IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

429

Development and Structure of an

Abstract—This paper describes experience with an implementation of
the X.25 communication protocols for accessing public data networks.
The implementation effort is characterized by: 1) the development of
a formalized protocol specification on which all further implementation
work is based, and 2) the use of Concurrent Pascal as the implementation
language. The main features of the formalized protocol specification
are given, and a method for deriving a protocol implementation based
on parallel processes, monitors, and classes is explained. The overall
structure of the system and the step-wise refinements leading to the
complete implementation are discussed. Some comments on the
possible implementation on multiple microprocessors are also given.

Index Terms—Communications software, Concurrent Pascal, formal
specification, process structuring, protocol implementation, step-
wise refinement, structured programming, X.25 protocol.

I. INTRODUCTION

.25 [1] is a standard access protocol for using virtual

circuits (VC’s) provided by public data networks. This
paper describes certain aspects of the experience gained from
the implementation of this protocol in a host computer [2].
For the implementation of most communication protocols,
the following points must be considered:

1) ensuring the compatibility of the implementation with
the remote communication partner,

2) implementing several parallel activities, which is usual for
real-time systems, and

3) a step-wise refinement of the system design, which is a
useful discipline for any software development project.

We have used a high-level implementation language [3]
which provides the concepts of abstract data types (i.e., class),
parallel processes, and monitors (for process interaction).
These concepts support points 2) and 3) above. In view of
point 1), we have used a formalized specification of the X.25
protocol. Part of our project was the development of this
specification. More precise and more algorithmical in nature
than the original specification of the protocol, given in natural
language, it has been used as the basis for deriving the imple-

Manuscript received July 12, 1978; revised February 16, 1979. This
work was performed at the Université de Montréal, P.Q., Canada, and
was supported by the Ministére de ’Education du Québec and the
Canadian International Development Agency.

G. V. Bochmann is with the Département d’LR.O., Université de
Montréal, Montreal, P.Q., Canada. In 1978 he was on leave at the Dé-
partement de Mathématiques, Ecole Polytechnique Fédérale, Lausanne,
Switzerland.

T. Joachim is with the Centre National du Traitement de I'Informa-
tion, Upper Volta.

X. 25 lmplementatlon

\H TANKOANO JOACHIM

mentation in a more or less straightforward manner, as de-
scribed in Section III.

Section II describes the main features of the formalized X.25
specification as used in our project. (The complete specifica-
tion is contained in [2].) Section III explains how such a
formalized specification may be transformed into an imple-
mentation, taking one component of the X.25 link level as an
example. In Section IV, we describe the overall structure of
our X.25 implementation as far as the organization of parallel
activity is concerned, and the interfaces between the different
system parts, including the user of the VC communication
facility provided. In Section V, we make some remarks on the
step-wise refinement of our system, and discuss in some detail
the problems of buffer management and message coding. We
finish with some general conclusions from our implementation
experience. The complete text of our formalized specification
of X.25, and its implementation in Concurrent Pascal, is con-
tained in [2].

We assume in the following some familiarity with the X.25
protocol [1], the concepts of classes, processes, and monitors
as realized in Concurrent Pascal [3], and the unified protocol
specification method of Bochmann and Gecsei [4] .

II. A FORMALIZED SPECIFICATION OF X.25

The X.25 specification contains three procedure layers:

1) the physical layer, specifying bit transmission between
the subscriber and network equipments,

2) the link layer, specifying frame formats, transmission
error detection, and error recovery procedures, and

3) the packet layer, specifying packet formats and pro-
cedures for the use of VC’s.

A basic decomposition of the X.25 protocol is shown in
Fig. 1, where the different modules communicate by exchang-
ing packets or frames, respectively. The VC control modules
implement the packet level procedures separately for each VC,
and the Packet sender and receiver modules implement the
link level procedures. These procedures have been considered
for the formalized specification. The other modules of Fig. 1
have essentially a (de-) multiplexing function, and are relatively
simple. The Frame input and output modules also handle
transmission error detection and transparency coding, as well
as physical input/output. We note that the X.25 link level
(we consider the original LAP A standard [1]) distinguishes
primary and secondary functions which, relatively independent
of one another, perform the sending and receiving of frames,

0098-5589/79/0900-0429$00.75 © 1979 IEEE

430

vC
control

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

=» frame transfer
=P packet transfer

. packet
sender

ve
de-multi-
plexing

packet
receiver

[_J

packet layer

. 4
~
link layer

Fig. 1. Decomposition of an X.25 implementation into modules inter-
acting by exchange of messages.

Primary
link set-up

Primary
PF control

Source

(a)

Secondary
link set-up

Secondary
PF control

NOTATION :

=) direct coupling

sees) hierarchical dependence
~ -3 update of shared variable

(®)

Fig. 2. (a) Component structure of the Packet sender module. (b) Com-
ponent structure of the Packet receiver module.

respectively. This is reflected by separate Packet sender and
receiver modules.

A. The Link Layer

The link level procedures describe a particular class of
HDLC procedures. A formalized specification of HDLC
procedures, in general, has been described elsewhere [5].
Our formalized specification of the X.25 link level is based, as
far as possible, on that specification, and therefore uses the
same specification formalism.

The HDLC procedures may be considered [5] to be com-
posed of several different interrelated components, as shown
in Fig. 2. The link between the computer and the network is
set up (and disconnected) separately for each direction of
frame transmission by the Link setup components. The Source
and Sink components perform the frame transmission during
the connected state; and the PF control components determine
the exchange of poll/final (PF) bits [1]. The Clock component
provides a time-out mechanism for retransmission.

