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This document is a specification of the Message Link Protocol
(MLP). The MLP creates a transport service between session control
entities via transport connections, and some additional session
control service. It is based on virtual circuits a la X.25. It is
concerned with transport connection establishment and termination,
and handles resets and clears to provide a reliable transport service.
Furthermore i* provides synchronization support related to session
establishment, termination and negotiation. The allocation of transmission
resources to connections is also considered. It is assumed that

the flow control capabilities of the X.,25 virtual circuits can be
used for transport connection flow control. If, for other transmission
media, flow control may not be assumed, an additional function

to provide flow control at the transport service level has to be
introduced.



1. Introduction

The need for a transport service in computer networks has first
been found with patket switched datagram transmission networks
in order to provide a reliable message transmission between the
communicating processes. It has been arqgued that no separate
transport layer is needed when communication is based on virtual
circuits of public data networks. However, certain applications
require that the integrity of process to process communications

be gquaranteed independently of this underlying transmission service.
In fact, the data transmission over a virtual circuit may be disrupted
by network generated resets and clears, and possibly even by
transmission errors and unforeseen malfunctions.

The so called "Message Link Protocol" (MLP) (HERTW77, HERTW78)
specified in this paper deals with process to process message transport
over dynamically established connections and a simple form of

process synchronization. It was designed to operate over a packet
switched network providing virtual circuits. It may operate in a
hostile environment with network generated resets and clears,

and other difficulties.

Two classes of service are distinguished:

a) normal service, where the loss of messages is not excluded

and

b) reliable service, where all network malfunctioms may
be recovered by the protocal (as long as the data transmission
service does not break completely, and both communicating
partners work correctly).

In order to simplify the understanding of the MLP, we distinguish
several "sub-layers", each of which has a particular function. In
ascending order of hierarchy, they are the following:

- Transmission Resource Allocation (TRA)

Assuming the use of virtual circuit, as provided by public packet
switched data networks, this sub-layer handles the allocation

of permanent and switched virtual circuits (VC). It establishes
agreement between the communicating transport entities about
the allocation of the available channels to the active process-
to-process connections.

- Connection Establishment and Clearing (CON)

Based on the service provided by the transmission resource allocation,
the "connection" sub-layer (CON) is responsible for the establishment



and clearing of process to process connections, over which messages
may be exchanged by the next higher sub-layer. This involves

the end-to-end identification of processes and connections, and

the detection of contention. It is considered that this sub-layer
consists of the fallowing entities:

a) one connection entity for each connection end paoint,

b) one connection administration entity for each subsystem
identified by a transmission network subscriber address.

For each incoming or outgoing connection establishment request,
a connection entity is responsible for the connection establish-
ment and later disconnection. It interacts with the connection
administration entity which detects contention and identifies
and possibly activates the appropriate partner process for an
incoming connection request. Temporary deallocation of the
transmission resource (network VC) without loosing the transport
connection may be supported. The complementary function of
reactivating a released connection may be supported as well,

of course. Based on this feature, "break recovery" is proposed
to provide recovery after network generated clears.

- Message Transport (MT)

When a connection is established by the sub-layer below, this
sub-layer provides reliable transport of messages and interrupts

(in case of the normal class of service, this sub-layer is very
rudimentary). The retransmission sub-layer detects any irregularities,
including resets, of the underlying transmission service. [t transmits
messages and interrupts, and exchanges delivery confirmations:

for the communicating processes and retransmission buffer managment.

- Re-Synchronization (RS)

This sub-layer provides, in addition to the message transport
service provided by the layers below, controlled flushing and
non-flushing interrupt synchronization between the communicating
processes, as well as data synchronization which operates in

line with the transmitted messages.

- Mode Exchange and Synchronization of processes (MS)

A more advanced synchronization mechanism for the use of
session control with the additional possibility of nesting sessions
is supported by the MLP, based on the synchronization mechanism
of the RS sub-layer.



