
International Journal of Computer and Information Sciences, Vol. 8, No. 6, 1979

Semantic Equivalence of Covering
Attribute Grammars I

Gregor V. Bochmann 2

Received May 1977; revised June 1979

This paper investigates some methods for proving the equivalence of different
language specifications that are given in terms of attribute grammars,
Different specifications of the same language may be used for different
purposes, such as language definition, program verification, or language
implementation. The concept of syntactic coverings is extended to the
semantic part of attribute grammars. Given two attribute grammars, the
paper discusses several propositions that give sufficient conditions for one
attribute grammar to be semantically covered by the other one. These tools
are used for a comparison of two attribute grammars that specify syntax
and semantics of mixed-type expressions. This example shows a trade-off
between the complexity of syntactic and semantic specifications. Another
example discussed is the equivalence of different attribute grammars for the
translation of the while-statement, as used in compilers for top-down and
bottom-up syntax analysis.

KEY WORDS: Semantic equivalence; attribute grammars; equivalent
semantic specifications; coverings; compiler correctness; formal specification
of semantics; semantics of programming languages.

1. I N T R O D U C T I O N

Since the definition of ALGOL, it has been very c o m m o n to use a contextfree

g rammar to define the syntax of a p rogramming language. On the other hand,

there is no s tandard way to define p rogramming language semantics. There
are essentially three approaches: the denota t ional approach, considering the
inpu t -ou tpu t relat ion represented by a program; the operat ional approach,

This work was in part suppozted by the National Research Council of Canada.
Universit~ de Montr6aI, D6partement d'Informatique et de Recherche Op6rationnelle,
Montt6al, Quebec, Canada.

523

0091-7036[79]1200-0523503.00/0 �9 1979 Plenum Publishing Corporation

828/8]6-7

524 Bochmann

considering an interpreter that executes programs; and the translational
approach, considering the translation of programs into programs of a target
language whose semantics is supposed to be known. The last approach seems
most natural to the compiler writer.

Often for a given language several different specifications exist as
definition of the language. Often only the syntax is formally defined in each
specification, but it must be complemented with semantic specifications for
obtaining a complete definition of the language. For a programming language,
at least the following specifications are important:

1. Specification used during the design of the language.

2. Specification that describes the implementation of the language in
terms of a compiler, often used in conjunction with a compiler
writing system.

3. Specification for the user of the language, as written in the pro-
gramming language manual.

These specifications are normally all different, but it is important that
they be equivalent. Unfortunately, it is very hard to find a specification
method that is suitable for all the purposes. ~1}

In this paper we assume that the concept of attribute grammars (2-4)
is used as metalanguage for the different language specifications. An attribute
grammar consists of a contextfree syntax, semantic attributes that are
associated with the nonterminal symbols of the grammar, and evaluation
rules that specify the attribute values on the derivation tree for any program.
We discuss here some possibilities for proving the equivalence of different
attribute grammars.

The proof of the equivalence of different language specifications is
certainly not easy, since the question is already undecidable if one considers
the syntax alone. However, in the cases already mentioned the different
language specifications of the same language are in some sense similar to
one another. This simplifies the equivalence proof. If we consider attribute
grammars, the similarity lies in the contextfree syntax, the attributes, and the
evaluation rules of the grammars. Consequently, Sec. 2 gives some conditions
for the equivalence of two grammars which apply when either the syntax
or the semantic attributes are identical or very similar in both grammars.

For any useful equivalence proof for two grammars G and G', it seems
to be necessary to construct intermediate grammars G co such that the
equivalence proofs between G and G ~1), G r and G r for 1 ~ i ~ n, and
G c~+1) and G' are straightforward. As a simple example, two different
attribute grammars that specify mixed arithmetic expressions are compared
in Sec. 3. We mention also the more complex example of attribute grammars

Semantic Equivalence of Covering Attribute Grammars 525

for lambda expressions discussed elsewhere. 19) A similar approach has also
been taken by McGowan (1~ for the equivalence proof of interpreters.

