
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

Development ani

L1RA X.25 ImplE
t)Vt,GOGRV. tocH

1; 111-i: 02
Abstract-This paper describes experience with an implementation of

the X25 communication protocols for accessing public data networks.
Ihe implementation effort is characterized by: 1) the development of
a formalized protocol specification on which all further implementation
work is based, and 2) the use of Concurrent Pascal as the implementation
language. The main features of the formalized protocol specification
are given, and a method for deriving a protocol implementation based
on parallel processes, monitors, and classes is explained. The overall
structure of the system and the step-wise refinements leading to the
complete implementation are discussed. Some comments on the
possible implementation on multiple microprocessors are also given.

Index Terms-Communications software, Concuffent Pascal, fonnal
specification, process structuring, protocol implementation, step-
wise refmement, structured programming, X.25 protocol.

I. INTRODUCTION
.25 [1] is a standard access protocol for using virtual
circuits (VC's) provided by public data networks. This

paper describes certain aspects of the experience gained from
the implementation of this protocol in a host computer [2].
For the implementation of most communication protocols,
the following points must be considered:

1) ensuring the compatibility of the implementation with
the remote communication partner,

2) implementing several parallel activities, which is usual for
real-time systems, and
3) a step-wise refinement of the system design, which is a

useful discipline for any software development project.
We have used a high-level implementation language [3]

which provides the concepts of abstract data types (i.e., class),
parallel processes, and monitors (for process interaction).
These concepts support points 2) and 3) above. In view of
point l), we have used a formalized specification of the X.25
protocol. Part of our project was the development of this
specification. More precise and more algorithmical in nature
than the original specification of the protocol, given in natural
language, it has been used as the basis for deriving the imple-

Manuscript received July 12, 1978; revised February 16, 1979. This
work was performed at the Universit6 de Montr6al, P.Q., Canada, and
was supported by the Ministere de l'Education du Qu6bec and the
Canadian International Development Agency.
G. V. Bochmann is with the Departement d'I.R.O., Universite de

Montreal, Montreal, P.Q., Canada. In 1978 he was on leave at the De-
partement de Mathematiques, Ecole Polytechnique Federale, Lausanne,
Switzerland.
T. Joachim is with the Centre National du Traitement de lInforma-

tion, Upper Volta.

d Structure of an
3mentation

TANKOANO JOACHIM

mentation in a more or less straightforward manner, as de-
scribed in Section III.
Section II describes the main features of the formalized X.25

specification as used in our project. (The complete specifica-
tion is contained in [2].) Section III explains how such a
formalized specification may be transformed into an imple-
mentation, taking one component of the X.25 link level as an
example. In Section IV, we describe the overall structure of
our X.25 implementation as far as the organization of parallel
activity is concerned, and the interfaces between the different
system parts, including the user of the VC communication
facility provided. In Section V, we make some remarks on the
step-wise refinement of our system, and discuss in some detail
the problems of buffer management and message coding. We
finish with some general conclusions from our implementation
experience. The complete text of our formalized specification
of X.25, and its implementation in Concurrent Pascal, is con-
tained in [2].
We assume in the following some familiarity with the X.25

protocol [1], the concepts of classes, processes, and monitors
as realized in Concurrent Pascal [3], and the unified protocol
specification method of Bochmann and Gecsei [4].

II. A FORMALIZED SPECIFICATION OF X.25

The X.25 specification contains three procedure layers:
1) the physical layer, specifying bit transmission between

the subscriber and network equipments,
2) the link layer, specifying frame formats, transmission

error detection, and error recovery procedures, and
3) the packet layer, specifying packet formats and pro-

cedures for the use of VC's.
A basic decomposition of the X.25 protocol is shown in

Fig. 1, where the different modules communicate by exchang-
ing packets or frames, respectively. The VC control modules
implement the packet level procedures separately for each VC,
and the Packet sender and receiver modules implement the
link level procedures. These procedures have been considered
for the formalized specification. The other modules of Fig. I
have essentially a (de-) multiplexing function, and are relatively
simple. The Frame input and output modules also handle
transmission error detection and transparency coding, as well
as physical input/output. We note that the X.25 link level
(we consider the original LAP A standard [1]) distinguishes
primary and secondary functions which, relatively independent
of one another, perform the sending and receiving of frames,

0098-5589/79/0900-0429$00.75 C 1979 IEEE

429

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

E4 frame transfer
=+ packet transfer

packet layer link layer

Fig. 1. Decomposition of an X.25 implementation into modules inter-
acting by exchange of messages.

cl ock

NOTATION:
4=.# direct coupling

* *+ hierarchical dependence
-- + update of shared variable

(b)

Fig. 2. (a) Component structure ofthe Packet sender module. (b) Com-
ponent structure of the Packet receiver module.

respectively. This is reflected by separate Packet sender and
receiver modules.

A. The Link Layer
The link level procedures describe a particular class of

HDLC procedures. A formalized specification of HDLC
procedures, in general, has been described elsewhere [5].
Our formalized specification of the X.25 link level is based, as

far as possible, on that specification, and therefore uses the
same specification formalism.
The HDLC procedures may be considered [5] to be com-

posed of several different interrelated components, as shown
in Fig. 2. The link between the computer and the network is
set up (and disconnected) separately for each direction of
frame transmission by the Link setup components. The Source
and Sink components perform the frame transmission during
the connected state; and the PF control components determine
the exchange of poll/final (PF) bits [1]. The Clock component
provides a time-out mechanism for retransmission.
In the formalized specification, each component is character-

ized by program variables, a transition diagram, and enabling

predicates and actions for each transition. All transitions ex-

clude one another in time, and a given transition may only be
executed when its enabling predicate, which depends on the
variables, is true. When executed, the transition action may up-

date the variables and thus enable or disable other transitions of
the same and other components (for more detail, see [4]). As
an example, we show in Fig. 3 the specification of the Pimary
link setup component. The transition diagram of Fig. 3(a)
shows the possible transitions. Fig. 3(c) shows, for each
transition, when it may be executed and what its action is.

