfinger, "Simulation of a Local
Computer Network Architecture Applying a Unified Modeling System",
Techn. report, Karlsruhe Nuclear Research Center, D-75 Karlsruhe.

[FDT 81] "A FDT Based on an Extended State Transition Model",
working document (Dec. 1981) of Subgroup B of the ad hoc group on
FDT of ISO TC97/SC16/WG1.

[FDT 81b] "Tutorial on Formal Description Techniques", Canadian
contribution to the ISO TC97/SC16/WG1 ad hoc group on FDT, Jan.
1981; also annex to [Gagn 82].

[FDT 81c] "Interaction primitives in formal specification of
distributed systems", working document (Sept. 1981) of Subgroup C
of the ad hoc group on FDT of ISO TC97/SC16/WG1.

- 16 -

[FDT 82a] "Proposal on Different forms of FDT", Canadian
contribution to CCITT SGVII Rapporteurs meeting on FDT, March
1982.

[Gagn 82] M. Gagne, "Un compilateur pour la traduction de
specifications de protocoles en Pascal", Document de travail 120,
Departement d'informatique et de recherche operationnelle,
Universitfe de Montreal, Fevrier 1982.

[ISO 81a] "Concepts for Describing the OSI Architecture" working
document (Nov. 1981) of Subgroup A of the ad hoc group on FDT of
ISO TC97/SC16/WG1.

[Jard 81] C. Jard and G.V. Bochmann, "An Approach to Testing
Specifications", Publ. 430, Departement d'information et de
recherche operationnelle, Universite de Montreal, 1981.

tKoha 78] Z. Kohavi, "Switching and Finite Automata Theory",
McGraw-Hill, 1978, Second Edition.

[Laca 82] C. Lacaille, Master's thesis, in preparation.

[Lam 81] S.S. Lam, A.V. Shankar, "Protocol Projections: A Method
of Analyzing Communication Protocols", Proc. Nat. Telecomm. Conf.
New Orleans, Dec. 1981, pp. E3.2. 1-E.3.2.8.

[LeLa.78] G. LeLann and H. LeGoff, "Verification and Evaluation
of Communication Protocols", Comput. Networks, vol. 2 pp. 50-69,
Feb. 1978.

[LeFe 81] M. LeFevre and 0. Rafic, "Pascal description of P
machine", Projet RHIN, doc. FDT 750g (Sept. 1981), Agence
d'informatique, France.

[Leve 82] A. Leveille, Master's thesis, in preparation.

[McCo 81] W.H. McCoy, R.P. Colella, M.A. Wallace, "Assessing the
Performance of High Level Computer Network Protocols", in Proc.
INWG/NPL Workshop on "Protocl Testing-Towards Proof?, May 1981.

[Merl 82] P. Merlin and G.V. Bochmann, "On the Construction of
Submodule Specifications and Communication Protocols", to be
published in ACM TOPLAS.

[Nait 81] S. Naito, M. Tsunoyama, "Fault Detection for Sequential
Machines by Transition Tours", Proc. IEEE Conf. on Fault
Tolerance, 1981.

[NSa] "Formal Description of the Network Service", Document de
travail Dfepartement d'informatique et de recherche operationnelle,
1982.

[Piat 80] T.F. Piatkowski "Remarks on the Feasability of
Validating and Testing ADCCP Implementations", Proc. Trends and

- 17 -

Applications (NBS), 1980, Gaithersburg, MD(USA).

[Rayn 81] D. Rayner "Protocol Implementation Assessment:
Philosophy and Architecture", Proc. National Telecom. Conf. New
Orleans, December 1981, pp. F8.4.1-5.

[Robi 79] L. Robinson, K.N. Levitt, and B.A. Silverberg "The HDM
Handbook", vol. I-III.SRI Int. 1979.

fTenn 81] R.L. Tenney and T.P. Blumer, "An Automated formal
specification Technique for Protocols", Techn. Report (Jan. 1981),BBN, Cambridge, Mass.

[TPa] "Formal Specification of a Transport Protocol", Canadian
contribution to the ISO TC97/SC16/WG1 ad hoc group on FDT, 1981.

[TPb,c] Annex 1 and Annex 2 of "Examples of Transport Protocol
Specifications", Canadian contribution to CCITT SGVII Rapporteursmeeting on FDT, March 1982.

£TSa] "Formal Specification of a Transport Service", contribution
to CCITT SGVII Rapporteurs meeting on FDT, Oct. 1981, (FDT-21).

[TSb] "Formal Specification of a Transport Service", contribution
WASH-9 to ISO TC97/SC16/WG1 ad hoc group on FDT, Sept. 1981.

[Vogt.82] F. Vogt, HMI (Berlin), doctoral thesis, March 1982.

V e? ~& 7

t ; h

T

a

!