The architecture of a typical implementation of the MLP is indi-

cated in figure 1, showing the different sub-layers and their relation
to the standard layered architecture proposed by 1SO (see
ISO/TC97/SC16/N4E).
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2. Notation and Terminologie

Protocol data units are defined according to (ISO/TC97/SC16/N4é6).
They are generated in a certain layer and exchanged by the service
of the underlying layer (see figure 2).

service primitive service primitive
protocol entity peer protocol entity
of layer X of layer X
/,
protocol data units 7

of layer X protocol //
-

X-1 service layer

Terminologie
fig.2

The service provided by a layer X is accessible through service
primitives (see figure 3). They are written in capital letters. An
service primitive may be initiated by the layer below (X) or the
layer above (X+1). This is indicated by the symbols "+ " and " ¥ ",
respectively. The symbals " = " and " _ " are used to indicate

that a given service primitive belongs to the interface above and
below a given layer, repectively. For example, " =~ & OPEN" stands
for the OPEN primitive (a service of the MS sub-layer), as seen
from the MS sub-layer, and initiated by the user layer above.

The execution of a service primitive may involve several interface
events which perform the exchange of parameter values between

the interacting layers, They are distinquished by names like "request",
"confirmation", etc. In the case of the service primitive OPEN,

we distinguish two or three events, as shown in fiqure 3. They

are written as = ¢ OPEN(request), ~ ¥ OPEN(confirmation),

~ 1 OPEN(indication), and ~ * OPEN(response). Open, open accept

and mark are the related protocol data units. The coding of protocol
data units is not defined in this document. Also the question of
concatenation of several protocol data units for efficient transmission
over a VC is left for further study.
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Different internal states may be distinguished for a given protocol
entity., They are indicated by numbers @ An example is given
in figure 4, showing a connection entity executing a CONNECT

primitive,

b (ONNECT  ~yrequest (Tb

request _ V¥ RESERVE

accept _A_J

1L

"non-existant" state

"connected" state

represents an intermediate state in which no activity is performed
until the service primitive initiated by the entity is terminated.

X

fig. 4
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The parameters of the service primitives are essential for the
logical understanding of their meaninqg. The values of the parameters
are exchanged between the interactirg layers by the interface
events, The symbol "—" written before the name of a parameter
means that its value is provided by the layer which initiates the
service primitive. The symbol "¢=" means that the parameter value
is provided by the responding layer. The parameters marked with
"wy!" or "e=" usually have an end-to-end significance between the
communicating entities (see for example figure 5). This is not

the case for a parameter marked with " ", For example, the

value (either OK or broken) of the status parameter of figure 5

is provided by the layer below the interface, and has no end-to-end
significance. The value broken at a local interface implies that

the end-to-end parameters, received at the interface, do not necessarily
have correct values, and that the peer entity does not necessarily
execute the corresponding service primitive.

local generic process communication name,
local process identifier,

distant subscriber address,

distant generic proc. communication name,
distant process identifier,

service class,

response: (accepted,non-accepted,collision)

status,

break recovery: boolean,

protocol identifier)

- ¢ CONNECT (

LIttt il

Parameter example
fig.5

3. Transport Control Servive

3.1  Underlying Transmission Service

The transport service may be based on different underlying
transmission services. In the case of switched circuits or leased
lines an HDLC-like interprocessor protocol should be added to
provide flow control and error control. Multiplexing of several
transmission channels over a given circuit may also be considered.
For a datagram based transmission service, flow control has to

be added. This may be provided, for example, by a credit scheme.
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For error control, the retransmission function of the MLP (reliable
service class) may be used. This would imply that the retransmission
is performed end-to-end between the transport service entities.

For this document we assume that the basic transmission service,
is given by Virtual Circuits (VC) as provided through an X.25 interface
(CCITT78).

The function of the transmission service is to transfer data via
virtual circuits (or logical channels) which are locally identified

by logical channel identifiers (LCI). For switched virtual circuits
(or virtual calls) logical channel identifiers are assigned during

the call set-up phase. For permanent virtual circuits logical channel
identifieres are assigned in agreement with the Administration

at the time of subscription to the service.

Since the transmission service is not exactly defined by the interface
standard, we make the following relatively weak assumptions which
(hopefully) are satisfied for all networks and also for inter-network
virtual circuits:

a) During a circuit reset, data and interrupt packets
in transit may be discarded.

b) Exept for (a), messages in form of "user sequences"
are sequentially transmitted without errors.

c) Interrupts are never duplicated.

d) The interrupt confirmation does not necessarily have
end-to-end significance.

e) An interrupt packet usually travels faster, but may travel
slower than data packets.

f) To each reset operation at one end-point of the circuit,
there is a corresponding reset operation at the other end,
but a subscriber initiated reset operation at one end may
correspond to a network generated reset at the other end.