Enabling predicates, as well as actions, may involve variables
of other components, which are written in the form "<comr
ponent name>.<variable name>". The local variables of the
Link setup component are listed in Fig. 3(b).
There are certain differences between our formalized specifi-

cation of the X.25 link level procedures and the specification
of HDLC given in [5]. They may be attributed to the follow-
ing two factors.

1) The X.25 procedures operate in a particular configuration
including a primary and a secondary station, and in asyn-

chronous response mode only.

(a)

430

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION

SARM1-"' UA

IDSC2

SARM1'"

(a)

va r i a b I es

ERRCOUNT: integer;

HIGHLEVEL: interface of Link manager;
CONNECT: bool an;
DISCONNECT: bool6an;
REPORTCMDR;
ERROR;

(b)

TRANSITION ENABLING PREDICATE ACTION MEANING

SARM HIGHLEVEL.CONNECT ERRCOUNT:=O invites the DCE to
1 PFCONTROLPRIMARY.BIT:=1 establish the link

ItilT (TRANSMIT,SARM);
Send (TRANSMIT);

SARM3 LINKSOURCE.ERRCOUNT-MAXERRCOUNT - idem - - idem - (case of retrans-
mission)

LINKCLOCK.TIMEOUT ERRCOUNT:-ERRCOUNT + 1;
A. PFCONTROLPRIMARY.BIT:=l; - idem -

ERRCOUNT < MAXERRCOUNT INIT(TRANSMIT,SARM);
Send(TRANSMIT);

DISC1 HIGHLEVEL. DISCONNECT ERRCOUNT:=O Invi tes the DCE to1-IS-C, PFCONTROLPRIMARY.BIT:=1 disconnect the link
INIT(TRANSMIT,DISC);
Send(TRANSMIT);

LINKCLOCK.TIMEOUT ERRCOUNT.=ERRCOUNT + 1; - idem - (case of retrans-
DISC2'N PFCONTROLPRIMARY.BIT:=1; mission)

ERRCOUNT < MAXERRCOUNT INIT(TRAIISMIT,DISC);
Send(TRANSMIT);

UA RECEIVED.KIND=UA LINKSOURCE.initialisation; initializes the LINKSOURCE
'N component

RECEIVED.FBIT 1
CMDR RECEIVED.KIND CMDR HIGHLEVEL.REPORTCMDR; a frame has been rejected

by the DCE

ERRONEOUSFRAME RECEIVED.KIND =ERRONEOUSFRAME HIGHLEVEL.ERROR; an erroneous frame has been
recei ved

(C)

Fig. 3. Specification of the Primary link setup component. (a) Transition diagram (underlined transition names indicate a
sending transition; nonunderlined names a receiving transition). (b) Local variables. (c) Defimition of the transitions.

2) One objective of the specifications in [5] was to include
only those aspects that are necessary to ensure the compati-
bility between the communicating system parts. For the X.25
specification, we have included additional aspects, not essential
for compatibility. These aspects include points described in

the standard, points adopted for the subscriber equipment by
analogy with the specifications for the network equipment,
and an interface to a higher level link manager module.
A comparison between the two formalized specifications

may be made comparing Fig. 3(c) and (d). Finally, Fig. 3(e)

431

SARM-2

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

TRANSITION ENABLING PREDICATE

UA

DISC

CMDR

ERROR

PF-control.bit = I

received.kind = UA

PF-control .bit = 1

received.kind = CMDR

status C

[invalid-control-field
invalid-info,
invalid-size,
-invalid-NR

ACTION

send-unnumbered
(SARM);

init (source);
init (sink);
init (transmis
sion)

send-unnumbered
(DISC)

init (transmis-
sion);

init (transmis-
sion);

MEANING

initialize the source

and sink components

frame received contained
an error to be resolved
by a higher level reco-
very procedure at
Primary

(d)

2.3.4.5 SetAsynchronous Response Mode (SARM)
Command
The SARM unnumbered command is used to

place the addressed secondary in the Asynchronous
Response Mode (ARM)

No information field is permitted with the SARM
command. A secondary confirms acceptance of SARM
by the transmission at the first opportunity of a UA
response. Upon acceptance of this command, the
secondary receive state variable is set to zero.

Previously transmitted frames that are
unacknowledged when this command is actioned
remain unacknowledged.

2 4.3.1Ltnk Setup
The DCE will indicate that it is able to set up the

link by transmitting contiguous flags (active channel
state)

The DTE shall indicate a request for setting up
the link by transmitting a SARM command to the DCE.

Whenever receiving a SARM command, the
DCE will return a UA response to the DTE and set its
receive state variable V(R) to aero.

Should the DCE wish to indicate a request for
setting up the link. or when receiving from the DTE a
first SARM command as a request for setting up the link,
the OCE will transmit a SARM command to the DTE and
start timer Ti (see Section 2 .4. 7). The DTE will confirm
the reception of the SARM command by transmitting a
UA response.

When receiving the UA response, the DCE will
set its send state variable V(S) to aero and stop its timer
T 1 If timer Tt runs out before the UA response is
received by the DCE, the DCE will retransmit a SARM
command and restart timer T1.

After transmission of SARM N2 times by the
DCE, appropriate recovery action will be initiated.

The value of N2 is defined in Section 2 4 7.

2 .3.5 .6 Rejection Condition
A rejection condition is established upon the

receipt of an error-free frame which contains an invalid
command/ response in the control field, an invalid frame
format, an invalid N(R) count, or an information field
which exceeded the maximum information field length
which can be accommodated,

At the primary this exception is subject to
recovery/resolution at a higher function level.