Since the contextfree syntax of a grammar for a given programming
language is closely related to the syntactic analysis of programs by the
compiler, and each syntax analysis method used by a compiler works only
if the syntax of the language satisfies certain conditions, it is quite usual that
different compilers for the same language are based on different contextfree
syntaxes. One purpose of this paper is to show that different equivalent
contextfree syntaxes, adopted for the design of the language and by different
compilers, can be extended to equivalent attribute grammars that specify
the syntax and a large part of the semantics of the language. A small example
is given in Sec. 4, where the syntax and semantics of the while-statement is
specified by two different attribute grammars that are suitable for bottom-up
and top-down syntax analysis, respectively.

2. E Q U I V A L E N C E O F A T T R I B U T E G R A M M A R S

We begin this section by describing some notions that are essential for
the definition of semantic equivalence which follows.

2.1. At t r ibute Grammars

Contextfree grammars with attributes have been proposed for the
description of the semantics of programming languages. (~,~) In this paper
we employ the notation used in Ref. 4, where a more detailed discussion of
attribute grammars can be found.

An attribute grammar G consists of the following parts:

1. Syntax. A reduced contextfree grammar Go = (V~, V~, S, P).

2. Attributes. For each nonterminal symbol X in V~, there is a set
A(X) of attributes that is partitioned into two subsets containing the inherited
and synthesized attributes, respectively. There are no inherited attributes for
the starting symbol S e V,. Each attribute a takes possible values in a set
Vala .

3. Evaluation rules. For each production rule p of the syntax there
is a semantic function fl~o) for each synthesized attribute s of the left-side
symbol of the rule, and a semantic function fl~]k) for each inherited attribute
i of the kth symbol of the right side of the rule. Each semantic function
specifies how to compute a value for the attribute, given the values of certain
other occurrences of attributes of symbols in the same production.

Given an attribute grammar G, with syntax Go, the semantics of each
syntactically correct program y ~ L(Go) is given by the values of the

526 Bochmann

synthesized attributes of the starting symbol S, i.e., the semantics of a
program is an element of the product set Semanticsc = Vala 1 • Val% •
�9 .. • Val% where a~, a2 ak are the synthesized attributes of S. These
values are obtained by evaluating all attributes on the derivation tree of the
program, using for each production of the tree the semantic functions of the
attribute grammar. The absence of circular evaluation rules (~) and the
possibility of left-to-right evaluation (4) can be verified. I f the syntax of the
grammar is nonambiguous, then the semantics specified for each program
is unique.

2.2. Structurally Related Grammars

Several notions of structural similarity have been proposed for the
comparison of contextfree grammars, lying somewhere between the notion
of weak equivalence (generation of the same terminal language) and strong
equivalence (generation of the same derivation trees, up to an isomorphism).
An isomorphism between two contextfree grammars G O and G 0' is a one-
to-one correspondance between the symbols and the productions of the two
grammars such that for any pair, p: Xo ~ X1X2 "'" X~ andp ' : X0' -+)(1')(2' "'"
X~', of corresponding productions in Go and Go' respectively, we have n = n'
and the pairs (J(~, J(.~') for i ~ 0 ~< n are pairs of corresponding symbols in
the two grammars. For the simplicity of our exposition we do not make any
distinction between two contexfree grammars that are isomorphic.

Given two contextfree grammars Go and Go' over the same terminal
alphabet, we say that Go = (V~ , V~ , S, P) is f iner than Go' = (Vt , V~', S', P ')
(or G 0' is coarser than Go) if (1) there is a correspondence between the
nonterminal symbols V, and V,', given by a mapping from Vn' into V~,
and (2) for each productionp: X0' --+)(1' X~' "" Xn' of Go', there is a derivation
X0 *~ X1 X2 "'" X, of corresponding symbols in Go using one or more produc-
tio~Orules of Go �9 This definition is closely related to Reynolds' and Haskell's
notion of weak coverings. (5)

We note that, if Go is finer than Go', then the language generated by Go
contains the one generated by Go'; i.e., L(Go') C L(Go).

2.3. Semantic Equivalence

As discussed, each attribute grammar G specifies a function sG : L(Go)-~"
(Semanticsc) that specifies for each syntactically correct program y ~ L(Go)

the set of possible semantics (given for a set Z, we write ~ (Z) for the set of
all subsets o f Z). I f Go is nonambiguous, then the image of each y is a single
element of Semantiesa.