The data transmission service over_ yirtual circuit is characterized

by the following service primitives ) (initiation and clearing only
for switched circuits):

Tor ¥ INITIATE VIRTUAL CIRCUIT ( - LCI,
—» distant subscriber,
<« accepted: boolean)

Tor ¥ CLEAR ( = LCD

* . - . ey
) For our purposes, we ignore such information as facility parameters,
call user data, clearing cause, etc.
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4ory USER SEQUENCE ( — LCI,
-—> user sequence)

2 or§ INTERRUPT ( — LCI,
—> code: 8 bits)

? or ¥ RESET ( — LCI

Note, for example, that the service primitive 1 INTERRUPT represents
the receipt of an interrupt (including the sending of the interrupt
confirmation packet), and ¥ INTERRUPT the sending of an interrupt
(including the receipt of the interrupt confirmation packet), as
explained in section 2.

3.2 Transmission Resource Allocation (TRA)

Introduction

This sub-layer provides allocation and deallocation of transmission
channels (VC's) between two transport entities for transport connections
to be established or resumed. The protocol is based on the exchange
of allocate, deallocate, confirm and release protocol data units
which are sent over the channel to be aiixcated or deallocated.

The sub-layer alsc provides a mechanism -a recover from packet
loss during the allocation and deallocation phase. In the case of
virtual circuits, packet loss may occur due to network generated
resets. This is accomplished by retransmission of protocol data

units after resets or time-outs, The mechanism is used as a basis
for the CON sub-layer.

Interface

The service interface consists of the following primitives, which
are locally associated with a given transmission channel (LCI):

4 or ¥ RESERVE ( —» for-whom,
<« accepted: boolean,
«— reason,
4  status)

Tor¥ FREE ( — why,
T status)
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where the for-whom parameter specifies whether the channel reservation
is made for a RESUME or CONNECT primitive and which connection
is involved. The responding side may accept or reject the reservation,
giving the reason for a possible rejection. The TRA layer may

also reject a reservation. This may only happen in the case of

a collision (see below). If the transmission channel breaks (i.e.

the network clears the circuit, due to congestion) when (locally)

an interface primitive is in progress, the primitive is terminated

and the status parameter has the value broken. The why parameter
for the FREE primitive indicates whether the primitive is invoked

by a RELEASE or a DISCONNECT.

The following state diagram (see figure 6) shows in which order
the service primitives may be executed.

RESERVE rejected or broken

FREE RESERVE accepted

"reserved"

Order of TRA interface primitives
fig.6

Protocol

The operation of the TRA protocol is summarized in the table
below (figure 7). It contains, for each local state of the TRA
entity, the operations that are initiated by service requests, received
protocol data units, time-outs and other signals from the underlying
transmission channel. We note that the p.d.u. retransmitted after
time-out or network generated reset must be coded such that

they can be distinguished, by the receiving entity, from initial
transmissions.
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Some examples for the operation of the protocol are given in
figure 8,9,10 and 11, We note that there may be three interface
events for the RESERVE primitive, as shown in figure 9.

J Reserve

re

TRA

¢

allocate

M Lequest
\

confirm

U

Y RESERVE
q

request

rejec

TRA

Allocation,accepted
fig.8

allocate

deallocate

release

TRA

L ResERVE
indication

JW

TRA

accept

_ trESERVE
indicatip,

e

reject

confirm

Allocation,not accepted

fig.9
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TRA TRA

Y FREE
h Léguest
deallocate
tFREE
inob'ca,b‘g"
conti L release
\/

Deallocation
fig.10

The TRA protocoi handles collisions, i.e. the case that RESERVE
orimitives are initiated simultaneously at both ends of the trans-
mission channel (figure 1l1). This conflict is resolved by giving
priority to one side, the reservation for the other side being rejected.
The priority decision must be made independently in each TRA
entity, based on the exchanged for-whom parameters. Both sides
should come to the same. decision. For example, this decision could
be based on the DTE addresses of the two sides.