2 .4. 5 5 If the DCE transmits a CMDR response, it enters
the command rejection condition This command
rejection condition is cleared when the DCE receives a

SARM or DISC command. Any other command received
while in the command rejection condition will cause the
DCE to retransmit this CMDR response. The coding of
the CMDR response will be as described in Section
2 3.4.8. In the case of an invalid N(S), bits 4, 5, 6, and
7 of octet 3 will be set to zero.

(e)
Fig. 3(cont'd). (d) Defimition of the transitions, taken from [51 (the same transition diagram (a) applies, but there are no

local variables). (e) Some pieces of text from the X.25 standard; relevant to the Link setup component.

shows some pieces of text describing the use of the SARM
command (one of the topics relevant to this component)
extracted from the standard specification [1].

B. The Packet Layer
We found that the same specification techniques used for

the link layer could be easily applied to the description of the
packet level procedures. We adopted the decomposition of
the layer into the components shown in Fig. 4, with a hier-
archical dependence [5] between the different components.
The restart component is the hierarchically highest component
on which all VC's depend; the components of only one VC are
shown. A timer component seems to be necessary for a realistic
system, although this aspect has been ignored in the standard.
As in the case of the link layer, each component is described

by variables, transition diagrams, and transitions. Most of the
transition diagrams given in the annex ofthe standard have been
adapted, and completed with an error state and corresponding
transitions. As an example, we show the transition diagram of
the Reset component in Fig. 5.

III. IMPLEMENTATION TRANSFORMATIONS
We now explain how the formalized protocol specification

discussed above may be transformed into an implementation
in terms of processes, monitors, and classes. As mentioned

above, a system component is characterized by variables, a
transition diagram, and enabling predicates and actions for each
transition. A straightforward realization of a component could
be obtained using conditional critical regions, for which an
efficient implementation, however, is not always easy to obtain
[6]. We have chosen an implementation pattern where a
component is generally implemented by a monitor and some
processes. The monitor contains the component variables, a
variable representing the state of the transition diagram, and
procedures which, when called, effect the component transi-
tions. The processes represent different external events and call
these procedures. The transitions of the Pimay link setup
component, for example, are activated by two processes
representing the reception and sending of frames over the net-
work access circuit, as shown in Fig. 6.
This implementation approach works for independent com-

ponents, such as the Priry and Secondary link setup com-
ponents of the X.25 link layer. In the case of component
dependences, we have adopted the following implementation
patterns.

1) Variables shared between several components: the
monitor parts of all components are merged into a single
monitor to ensure mutual exclusion between the transitions of
different components.
2) A component X is hierarchically dependent on a com-

432

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION

Prinary

link set-up

oni tor

Frame
_ taSender

Frame~

NOTATION

CD process
m instance of a

monitor or class

) calling relation

Fig. 6. The Primary link setup component realized by a monitor and
two processes activating the transitions defined in Fig. 3.

Fig. 7. The realization of thePacket sendermodule in terms ofmonitors,
classes, and processes (see explanation in Fig. 6).

Control modu4e for a given VC

Fig. 4. Component structure of the VC control modules (see explana-
tions in Fig. 2).

REQ
CONF,
DATA, RR, R

X INTERRUPT,

\ INTERRUPT

TNn \

REQ = reset request
IND = reset indication
CONF = reset confirmation

Fig. 5. Transition diagram for the Reset component
level).

ponent Y (i.e., transitions ofX are only possible w
particular state; see [5]): the monitor part ofX is
class declared as local variable or parameter inside
part of Y. The process part of X accesses this
monitor part of Y.
3) Two components X and Y are directly c

certain transitions ofX may only be executed in
certain transitions of Y; see [5]): the monitor
component is realized as a class declared inside
part of the other component, similarly to the case

As an example, Fig. 7 shows the inner structure c

sender module. In addition to the Prmary link
ponent, already shown in Fig. 6, this figure als
realization of the other components of the module
and the Link manager monitor (see Section IV).

the relations shown in the figure, we note that a sending
transition, for instance, is activated by the Frame sender
process calling an operation of the Primary link setup monitor.
The latter performs a link setup, reset, or disconnection tran-
sition, if appropriate (depending on its own state and the
Link manager), and otherwise calls an operation of the Source
class which, in turn, may perform a sending transition. Any

bNR, transition performed is coordinated with the PF control class
CONF which sets the poll/final bit of the frame to be sent. Appendix

A shows the detailed coding of the Primay link setup monitor
in Concurrent Pascal.

SND The transformation rules for obtaining a protocol imple-
mentation from its formalized specification should be straight-
forward in order to avoid programming errors. This is the case
for the rules discussed so far. However, we found that the
following two aspects of the transformation involved more
complex decisions, and are therefore more subject to errors.

1) The nondeterminism inherent in the transition diagram
(XS2 packet must be eliminated, which implies an ordering of the transitions

and some rearrangement of the enabling predicates in order to
obtain efflcient test sequences. The transition actions may also
be rearranged in order to eliminate redundancy.

2) To avoid busy waiting in the case when no transition is
hen Y is in a enabled, a calling process must wait in the monitor until another
realized as a process changes the component state. This change must be
the monitor signaled to the waiting process. It is not always easy to
class via the decide when, and to which process, a signal must be sent

(for an example, see Appendix A).
oupled (i.e., An example of nondeterminism is given by the transitions
parallel with SARM and DISC possible in the connected state of the Pri-
part of one mary link setup component [see Fig. 3(a)]. While the choice
the monitor between these two transitions is left completely open by the
above. formalized specification of [5] [see Fig. 3(d)], the choice
f the packet is largely determined by the enabling predicates in our formal-
setup com- ized specification [see Fig. 3(c)]. However, a system state is

o shows the possible for which both transitions are enabled. In our imple-
(see Fig. 2), mentation (see the Appendix), we have given a priority to the
To explain DISC transition.