Semantic Equivalence of Covering Attr ibute Grammars 527

Definition 1. Given two attribute grammars G and G' over the same
set of terminal symbols, we say that G is semantically finer than G' if there
exists a mapping q~: Semantiesc ~ SemanticsG, , such that sc,(y) C (o(sa(y))
for all y s L(Go) c~ L(Go'), where q~ is the natural extension of q~ to
(Semanticsc). We say that G and G' are semantically equivalent if G is
semantically finer than G' and G' is semantically finer than G.

G being semantically finer than G' means that for all programs y that
are syntactically valid in both grammars the semantics of y according to G'
can be obtained by applying the function q~ to its semantics according to G.
In the case of nonambiguous syntax, this means that the diagram shown
in Fig. 1 commutes.

I f the starting symbols of the two grammars have the same attributes,
the sets Semanticsc and Semanticsa, are identical. In this case we say that
G is strongly semantically equivalent to G' if

sa(y) = sc'(y) for all y e L(Go) ~ L(Go').

Definition 2. We say that two attribute grammars G and G' are
equivalent if (1) they are syntactically equivalent, i.e., L(Go) = L(Go'), and
(2) they are semantically equivalent.

To make these definitions useful, we need to find methods for deciding
whether one grammar is semantically finer than another one, or whether
both grammars are equivalent.

Clearly, this is undecidable in general. But in most practical cases one
is interested in verifying the semantic equivalence of two grammars that are
likely to be equivalent, and there is normally some kind of similarity between
them. In these cases one can possibly use one of the following propositions
which specify conditions that are sufficient for proving that a grammar G
is semantically finer than another grammar G'.

Proposition 1. Given two attribute grammars G and G' over the same
alphabet such that G O is (syntactically) finer than Go' and the attributes for a
nonterminal X' ~ V~' are identical to the attributes of the corresponding
nonterminal X ~ V~, then the following condition is sufficient for G to be
semantically finer than G' (with ~ being the identity mapping), and if Go is

L(G0) n L(G,0)

Semantics G -~ Semanticsgv
@

Fig. 1

528 Bochmann

nonambiguous, this condition implies strong semantic equivalence between
G and G'.

Considering any production p': X 0' ~ Xz' X~' "- X, ' of G' and any
corresponding simulation of it by a derivation X 0 *~)(1 X2 .-.X~ with
productions of G, then each semantic function ~o,(~,) of G' for evaluating J (a,k)

the attribute a of the nonterminal symbol Xk' in terms of other attribute
values of the symbols Xi'(0 ~ i, k ~< n) must be identical to the function
obtained by the composition of the semantic functions of the productions
used in the derivation X 0 ~ X 1 X~ "- X~ according to this derivation. e

We consider, for example, the production p ' : A ' --~ B ' D ' , which is
simulated, as shown in Fig. 2, by the production p~: A --~ B C and p~: C --~ D,
where the attribute evaluation rules are

sA'. : f l ' (s e ' , So') and i'D' = f2'(SB') for p'

s.~ = f~(SB, SC) and ic = f~(sB) for pi

and

Sc = f~(SD , ic) and

In this case the above condition has the form

f l ' (s s , SD) = f l (s , , fa(SD , f2(Ss)))

and

iD = f4(ic) for P2

A ' (~) = A (A (~))

We note that the identity between the semantic function y'ct(~')(a,/c) of G'
and the function obtained by composition of functions of G is only required
for those values of the function domain that may actually occur for some
occurrence of p' in some derivation tree of a program. It is often possible
to derive an assertion, associated with a production or nonterminal of G',
specifying a predicate that must be satisfied by the attribute values for all
occurrences of the production or nonterminal, respectively, in all derivation
treesY ,7) An example is given in the next section.