In the formalized specification, each component is character-
ized by program variables, a transition diagram, and enabling

predicates and actions for each transition. All transitions ex-
clude one another in time, and a given transition may only be
executed when its enabling predicate, which depends on the
variables, is true. When executed, the transition action may up-
date the variables and thus enable or disable other transitions of
the same and other components (for more detail, see [4]). As
an example, we show in Fig. 3 the specification of the Primary
link setup component. The transition diagram of Fig. 3(a)
shows the possible transitions. Fig. 3(c) shows, for each
transition, when it may be executed and what its action is.
Enabling predicates, as well as actions, may involve variables
of other components, which are written in the form “<com-
ponent name>.<variable name>"’. The local variables of the
Link setup component are listed in Fig. 3(b).

There are certain differences between our formalized specifi-
cation of the X.25 link level procedures and the specification
of HDLC given in [5S]. They may be attributed to the follow-
ing two factors. ‘

1) The X.25 procedures operate in a particular configuration
including a primary and a secondary station, and in asyn-
chronous response mode only.

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION

discon-
nected

ERRONEOUS
FRAME

SARM, pIsc,
cmdr
exeption
(a)
variables

ERRCOUNT: integer;

HIGHLEVEL: interface of Link manager;
CONNECT: booléan;
DISCONNECT: booléan;

SARM.‘ UA
SARM,
wait

DISC2

REPORTCMDR;
ERROR;
(b)
TRANSITION ENABLING PREDICATE ACTION MEANING
SARM1 HIGHLEVEL .CONNECT ERRCOUNT : =0 invites the DCE to
PFCONTROLPRIMARY .BIT:=1 establish the 1ink
INIT (TRANSMIT,SARM);
Send (TRANSMIT);
§A3ﬂa LINKSOURCE .ERRCOUNT=MAXERRCOUNT ~ idem - - idem - (case of retrans-
mission)
SARMZ LINKCLOCK . TIMEOUT ERRCOUNT : ERRCOUNT + 1;
A PFCONTROLPRIMARY .BIT:=1; |- idem -
ERRCOUNT < MAXERRCOUNT INIT(TRANSMIT,SARM);
Send(TRANSMIT) ;
gl§gq HIGHLEVEL .DISCONNECT ERRCOUNT:=0 invites the DCE to
PFCONTROLPRIMARY .BIT:=1 disconnect the 1ink
INIT(TRANSMIT,DISC) ;
Send(TRANSMIT) ;
DISC2 LINKCLOCK.TIMEOUT ERRCOUNT .=ERRCOUNT + 1; - idem - (case of retrans-
A PFCONTROLPRIMARY .BIT:=1; mission)
ERRCOUNT < MAXERRCOUNT INIT(TRANSMIT,DISC) ;
Send(TRANSMIT) ;
UA RECEIVED.KIND=UA LINKSOURCE .initialisation;| initializes the LINKSOURCE
~ component
RECEIVED.FBIT = 1
CMDR RECEIVED.KIND = CMDR HIGHLEVEL .REPORTCMDR ; a frame has been rejected
by the DCE
ERRONEQUSFRAME RECEIVED.KIND -ERRONEQUSFRAME |HIGHLEVEL .ERROR; an e:rogeous frame has been
receive

Fig. 3. Specification of the Primary link setup component. (a) Transition diagram (underlined transition names indicate a
sending transition; nonunderlined names a receiving transition). (b) Local variables. (c) Definition of the transitions.

2) One objective of the specifications in [5] was to include
only those aspects that are necessary to ensure the compati-
bility between the communicating system parts. For the X.25
specification, we have included additional aspects, not essential
for compatibility. These aspects include points described in

(©

431

the standard, points adopted for the subscriber equipment by
analogy with the specifications for the network equipment,
and an interface to a higher level link manager module.

A comparison between the two formalized specifications
may be made comparing Fig. 3(c) and (d). Finally, Fig. 3(e)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

ACTION MEANING

432
TRANSITION ENABLING PREDICATE
SARM PF-control.bit = 1
UA received.kind = UA
DISC PF-control .bit = 1
CMDR received.kind = CMDR
ERROR status C
[invalid-control-field
invalid-info,
invalid-size,
invalid-NR]

send-unnumbered

send-unnumbered
(SARM) ;

init (source) ; initialize the source

init (sink) ; and sink components
init (transmis
sion)

(DISC)

init (transmis-
sion) ;

frame received contained
an error to be resolved
by a higher level reco-
very procedure at
Primary

init (transmis-
sion) ;

(d

2.3.4.5 Set Asynchronous Response Mode (SARM)

Command

The SARM unnumbered command is used to
place the addressed secondary in the Asynchronous
Response Mode (ARM)

No information field i1s permitted with the SARM
command. A secondary confirms acceptance of SARM
by the transmission at the first opportunity of a UA

Pt Upon of this
secondary receive state variable is set to zero

Previously transmitted frames that are
unacknowledged when this command is actioned
remain unacknowledged

the

2.4.3.1 Link Setup

The DCE will indicate that it i1s able to set up the
link by transmitting contiguous flags (active channel
state)

The DTE shall indicate a request for setting up
the link by transmitting a SARM command to the DCE

Whenever receiving a SARM command, the
DCE will return a UA response to the DTE and set its
receive state variable V(R) to zero.

Should the DCE wish to indicate a request for
setting up the link, or when receiving from the DTE a
first SARM command as a request for setting up the link,
the DCE will transmit a SARM command to the DTE and
start timer T1 (see Section 2.4.7). The DTE will confirm
the reception of the SARM command by transmitting a
UA response.

