
Compiler writing system for attribute grammars*

G. V. Bochmannt and P. Ward
Dtpartement d'lnformatique, University de Montreal, Case Postale 6128, Montreal 101, Canada

The paper presents a compiler writing system which is believed to be portable and easily usable.
Similar in philosophy to a bottom-up compiler writing system built previously, this system generates
compilers for top-down syntax analysis. The system allows the use of regular expressions for the
specification of the syntax of the language to be compiled, and the use of inherited and synthesised
attributes for the specification of the semantics. The generated compilers are written in PASCAL.
The second part of the paper discusses the system in view of certain aspects that are important for the
user of a compiler writing system. Among these aspects are discussed the coverage of different
problem areas, such as lexical and syntactic analysis, specification of semantics, error treatment,
etc. the simplicity and flexibility of the system's use, and the conciseness and readability of the
compiler specification language. The portability of the system is obtained by using PASCAL as the
implementation language, and as language for the generated compilers.

(Received September 1975; Revised December 1976)

1. Introduction
Compiler writing systems have been built for more than ten
years. Unfortunately, many of these systems are merely aids
for compiler writing or toys which are not practical for the
development of useful compilers for medium size languages.
They place on the user's shoulder most of the burden of
actually programming the compiler he wants. We think that
a compiler writing system should be designed such that it is
most valuable to compiler writers, who are the users of the
system. We therefore propose the following points as aspects
of evaluation, and as development objectives for any future
compiler writing system :

1. The usability of the system
1.1. Broad coverage of problem areas
Different problem areas, such as lexical analysis, syntax
analysis, specification of semantics, optimization, code genera-
tion, symbol table management, error treatment, etc. are
important for the compiler construction. The system should
give tools for as many of these areas as possible.

1.2. Simple usage, and flexibility
It should be easy for a potential user to learn how to use the
system. It should be easy, by means of options provided, to
adapt the system to particular user requirements.

1.3. Efficiency
The generation of a compiler should be efficient and the
generated compiler should be efficient.

2. The compiler specification language
The input language to the compiler writing system is in fact
a language for the specification of the compiler to be generated,
and therefore of the language to be compiled.

2.1. Formal definition
The input language should allow for a formal definition of
the language and its compiler. We note that, as far as the
syntax is concerned, BNF is a well accepted specification
language. For the semantics, however, several specification
methods have been proposed (see for example Marcotty et al,
1976) and it is not clear which one is best suited as an input
language for a compiler writing system.

2.2. Readability
The input language should have a simple structure, use a
readable representation and be powerful enough, so that the
specification of a compiler to be generated is easy to write
and understand.

3. The system's installation
3.1 Portability
It should be easy to install the system on different computer
systems.

3.2. Comprehensible system structure
It should be easy to understand the functioning of the system,
and to modify it if necessary.

A '(truly) usable and portable compiler writing system' was
built at the University of Montreal, and has been described
in respect to the above points by Lecarme and Bochmann
(1974). They also give a comparison of the system with some
other compiler writing systems. In this paper we present
another compiler writing system which was developed subse-
quently. Its development has been strongly influenced by the
former system, but it uses a top-down LL(1) syntax analysis
in contrast to the former system, which uses a bottom-up
analysis based on weak precedence.
Compiler writing systems have been built which give the user

the choice between different parsing methods to be incorporated
in the generated compiler (see for example Wilhelm et al,
1976). We have not taken this approach because our systems
generate one-pass compilers, and in this case the semantic
processing by the compiler is closely coupled with the syntax
analysis. The use of a top-down syntax analysis facilitates
the use of inherited semantic attributes, and the use of several
semantic actions per production rule. In the case of bottom-up
parsing the evaluation of inherited attributes is more compli-
cated (Crowe, 1972 and Watt, 1974). Also the error treatment
is closely related to the parsing method. Therefore, the new
compiler writing system for top-down syntax analysis, although
similar in philosophy, is practically independent from the
system for bottom-up analysis (only the lexical scanner
generator is the same in both systems).

In Section 2 of this paper we present the new compiler writing
system, explain how the regular expressions of the input
language are handled by the LL(1) syntax analysis, and discuss

•This work was supported by an operating grant and a scholarship grant from the National Research Council of Canada.
fNow at: Departement de Mathematiques, Ecole Polytechnique Fedeiale, Lausanne, Switzerland.

144 The Computer Journal

 at U
niversity of O

ttaw
a on Septem

ber 17, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

how the concept of attribute grammars is incorporated in the
compiler writing system. More details about the system, or
some aspects of it, can be found elsewhere (Ward, 1975;
Lecarme, 1973; Stasyna, 1977; and Bochmann, 1975 and 1976).
In Section 3, we discuss some aspects of the system in the
light of the usability criteria listed above. The reader is also
referred to a similar discussion of the system for bottom-up
syntax analysis by Lecarme and Bochmann (1974). Most
parts of the discussion apply for the top-down system as
well.