TR
Vv RESERVE A TRA
A\ request ‘4 ? rcqu“t& E:SERVE
14 Uscate “— |
2
alocate reject
] . priority
noprienty indicate TREsSERVE
® M)
accept u

confirm

\./

Allocation with collision
fig.11
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3.3 Connection Service (CON)

Introduction

The CON service is responsible for establishing and terminating
process to process transport connections. In order to use the flow
control of the VC's, each VC is allocated to at most one transport

connection,

A session control entity may be understood as an entity requiring

a transport connection for communication and performing, together
with higher level entities, the user required task. Such a task

may be implemented as a set of processes performing different
activities within the task, or simply as one process. However the
addressing of a process has to be distinguished from the allocation
of a transport connection. This does not exclude that an establishment
of a transport connection may be combined with process addressing.
It is assumed that normally this combination of functions is required,
because a transport connection normally is established together

with the access to some initial session. This does not exclude

that different sessions may use the transport connection during

its life time (see section 4.2). This is the justification that the
CONNECT primitive establishes initially a transport connection
between processes (initial session !).

The service of temporary deallocating the transmission channel,

using the RELEASE primitive, is part of the CON service. A RELEASE
primitive is also invoked when the transmission channel breaks

(the network clears the VC). Note that after a RELEASE is performed,
the connection is still existing, although in a "dormant" state.

The RESUME primitive may be used to 'reactivate" a released
connection, or to recover from a broken transmission channel.

It allocates a new channel to the resumed connection.

Addressing

The distant subscriber is addressed in an X.25 environment by

the distant DTE address. The address which includes the identification
of the session controller and the name of the initial process together
with a process port name (if more than one connection has to

be distinguished by that process) is called "process communication
name". A pair of "specific" process communication names identifies

a certain process to process transport connection. To make a "generic"
process communication name "specific" (indicating the specific
instance!) a local process identifier has to be added (see figure 12).
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processnamel processnamez

L session, connection _ 1

ession controller 1 session ccmtroller2

L——transport connection—

subscriber addressl subscriber address2

1——network connet:tion—J

Connections and Addresses
fig.12

No explicit session controller address is forseen in the MLP. The
CONNECT primitive implicit connects two session controllers via
a transport connection and enables the initial session connection
between the identified processes.

Service interface

The service primitives provided by the CON sub-layer are executed
in interaction with the TRA sub-layer. The primitives of the message
transmission sub-layer (MT see section 3.4) and the session control
sub-layers (RS see section 4.1, MS see section 4.2) may also be
executed when the CON entity is in the "connected" state.

The service primitives of the CON sub-layer are the following:

¥ or 4 RECONNECT

local generic process communication name,
local process identifier,

distant subscriber address,

distant generic process communication name,
distant process identifier,

service class,

response: (accepted,non-accepted,collision),
status,

break recovery: boolean,

protoco! identifier)

<
=]}
=
>
0
o
Z
p4
m
0
—

Yi»134114
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¥ or » DISCONNECT (4 status)

¢ or * RELEASE( 4 status)

¢ or * RESUME ( local generic process communication name,

local process identifier,

distant subscriber address,

distant generic process communication name,

distant process identifi=r,

service class,

response: (accepted,non-accepted,collision,
non-existing)

> tiddld

status)

The service primitives may be executed only in a certain order,
as shown in figure 13. The figure also shows the possible states
of a connection entity.

CONNECT (broken)
?rac;”eggcr CONNECT (accepi)
'nqn ,
existant DISCONNECT
RELEASE.
RESUME
RESUME (accept)

(accept)

RE§UHE
(reject) RELEASE
(broken )
Disconned
(brokc,,) '
RESUHE 'Braken RESU"E
(broken) channel' (reject)

RESUME (reJ'cct Lreason <non cx:'.s{:'n_gj)
in the case of break recevery RESUME
(broken)

Order of CON service primitives
fig.13

"Reject" indicates that for any reason the distant side does not
accept the request of the service primitive (CONNECT,RESUME).
The status "broken" indicates that a clear occured during a requested
service primitive.
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An example of the operation of the protocol in the asymmetric
CONNECT is shown in figure 14.