When receiving the UA response, the DCE waill
set its send state variable V(S) to zero and stop its tmer
T1 if timer T1 runs out before the UA response is
received by the DCE. the DCE will retransmit a SARM
command and restart timer T1

After transmission of SARM N2 times by the
DCE, appropriate recovery action will be initated

The value of N2 is defined in Section 2 4.7

2.3.5.6 Rejection Condition

A rejection condition is established upon the
receipt of an error-free frame which contains an invalid
command/ response in the control field, an invalid frame
format, an invalid N(R) count. or an information field
which the maximum field length
which can be accommodated

At the primary this exception is subject t0
recovery / resolution at a higher function level

2.4.5 5 If the DCE transmits a CMDR response. it enters
the command rejection condition. This command
rejection condition is cleared when the DCE receives a
SARM or DISC command. Any other command received
while in the command rejection condition will cause the
DCE to retransmit this CMDR response. The coding of
the CMDR response will be as described in Section
2.3.4.8. In the case of an invalid N(S). bits 4, 5. 6. and
7 of octet 3 will be set to zero.

(e)

Fig. 3(cont’d). (d) Definition of the transitions, taken from [5] (the same transition diagram (a) applies, but there are no
local variables). (e) Some pieces of text from the X.25 standard; relevant to the Link setup component.

shows some pieces of text describing the use of the SARM
command (one of the topics relevant to this component)
extracted from the standard specification [1].

B. The Packet Layer

We found that the same specification techniques used for
the link layer could be easily applied to the description of the
packet level procedures. We adopted the decomposition of
the layer into the components shown in Fig. 4, with a hier-
archical dependence [5] between the different components.
The restart component is the hierarchically highest component
on which all VC’s depend; the components of only one VC are
shown. A timer component seems to be necessary for a realistic
system, although this aspect has been ignored in the standard.

As in the case of the link layer, each component is described
by variables, transition diagrams, and transitions. Most of the
transition diagrams given in the annex of the standard have been
adapted, and completed with an error state and corresponding
transitions. As an example, we show the transition diagram of
the Reset component in Fig. §.

III. IMPLEMENTATION TRANSFORMATIONS

We now explain how the formalized protocol specification
discussed above may be transformed into an implementation
in terms of processes, monitors, and classes. As mentioned

above, a system component is characterized by variables, a
transition diagram, and enabling predicates and actions for each
transition. A straightforward realization of a component could
be obtained using conditional critical regions, for which an
efficient implementation, however, is not always easy to obtain
[6]. We have chosen an implementation pattern where a
component is generally implemented by a monitor and some
processes. The monitor contains the component variables, a
variable representing the state of the transition diagram, and
procedures which, when called, effect the component transi-
tions. The processes represent different external events and call
these procedures. The transitions of the Primary link setup
component, for example, are activated by two processes
representing the reception and sending of frames over the net-
work access circuit, as shown in Fig. 6.

This implementation approach works for independent com-
ponents, such as the Primary and Secondary link setup com-
ponents of the X.25 link layer. In the case of component
dependences, we have adopted the following implementation
patterns.

1) Variables shared between several components: the
monitor parts of all components are merged into a single
monitor to ensure mutual exclusion between the transitions of
different components.

2) A component X is hierarchically dependent on a com-

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION

v

I Restart
”
rd

~ Call set-up
and

clearing

Send Receive || Send eceive

data data intery. intern.

— 4
A2

Control modude for a given VC

Fig. 4. Component structure of the VC control modules (see explana-
tions in Fig. 2).

\. CONF,

CONF '_DATA, RR, RNR,
N, INTERRUPT,

\, INTERRUPT CONF

request

REQ = reset request
IND = reset indication
CONF = reset confirmation

Fig. 5. Transition diagram for the Reset component (X.25 packet
level).

ponent Y (i.e., transitions of X are only possible when Y isin a
particular state; see [5]): the monitor part of X is realized as a
class declared as local variable or parameter inside the monitor
part of Y. The process part of X accesses this class via the
monitor part of Y.

3) Two components X and Y are directly coupled (ie.,
certain transitions of X may only be executed in parallel with
certain transitions of Y; see [5]): the monitor part of one
component is realized as a class declared inside the monitor
part of the other component, similarly to the case above.

As an example, Fig. 7 shows the inner structure of the packet
sender module. In addition to the Primary link setup com-
ponent, already shown in Fig. 6, this figure also shows the
realization of the other components of the module (see Fig. 2),
and the Link manager monitor (see Section IV). To explain

433

NOTATION
process

sender

_Frame

instance of a
monitor or class

——> calling relation

1ink set-up

onitor

Fig. 6. The Primary link setup component realized by a monitor and
two processes activating the transitions defined in Fig. 3.

rimary 1ink set-up monitor

Link
manager

<Packet >

Source

[

Clock

rame
sender
Frame
receiver

Primary

< PF control

Fig. 7. The realization of the Packet sender module in terms of monitors,
classes, and processes (see explanation in Fig. 6).

Real
m

the relations shown in the figure, we note that a sending
transition, for instance, is activated by the Frame sender
process calling an operation of the Primary link setup monitor.
The latter performs a link setup, reset, or disconnection tran-
sition, if appropriate (depending on its own state and the
Link manager), and otherwise calls an operation of the Source
class which, in turn, may perform a sending transition. Any
transition performed is coordinated with the PF control class
which sets the poll/final bit of the frame to be sent. Appendix
A shows the detailed coding of the Primary link setup monitor
in Concurrent Pascal.

The transformation rules for obtaining a protocol imple-
mentation from its formalized specification should be straight-
forward in order to avoid programming errors. This is the case
for the rules discussed so far. However, we found that the
following two aspects of the transformation involved more
complex decisions, and are therefore more subject to errors.

1) The nondeterminism inherent in the transition diagram
must be eliminated, which implies an ordering of the transitions
and some rearrangement of the enabling predicates in order to
obtain efficient test sequences. The transition actions may also
be rearranged in order to eliminate redundancy.

2) To avoid busy waiting in the case when no transition is
enabled, a calling process must wait in the monitor until another
process changes the component state. This change must be
signaled to the waiting process. It is not always easy to
decide when, and to which process, a signal must be sent
(for an example, see Appendix A).