Fig. 2

Semantic Equivalence of Covering Attribute Grammars 529

Proposition 2. We consider two attribute grammars G and G' with
the same contextfree syntax Go = (V~, V~, S, P) but different attributes
and evaluation rules. Without restricting the generality the semantic functions
of a production may be written in such a form that each function depends
only on the inherited attributes of the left-side symbol and the synthesized
attributes of the right-side symbols. (4) Therefore we may write the semantic
functions of G for a given production p: X0 -+ X~ X2 "'" X~ in vector notation
a s

and

~Xo = fo(~)(fXo , ~x~ , ~x~ , gx ,)

~x~ = f} ') (~Xo , gx~ , gx ~xo) for 1 <~ k ~< n

Let q5 = {~bx] X~ V,} and X = {~:xl X~ V,~} be two sets of functions such
that

~bx: Val~ • ... • V a l ~ - + Val~, • Val~s x "" • Val~;,

where s~, ..., sm and s~', ..., s,~,' are the synthesized attributes of X in G
and in G', respectively. Similarly ~x maps the inherited attribute values of
X in G' into the inherited values in G.

and

Then the conditions

fo '(~)l;" - gx,)) ~x0 , Cxl(~z) r = 4~x0(L(~)(~0(~)0), ~ ,...,

,-e,(~)~-, ~(~)(r (~ , ~ - , . . . ,
x~tJk UXo, ~bxl(gxz), '", ~x~(gn))) = y 7~ t s x o t xW, Sxl gx,,~)

for 1 ~< k ~< n are sufficient for G being semantically finer than G' with

r = ~ s .

Proposition 3. We consider two attribute grammars G and G' that are
identical except that certain nonterminals of G' have some additional
attributes. I f the starting symbols S have the same attributes in G and G',
and the additional attributes in G' are not used in any evaluation rule for
an attribute that is also an attribute in G, then the two grammars are
equivalent, independent of the evaluation rules for the additional attributes
in G'.

All propositions can be proven by structural induction over the deriva-
tion trees of the programs in respect to grammar G'. The proofs of Proposi-
tions 1 and 3 are straightforward. The proof of Proposition 2 is complicated
by the dependency relations between the inherited and synthesized attributes.

530 Bochmann

Clearly, circularity ~2) must be excluded for both grammars G and G'. If both
grammars allow an attribute evaluation in a single pass from left ro right, (4)
then the proof of Proposition 2 is relatively simple too.

3. A N E X A M P L E : M I X E D EXPRESSIONS

This example concerns mixed arithmetic expressions as they occur in
most programming languages. To obtain a simple example that demonstrates
the application of the ideas in the preceding section, we consider only the
simplest case, namely, constants of integer and real types, the operation of
addition, and the coercion of an integer subexpression to real type in the
case of mixed-type expressions. A program is a simple expression, as for
example "2 -5 3 + 4.37." The semantics of a program is an indication of
the expression type (i.e., integer or real) and the value of the expression.

We consider two different attribute grammars G (1) and G (~) that define
the semantics of such programs. G m uses the straightforward syntax
[omitting productions for the generation of integer (IP) and real (RP)
primaries]

p~l). S ::~- E p~l).

p~l): E : : = E @ P p~l):

P~X): E : := P

P : := IP

P : := RP

The syntax of G (2) is

P~): S : := IE p~2): RE : := RE q- RP

p~2): S : : : RE p~2): RE :: = RP

p~2): IE : : : IE ~- IP p~2): RE : : : R E + IP

p~2): IE : : : IP p~2): RE : := IE + RP

It is more complex and shows explicitly the coercion of integer subexpressions
(IE) and primaries to real subexpressions (RE).

In the case of grammar G (1) these coercion rules are defined by the
semantic function that evaluates the type attribute in the production
E :: = E + P (see below).

The complete attribute grammar G (1) is given below. We use a notation
similar to that in Ref. 1. Each syntactic symbol of a production is followed
by the indication of its attributes. For each symbol the attributes are written

Semantic Equivalence of Covering Attribute Grammars 531

in a fixed order, inherited attributes are indicated by a "$" sign, and
synthesized ones by a "]'". (All attributes in the example are synthesized.)
Those semantic functions that are simple value transfers are indicated by
the use of identical attribute names. Attributes over the same value set Val,
but generally different values, are distinguished by different indices. More
complex evaluation rules are written after the syntactic part of each
production.