{ConneeT CON CoN
™\ request nquaese”e fRESERVE
indicate s e‘r CONNECT
tonfirm (U
|

"non existent"
"connected"
Asymmetric CONNECT
fig.14

The following example illustrates the situation where a break is
indicated after the other side has confirmed the CONNECT (see
fiqure 15).

Yeonnecr CON CoN

‘ VReEsegve T REseqv
(MYquest (? req uest e.z.e e ? feonnect
ww |ndl(,ﬁ -~
TRELEASE
{ndicate
(broken)
Contirm,
(brolu:; broken
\_/

Broken CONNECT
fig.15
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Two problems have to be considered in the symmetric case (i.e.
if both cides initiate CONNECT and RESUME primitives):

a) collision

It occurs if two different process-to-process transport connections
try to reserve the same VC. This conflict is handled by the

TRA sub-layer, which rejects the reservation for one of the
connection. The CON sub-layer then has to RESERVE another
circuit, as shown in figure 16.

CON CoN
VOONNECT & ConNecT
et O] abREsERVE  IReserve request_~
@ )
Rguest
LJ Ociept Confirm

(yredusst request ¥ RESERVE

"non existent"
"connected"
collision
fig. 16
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b) contention

In this case two different circuits are established for the same
process-to-process transport connection. The connection administration
entity of the CON sub-layer has to detect contention. It is assumed
that the process communjcation names are sufficient for this
purpose. When contention is detected each side has to evaluate
whether the outgoing or incoming CONNECT has priority. This
evaluation is based on the asymmetric subscriber addresses. The
side with the lower subsriber address has to reject the incoming
CONNECT. The other side has to accept the incoming CONNECT.
Figure 17 shows an example of the protocol operation in the
contention case.

CON
YCONNECT CON \CONNECT
request
M ceauesVRESERVE L RESERVE ijl) request (™
M) request
TResevE PReservE
V.“u > indic.
‘ou L
Co;:senbou H w"::‘ Fiont
P‘ﬂ'orify : prl‘oril’y !
lncommg 0 \Ltg oin 9
confirm - auept reject (ontention )
e
ar.mcc ow) confirm
|

"non existent"
"econnected"
contention
fig.1l7
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Collision and contention may also occur between CONNECT -
RESUME, RESUME - CONNECT and RESUME - RESUMNE primitives.
These cases are handled in an analoque manner, giving RESUME
priority over CONNECT.

DISCONNECT is the interface primitive responsible for terminating
the process-to-process connection. It uses the FREE primitive of
the TRA sub-layer with "disconnect" as the why parameter. Figure
18 shows a relatively unusual case where the transmission channel
breaks during the execution of the DISCONNECT.

Ldisconnect CON CON

q request ? VFREE TFREE ‘
"'!4u¢s'(:
$RELEASE

broken broken l '

Confirm | /
U 3;
"connected"

"hroken channel"

Broken DISCONNECT
fig.18

RECONNECT is logically equivalent to a DISCONNECT followed
by a CONNECT, but may be implemented more efficiently (for
example by not "freeing" the transmission channel if the distant
subscriber address for the new connection is the same as before).

Break recovery

Recovery after network initiated clears is one of the most important
features for a reliable transport service based on VC's
(CHUNG78,CHUNG79). In MLP, this is provided explicitly or implicitly
("automatic break recavery"). To recover from a netwirk initiated
clear (indicated by status "broken") a RESUME functior, has to

be performed. Whether the RESUME is accepted (leading to the
"connected" state) or rejected (leading to the "non existent" state)
the states on both sides are again synchronized.
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This RESUME function can be performed either by the user of the
CON service (explicit recovery of broken circuit) or implicitly

by a service called "break recovery". The second case gives the
justification to introduce a sub-layer abave the CON sub-layer
providing recovery after a VC is "broken". The interfzce above

this sub-layer does not indicate the status "broken" to any primitive
invoked (and no "broken" RELEASE is indicated either, of course).