An example of nondeterminism is given by the transitions
SARM and DISC possible in the connected state of the Pri-
mary link setup component [see Fig. 3(a)]. While the choice
between these two transitions is left completely open by the
formalized specification of [5] [see Fig. 3(d)], the choice
is largely determined by the enabling predicates in our formal-
ized specification [see Fig. 3(c)]. However, a system state is
possible for which both transitions are enabled. In our imple-
mentation (see the Appendix), we have given a priority to the
DISC transition.

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979
Scheduling
of transmi Link
sion reque manager
Link manager
------------------ interface
i
! Provision T Packet H -
~€»>] of a VC €1 level , fl’).wmar Frame
1 interface IC procedures Packet ink sender 1
' sender h (pri !
i | Prinary 3y output !
! H frame output "\
' Provision T Packet : uffe rocess :
-:ﬁa of a VC T ‘-A‘_’ level 1 :
; interface procedures i Frame i
\ i : receiver |
: X / Input !
H . Secondary rame bUffﬁf R 1
! Provision T Packet Packet ¢ Tink sender !
.ﬁa of a VC <o | level jver N i second))
) interface [IL * 7 | procedures ! ,
1 1
: ! :
N ~ /: Packet sender frame input !
/\I} VC control and (de-) multiplexing !\ and receiver and output JE
interface (packet layer) —~ A
link Tlevel link layer physical
interface level
interface

Fig. 8. Structure of the X.25 implementation in terms of monitors and
processes (see explanations in Figs. 1 and 6).

IV. THE STRUCTURE OF THE X.25 IMPLEMENTATION

The general structure of the X.25 implementation is shown
in Fig. 8. The physical layer of X.25 is implemented in the
line controller hardware, and is not shown.

The structure of the link layer is obtained by applying the
transformations discussed above to the structure of Fig. 1.
The three Frame sender and receiver processes activate the
transitions of the primary and secondary link components.
The piggybacking of acknowledgments is performed in the
Output frame buffer, which also performs the multiplexing
of frames from the primary and secondary link components
over the output circuit. The demultiplexing of incoming
frames on to the primary and secondary link components is
performed by the Frame receiver process. This process activates
the receiving transitions of both components. Two separate
receiver processes could have been used to allow for full
parallelism between the sending and receiving of packets.
The Input and Output processes activate the frame input and
output, and perform the transmission error detection, frame
delimitation, and transparency functions. In our implementa-
tion, these functions are mainly realized in software by the
Concurrent Pascal system kernel [7] via IO commands exe-
cuted by the Input and Qutput processes. Clearly, these func-
tions would be more efficiently implemented by a separate
hardware processor.

The operation of the link layer is supervised by a Link
manager. It determines whether the link to the network should
be established, disconnected, or reset, and coordinates the
operation of the primary and secondary components. The
latter, in turn, report to the link manager those errors which

cannot be recovered by the link level procedures. The inter-
face between the Link manager and the Primary link com-
ponent, for instance, is described in Fig. 3(b), and its use is
shown in Appendix A.

The interface between the link and packet layers is very
simple. It consists of two primitives for sending and receiving
a packet, respectively. We note that the calling processes may
be delayed due to flow control considerations (see Section V-B
below).

The transformation principles described above were also
applied to the VIC control module of the packet level. As in
the case of the link layer, a single process, the Packet receiver
(see Fig. 8), performs the demultiplexing of incoming packets
into the different VC’s, and activates the receiving transitions
of all VC control monitors. For the multiplexing of outgoing
packets, an approach different from the link layer was adopted.
Instead of having independent packet sending processes, one
for each VC, a single Packet sender process looks after all
VC’s and receives requests for packet transmission through a
Scheduling monitor. This monitor is the place where different
priorities may be introduced for the different VC’s. The control
of each VC is partitioned into a module responsible for observing
the X.25 packet level procedures, and a module which provides
a VC interface to the next higher layers of the computer sys-
tem. In particular, the latter module provides flow control
functions, automatic answering of clear, reset, and interrupt
indication packets, and a time-out function for call, clear, and
reset requests and interrupts [8].

We have tried to design a reasonable VC interface to the
higher layers following the X.25 specifications as closely as
possible. The resulting interface may be characterized by the

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION

following primitives:

restart-request

call-request (- - *)
wait-for-incoming-call (- - -)
accept-call

clear-request

reset-request

send-interrupt (- - +)
send-data (- -)
receive-data (- -)
get-new-status.

Each of these primitives, called by the higher layer, returns
VC status information, which includes
1) information about the present state of the interface, such
as
restarted by DTE or DCE,
connected by DTE or DCE,
disconnected by DTE or DCE,
reset by DTE or DCE,
interrupt sent by DTE or received from DCE,
time out, i.e., the primitive returned control to the higher
level before the system received an appropriate packet
from the network (DCE) in response to a request from
the system;
2) flow control, i.e., indication that received data are avail-
able, or no buffer space is available for sending more data;
3) error indications, such as

procedure errors of the network
invalidity of a request from the higher layer in the present
interface state.

V. STEP-WISE REFINEMENT AND
IMPLEMENTATION CHOICES

A. General Remarks

Our X.25 implementation effort may be considered as an
exercise in step-wise refinement. The first step is the establish-
ment of the formalized protocol specification described in
Section II. Further steps, some of which are described in
Sections III and IV, lead towards the implemented system
which is described in full in [2]. In Sections III and IV, we
have described the choices that lead from the system structure
of Fig. 1, which consists of message-driven modules, the opera-
tion of which is described by the formalized protocol specifica-
tion, to the structure of Fig. 8, which is based on the monitor,
class, and process primitives available in the implementation
language.

However, there are many more implementation choices to be
made. They mainly concern the implementation of classes
and monitors for which, so far, only the interfaces have been
defined. Examples are the Link manager component, which in
our system is implemented as a monitor and process interacting
with the operator, and the buffer management described
below. For both modules, the interface has been used in the
formalized protocol specification. A complete list of all pro-
gram components is given in Appendix B.