Grammar G o) for Mixed Expressions

p~l): S]`type Tresult
:: = E]'type]`result

p~l~: E Ttypel]`resulh
:: = E]'typ%]`result2 " + " P Ttyp%]`result3
with the evaluation rule

type1 -- if type2 ----- typ%
then typ% else real

and the evaluation rule
resultz = if type 2 = integer

then if typea = integer
then result2 q-~ result3
else convert (results) § result3

else if typ% = integer
then result~ +R convert (result3)
else result2 -+-R result3

p~l): E]`type]'result
:: = P]'type]'result

p~Z): p]'type]'result
:: = IP]'result
with the evaluation rule

type = integer

p~l): p]'type]'result
: := RP]'result
with the evaluation rule

type - - real

We note that the symbols -5~ and +R stand for integer and real addition,
respectively. The values of the type and result attributes of the starting
symbol S define the semantics of the program.

The attribute evaluation rules for the grammar G (~) are simpler than
those of G m, since the type of subexpressions is determined by the syntax
of G (~). The complete grammar is as follows.

532 Bochmann

Grammar G a) for Mixed Expressions

p~2): S 1"type '[result
: := IE Tresult
with the evaluation rule

type = integer

p~2): S '[typel"result
:: ~- RE 1"result
with the evaluation rule

type = real

p~21: IE tresulh
:: = IE tresult~ "~-" IP 1"result3
with the evaluation rule

resulh = result2 -+-1 results

p~2): IE tresult
:: = IP 1"result

P~): RE l"resulh
: := RE 1"result2 "q-" RP $result3

with the evaluation rule
resulh ~- result~ +R result 3

p~2): RE tresult
: := RP "[result

p~2): RE 1"result1
:: = RE Tresult2 " + " IP 1"result3
with the evaluation rule

resultx = result2 -q-R convert (resultz)

P8~2~: RE tresulh
: := IE '[resultz "q-" RP]'result3
with the evaluation rule

resulh = convert (resulh) § resultz

Comparing the grammars G (1) and G (~), we first note that the syntax
of G (1) is finer than the syntax of G (2). This is s e e n b y considering the
correspondance of syntactic symbols

G(2)

S
IE

RE
IP

RP

Gr

S
E
E

I P
RP

Semantic Equivalence of Covering Attribute Grammars 533

and straightforward simulations, such as production p~2): I E - ~ IE + IP
of G (2) simulated in G (z) by

E => E + P =~ E + I P

To show the semantic equivalence between G (z) and G (2), we first consider
an intermediate grammar G (2) that is identical to G (2), except that the
expression nonterminals IE and RE have an additional type attribute.
Since the additional attributes are not used by the semantic functions for
the other attributes, which are also present in G (2), Proposition 3 applies and
shows that G (2) and ~(zl are equivalent whatever semantic functions are
chosen for the additional attributes.

We note that the attributes of corresponding symbols are the same in
G (~) and ~12). Therefore Proposition 1 may be used to prove their equivalence.
For this purpose we assume the following additional evaluation rules in
{~(2):

1. For P ~ : type = integer.

2. For p~2): type -~ real.

3. For P~) and P~): type1 = if type2 = integer
then type2
else real.

4. For p~2) and p~2): type1 --~ real.

A straightforward substitution shows that the corresponding simulations in
G (~ yield the same semantic functions for both attributes of the left-side
symbol of the productions p~2) and p~2), for the attribute result of p~2) and p~2),
and for the attribute type of P~Z), p~2), p~2), and p~2).3 But for the attribute
result of the latter productions and the attribute type of p~2) and P~), the
semantic functions are not identical. For example, the function for the
attribute result of production p~2) in G(Z) is

resulh = result2 +~ result,

whereas the function obtained by substitution according to the simulation
in G (~), given above, is

result~ ~- if type2 = integer
then result~ +~ result3
else resultz + n convert (result3)

This would not be true for the simpler evaluation rules "typez ~ integer" and "type1 =
real" for the productions p~2~ and (~) Pr , respectively.

534 Bochmann

However, these two functions are identical on the domain of values that
may actually occur. It is, in fact, easy to show that the assertions

"type ---- integer" and "type ---- real"

hold for all occurrences, within a derivation tree, of the nonterminals IE
and RE, respectively. Therefore the attribute type2, in the function above,
always has the value integer, in which case the two functions are identical.
This shows that the production p~2) of G (2) is correctly simulated by the
productions of G (1). Similar considerations apply to the other productions
of ~(2).

