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This paper investigates some methods for proving the equivalence of different 
language specifications that are given in terms of attribute grammars, 
Different specifications of the same language may be used for different 
purposes, such as language definition, program verification, or language 
implementation. The concept of syntactic coverings is extended to the 
semantic part of attribute grammars. Given two attribute grammars, the 
paper discusses several propositions that give sufficient conditions for one 
attribute grammar to be semantically covered by the other one. These tools 
are used for a comparison of two attribute grammars that specify syntax 
and semantics of mixed-type expressions. This example shows a trade-off 
between the complexity of syntactic and semantic specifications. Another 
example discussed is the equivalence of different attribute grammars for the 
translation of the while-statement, as used in compilers for top-down and 
bottom-up syntax analysis. 

KEY WORDS:  Semantic equivalence; attribute grammars; equivalent 
semantic specifications; coverings; compiler correctness; formal specification 
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1. I N T R O D U C T I O N  

Since the definition of  ALGOL, it has been very c o m m o n  to use a contextfree 

g rammar  to define the syntax of a p rogramming  language. On the other hand,  

there is no s tandard way to define p rogramming  language semantics. There 
are essentially three approaches:  the denota t ional  approach,  considering the 
inpu t -ou tpu t  relat ion represented by a program; the operat ional  approach,  
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considering an interpreter that executes programs; and the translational 
approach, considering the translation of programs into programs of a target 
language whose semantics is supposed to be known. The last approach seems 
most natural to the compiler writer. 

Often for a given language several different specifications exist as 
definition of the language. Often only the syntax is formally defined in each 
specification, but it must be complemented with semantic specifications for 
obtaining a complete definition of the language. For a programming language, 
at least the following specifications are important: 

1. Specification used during the design of the language. 

2. Specification that describes the implementation of the language in 
terms of a compiler, often used in conjunction with a compiler 
writing system. 

3. Specification for the user of the language, as written in the pro- 
gramming language manual. 

These specifications are normally all different, but it is important that 
they be equivalent. Unfortunately, it is very hard to find a specification 
method that is suitable for all the purposes. ~1} 

In this paper we assume that the concept of attribute grammars (2-4) 
is used as metalanguage for the different language specifications. An attribute 
grammar consists of a contextfree syntax, semantic attributes that are 
associated with the nonterminal symbols of the grammar, and evaluation 
rules that specify the attribute values on the derivation tree for any program. 
We discuss here some possibilities for proving the equivalence of different 
attribute grammars. 

The proof of the equivalence of different language specifications is 
certainly not easy, since the question is already undecidable if one considers 
the syntax alone. However, in the cases already mentioned the different 
language specifications of the same language are in some sense similar to 
one another. This simplifies the equivalence proof. If  we consider attribute 
grammars, the similarity lies in the contextfree syntax, the attributes, and the 
evaluation rules of the grammars. Consequently, Sec. 2 gives some conditions 
for the equivalence of two grammars which apply when either the syntax 
or the semantic attributes are identical or very similar in both grammars. 

For any useful equivalence proof for two grammars G and G', it seems 
to be necessary to construct intermediate grammars G co such that the 
equivalence proofs between G and G ~1), G r and G r for 1 ~ i ~ n, and 
G c~+1) and G' are straightforward. As a simple example, two different 
attribute grammars that specify mixed arithmetic expressions are compared 
in Sec. 3. We mention also the more complex example of attribute grammars 
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for lambda expressions discussed elsewhere. 19) A similar approach has also 
been taken by McGowan (1~ for the equivalence proof of interpreters. 

Since the contextfree syntax of a grammar for a given programming 
language is closely related to the syntactic analysis of programs by the 
compiler, and each syntax analysis method used by a compiler works only 
if the syntax of the language satisfies certain conditions, it is quite usual that 
different compilers for the same language are based on different contextfree 
syntaxes. One purpose of this paper is to show that different equivalent 
contextfree syntaxes, adopted for the design of the language and by different 
compilers, can be extended to equivalent attribute grammars that specify 
the syntax and a large part of the semantics of the language. A small example 
is given in Sec. 4, where the syntax and semantics of the while-statement is 
specified by two different attribute grammars that are suitable for bottom-up 
and top-down syntax analysis, respectively. 