433

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

VC control and (de-) multiplexing
(packet layer)

Fig. 8. Structure of the X.25 implementation in tenns of monitors and
processes (see explanations in Figs. 1 and 6).

IV. THE STRUCTURE OF THE X.25 IMPLEMENTATION

The general structure of the X.25 implementation is shown
in Fig. 8. The physical layer of X.25 is implemented in the
line controller hardware, and is not shown.
The structure of the link layer is obtained by applying the

transformations discussed above to the structure of Fig. 1.
The three Frame sender and receiver processes activate the
transitions of the primary and secondary link components.
The piggybacking of acknowledgments is performed in the
Output frame buffer, which also performs the multiplexing
of frames from the primary and secondary link components
over the output circuit. The demultiplexing of incoming
frames on to the primary and secondary link components is

performed by the Frame receiver process. This process activates
the receiving transitions of both components. Two separate
receiver processes could have been used to allow for full
parallelism between the sending and receiving of packets.
The Input and Output processes activate the frame input and
output, and perform the transmission error detection, frame
delimitation, and transparency functions. In our implementa-
tion, these functions are mainly realized in software by the
Concurrent Pascal system kernel [7] via 10 commands exe-

cuted by the Input and Output processes. Clearly, these func-
tions would be more efficiently implemented by a separate
hardware processor.

The operation of the link layer is supervised by a Link
manager. It determines whether the link to the network should
be established, disconnected, or reset, and coordinates the
operation of the primary and secondary components. The
latter, in turn, report to the link manager those errors which

cannot be recovered by the link level procedures. The inter-
face between the Link manager and the Primary link com-
ponent, for instance, is described in Fig. 3(b), and its use is
shown in Appendix A.
The interface between the link and packet layers is very

simple. It consists of two primitives for sending and receiving
a packet, respectively. We note that the calling processes may
be delayed due to flow control considerations (see Section V-B
below).
The transformation principles described above were also

applied to the VC control module of the packet level. As in
the case of the link layer, a single process, the Packet receiver
(see Fig. 8), performs the demultiplexing of incoming packets
into the different VC's, and activates the receiving transitions
of all VC control monitors. For the multiplexing of outgoing
packets, an approach different from the link layer was adopted.
Instead of having independent packet sending processes, one
for each VC, a single Packet sender process looks after all
VC's and receives requests for packet transmission through a
Scheduling monitor. This monitor is the place where different
priorities may be introduced for the different VC's. The control
ofeachVC is partitioned into a module responsible for observing
the X.25 packet level procedures, and a module which provides
a VC interface to the next higher layers of the computer sys-
tem. In particular, the latter module provides flow control
functions, automatic answering of clear, reset, and interrupt
indication packets, and a time-out function for call, clear, and
reset requests and interrupts [8] .
We have tried to design a reasonable VC interface to the

higher layers following the X.25 specifications as closely as
possible. The resulting interface may be characterized by the

434

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION

following primitives:

restart-request
call-request (* * *)
wait-for-incoming-call (*)
accept-call
clear-request
reset-request
send-interrupt (.*)
send-data (* *)
receive-data (*
get-new-status.

Each of these primitives, called by the higher layer, returns
VC status information, which includes

1) information about the present state of the interface, such
as

restarted by DTE or DCE,
connected by DTE or DCE,
disconnected by DTE or DCE,
reset by DTE or DCE,
interrupt sent by DTE or received from DCE,
time out, i.e., the primitive returned control to the higher

level before the system received an appropriate packet
from the network (DCE) in response to a request from
the system;

2) flow control, i.e., indication that received data are avail-
able, or no buffer space is available for sending more data;
3) error indications, such as

procedure errors of the network
invalidity of a request from the higher layer in the present

interface state.

V. STEP-WISE REFINEMENT AND
IMPLEMENTATION CHOICES

A. General Remarks
Our X.25 implementation effort may be considered as an

exercise in step-wise refinement. The first step is the establish-
ment of the formalized protocol specification described in
Section II. Further steps, some of which are described in
Sections III and IV, lead towards the implemented system
which is described in full in [2]. In Sections III and IV, we
have described the choices that lead from the system structure
of Fig. 1, which consists of message-driven modules, the opera-
tion of which is described by the formalized protocol specifica-
tion, to the structure of Fig. 8, which is based on the monitor,
class, and process primitives available in the implementation
language.
However, there are many more implementation choices to be

made. They mainly concern the implementation of classes
and monitors for which, so far, only the interfaces have been
defined. Examples are the Link manager component, which in
our system is implemented as a monitor and process interacting
with the operator, and the buffer management described
below. For both modules, the interface has been used in the
formalized protocol specification. A complete list of all pro-

Our effort for obtaining the X.25 implementation may be
subdivided into the following steps, each of which took about
one man month of work:
to derive the formalized specification of the link and packet
level procedures (given the specification in [5]),
to design the structure of the system, such as shown in Figs.
7-9 and in Appendix B (this includes the development of the
implementation transformations described in Section III),
to write the program components in Concurrent Pascal, and
to test and debug the system.