We conclude that Proposition 1 may be applied, and the nonambiguity
of G m implies the strong semantic equivalence between G m and G (2), and
therefore between G (z) and G (2). This example illustrates the fact that certain
complexities of languages can be expressed either by the contextfree syntax
of the grammar or by its "semantics" in the form of attribute evaluation
rules. G (~) has a more complex syntax but simpler semantic evaluation rules
than G (1).

4. A N O T H E R E X A M P L E : WHILE.STATEMENTS

This example illustrates the translation performed by a compiler that
translates a high level programming language by generating code for some
target language. We consider the while-statement and give two possibilities
for its translation. We suppose that the remaining rules for the translation
are identical.

We consider two attribute grammars for the while-statement. The
grammar G contains the productions

PI: (statement) ::---- (while clause) (statement)

P~: (while clause) : := (keyword while) (expression)do

P~: (keyword while) : := while

The grammar G' contains only the production

P' : (statement) : := while (expression) do (statement)

These two grammars are typical for compilers that analyze the programs
in a single pass from left to right, constructing the derivation tree of a
program from the bottom up or from the top down, respectively.

Semantic Equivalence of Covering Attr ibute Grammars 535

Both grammars use the following attribute types:

Attribute
type

valid

type

label

Set of possible
values

{true, false}

{boolean, etc.}

...}

Significance

boolean value indicating whether all semantic
conditions are satisfied in the subtree of the
symbol

indicating the data type of an (expression)

indicating a possible branch point in the
generated object program

In this example we use the notion of action symbols ~8) for specifying
the translation of a source program of the language. The code generated
for a given program is the sequence of action symbols in the derivation tree
of the program. Action symbols may have attributes. Each action symbol
evaluates its synthesized attributes as functions of its inherited ones. Using
the action symbols

locate-label T label
generate-branch $Iabel
generate-conditional-branch +label

we can write the production p' of G', including semantics, as

P': (statement) "~validl
:: ----- while

locate-label T labell
(expression) Tvalid2 ~ type
generate-conditional-branch j.label2
(statement) Tvalid8
generate-branch +labell
locate-label ~(label2

with the evaluation rule
valid1 = valid2 ^ valid~ ^ (type = boolean)

Similarly, the rules for the while-statement in the grammar G are

PI: (statement) ~validl
:: = (while clause) ~label2 ~labell "fvalid2

(statement) ~valid3
generate-branch $labell
locate-label ~ label2

536 Bochmann

with the evaluation rule
valid1 = valid2 ^ valid~

P2: <while clause) $label2 ~ labell ~valid 1
:: = <keyword while) "[label1

(expression) ~valid2 ~type
generate-eonditional-braneh +label2
do

with the evaluation rule
valid1 ~ valid2 ^ (type = boolean)

P~: <keyword while) ~label
: := while

locate-label ~ label

Similarly, as in Sec. 3, the equivalence of the grammars G and G' relies
on their syntactic equivalence, the fact that G is syntactically finer than G'
and nonambiguous, and that the attribute evaluation rules of P' are simulated
by the appropriate composition of the evaluation rules of G. Figure 3 shows

I

I
<stm>

<k

while locate-Z <exp> ~en-cond-b do <stm> ~en-b locate-s

A\ /i\
Fig. 3

Semantic Equivalence of Covering Attribute Grammars 537

the production rule P' of G' as a local part of the derivation tree of some
program, and the corresponding part of the derivation tree according to the
syntax of G, which shows how the production of P' is simulated by the
productions P1, P2, and P~ of G.

This example shows a trade-off between grammar forms that are
efficient for processing and forms that are easy to understand. The form
of grammar G is adapted to efficient bottom-up parsing algorithms, while
grammar G' is much simpler to understand.

5. C O N C L U S I O N S

In Sec. 2 we discussed several propositions that may be used for proving
the equivalence of attribute grammars. They use the notion of one grammar
being semantically finer than another one, which means that the semantics
of the latter can be expressed in terms of the semantics of the former. This
situation is similar to the case of syntactic coverings, where the derivation
tree of a program in respect to one grammar can be obtained by the derivation
tree of the program in respect to the covering grammar. In fact, one of the
propositions implies syntactic coverings. Therefore one could call the
semantically finer attribute grammar a covering grammar. Under certain
conditions the covering grammar is syntactically and semantically equivalent
to the covered grammar.