435

Our effort for obtaining the X.25 implementation may be
subdivided into the following steps, each of which took about
one man month of work:

to derive the formalized specification of the link and packet

level procedures (given the specification in [5]),

to design the structure of the system, such as shown in Figs.

7-9 and in Appendix B (this includes the development of the

implementation transformations described in Section III),

to write the program components in Concurrent Pascal, and

to test and debug the system.

B. Buffer Management and Flow Control

Buffer queues for the intermediate storage of packets or
frames between any pair of cooperating processes have been
foreseen in the system as indicated in Fig. 8. These queues
control the information flow within the system, and syn-
chronize the relative speeds of the different processes in the
system, since a process accessing a queue has to wait until it
is not empty or not full respectively. The only exception is
the Input process which is not delayed when the Input frame
buffer is full. Instead, the last frame is lost.

In order to avoid unnecessary copying of data packets from
one queue to another during the processing of the packets
within the system, the frames coming in from the network,
as well as the data packets from the higher system layers, are
stored within a centrally managed buffer space and subsequently
referred to by pointers. Therefore, the information exchanged
between the system components shown in Fig. 8 includes
these pointers, together with other control information, but
not the copies of data packets.

In order to simplify the avoidance of deadlocks, a fixed
number of packets or frames, respectively, is allocated as the
maximum length for each of the queues. The total space
required may be determined according to the equation

total number

of blocks }= > maximum number of blocks in queue i
i

+) number of blocks not in a queue and
7/ being processed by process;.

The structure of the buffer management facility is shown in
Fig. 9, which shows the central buffer manager (a monitor)
and the different buffer queues (classes). The queue of the
Primary link is completed by a class providing additional
management facilities needed for packet retransmission.
The central buffer manager may also be directly accessed, to
obtain a new block, change or read the information stored in
a block, or free a block.

C. Message Coding

For compatibility with the remote communication partner, a
protocol specifies the exact layout of information fields within
the exchanged messages. This message format must be im-
plemented by the communications software, and involves the
specification of memory layout of structured data, bit packing,
etc. It is not possible to describe these details in a single soft-

436
n
ink source
queue
| l ’
: |
Buffer Buffer| [Buffer /
(XX [/
queue queue lqueue

Central buffer manager

Fig. 9. Structure of the buffer management facility (see explanation
in Fig. 6).

ware module, since each protocol layer, separately, specifies
the layout of the corresponding message header. An imple-
mentation language with facilities for specifying memory
layout of packed data structures would be convenient for this
purpose.

Our implementation language did not provide this facility;
therefore, the coding and decoding of the packet and frame
headers are implemented in several different procedures. The
central buffer manager provides operations for reading and
writing selected octets of a given data block. These operations
may also be used by higher level protocols. Specific procedures
are included in the Packet sender and receiver processes (for
packet header (de-)coding), and in the Frame receiver and
Output frame buffer (for HDLC header (de-)coding).

VI. CONCLUDING REMARKS
A. The Use of a Formalized Protocol Specification

As explained in Sections II and III, we have developed a
formalized specification of X.25 which served as the basis
for the implementation. We would have appreciated a more
formalized specification of the X.25 standard which could
have saved us this effort. A formalized protocol specification
not only has the advantage of simplifying the implementation,
but is also useful during the protocol design, verification, and
evaluation phase (see, for example, [9]).

B. The Use of a High-Level Implementation Language

We conclude from our experience that the following prop-
erties of the implementation language were most valuable for
the project.

1) Facilities for step-wise refinement, in particular, the class
concept.

2) Facilities for describing parallel activities. We used the
processes and monitors of Concurrent Pascal; however, we
would have appreciated a language construct (see, for example,
[2]) closely related to the component structure described in
Section II-A.

3) The facilities for type definition and checking, common
to most Pascal-like languages.

Other aspects of our language implementation were not
entirely satisfactory, such as, for example, its low efficiency
and the inability to interwork with the standard computer
operating system.

An advantage of using a high-level implementation language
is the reduction of the programming and testing effort required.
The testing of each protocol layer was done in two phases.
First the system was embedded, on the same computer, in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

a testing environment, also written in Concurrent Pascal.
Second, the system was checked with an X.25 protocol tester
equipment which was connected to the computer via the data
network access line. Both phases were effective.

We believe that a high-level language implementation such as
ours is useful even when the high-level programming language
is not implemented on the target computer, or when the
efficiency or operating system interfaces of the implementation
are insufficient. Efficiency may be increased by reprogramming
the critical procedures in machine language, or the whole pro-
gram may be used as a “blueprint” for an implementation in a
suitable language. We note that Belsnes [10] comes to similar
conclusions, describing an implementation of X.25 in Simula.

C. The VC Interface

In Section IV, we described in some detail the VC interface,
which is the interface between the X.25 network access module
and the remaining part of the computer system. In deriving
this interface from the X.25 packet level specifications, we
were astonished by the great complexity of the resulting
interface. We wonder whether an interface to an end-to-end
transport service [11] would be simpler in nature. A criterion
for the delimitation of major system modules is the simplicity
of the resulting interfaces. The experience with our X.25
implementation has not convinced us that the X.25 VC is a
natural system interface.

D. Implementation on Multiple Microprocessors

In a microprocessor-based implementation of X.25, the
different protocol layers may be distributed over several
microprocessors [12] , [13]. To avoid memory bus congestion,
each microprocessor usually has its own local memory, which
contains the program code and processed data, and may ex-
change messages via a system bus with the other microprocessors
in the system. A system described in terms of processes and
monitors, such as shown in Fig. 8, is suitable for distribution
over a multimicroprocessor system. A possible distribution
method, called “split process organization” by Cavers [12],
proceeds as follows. First each monitor of the system is
allocated to a suitable microprocessor. Then the processes
are allocated. Processes accessing the monitors in one micro-
processor are allocated to that microprocessor. Processes
accessing monitors in more than one microprocessor are
split into subprocesses, one for each microprocessor involved
and allocated to it. The subprocesses communicate by message
exchange via the system bus. This organization is particularly
appropriate when most processing in the system is done in the
monitors, and the processes have essentially the role of passing
information. This is the case in the X.25 system of Fig. 8.