B. Buffer Management and Flow Control
Buffer queues for the intermediate storage of packets or

frames between any pair of cooperating processes have been
foreseen in the system as indicated in Fig. 8. These queues
control the information flow within the system, and syn-

chronize the relative speeds of the different processes in the
system, since a process accessing a queue has to wait until it
is not empty or not full respectively. The only exception is
the Input process which is not delayed when the Input frame
buffer is full. Instead, the last frame is lost.
In order to avoid unnecessary copying of data packets from

one queue to another during the processing of the packets
within the system, the frames coming in from the network,
as well as the data packets from the higher system layers, are

stored within a centrally managed buffer space and subsequently
referred to by pointers. Therefore, the information exchanged
between the system components shown in Fig. 8 includes
these pointers, together with other control information, but
not the copies of data packets.
In order to simplify the avoidance of deadlocks, a fLxed

number of packets or frames, respectively, is allocated as the
maximum length for each of the queues. The total space

required may be determined according to the equation

total number = E maximum number of blocks in queue i
of blocksj

+ E number of blocks not in a queue and
i being processed by process i.

The structure of the buffer management facility is shown in
Fig. 9, which shows the central buffer manager (a monitor)
and the different buffer queues (classes). The queue of the
Primary link is completed by a class providing additional
management facilities needed for packet retransmission.
The central buffer manager may also be directly accessed, to
obtain a new block, change or read the information stored in
a block, or free a block.

C. Message Coding
For compatibility with the remote communication partner, a

protocol specifies the exact layout of information fields within
the exchanged messages. This message format must be im-

plemented by the communications software, and involves the
specification of memory layout of structured data, bit packing,

gram components is given in Appendix B.

435

etc. It is not possible to describe these details in a single soft-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

the buffer management facility (see explanation
in Fig. 6).

ware module, since each protocol layer, separately, specifies
the layout of the corresponding message header. An imple-
mentation language with facilities for specifying memory

layout of packed data structures would be convenient for this
purpose.

Our implementation language did not provide this facility;
therefore, the coding and decoding of the packet and frame
headers are implemented in several different procedures. The
central buffer manager provides operations for reading and
writing selected octets of a given data block. These operations
may also be used by higher level protocols. Specific procedures
are included in the Packet sender and receiver processes (for
packet header (de-)coding), and in the Frame receiver and
Output frame buffer (for HDLC header (de-)coding).

VI. CONCLUDING REMARKS
A. The Use ofa Formalized Protocol Specification
As explained in Sections II and III, we have developed a

formalized specification of X.25 which served as the basis
for the implementation. We would have appreciated a more

formalized specification of the X.25 standard which could
have saved us this effort. A formalized protocol specification
not only has the advantage of simplifying the implementation,
but is also useful during the protocol design, verification, and
evaluation phase (see, for example, [9]).

B. The Use ofa High-Level Implementation Language
We conclude from our experience that the following prop-

erties of the implementation language were most valuable for
the project.

1) Facilities for step-wise refinement, in particular, the class
concept.
2) Facilities for describing parallel activities. We used the

processes and monitors of Concurrent Pascal; however, we

would have appreciated a language construct (see, for example,
[2]) closely related to the component structure described in
Section II-A.
3) The facilities for type definition and checking, common

to most Pascal-like languages.
Other aspects of our language implementation were not

entirely satisfactory, such as, for example, its low efficiency
and the inability to interwork with the standard computer
operating system.
An advantage of using a high-level implementation language

is the reduction of the programming and testing effort required.
The testing of each protocol layer was done in two phases.
First the system was embedded, on the same computer, in

a testing environment, also written in Concurrent Pascal.
Second, the system was checked with an X.25 protocol tester
equipment which was connected to the computer via the data
network access line. Both phases were effective.
We believe that a high-level language implementation such as

ours is useful even when the high-level programming language
is not implemented on the target computer, or when the
efficiency or operating system interfaces ofthe implementation
are insufficient. Efficiency may be increased by reprogramming
the critical procedures in machine language, or the whole pro-

gram may be used as a "blueprint" for an implementation in a

suitable language. We note that Belsnes [10] comes to similar
conclusions, describing an implementation of X.25 in Simula.

C. The VCInterface
In Section IV, we described in some detail the VC interface,

which is the interface between the X.25 network access module
and the remaining part of the computer system. In deriving
this interface from the X.25 packet level specifications, we

were astonished by the great complexity of the resulting
interface. We wonder whether an interface to an end-to-end
transport service [11] would be simpler in nature. A criterion
for the delimitation of major system modules is the simplicity
of the resulting interfaces. The experience with our X.25
implementation has not convinced us that the X.25 VC is a

natural system interface.

D. Implementation on Multiple Microprocessors
In a microprocessor-based implementation of X.25, the

different protocol layers may be distributed over several
microprocessors [12], [13]. To avoid memory bus congestion,
each microprocessor usually has its own local memory, which
contains the program code and processed data, and may ex-

change messages via a system bus with the other microprocessors
in the system. A system described in terms of processes and
monitors, such as shown in Fig. 8, is suitable for distribution
over a multimicroprocessor system. A possible distribution
method, called "split process organization" by Cavers [12],
proceeds as follows. First each monitor of the system is
allocated to a suitable microprocessor. Then the processes

are allocated. Processes accessing the monitors in one micro-
processor are allocated to that microprocessor. Processes
accessing monitors in more than one microprocessor are

split into subprocesses, one for each microprocessor involved
and allocated to it. The subprocesses communicate by message

exchange via the system bus. This organization is particularly
appropriate when most processing in the system is done in the
monitors, and the processes have essentially the role of passing

information. This is the case in the X.25 system of Fig. 8.

APPENDIX A
IMPLEMENTATION OF THE PRIMARY

LINK SETUP COMPONENT

In the following, we give the details of the Primary link setup
component as implemented in Concurrent Pascal [3]. The
implementation follows the structure of Fig. 7 and is based on

the formalized protocol specification given in Fig. 3(a)-(c).
The underlying method for deriving the implementation
from the formalized specification is explained in Section III.