Examples for this case are shown in the figures 19 and 20. If a
DISCONNECT is confirmed by a "broken", the "broken channel"
state is reached (figure 20). In this case it does not know in which
state the other side has been the time a "broken" was indicated.
It could have been in the "connected" state, as shown in figure 19.
Or it could have been in the DISCONNECTing, or in "non existent”
state. These cases are distinguished by invoking a RESUME in

the "broken channel" state.

JConnecT CGO; CoN
r t
> \ ndicate \.ﬂdicaft
confirm
acept
TFREE
broke :
broken ) r :a::ca: r.etwvny
plici
break
retranimit Y RESEQVE Lreseeve RESUME
Connect H m
oSy w's request
‘s‘ =
ae
& 8-
1 g
2.8
+ § 9 t
accep zZ23 accep
conflrm. REE)
\./
|

"non existent”
"connected"
CONNECT with "break recovery"
fig.19
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et PN
tmpldc ERVE
RESUME re ““{-:LrT vE ! {ndicate
L) AL/ reject
onfi reject (new exishad)f
é (vonexistant)

"non existent"
"connected"
"broken"
DISCONNECT with "break recovery"
fig.20

If no "break recovery" is agreed by the parameter of the CONNECT
primitive, and no RESUME is expected (neither from the user

nor from an automatic break recovery), the "non existant" state

is reached directly from the "broken channel" state (see figure 13).
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3.4 Message Transport (MT)

The MLP provides a sequential message transport service simultaneously
and independently in both directions. In addition, a simultaneous
interrupt transfer in bdth directions is supported. Different classes

of service are distinquished.

Basically the message transport service of the MLP is equivalent

to the service provided by a virtual circuit (see section 3.1), exept
that some octets of each user sequence may be reserved for control
purposes. However, the transmission network may reset the VC,
which may lead to loss of data, or clear the call (in the case

of switched VC's). A clear may be recovered by the "break recovery"
function of the CON sub-layer (a recovered clear looks like a

reset), if this is desired. Resets may be acceptable to certain
applications, but certainly not for all, since data loss may lead

to undefined system states and deadlocks. We consider two approaches
to avoiding data loss, which lead to two classes of service (as
described below):

a) A reset leads to disconnection. This is a quite drastic
way to avoid the loss of data. It is only feasable if network
generated resets are sufficiently seldom.

b) A retransmission mechanism provides recovery from
data loss after resets. In this case, the "break recovery"
function of the CTON sub-layer provides additional reliability
and availability for the transport service.

A "high reliable class" of service (see section 3.4.2) is obtained

by adopting approach (b) and introducing additional checks, at

the receiving transport entity, for transmission errors and sequential
delivery.

If for some reason the approaches above are not appropriate (e.g.
applications which recover resets or clears themselves) resets may
be signalled to the user through the service interface by FRESET
primitives.

3.4.1 Normal class of service

The occurence of network resets and clears is assumed seldom
enough for the user requirements. Network resets and clears give
rise to a DISCONNECT - no attempt is made to recover the possible

loss of data.
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3.4.3 Reliable and high reliable class of service

The service is provided through the same interface primitives as
the normal class of service. However network generated resets
are recovered by the MT sub-layer, and transmission malfunctions
may be detected and recovered. The absense of message loss is
guaranteed, and at any given time, the last interrupt sent (in each
direction) is guaranteed not to be lost. If in addition, the "break
recovery" function of the CON sub-layer is used, one obtains a
transport service of high reliability and availability.

Delivery confirmation within the MT sub-layer for the reliable
class of service has two functions. As for the normal class of
service, it provides a "one sided" synchronization, and in addition,
it is used for the buffer management by the MT entity for the
messages for which retransmission is not excluded. The rt-mark
protocol data unit is used to determine the necessary retransmission.
It contains the next expected message number, as well as the
number and content of the last interrupt sent (This information

is recorded at each side of the transport connection; the message
and interrupt numbers are initialized by the CONNECT primitive).
The rt-mark is exchanged after each reset.

Two sub classes of the reliable service may be distinguished:

- with sequence and transmission error detection (high
reliable class):

A sequence number and transmission error check is added to

each transmitted message. Therefore any malfunction of the
transmission medium can be detected by the receiving transport
entity. If a sequence error or a transmission error is dedected

a reset is sent over the transmission channel by the MT sub-layer.
This leads to the same recovery mechanism as for network generated
resets (see above). For this class, the "data" protocol data units
have to carry a sequence number and a transmission error checksum.