APPENDIX A

IMPLEMENTATION OF THE PRIMARY
Link SETUP COMPONENT

In the following, we give the details of the Primary link setup
component as implemented in Concurrent Pascal [3]. The
implementation follows the structure of Fig. 7 and is based on
the formalized protocol specification given in Fig. 3(a)-(c).
The underlying method for deriving the implementation
from the formalized specification is explained in Section III.

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION 437

The Primary link setup component is a monitor called by the 332 ®5¢1Y . . |1 0iscacx
processes shown in Fig. 7. The monitor has access to the 555 fino in PIsC s
central buffer manager Buffer and a typewriter resource gooue cno o oo ot
Typuse, which is used by the link manager Myoperator for 0is sroccouse ENTRY SENDEVENT (VAR TRANSHITFRAME i COMMANOFRAME) s
interacting with the operator. The other parameters of the 8 scars - SohocoNTRoL
monitor are constants. The local variables of the monitor ocsz o8 Remear e
include the protocol components shown in Fig. 7, and a link ocss __ cast sratc of @

0C55 POISCONNECTED ¢

source queue (Section V-B and Fig. 9) Bufg which contains ocse LF MVSPERATOR\CONNECT THEN EXECSARMACTION(KINO)
. : . . L N L i® wA 3
the packets to be transmitted. The implementation details 0058 AAITSARMACK, sAITDISCACK 4
of these components, used by the Primary link setup com- o0s0 THEN IF ERRCOUNT < MAXERKCOUNT
i i i 3 oce2 RRCOUNT ts ERRCOUNT + 1

ponent, are not included in the monitor, but are described oce2 ERRCOUNT ie ERRCOUNT + 1
. 0cés N KIND i® SAR S HJ
in separate program components of the Concurrent Pascal 2% THEN XIND s SARM ELSE KIND is DISC 4
3 3 0cés END
implementation. oo ELSE SN

The Frame sender process calls the Sendevent operation of J%e5 A ia OISCONNECTED

s . . . P .
the monitor. This operation realizes the SARM and DISC 5% CoNTROL 4 TRYAGAIN o oLECIREUITY 3
cas oc72 E
transitions according to the diagram of Fig. 3(c), and certain oc73 ELSE CONTROL i+ WAITFOR
ops N 0C74 PCMDREXEPTION
transitions of the Source and Primary PF control components. oc7s IF MYGPERATORLRESET THEN EXECSARMACTIBN (KIND)
. . N 0C76 ELSE EXECODISCACTIBN(KIND)

The local monitor variable State records the active state of the 0077 pconnecre :

. . R X oc78 IF MYQPERATBR.DISCBNNECT THEN
diagram, and the link manager Myoperator is used to decide oc79 EXECDISCACTIEN(KIND) ELSE
between. different transition possbliies. In the comnected 5 HePRGL - oo

etween ¢ ransition possibilities. In the connected o2} B ARAACTION(KIND) 1
state, for instance, the link manager may decide a disconnection, %2 EMYBPERATORSERROR (RETRANSHISSIONFAIL)
or the Link semp component itself may execute a reset gg:z ELSE SBURCE +SENDEVENT (TRANSMITFRAME, CONTRBL)
(SARM transition) if there were too many unsuccessful re- Jtes $EDCANTROL = wAITFOR THEN DELAY(SENDERG)

transmissions of information frames. Otherwise, the SOUrce 355 TRANSw; TFRAME.PELY fe' PFCONTROLSBIT 3
. . . . 0091 PFCBNTROL ¢« SENDE VE
component is called upon to transmit an information frame. ocsz contiNGEfustRs
. . . . 0093 END
The Primary PF control component, which is directly coupled ooss
. . 0095 PROCEDURE ENTRY RCVEVENT(VAR RECEIVED : RESPBNSEFRAME)

to the Link setup component, is called upon at the end of the o009s sesin

0Cc97 IF RECEIVEDKIND <> ERRONEBUSRESPONSE

ion. i i 0098 THEN BEGIN
operation. The parameter Transmitframe of the operation 9008 NI VALIDATEFEIT(RECEIVED) 2

i i i is in- 0100 1F . +IRR .
contains information about the frame to be sent. This in gio0 1P RECEIVEDAKIND IN (2 IRRyRR:RNRIREL)

formation is passed onto the Qutput frame buffer (see Fig. 8) 0102

END
0103 WITH RECEIVED

where it is coded in the HDLC format. S10% 08 BESIN e oF

7 3 0106 PDISCS CTED, D EPTIGN
The Frame receiver process calls the Rcvevent operation 108 FR1SSONNECTED: PCHOREXERTION 4

which, similarly, realizes the UA, CMDR, and ERRONEOUS- J!% TrEn SEaty AT ANO (FRIT = 1)