2. E Q U I V A L E N C E  O F  A T T R I B U T E  G R A M M A R S  

We begin this section by describing some notions that are essential for 
the definition of semantic equivalence which follows. 

2.1. At t r ibute  Grammars 

Contextfree grammars with attributes have been proposed for the 
description of the semantics of programming languages. (~,~) In this paper 
we employ the notation used in Ref. 4, where a more detailed discussion of 
attribute grammars can be found. 

An attribute grammar G consists of the following parts: 

1. Syntax. A reduced contextfree grammar Go = (V~, V~, S, P). 

2. Attributes. For each nonterminal symbol X in V~, there is a set 
A(X) of attributes that is partitioned into two subsets containing the inherited 
and synthesized attributes, respectively. There are no inherited attributes for 
the starting symbol S e V,. Each attribute a takes possible values in a set 
Vala . 

3. Evaluation rules. For each production rule p of the syntax there 
is a semantic function fl~o) for each synthesized attribute s of the left-side 
symbol of the rule, and a semantic function fl~]k) for each inherited attribute 
i of the kth symbol of the right side of the rule. Each semantic function 
specifies how to compute a value for the attribute, given the values of certain 
other occurrences of attributes of symbols in the same production. 

Given an attribute grammar G, with syntax Go, the semantics of each 
syntactically correct program y ~ L(Go) is given by the values of the 
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synthesized attributes of the starting symbol S, i.e., the semantics of a 
program is an element of the product set Semanticsc = Vala 1 • Val% • 
�9 .. • Val% where a~, a2 ..... ak are the synthesized attributes of S. These 
values are obtained by evaluating all attributes on the derivation tree of the 
program, using for each production of the tree the semantic functions of the 
attribute grammar. The absence of circular evaluation rules (~) and the 
possibility of left-to-right evaluation (4) can be verified. I f  the syntax of the 
grammar is nonambiguous, then the semantics specified for each program 
is unique. 

2.2. Structurally Related Grammars 

Several notions of structural similarity have been proposed for the 
comparison of contextfree grammars, lying somewhere between the notion 
of weak equivalence (generation of the same terminal language) and strong 
equivalence (generation of the same derivation trees, up to an isomorphism). 
An isomorphism between two contextfree grammars G O and G 0' is a one- 
to-one correspondance between the symbols and the productions of the two 
grammars such that for any pair, p: Xo ~ X1X2 "'" X~ andp ' :  X0' -+ )(1' )(2' "'" 
X~', of corresponding productions in Go and Go' respectively, we have n = n' 
and the pairs (J(~, J(.~') for i ~ 0 ~< n are pairs of corresponding symbols in 
the two grammars. For the simplicity of  our exposition we do not make any 
distinction between two contexfree grammars that are isomorphic. 

Given two contextfree grammars Go and Go' over the same terminal 
alphabet, we say that Go = (V~ , V~ , S, P)  is f iner than Go' = (Vt , V~', S', P ')  
(or G 0' is coarser than Go) if (1) there is a correspondence between the 
nonterminal symbols V, and V,', given by a mapping from Vn' into V~, 
and (2) for each productionp: X0' --+ )(1' X~' "" Xn' of Go', there is a derivation 
X0 *~ X1 X2 "'" X,  of corresponding symbols in Go using one or more produc- 
tio~Orules of Go �9 This definition is closely related to Reynolds' and Haskell's 
notion of weak coverings. (5) 

We note that, if Go is finer than Go', then the language generated by Go 
contains the one generated by Go'; i.e., L(Go') C L(Go). 