Throughout this paper we have assumed that the metalanguage in
which the semantic functions are expressed is well understood. The methods
for equivalence proofs, discussed in this paper, assume that methods are
known to decide the equivalence between the semantic functions of a given
attribute within two different attribute grammars. For example, in the
example given in Sec. 3, several semantic functions are specified by a
"definition by cases," the meaning of which is used for the equivalence proof.

We have not addressed, in this paper, the problem of deciding the
equivalence of different semantic functions, because we feel that the methods
discussed in the paper are related to the attribute-passing mechanism of
attribute grammars, and independent of any particular approach to the
problem of deciding the equivalence of semantic functions. In practice,
the latter problem is closely related to the (quite complex) problem of
proving properties of programs. In fact, most compiler writing systems for
attribute grammars use a particular programming language for the specifica-
tion of the semantic functions.

The examples given in Sec. 3 and 4 show that certain trade~ exist
between different equivalent language definitions. Among the virtues of a
language definition we mention

538 Bochmann

1. Simplicity of contextfree syntax (ease of understanding).

2. Simplicity o f the semantics (ease of understanding).

3. Efficiency of implementation:

(a) Efficiency of syntax analysis of the compiler.

(b) Efficiency of semantic analysis and code generation of the
compiler.

(c) Efficiency of run-time organization.

The example of mixed expressions in Sec. 3 shows a trade-off between
points 1 and 2; the example of the while-statements in Sec. 4, between
points 1, 2, and 3a. In a different context Hoare m) discusses several aspects
of programming languages that are important in the practice of programming
language design. It is difficult to combine all advantages into one language
definition. I t seems that certain trade-offs between the different aspects of
the definition cannot be avoided.

Since one of the applications of the methods discussed in this paper is
proving the equivalence between the definition of a programming language,
as written down during its design, and its implementation by a compiler,
we hope that these methods, together with other necessary tools, will actually
be used in the correctness proof of compilers.

A C K N O W L E D G M E N T

I am grateful to Bill Armstrong for many fruitful discussions on the
subject of this paper.

REFERENCES

1. M. Marcotty, H. F. Ledgard, and G. V. Bochmann, "A sampler of formal definitions,"
ACM Comput. Surv. 8(2):191-276 (June 1976).

2. D. E. Knuth, "Semantics of context-free languages," Math. Syst. Theory 2:127-145
(1968); 5:95 (1971).

3. C. H. A. Koster, "Affix Grammars," in J. E. L Peck, ed., Algol 68 Implementation
(North Holland, Amsterdam, 1971), pp. 95-109.

4. G. V. Bochmann, "Semantic evaluation from left to right," Commun. ACM 19(2):
55-62 (February 1976).

5. J. C. Reynolds and R. Haskell, "Grammatical Coverings," unpublished manuscript,
1970. See also A. V. Aho and J. P. Ullman, The Theory of Parsing, Translation and
Compiling, Vol. I, Sec. 3.4.5 (Prentice Hall, Englewood Cliffs, New Jersey, 1972).

6. G. Godbout, "D6finition d'un langage interm6diaire pour un syst~me d'6criture de
compilateurs," Master's thesis, D6partement d'Informatique et de Recherche Op6ra-
tionnelle, Universit6 de Montr6al (1976).

Semantic Equivalence of Covering Attribute Grammars 539

7. C. Pair, M. Amirchahy, and D. Neel, Correstness Proofs of Text-Processing Descrip-
tions by Attributes (IRIA-Laboria, France, 1976).

8. P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns, "Attributed Translations," Proceed-
ings of the ACM Symposium on Theory of Computing, Austin (May 1973), pp. 160-171.

9. G. V. Bochmann, "Semantic Equivalence of Covering Attribute Grammars," Publica-
tion #218, D6partement d'I.R.O., Universit6 de Montr6al (1975).

10. C. L. McGowan, "An Inductive Proof Technique for Interpreter Equivalence," in
R. Austin, ed., Formal Semantics of Programming Languages (Prentice Hall, Englewood
Cliffs, New Jersey, 1972), pp. 139-147.

11. C. A. R. Hoare, "Hints on Programming Language Design," invited address at
SIGACT/SIGPLAN Symposium on Principles of Programming Languages, Boston
(October 1973), and Stanford CS Report.

828/8/6-8