142 : . . o11¢ SOBURCE«INITIALISATION ;
FRAME transitions according to the diagram of Fig. 3(c),and ¢, PECONTROL (RCVEVENT (010,0,FBIT)
. oae 0112 IF STATE = WA]TSARMACK
the reception transitions of the Source and PF control compo- o113 THEN BEGIN STATE fe PCONNECTED 5 BUFG.RESET
0114 ENO
nents. The Packet sender process calls the Usersendevent o115 ELSE BEGIN STATE i= PDISCONNECTED 5 BUFG.CLEAR
. . . . 0116 END
operation, which enters a packet into the link source queue, o117 END
. g 0118 PCYUNNECTED @
provided the link is not disconnected. This operation, together o1t Ir XInD » CHOR
: . . . HEN BESGIN
with a corresponding operation of the Secondary link compo- o121 SIATE ia PUMDREXEPTION | o1ty)
L] 200
nent (see Fig. 8), forms the interface between the link and o123 (YBPERATER+CHORREPORT (INFOPSINTER) 4
packet layers of X.25. The Clockinterrupt operation is called $:2° 1FKIND 7 ERRONEQUSRESPONSE
H 5 o127 STATE :s PCMDREXEPTIGON 3
at regl‘llar lntervals by the Real tlme process' 0128 MYBPERATOR«STATUSREPBRT(STATUS)
0129 ESD ELSE R " R
0130 IF KIND IN («]RRsRR,RNR,REU)
LISTING OF THE PRIMARY LiNk SETUP COMPONENT o1 L BURCE REVEVENT RECE T veD)
0CCY TYPE LINKSETUPPRIMARY = 0132 END 3
0C10 MBNITHR(BUFFER : SNAPBJUFFERTYPE J TYPEUSE : TYPERESBURCE 0133 IF INFOPBINTER <> NUL THEN BUFFERCFREE (INFOPBINTER) 3
0Cc11 TIMEWT1 ¢ INTEGER 3 MAXERRCOUNT : INTEGER 0134 1] .
octle BUFLENGTH § INTEGER) 3 0135 CBNTINUE (SENDERG)
0c13 0136 END 3
OC14 vAR 0137
0c1s 0138 PROCEDURE ENTRY USERSENDEVENT(MESSPTR ! SNAPRBUFFERINDEX 3
0C16 STATE ¢ PRIMARYSTATETYPE 0139 VAR XSTATE : PRIMARYSTATETYPE) ;
0c17 0140 BEGIN
0C18 ERRCBUNT : INTEGER 014l WHILE (STATE <> PDISCONNECTED) AND BUFQeFULL
0c19 0142 D8 DELAY(USERQ)
0C20 SENDERG,USERU : SUEUE 3 0143 IF (STATE <> PDISCBNNECTED) AND NBT BUFQ.FULL
oca21 Olas THEN BUFGe INTB(MESSPTR) ;
0C22 BUFG ¢ SBURCEQUEING 3 0145 XSTATE = STATE 3
oces 0146 CONTINUE (SENDERQ)
0C24 CLBCK : LINKCLOCK 3 0147 END
ocas 0148
0026 PFCBNTRBL : PFCONTRBLPRIMARY ; 0149 PRBCEDURE ENTRY CLHCKINTERRUPT ;
oce7 0150 VAR 9K : BBOLEAN 3
0C28 SOURCE ! LINKSBURCE 0151 BEGIN
0ce29 01%2 CLSCKe INTERRUPT(BK) 3
0C30 MYUPERATER § PRIMARYTERMINAL J 0153 IF 8K THEN CONTINUE (SENDERG)
0c31 0154 END 3
0C32 PRUCEDURE EXECSARMACTIBN({VAR KIND: CBMMANDKIND) ; 0155
0C33 BEGIN C156 IEGIN
0C34 KIND $s SARM 3 0157 INIT
0035 STATE s WAITSARMACK 0158 3UFI(BUFFER,BUFLENGTH)»CLBCK(TIMERT1)sPFCONTROL (CLBCK) .,
0036 ERRCOUNT s C 3 0159 SBURCE (BUFFERSCLYCK,PFCBNTRBLI3UFG) ,MYBPERATOR(TYPEUSE,BUFFER)
0c37 PFCBNTROLSETBIT 3 Q16C STATE :=s POISCONNECTED ; ERRCOBUAT s o
0C38 END 0161 ENO 3
oc39 cie2

0C40 PRBCEDURE EXECOISCACTIBN(VAR KIND & CBMMANDKIND) Cie3

438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

APPENDIX B
THE PrRoGRAM COMPONENTS OF THE X.25 IMPLEMENTATION. THIS IS A
CoMPLETE LIST OF ALL CLASSES, MONITORS, AND PROCESSES OF THE

X.25 SysTEM
Number of Referenced
Name occurrences in the paper Main function

Fifo several - FIFO queue for scheduling processes waiting for
a ressource.

Resource several Monitor providing mutual exclusion for resource
access.

Type resource 1 Idem, for shared operator's console.

Typewriter several Line-oriented text input-output for the opera-

tor's console.

Terminal several "Typeyriter" with shared access to operator's

console.

Terminal stream several Character stream input-output through "Terminals"”.

Snap buffer type 1 Fig. 9; sect. 5.2 Central buffer manager.

Buffifo several Fig. 9; sect. 5.2 Buffer queue, FIFO queue of buffer blocks.

Squrce queing 1 Fig. 9 Augmented Buffer queue for packet retransmission.

Circuit send process 1 Fig. 8; sect. 4 Output process, performs the physical output of

frames .

Circuit rcv process 1 Fig. 8; sect. 4 Input process, performs the physical reception

of frames.

Circuit send buffer 1 Fig. 8; sect. 4 Output frame buffer, also performs the coding of

the frame header.

Circuit rcv buffer 1 Fig. 8 Input frame buffer (very simple).

Link receiver process 1 Fig. 6.7,8; sect. 4 mame receiver, also performs the decoding of

the received frames.

Primary sender process 1 Fig. 6,7,8; sect. 4 Hame sender (primary) (very simple).

Secondary sender process 1 Fig. 8; sect. 4 Bame sender (secondary) (very simple).

Primary terminal 1 Fig. 7, 8; Link manager.

Secondary terminal 1 sect. 4.

Linkclock 1 Fig. 7 Time-out service for the Primary link.

Clock process 1 Fig. 7 Real time, activates the time-out facilities
for the link and packet level.