2.3. Semantic Equivalence 

As discussed, each attribute grammar G specifies a function sG : L(Go)-~" 
(Semanticsc) that specifies for each syntactically correct program y ~ L(Go) 

the set of possible semantics (given for a set Z, we write ~ ( Z )  for the set of 
all subsets o f  Z). I f  Go is nonambiguous, then the image of each y is a single 
element of Semantiesa.  
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Definition 1. Given two attribute grammars G and G' over the same 
set of  terminal symbols, we say that G is semantically finer than G' if there 
exists a mapping q~: Semantiesc ~ SemanticsG, , such that sc,(y) C (o(sa(y)) 
for all y s L(Go) c~ L(Go'), where q~ is the natural extension of q~ to 
(Semanticsc). We say that G and G' are semantically equivalent if G is 
semantically finer than G' and G' is semantically finer than G. 

G being semantically finer than G' means that for all programs y that 
are syntactically valid in both grammars  the semantics of y according to G' 
can be obtained by applying the function q~ to its semantics according to G. 
In the case of  nonambiguous syntax, this means that the diagram shown 
in Fig. 1 commutes. 

I f  the starting symbols of the two grammars have the same attributes, 
the sets Semanticsc and Semanticsa, are identical. In this case we say that 
G is strongly semantically equivalent to G' if 

sa(y) = sc'(y) for all y e L(Go) ~ L(Go'). 

Definition 2. We say that two attribute grammars G and G' are 
equivalent if (1) they are syntactically equivalent, i.e., L(Go) = L(Go'), and 
(2) they are semantically equivalent. 

To make these definitions useful, we need to find methods for deciding 
whether one grammar  is semantically finer than another one, or whether 
both grammars are equivalent. 

Clearly, this is undecidable in general. But in most practical cases one 
is interested in verifying the semantic equivalence of two grammars that are 
likely to be equivalent, and there is normally some kind of  similarity between 
them. In these cases one can possibly use one of the following propositions 
which specify conditions that are sufficient for proving that a grammar  G 
is semantically finer than another grammar  G'. 

Proposition 1. Given two attribute grammars G and G' over the same 
alphabet such that G O is (syntactically) finer than Go' and the attributes for a 
nonterminal X'  ~ V~' are identical to the attributes of the corresponding 
nonterminal X ~ V~, then the following condition is sufficient for G to be 
semantically finer than G' (with ~ being the identity mapping), and if Go is 

L(G0) n L(G,0) 

Semantics G -~ Semanticsgv 
@ 

Fig. 1 
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nonambiguous, this condition implies strong semantic equivalence between 
G and G'. 

Considering any production p':  X 0' ~ Xz' X~' "- X, '  of  G' and any 
corresponding simulation of it by a derivation X 0 *~ )(1 X2 .-.X~ with 
productions of G, then each semantic function ~o,(~,) of G' for evaluating J (a,k) 

the attribute a of the nonterminal symbol Xk' in terms of other attribute 
values of the symbols Xi'(0 ~ i, k ~< n) must be identical to the function 
obtained by the composition of the semantic functions of the productions 
used in the derivation X 0 ~ X 1 X~ "- X~ according to this derivation. e 

We consider, for example, the production p ' :  A '  --~ B ' D ' ,  which is 
simulated, as shown in Fig. 2, by the production p~: A --~ B C  and p~: C --~ D, 
where the attribute evaluation rules are 

sA'. : f l ' ( s e ' ,  So') and i'D' = f2'(SB') for p'  

s.~ = f~(SB,  SC) and ic = f~(sB) for pi 

and 

Sc = f~(SD , ic) and 

In this case the above condition has the form 

f l ' ( s s  , SD) = f l ( s ,  , fa(SD , f2(Ss)))  

and 

iD = f4( ic )  for P2 

A ' ( ~ )  = A ( A ( ~ ) )  

We note that the identity between the semantic function y'ct(~')(a,/c) of  G' 
and the function obtained by composition of functions of G is only required 
for those values of the function domain that may actually occur for some 
occurrence of p'  in some derivation tree of a program. It is often possible 
to derive an assertion, associated with a production or nonterminal of G', 
specifying a predicate that must be satisfied by the attribute values for all 
occurrences of the production or nonterminal, respectively, in all derivation 
treesY ,7) An example is given in the next section. 