- without sequence and transmission error detection (reliable
class):

The integrity of the received messages relies on the correct
operation of the underlying data transmission service. The
retransmission recovery mechanism is initiated after network
generated resets only. No sequence number nor error check is
added to the transmitted messages, thus minimizing the overhead.
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The MT service consists of the primitives:

¥ MESSAGE ( --» message,
—> delivery confirmation request: boolean)

£ MESSAGE ( —» message)
¥ or * INTERRUPT ( —» code: 8 bits)

Two examples of the operation of the MT protocol are given below.

a) Message exchange without delivery confirmation (figure 21)

JIMESSAGE MT MT

receive | MESSAGE

fig.21

b) Message exchange with delivery confirmation (figure 22)

ME
¥ ssAG:Snd MT MT
ﬂ\

*MeSSAGE

receive

confirm,

fig.22

The protocol data units for the TS protocol are data and delivery
confirmation. Data is transmitted as a user sequence containing

the indicator "data" together with the parameter "delivery confirmation
required" in the first octet, and the parameter "message" in the
following octets.
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An example of the operation of the retransmission recovery mechanism
is shown in figure 23. It shows what happens when a reset occurs
during data transfer.

MT MT
treseT 1 ReseT

~ :ldl'c- N\ indie x

g £

: :

S 3

3 S

rt-mark (next expected message number,
last interrupt content sent,
last interrupt number)

Reset recovery
fig.23

If the next expected "data" protocol data unit number contained

in the received rt-mark is lower than the number of the last "data"
protocol data unit sent, the lost "data" will be retransmitted
subsequently. If the last interrunt number contained in the received
rt-mark is higher than the numoer of the last interrupt received,

the last interrupt content of the rt-mark gives rise to an % INTERRUPRT
primitive {and the local interrupt receive counter is updated).

4, Session Control Service

The Re-Synchronization (RS) and the Mode Exchange and Synchronization
(MS) sub-layers of the MLP belong to the session control layer.

The basic session control service provided by the MS sub-layer

is obtained through an extension of the SYNCHRONIZATION primitive
of the RS sub-layer. Other functions of session control, like commitment
control and logically related sessions, are left for further studies.

The here described session control functions may be used as a

basis for a presentation control layer, as described in (RAUBOLD77).
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4.1 Re-Synchronisation service (RS)

This service may be used to provide a negotiation mechanism for
applications. It is similar to the synchronization proposed in (BAUW77).

The following synchronization primitives are provided at
the service interface:

- DATA SYNChronization
This primitive may be used by a communicating process to
enter a new phase of operation. The meaning depends
on previosly agreed understanding of phases between the
communication entities.

- INTERRUPT SYNChronization
This primitive may be used independently of the flow control
mechanism for messages, whereas the primitive above may
be blocked within the message flow between the two
communication entities. Two types of INTERRUPT synchronization,
discarding and non-discarding, are distingquished. INTERRUPT
synchronization primitives exist at different priorities. The
initiation of a higher priority interrupt automatically leads
to abandoning any lower priority primitive in progress.

The RS service consists of the following primitives (where a high
integer parameter value indicates high priority):

v or * DATA SYNC ( = synchronization parameter,
«- accepted: boolean)

¥ or ™ INTERRUPT SYNC (—> priority: 0...127,
A abandoned: boolean)

vor A FLUSH INTERRUPT SYNC ( —> priority: 128...255,
A abandoned: boolean)

The protocol data units of the RS sub-layer (exchanged between

two RS entities to provide the primitives above) are the "data
synchr." (identical with "data synchr. accept"), the "data synchr.
reject”, the "rs-mark" and the "interrupt". The last one is transmitted
as an X.25 interrupt and not as a user sequence, of course.