Buffer

queue

B r

IL
ink source

queae_ l

Iqueue I Iqueue
i

Fig. 9. Structure of

Cenra bufw man

Central buffer manager L

436

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION

The Primary link setup component is a monitor called by the
processes shown in Fig. 7. The monitor has access to the
central buffer manager Buffer and a typewriter resource
Typuse, which is used by the link manager Myoperator for
interacting with the operator. The other parameters of the
monitor are constants. The local variables of the monitor
include the protocol components shown in Fig. 7, and a link
source queue (Section V-B and Fig. 9) Bufq which contains
the packets to be transmitted. The implementation details
of these components, used by the Primay link setup com-
ponent, are not included in the monitor, but are described
in separate program components of the Concurrent Pascal
implementation.
The Frame sender process calls the Sendevent operation of

the monitor. This operation realizes the SARM and DISC
transitions according to the diagram of Fig. 3(c), and certain
transitions of the Source andPrimay PF control components.
The local monitor variable State records the active state of the
diagram, and the link manager Myoperator is used to decide
between different transition possibilities. In the connected
state, for instance, the link manager may decide a disconnection,
or the Link setup component itself may execute a reset
(SARM transition) if there were too many unsuccessful re-
transmissions of information frames. Otherwise, the Source
component is called upon to transmit an information frame.
The Primary PF control component, which is directly coupled
to the Link setup component, is called upon at the end of the
operation. The parameter Transmitframe of the operation
contains information about the frame to be sent. This in-
formation is passed onto the Output frame buffer (see Fig. 8)
where it is coded in the HDLC format.
The Frame receiver process calls the Rcvevent operation

which, similarly, realizes the UA, CMDR, and ERRONEOUS-
FRAME transitions according to the diagram of Fig. 3(c), and
the reception transitions of the Source and PF control compo-
nents. The Packet sender process calls the Usersendevent
operation, which enters a packet into the link source queue,
provided the link is not disconnected. This operation, together
with a corresponding operation of the Secondary link compo-
nent (see Fig. 8), forms the interface between the link and
packet layers of X.25. The Cockinterrupt operation is called
at regular intervals by the Real time process.

LISTING OF THE PRIMARY LINK SETUP COMPONENT
OCO9 TYPE LINKSETuPPRIMARY a

0010 ONITARI UFFER SNAPBJFFERTYPE J TYPEUSE : TYPERESOURCE £
0011 TIPE,T1 : INTEGER ; MAXERRCOUNT INTEGER
OCIA BUFLEN3TH : INTEGER)
oclI3
OC14 vA-R
0015
0016 STATE: PRIMARYSTATETYPE j
OC17
OC18 ERRC5UNT: INTEGER
OC19
OC20 SENDERQ,GSERJ : !UEUE
OC21
OC22 bUFG: SOURCEGUEING
OC23
0C24 CLOCK : LINKCLOCK J
OC25
OC26 PFCONTRSL : PFCONTReLPRIMARY;
OC27
0028 SOURCE: LINKS8URCE J
OC29
OC30 MYAPERATeR : PRIMARYTERMINAL J
OC31
OC32 PROCEDURE EXECSARMACTIANIVAR KIND: CeMMANDKIND)
OC33 BEIN
OC34 KIND . SARM £
0035 STATE :." AITSARMACKJ
0036 ERRCOUNT :I* 0
OC37 PFC5NTReL.SETBIT i
OC38 END j
0039
0040 PROCEDURE EXECDISCACTION(VAR KIND COMMANOKIND) ;