Fig. 2 
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Proposition 2. We consider two attribute grammars G and G' with 
the same contextfree syntax Go = (V~, V~, S, P) but different attributes 
and evaluation rules. Without restricting the generality the semantic functions 
of  a production may be written in such a form that each function depends 
only on the inherited attributes of the left-side symbol and the synthesized 
attributes of the right-side symbols. (4) Therefore we may write the semantic 
functions of G for a given production p: X0 -+ X~ X2 "'" X~ in vector notation 
a s  

and 

~Xo = fo(~)(fXo , ~x~ , ~x~ .. . .  , gx , )  

~x~ = f} ' ) (~Xo , gx~ , gx  . . . . . .  ~xo) for 1 <~ k ~< n 

Let q5 = {~bx] X~  V,} and X = {~:xl X~  V,~} be two sets of functions such 
that 

~bx: Val~ • ... • V a l ~ - +  Val~, • Val~s x "" • Val~;, 

where s~, ..., sm and s~', ..., s,~,' are the synthesized attributes of X in G 
and in G', respectively. Similarly ~x maps the inherited attribute values of 
X in G' into the inherited values in G. 

and 

Then the conditions 

fo '(~)l;" - gx,)) ~x0 ,  Cxl(~z)  ..... r  = 4~x0(L(~)(~0(~)0), ~ ,..., 

,-e,(~)~-, ~(~)(r ( ~ ,  ~ - , . . . ,  
x~tJk UXo, ~bxl(gxz), '",  ~x~(gn))) = y 7~ t s x o t  xW, Sxl gx,,~) 

for 1 ~< k ~< n are sufficient for G being semantically finer than G' with 

r = ~ s .  

Proposition 3. We consider two attribute grammars G and G' that are 
identical except that certain nonterminals of  G' have some additional 
attributes. I f  the starting symbols S have the same attributes in G and G', 
and the additional attributes in G' are not used in any evaluation rule for 
an attribute that is also an attribute in G, then the two grammars are 
equivalent, independent of the evaluation rules for the additional attributes 
in G'. 

All propositions can be proven by structural induction over the deriva- 
tion trees of the programs in respect to grammar G'. The proofs of Proposi- 
tions 1 and 3 are straightforward. The proof  of Proposition 2 is complicated 
by the dependency relations between the inherited and synthesized attributes. 
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Clearly, circularity ~2) must be excluded for both grammars G and G'. If both 
grammars allow an attribute evaluation in a single pass from left ro right, (4) 
then the proof  of Proposition 2 is relatively simple too. 

3. A N  E X A M P L E :  M I X E D  EXPRESSIONS 

This example concerns mixed arithmetic expressions as they occur in 
most programming languages. To obtain a simple example that demonstrates 
the application of the ideas in the preceding section, we consider only the 
simplest case, namely, constants of integer and real types, the operation of  
addition, and the coercion of  an integer subexpression to real type in the 
case of mixed-type expressions. A program is a simple expression, as for 
example "2 -5 3 + 4.37." The semantics of a program is an indication of 
the expression type (i.e., integer or real) and the value of the expression. 

We consider two different attribute grammars G (1) and G (~) that define 
the semantics of such programs. G m uses the straightforward syntax 
[omitting productions for the generation of integer (IP) and real (RP) 
primaries] 

p~l). S ::~- E p~l). 

p~l): E : : =  E @ P p~l): 

P~X): E : :=  P 

P : :=  IP  

P : :=  RP 

The syntax of G (2) is 

P~): S : :=  IE  p~2): RE : :=  RE q- RP 

p~2): S : : :  RE  p~2): RE :: = RP 

p~2): IE : : :  IE  ~- IP p~2): RE : : :  R E  + IP 

p~2): IE : : :  IP  p~2): RE : :=  IE  + RP 

It  is more complex and shows explicitly the coercion of integer subexpressions 
(IE) and primaries to real subexpressions (RE). 