In general the RS service primitives can operate in parallel with
MESSAGE and INTERRUPT primitives. Several restrictions depending
on the primitive and state have to be considered. In the following
examples the "dotted" phase of an service primitive allows for
parallelism with the ¥ MESSAGE primitive. The remaining phase
may only operate in parallel with A MESSAGE, and possibly with
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an A INTERRUPT SYNC. The data received by # MESSAGE and

sent by ¥ MESSAGE belong to the phase before the invokation of

the synchronization. The possibly arriving indications of

A INTERRUPT SYNC or A FLUSH INTERRUPT SYNC belong to

the phase after the previously invoked synchronization. No MESSAGE
primitive may operate in parallel with the FLUSH INTERRUPT
SYNC primitive.

Several examples of RS service primitives and the related protocol
operations are described in the following figures (24,25,26,27 and

28):
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The symbol " I " in figure 26 and fiqure 27 indicates that during

this phase of the INTERRUPT SYNC primitive a new interrupt
protocol data unit may arrive. This conflict with the INTERRUPT

SYNC in progress is resolved as follows:

if a lower priority interrupt arrives its indication
to the layer above has to wait until the INTERRUPT SYNC

in progress is confirmed,

if a higher priority interrupt arrives the current INTERRUPT
SYNC is abandoned and the new INTERRUPT SYNC is indicated

immediatly.

An example for the FLUSH INTERRUPT primitive is given in fig. 28
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FLUSH INTERRUPT SYNC
fig.28
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4.2 Mode Zxchange and Synchronisation of processes (MS)

The synchronization mechanism propsed in the RS sub-layer can
be used for selecting a new communication mode as well as to
select a new process (providing this communication mode!). If,
therefore, the synchronization parameter of the RS interface is
used to select from a set of available synchronization primitives
with different additional parameters, a basic set of session control
primitives is created. The MLP distinguishes three primitives to
perform mode exchange and synchronization of processes:

¥ or # OPEN ( —» open parameter,
4 accepted: boolean)

¥ or 4 CLOSE

4 or # REOPEN ( -» open parameter,
& accepted: boolean)

The MS protocol data units of the MS sub-layer are "sub protocol

data units" to the already defined "data synchronization" protocol

data unit of the RS sub-layer (see section 4.1), i.e. the synchronization
parameter of the "data synchronization" protocol data unit indi-

cates whether the protocol data unit has to be interpreted as

an "apen", "close" or "reopen" protocol data unit, respectively.

The "open accept", "close accept”" and 'reopen accept" should be

coded identically to the "open", "close" and "reopen" protocol data
units. The "open reject", and "reopen reject" protocol data units

must also be defined.

Note that certain values of the synchronization parameter of the
DATA SYNC primitive of the RS sub-layer may also be reserved
for user defined synchronization data units.

The OPEN (and REOPEN) parameter of the MS service may be
used for the following purpose:

- to indicate that a certain process should be accessed,

- to indicate that a certain communication mode should
be entered,

- to indicate both, a new process and a new communication
mode.

The order in which the OPEN, REOPEN and CLOSE primitives

can be used is defined by the "bracket structure" {(nesting sessions!).
This structure requires that each opening bracket "(" is followed

by a corresponding closing hracket ") with embedded pairs in
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between. The pcssible order of the primitives is defined by consicdering
the OPEN and CLOSE primities as opening and closing brackets,
respectively, and ncting that RECPEN is equivalent to the sequence
CLOSE CPEN.

Two functions are consicered to be part of the CONNECT primitive
(see section 3.2); first the function of establishing a transport
connection, and second the function of establishing a session connection
between processes {in the fcllowing called "initial processes"). This
second function is equivalent to the OPEN function of MS sub-layer.
Therefore the CONNECT - DISCONNECT bracket can be interpreted
as an OPEN - CLOSE bracket for the initial processes. Further

OPEN - CLOSE or OPEN - RECPEN - CLOSE brackets may be
necessary to describe the communication structure for the cooperation
of distributed applications. An example is shown in figure 29.

CONNECT(initial process) CONNECT(init.proc.)

lHr -p-r

cooperation in initial proc. mode

OPEN (Xz) CPEN (Xl)
cooperation in mode X

CLOSE
lREOPEN (Yz)
I OPEN (Yl)
: cooperation in mode VY :
I i
CLOSE CLOSE

cooperation in initial proc. mode

DISCONNECT (initial process) DISCONNECT

=1 initial session
w— S€8SiCN X
== Session Y

Communication structure for sessions
fig.29
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