0041 BEGIN
OC42 STATE :. WAITDISCACK
OC43 KIND :- DISC
0044 ERRCBUNT :. o j
OC45 PFCONTROL*SETBIT
OC46 END
OC47
OC48 PReCEDURE ENTRY SENDEVENT(VAR TRANSMITFRAMEI COMMANDFRAME)
OC49 vAR CONTROL: SENDCdNTReL
OC50 BEGIN
OC51 RITTh TkANSMITFRAME
OC52 DO REPEAT
OC53 CANTROL :- EXIT3
OC54 CASE ST-ATE OF
0O55 PDISCONNECTED :
OC56 IF MYUPERATUR.CUN\ECT THEN EXECSARMACTION(KIND)
OC57 ELSE CONTRAL :* wAITFOR
0058 AAITSARMACKjAAITDISCACKI
0059 IF CLACK.TIME9UT
OC60 THEN IF ERRCOeNT < MAXERACOuNT
OC61 THEN BEGIN
OC62 ERRCOUNT :* ERRCOUNT + I S
OC63 IF STATE * WAITSARMACK
OC64 THEN KIND :- SARM ELSE KIND :I DISC i
OC65 PFCONTROL*SETBIT £
OC66 END
OC67 ELSE BEGIN
OC68 STATE :* PDISCeNNECTED J
OC69 PFCONTROL*RESET j
OC70 MYOPERATOR.ERReR(INOPERABLECIRCUIT)
OC71 CONTROL :a TRYAGAIN J
OC72 END
OC73 ELSE CONTROL :* WAITFOR j
OC74 PCMDREXEPTION :
OC75 IF MYOPERATBR.RESET THEN EXECSARMACTIONIKIND
OC76 ELSE EXECDISCACTION(KIND)I
0077 PCeNNECTED :
0078 IF MYdPERATOR.DISCONNECT THEN
OC79 ExECDISCACTIONIKIND) ELSE
OC80 IF SOURCEmERRCOUNT * MAXERRCOUNT
0081 THEN BEGIN
0082 EXECSARIACTION(KIND)
0083 MYOPERATOR.ERReR(RETRANSMISSIONFAIL)
0084 END
OC85 ELSE SOURCE*SENDEVENT(TRANSMITFRAME,CONTROLI
OC86
0087 END 5
0088 IF CONTROL * WAITFOR THEN DELAYISENDERG)
0089 UNTIL CONTROL * EXIT 3
OC90 TRANSMITFRAME.PBIT :I PFCONTROL.BIT J
0091 PFCONTROL.SENDEVENT 3
OC92 CONT INUE l USERQ)
0093 END
0094
0095 PROCEDURE ENTRY RCVEVENT(VAR RECEIVED : RESPONSEFRAME)J
0096 BEGIN
OC97 IF RECEIVEDOKIND <> ERRONEOUSRESPONSE
0098 THEN BEGIN
0099 PFCONTRBL.VALIDATEFBITIRECEIVED) J
0100 IF RECEIVED.KIND IN t*IRR,RR,RNk#REJ*.
0101 THEN SOURCE*VALIDATENR(RECEIVED)
0102 END 3
0103 WITH RECEIvED
0104 DO BEGIN
0105 CASE STATE AF
0106 PDISCONNECTED,PCMDREXEPTIeN I 3
0107 WAITSARMACK,AAlTDISCACK
0108 IF (KIND * UA) AND IFBIT * 11
0109 THEN dEGIN
011 SOURCE.INITIALISATION3
0111 PFCONTR5LtRCVEVENTIOsO0,*FBIT) I
0112 If STATE * wAlTSARMACK
0113 THEN BEGIN STATE :* PCONNECTED j BUFO.RESET
0114 END
0115 ELSE BEGIN STATE :I POISCONNECTED 5 OUFTOCLEAR
0116 END
0117 END i
0118 PCONNECTED :
0119 IF KIND * CMDR
0120 THEN BEGIN
0121 STATE :- PCMDREXEPTION3
0122 PFC8NTROL.RCVEVENT(00p0pTOFIT) j
0123 MYBPERATOR.CMDRREPORTt INFOPOINTERI 3
0124 END ELSE
0125 IF KINO * ERRANEOUSRESPONSE
0126 THEN GEGIN
0127 STATE :* PCMDREXEPTION 3
0128 MYOPERATOR.STATUSREPORT(STATUS) i
0129 END ELSE
0130 IF KIND IN (.*IRR#RRpRNR*RE-U.I
0131 THEN SOURCE.RCVEVENTIRECEIVED)
0132 END J
0133 IF INFOPSINTER <) NUL THEN BUFFER.FREEIINFOPOINTERI ;
0134 END j
0135 CONTINUEISENDERQ)
0136 END j
0137
0138 PROCEDURE ENTRY USERSENDLVENT(MESSPTR : SNAPBUFFERINDEx a
0139 vAR xSTATE : PRIMARYSTATETYPE)
0140 VEGIN
0141 WHILE (STATE <> PDISCONNECTED) AND BUFTOFULL
0142 DO DELAY(USERQI ;
0143 IF (STATE 4> PDISCONNECTED) AND NOT BUFTOFULL
0144 THEN BuFG*CINTO(MESSPTR 3
0145 XSTATE :I STATE 3
0146 CONTINUE(SENDERG)
0147 END J
0148
0149 PROCEDURE ENTRY CLACKINTERRUPT ;
0150 VAR 3K: BOLEAN
0151 AEGIN
0152 CLOCK.INTERRJPT(0K) 3
0153 If OK THEN C5NTINUEISENDERC)
0154 END 3
0155
0156 AEGIN
0157 INIT
0158 BuFTD(BUFFER,BUFLENTH)I,CLOCK(TIMERT1)JPFCONTROL(CLOCK)I
0199 SBURCElBJFFER,CLACK,PFCONTReL,BUFC), YAPERATOR(TYPEUSE,BJFTERI ;
0160 STATE :- PDISCONNECTED ERRCBU\T :- 0
0161 ENJ 3
0162
C163

437

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 5, SEPTEMBER 1979

APPENDIX B
THE PROGRAM COMPONENTS OF THE X.25 IMPLEMENTATION. THIS IS A
COMPLETE LIST OF ALL CLASSES, MONITORS, AND PROCESSES OF THE

X.25 SYSTEM

Number of Referenced
Name occurrences in the paper Main function

Fi fo several

Resource

Type resource
Typewriter

Terminal

Terminal stream
Snap buffer type
Buffifo
SQurce queing
Circuit send process

Circuit rcv process

Circuit send buffer

Circuit rcv buffer

Link receiver process

Primary sender process

Secondary sender process
Primary terminal
Secondary terminal
Linkclock

Clock process

PF control primary *

PF control secondary *

Link source *

Link sink *

Link set up primary *

Link set up secondary *

Event monitor

VC sender process

VC receiver process

VC clock component
VC restart component*
VC data transfer component*

VC reset component *

VC set up component*

Packet level interface

several

several

several

several
l

several
Fig. 9; sect. 5.2
Fig. 9; sect. 5.2
Fig. 9
Fig. 8; sect. 4

Fig. 8; sect. 4

Fig. 8; sect. 4

Fig. 8

Fig. 6,7,8; sect. 4

Fig. 6,7,8; sect. 4

Fig. 8; sect. 4
Fig. 7, 8;

sect. 4.
Fig. 7

Fig. 7

Fig. 7; sect. 3

Fig. 7; sect. 3

Fig. 7, 8; sect 3;
appendix A

1 Fig. 8

1 Fig. 8; sect. 4
1 Fig. 8; sect. 4

1 Fig. 8; sect. 4

1 for each VC

for each VC

1 for each VC
1 for each VC Fig. 8; sect. 4

1 for,each VC Fig. 8; sect. 4

* Component derived from the formalized specification of X.25

FIFO queue for scheduling processes waiting for
a ressource.

Monitor providing mutual exclusion for resource
access.

Idem, for shared operator's console.
Line-oriented text input-output for the opera-
tor's console.
"Typewriter" with shared access to operator's
console.

Character stream input-output through "Terminals".
Central buffer nanager.
Buffer queue, FIFO queue of buffer blocks.
Augmented Buffer queue for packet retransmission.
Output process, performs the physical output of
frames.