In the case of  grammar G (1) these coercion rules are defined by the 
semantic function that evaluates the type attribute in the production 
E :: = E + P (see below). 

The complete attribute grammar G (1) is given below. We use a notation 
similar to that in Ref. 1. Each syntactic symbol of a production is followed 
by the indication of its attributes. For each symbol the attributes are written 
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in a fixed order, inherited attributes are indicated by a "$" sign, and 
synthesized ones by a "]'". (All attributes in the example are synthesized.) 
Those semantic functions that are simple value transfers are indicated by 
the use of identical attribute names. Attributes over the same value set Val, 
but generally different values, are distinguished by different indices. More 
complex evaluation rules are written after the syntactic part of each 
production. 

Grammar  G o) for Mixed Expressions 

p~l): S ]`type Tresult 
:: = E ]'type ]`result 

p~l~: E Ttypel ]`resulh 
:: = E ]'typ% ]`result2 " + "  P Ttyp% ]`result3 
with the evaluation rule 

type1 -- if type2 ----- typ% 
then typ% else real 

and the evaluation rule 
resultz = if type 2 = integer 

then if typea = integer 
then result2 q-~ result3 
else convert (results) § result3 

else if typ% = integer 
then result~ +R convert (result3) 
else result2 -+-R result3 

p~l): E ]`type ]'result 
:: = P ]'type ]'result 

p~Z): p ]'type ]'result 
:: = IP ]'result 
with the evaluation rule 

type = integer 

p~l): p ]'type ]'result 
: :=  RP ]'result 
with the evaluation rule 

type - -  real 

We note that the symbols -5~ and +R stand for integer and real addition, 
respectively. The values of  the type and result attributes of the starting 
symbol S define the semantics of  the program. 

The attribute evaluation rules for the grammar G (~) are simpler than 
those of  G m, since the type of subexpressions is determined by the syntax 
of G (~). The complete grammar is as follows. 
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Grammar  G a) for Mixed Expressions 

p~2): S 1"type '[result 
: :=  IE Tresult 
with the evaluation rule 

type = integer 

p~2): S '[typel"result 
:: ~- RE 1"result 
with the evaluation rule 

type = real 

p~21: IE tresulh 
:: = IE tresult~ "~-"  IP 1"result3 
with the evaluation rule 

resulh = result2 -+-1 results 

p~2): IE tresult 
:: = IP 1"result 

P~): RE l"resulh 
: :=  RE 1"result2 "q-"  RP $result3 

with the evaluation rule 
resulh ~- result~ +R result 3 

p~2): RE tresult 
: :=  RP "[result 

p~2): RE 1"result1 
:: = RE Tresult2 " + "  IP 1"result3 
with the evaluation rule 

resultx = result2 -q-R convert (resultz) 

P8~2~: RE tresulh 
: :=  IE '[resultz "q-"  RP ]'result3 
with the evaluation rule 

resulh = convert (resulh) § resultz 

Comparing the grammars G (1) and G (~), we first note that the syntax 
of G (1) is finer than the syntax of G (2). This is s e e n b y  considering the 
correspondance of syntactic symbols 

G(2) 

S 
IE 

RE 
IP 

RP 

Gr 

S 
E 
E 

I P  
RP 
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and straightforward simulations, such as production p~2): I E - ~  IE + IP 
of  G (2) simulated in G (z) by 

E => E + P  =~ E + I P  

To show the semantic equivalence between G (z) and G (2), we first consider 
an intermediate grammar G (2) that is identical to G (2), except that the 
expression nonterminals IE and RE have an additional type attribute. 
Since the additional attributes are not used by the semantic functions for 
the other attributes, which are also present in G (2), Proposition 3 applies and 
shows that G (2) and ~(zl are equivalent whatever semantic functions are 
chosen for the additional attributes. 