PF control primary * 1 Fig. 7; sect. 3 Primary PF control of the Primary link, sets the
poll. bit of outgoing frames and checks the final
bit of incoming ones.

PF control secondary * 1 Similar, part of the Secondary link (Very simple)

Link source * 1 Fig. 7; sect. 3 Source component of the Primary link performing
packet transmission.

Link sink * 1 Performs packet reception in the Secondary link.

Link set up primary * 1 Fig. 7, 8; sect 3; Primary link.

appendix A

Link set up secondary * 1 Fig. 8 Secondary link.

Event monitor 1 Fig. 8; sect. 4 Scheduling of transmission requests.

VC sender process 1 Fig. 8; sect. 4 Packet sender, passes the packets to be transmit-
ted to the 1ink layer; also codes the packet header.

VC receiver process 1 Fig. 8; sect. 4 Packet receiver, distributes the received packets
to the different VC's; also decodes the packet
header.

VC clock component 1 tor each VC Time-out service for the packet level.

VC restart component* 1 Handles the X.25 restart procedure.

VC data transfer component* 1 for each VC Handles the transmission of data packets and

interrupts.

VC reset component * 1 for each VC Handles the X.25 reset procedure (packet level).

VC set up component* 1 for each VC Fig. 8; sect. 4 Packet level procedures, handles the packet

level establishment and clearing procedure,
and includes the other packet level components.

Packet level interface 1 for.each VC Fig. 8; sect. 4 Provision of a VC interface to the next higher
system layer.

* Component derived from the formalized specification of X.25

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION

Explicit scheduling is necessary for the Frame sender and
Packet sender processes, which are delayed when no frame
sending transition is possible, or the link source queue is full,
respectively. This is programmed with the monitor primitives
wait and signal (delay and continue in Concurrent Pascal). In
order to simplify the decision as to when to wake up a waiting
process, we have chosen to wake up processes more often than
necessary. The Frame sender is woken up after the reception
of a frame from the Frame receiver or of a packet from the
Packet sender or after a time-out, and the Packet sender is
woken up after a frame has been sent by the Frame sender.

ACKNOWLEDGMENT

We thank P. Desjardins for many useful discussions, and the
Concurrent Pascal implementation on the Xerox Sigma-6
computer used for our implementation. We are grateful to the
Computer Communications Group of Bell Canada for letting
us use their X.25 tester equipment. Finally, we thank S.
Waddell for a revision of the manuscript, and Mme. Luyet
for the careful typing.

REFERENCES

[1] CCITT Recommendation X.25, 1976.

[2] T. Joachim, “Implantation du protocole standard X.25 a partir
d’un modeéle de formalisation et de mécanismes abstraits de
programmation,” Master’s thesis, Dep. I.LR.O., Univ. Montreal,
Montreal, P.Q., Canada, Dec. 1977.

[3] P. Brinch Hansen, “The programming language Concurrent
Pascal,” IEEE Trans. Software Eng., vol. SE-1, pp. 199-207,
1975.

[4] G. V. Bochmann and J. Gecsei, “A unified model for the specifi-
cation and verification of protocols,” in Proc. IFIP Congr. 1977.
Amsterdam: North Holland, pp. 229-234.

[S] G. V. Bochmann and R. J. Chung, “A formalized description of
HDLC classes of procedures,” in Proc. IEEE Nat. Telecommun.
Conf., 1977, pp. 03A 2-1-2-11.

[6] H. A. Schmid, “On the efficient implementation of conditional
critical regions and the construction of monitors,” Acta Inform.,
vol. 6, pp. 227-249, 1976.

[7] P. Desjardins, “Un pilote pour controleur de communication dans
Solo-Sigma,” LR.O., Univ. Montreal, Montreal, P.Q., Canada,
Tech. Rep., in preparation.

[8] A. M. Rybczynski, “Collection of questions and answers on X.25,”
working document, 1977.

439

[9] G. V. Bochmann, “Specification and verification of computer
communication protocols,” I.R.O., Univ. Montreal, Montreal,
P.Q., Canada, Publ. 294, 1978.

D. Belsnes, “X.25 DTE implement in Simula,” in Proc. Eurocomp
78, Online, England.

IFIP Working Group 6.1, “Proposal for an internetwork end-to-
end transport protocol,” INWG Note 96.X; also in Proc. Comput.
Network Protocols Symp., Univ. Liége, Liege, Belgium, 1978.

J. K. Cavers, “Implementation of X.25 on a multiple micro-
processor system,’” in Proc. Int. Commun. Conf., 1978.

D. L. A. Barber, T. Kalin, and C. Solomonides, “An implementa-
tion of the X.25 interface in a datagram network,” in Proc.
Comput. Network Protocols Symp., Univ. Liége, Liege, Belgium,
1978, pp. E6-1-E6-5.

[10]
[11]

[12]
[13]

Gregor V. Bochmann received the Diplom in
physics from the University of Munich, Munich,
Germany, in 1968, and the Ph.D. degree from
McGill University, Montreal, P.Q., Canada, in
1971

He has worked in the areas of programming
languages and compiler design, communication
protocols, and software engineering. He is cur-
rently Associate Professor in the Département
d’Informatique et de Recherche Operationnelle,
Université de Montreal. His present work is
aimed at design methods for communication protocols and distributed
systems. In 1977-1978 he was a Visiting Professor at the Ecole Poly-
technique Fédérale, Lausanne, Switzerland.

Tankoano Joachim was born in Fada N°Gourma,
Upper Volta, on April 14, 1951.

He received the B. Sc. and M.Sc. degrees in
computer science from the Université de
Montréal, Montreal, P.Q., Canada, in 1976 and
1978, respectively.

He currently leads the Division of Systems at
the Centre National pour le Traitement de
PInformation (CENATRIN), Ouagadougou,
Upper Volta.