Input process, performs the physical reception
of frames.

Output frame buffer, also performs the coding of
the frame header.

Input frare buffer (very simple).

Frame receiver, also performs the decoding of
the received frames.
.Fame sender (primary) (very simple).

Frame sender (secondary) (very simple).
Link manager.

Time-out service for the Primary Zink.
ReaZ time, activates the time-out facilities
for the link and packet level.

Primary PFcontroZ of the Primary Zink, sets the
poll bit of outgoing frames and checks the final
bit of incoming ones.

Similar, part of the Secondary link (Very simple)
Source component of the Primary Zink performing
packet transmission.
Performs packet reception in the Secondary Zink.
Primary Zink.

Secondary Zink.

Scheduling of transmission requests.
Packet sender, passes the packets to be transmit-
ted to the link layer; also codes the packet header.
Packet receiver, distributes the received packets
to the different VC's; also decodes the packet
header.
Time-out service for the packet level.
Handles the X.25 restart procedure.
Handles the transmission of data packets and
interrupts.

Handles the X.25 reset procedure (packet level).
Packet ZeveZ procedures, handles the packet
level establishment and clearing procedure,
and includes the other packet level components.

Provision of a VC interface to the next higher
system layer.

438

I

1

1

1

1

1
1
1
1

1

l

l

BOCHMANN AND JOACHIM: DEVELOPMENT AND STRUCTURE OF AN X.25 IMPLEMENTATION

Explicit scheduling is necessary for the Frame sender and
Packet sender processes, which are delayed when no frame
sending transition is possible, or the link source queue is full,
respectively. This is programmed with the monitor primitives
wait and signal (delay and continue in Concurrent Pascal). In
order to simplify the decision as to when to wake up a waiting
process, we have chosen to wake up processes more often than
necessary. The Frame sender is woken up after the reception
of a frame from the Frame receiver or of a packet from the
Packet sender or after a time-out, and the Packet sender is
woken up after a frame has been sent by the Frame sender.

ACKNOWLEDGMENT
We thank P. Desjardins for many useful discussions, and the

Concurrent Pascal implementation on the Xerox Sigma-6
computer used for our implementation. We are grateful to the
Computer Communications Group of Bell Canada for letting
us use their X.25 tester equipment. Finally, we thank S.
Waddell for a revision of the manuscript, and Mme. Luyet
for the careful typing.

REFERENCES

(1] CCITT Recommendation X.25, 1976.
[21 T. Joachim, "Implantation du protocole standard X.25 a partir

d'un modele de formalisation et de m6canismes abstraits de
programmation," Master's thesis, Dep. I.R.O., Univ. Montreal,
Montreal, P.Q., Canada, Dec. 1977.

[3] P. Brinch Hansen, "The programming language Concurrent
Pascal," IEEE Trans. Software Eng., vol. SE-1, pp. 199-207,
1975.

[4] G. V. Bochmann and J. Gecsei, "A unified model for the specifi-
cation and verification of protocols," in Proc. IFIP Congr. 197Z7
Amsterdam: North Holland, pp. 229-234.

[5] G. V. Bochmann and R. J. Chung, "A formalized description of
HDC classes of procedures," in Proc. IEEE Nat. Telecommun.
Conf., 1977, pp. 03A 2-1-2-11.

[6] H. A. Schmid, "On the efficient implementation of conditional
critical regions and the construction of monitors," Acta Inform.,
vol. 6, pp. 227-249, 1976.

[7] P. Desjardins, "Un pilote pour controleur de communication dans
Solo-Sigma," I.R.O., Univ. Montreal, Montreal, P.Q., Canada,
Tech. Rep., in preparation.

[8] A. M. Rybczynski "Collection ofquestionsand answers on X.25,"
working document, 1977.

[9] G. V. Bochmann, "Specification and verification of computer
communication protocols," I.R.O., Univ. Montreal, Montreal,
P.Q., Canada, Publ. 294, 1978.

[101 D. Belsnes, "X.25 DTE implement in Simula," in Proc. Eurocomp
78, Online, England.

11] IFIP Working Group 6.1, "Proposal for an intemetwork end-to-
end transport protocol," INWG Note 96.X; also in Proc. Comput.
Network Protocols Symp., Univ. Liege, Liege, Belgium, 1978.

[12] J. K. Cavers, "Implementation of X.25 on a multiple micro-
processor system," in Proc. Int. Commun. Conf., 1978.

[131 D. L. A. Barber, T. Kalin, and C. Solomonides, "An implementa-
tion of the X.25 interface in a datagram network," in Proc.
Comput. Network Protocols Symp., Univ. Liege, Liege, Belgium,
1978, pp. E6-1-E6-5.

Gregor V. Bochmann received the Diplom in
physics from the University of Munich, Munich,
Germany, in 1968, and the Ph.D. degree from
McGill University, Montreal, P.Q., Canada, in
1971.
He has worked in the areas of programming

languages and compiler design, communication
protocols, and software engineering. He is cur-

- rently Associate Professor in the D6partement
d'Informatique et de Recherche Operationnelle,
Universit6 de Montreal. His present work is

aimed at design methods for communication protocols and distributed
systems. In 1977-1978 he was a Visiting Professor at the Ecole Poly-
technique Federale, Lausanne, Switzerland.

~rrt Tankoano Joachim was born in Fada N'Gourma,
Upper Volta, on April 14, 1951.
He received the B. Sc. and M.Sc. degrees in

computer science from the Universit6 de
Montr6al, Montreal, P.Q., Canada, in 1976 and
1978, respectively.

, He currentiy leads the Division of Systems at
_ E fthe Centre National pour le Traitement de

g lnformation (CENATRIN), Ouagadougou,
Upper Volta.

439