We note that the attributes of corresponding symbols are the same in 
G (~) and ~12). Therefore Proposition 1 may be used to prove their equivalence. 
For this purpose we assume the following additional evaluation rules in 
{~(2): 

1. For P ~ :  type = integer. 

2. For  p~2): type -~ real. 

3. For P~) and P~): type1 = if type2 = integer 
then type2 
else real. 

4. For  p~2) and p~2): type1 --~ real. 

A straightforward substitution shows that the corresponding simulations in 
G (~ yield the same semantic functions for both attributes of  the left-side 
symbol of the productions p~2) and p~2), for the attribute result of p~2) and p~2), 
and for the attribute type of P~Z), p~2), p~2), and p~2).3 But for the attribute 
result of the latter productions and the attribute type of p~2) and P~), the 
semantic functions are not identical. For example, the function for the 
attribute result of production p~2) in G(Z) is 

resulh = result2 +~ result, 

whereas the function obtained by substitution according to the simulation 
in G (~), given above, is 

result~ ~- if type2 = integer 
then result~ +~ result3 
else resultz + n  convert (result3) 

This would not be true for the simpler evaluation rules "typez ~ integer" and "type1 = 
real" for the productions p~2~ and (~) Pr , respectively. 
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However, these two functions are identical on the domain of values that 
may actually occur. It is, in fact, easy to show that the assertions 

"type ---- integer" and "type ---- real" 

hold for all occurrences, within a derivation tree, of the nonterminals IE 
and RE, respectively. Therefore the attribute type2, in the function above, 
always has the value integer, in which case the two functions are identical. 
This shows that the production p~2) of G (2) is correctly simulated by the 
productions of G (1). Similar considerations apply to the other productions 
of ~(2). 

We conclude that Proposition 1 may be applied, and the nonambiguity 
of G m implies the strong semantic equivalence between G m and G (2), and 
therefore between G (z) and G (2). This example illustrates the fact that certain 
complexities of languages can be expressed either by the contextfree syntax 
of the grammar or by its "semantics" in the form of attribute evaluation 
rules. G (~) has a more complex syntax but simpler semantic evaluation rules 
than G (1). 

4. A N O T H E R  E X A M P L E :  WHILE.STATEMENTS 

This example illustrates the translation performed by a compiler that 
translates a high level programming language by generating code for some 
target language. We consider the while-statement and give two possibilities 
for its translation. We suppose that the remaining rules for the translation 
are identical. 

We consider two attribute grammars for the while-statement. The 
grammar G contains the productions 

PI: (statement) ::---- (while clause) (statement) 

P~: (while clause) : :=  (keyword while) (expression)do 

P~: (keyword while) : :=  while 

The grammar G' contains only the production 

P' :  (statement) : :=  while (expression) do (statement) 

These two grammars are typical for compilers that analyze the programs 
in a single pass from left to right, constructing the derivation tree of a 
program from the bottom up or from the top down, respectively. 
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Both grammars use the following attribute types: 

Attribute 
type 

valid 

type 

label 

Set of possible 
values 

{true, false} 

{boolean, etc.} 

...} 

Significance 

boolean value indicating whether all semantic 
conditions are satisfied in the subtree of the 
symbol 

indicating the data type of an (expression) 

indicating a possible branch point in the 
generated object program 

In this example we use the notion of action symbols ~8) for specifying 
the translation of a source program of the language. The code generated 
for a given program is the sequence of action symbols in the derivation tree 
of the program. Action symbols may have attributes. Each action symbol 
evaluates its synthesized attributes as functions of  its inherited ones. Using 
the action symbols 

locate-label T label 
generate-branch $Iabel 
generate-conditional-branch +label 

we can write the production p'  of  G', including semantics, as 

P':  (statement) "~validl 
:: ----- while 

locate-label T labell 
(expression) Tvalid2 ~ type 
generate-conditional-branch j.label2 
(statement) Tvalid8 
generate-branch +labell 
locate-label ~( label2 

with the evaluation rule 
valid1 = valid2 ^ valid~ ^ (type = boolean) 

Similarly, the rules for the while-statement in the grammar G are 

PI: (statement) ~validl 
:: = (while clause) ~label2 ~labell "fvalid2 

(statement) ~valid3 
generate-branch $labell 
locate-label ~ label2 
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with the evaluation rule 
valid1 = valid2 ^ valid~ 

P2: <while clause) $label2 ~ labell ~valid 1 
:: = <keyword while) "[label1 

(expression) ~valid2 ~type 
generate-eonditional-braneh +label2 
do 

with the evaluation rule 
valid1 ~ valid2 ^ (type = boolean) 

P~: <keyword while) ~label 
: :=  while 

locate-label ~ label 

Similarly, as in Sec. 3, the equivalence of the grammars G and G' relies 
on their syntactic equivalence, the fact that G is syntactically finer than G' 
and nonambiguous, and that the attribute evaluation rules of P' are simulated 
by the appropriate composition of the evaluation rules of G. Figure 3 shows 

I 

I 
<stm> 

<k 

while locate-Z <exp> ~en-cond-b do <stm> ~en-b locate-s 

A\ /i\ 
Fig. 3 
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the production rule P' of G' as a local part of the derivation tree of some 
program, and the corresponding part of the derivation tree according to the 
syntax of G, which shows how the production of P' is simulated by the 
productions P1, P2, and P~ of G. 

This example shows a trade-off between grammar forms that are 
efficient for processing and forms that are easy to understand. The form 
of grammar G is adapted to efficient bottom-up parsing algorithms, while 
grammar G' is much simpler to understand. 

5. C O N C L U S I O N S  

In Sec. 2 we discussed several propositions that may be used for proving 
the equivalence of attribute grammars. They use the notion of one grammar 
being semantically finer than another one, which means that the semantics 
of the latter can be expressed in terms of the semantics of the former. This 
situation is similar to the case of syntactic coverings, where the derivation 
tree of a program in respect to one grammar can be obtained by the derivation 
tree of the program in respect to the covering grammar. In fact, one of the 
propositions implies syntactic coverings. Therefore one could call the 
semantically finer attribute grammar a covering grammar. Under certain 
conditions the covering grammar is syntactically and semantically equivalent 
to the covered grammar. 

Throughout this paper we have assumed that the metalanguage in 
which the semantic functions are expressed is well understood. The methods 
for equivalence proofs, discussed in this paper, assume that methods are 
known to decide the equivalence between the semantic functions of a given 
attribute within two different attribute grammars. For example, in the 
example given in Sec. 3, several semantic functions are specified by a 
"definition by cases," the meaning of which is used for the equivalence proof. 

We have not addressed, in this paper, the problem of deciding the 
equivalence of different semantic functions, because we feel that the methods 
discussed in the paper are related to the attribute-passing mechanism of 
attribute grammars, and independent of any particular approach to the 
problem of deciding the equivalence of semantic functions. In practice, 
the latter problem is closely related to the (quite complex) problem of 
proving properties of programs. In fact, most compiler writing systems for 
attribute grammars use a particular programming language for the specifica- 
tion of the semantic functions. 

The examples given in Sec. 3 and 4 show that certain trade~ exist 
between different equivalent language definitions. Among the virtues of a 
language definition we mention 
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1. Simplicity of  contextfree syntax (ease of  understanding). 

2. Simplicity o f  the semantics (ease of  understanding). 

3. Efficiency of implementation: 

(a) Efficiency of syntax analysis of  the compiler. 

(b) Efficiency of semantic analysis and code generation of the 
compiler. 

(c) Efficiency of run-time organization. 

The example of  mixed expressions in Sec. 3 shows a trade-off between 
points 1 and 2; the example of  the while-statements in Sec. 4, between 
points 1, 2, and 3a. In a different context Hoare  m) discusses several aspects 
of  programming languages that are important  in the practice of  programming 
language design. It  is difficult to combine all advantages into one language 
definition. I t  seems that certain trade-offs between the different aspects of  
the definition cannot be avoided. 

Since one of the applications of the methods discussed in this paper is 
proving the equivalence between the definition of a programming language, 
as written down during its design, and its implementation by a compiler, 
we hope that these methods, together with other necessary tools, will actually 
be used in the correctness proof  of  compilers. 
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