2. The compiler writing system
We present in this section the compiler writing system built
at the University of Montreal and discuss the formalism
underlying its operation. The system accepts as input the
integrated description of the language to be compiled, together
with some options which determine the system's actions.
The integrated description consists of a set of production
rules specifying the syntax and semantics of the language,
and a set of supplementary type, variable, procedure and
function declarations which are used by the semantic actions.
Each production specifies the syntax of a non-terminal in
terms of a regular expression (an extension of BNF) and the
semantics in terms of semantic attributes and evaluation
rules, also called semantic actions, which are written in the
programming language PASCAL (Jensen and Wirth, 1974).
The system produces as output a complete compiler in the
form of a PASCAL program. The user also receives full
diagnostics and informative data according to the options
chosen.

The system is composed of several program modules, all
written in PASCAL which are executed sequentially and which
pass the necessary information from one to the next by means
of temporary files. The most important module is the first
one. It reads the integrated description of the language,
extracts the list of terminal symbols for a scanner generator
module, verifies the syntax for the possibility of top-down
LL(1) analysis and generates a set of recursive procedures
which represent the main part of the generated compiler.
The system uses the same scanner generator as the compiler
writing system described by Lecarme and Bochmann (1974).

A generated compiler performs a deterministic, one-symbol-
lookahead, top-down syntax analysis of the program text,
based on the LL(1) conditions the grammar has to satisfy.
The possible productions for each nonterminal of the grammar
are specified by a regular expression. A regular expression a is
built from terminal and nonterminal symbols using the forma-
tion rules (1) concatenation: a, a2 . . . an, the only formation
rule which applies in the case of grammars in BNF, (2) alterna-
tive choice: <x.l + a2 + • • • + <*m, and (3)repetition: (a)* which
stands for any number of repetitions of the regular expression a,
including none. The system also accepts the formation rules (4)
sequence: (a)+, a repetition of at least one, and (5) list: (a sep-
arator terminal) which is a sequence except that the occurrences

Concatenation (5),

alternative choice sequence

Fig. 1 The corresponding transition diagrams

of a are separated by a terminal symbol.
The LL(1) conditions for grammars in BNF are discussed in

the literature (see for example Knuth, 1971; Aho and Ullman,
1972).
In the case of a grammar which contains regular expressions

as right sides, additional conditions must hold for each regular
subexpression within the right side of a production rule.
These conditions can be determined by considering a transfor-
mation of the grammar into an equivalent grammar in BNF.
This transformation, specified in Table 1, introduces for each
regular subexpression a new non-terminal, called Z, and the
LL(1) condition for the subexpression is simply the LL(1)
condition of this new non-terminal in the new BNF grammar.

The main part of the generated compilers are the recursive
procedures which perform the syntax analysis and execute
the necessary semantic actions. The system generates one such
procedure for each non-terminal of the given grammar. The
flow of control within a procedure reflects the structure of the
regular expression which is the right side of the corresponding
production rule. Fig. 1 shows the transition diagrams that
correspond to the different types of subexpressions. More
details are given by Ward (1975). As an example, we consider
the production rule

<expr> -> <term> ((© + 0) <term»*
which specifies an expression to be a sequence of terms
separated by plus or minus operators. The system would
generate a recursive procedure for the non-terminal <expr>
which corresponds to the following transition diagram:

<expr>
<term> 1—j

P

<term>

(©)

^

(i)
J

Table 1 Transformation of regular subexpressions into equivalent BNF rules

type of original new
subexpression right side right side

additional
production rules

corresponding transition
diagram of Fig. 1

concatenation
alternative choice

repetition

sequence
list

(Xl 0 t 2 • • • CCm

a,- (a, + a2 + . . . + an) <xf

aj(a)* <*/

cct (a separator t) <xf

no change
a j Z oty

Of | Z OCy

OC f Z OCy z
z

e
aZ
a(a)»
a(f a)*

(1)
(2)

(3)

(4)
(5)

Volume 21 Number 2 145

 at U
niversity of O

ttaw
a on Septem

ber 17, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

The semantics of the language to be compiled is specified by
attributes, associated with the syntactic symbols of the gram-
mars, and semantic actions, written in PASCAL, which are
included in the production rules of the grammar and make
use of the supplementary declarations provided by the user.
The concept of attribute grammars is a well known method
for the specification of semantics (Knuth, 1968; Koster, 1971)
and has been adapted by Bochmann (1975) for the case of
grammars with regular expressions. The attribute evaluation
mechanism which is realised by a compiler generated by the
system implements these ideas in terms of a single pass from
left to right over the derivation tree. The generated compiler
is a one-pass compiler and performs the syntax analysis, with
an implicit construction of the derivation tree, together with
the attribute evaluation, as specified by the semantic actions,
in the same pass over the program text. In the generated
compiler, attributes of a non-terminal are represented as
parameters of the corresponding recursive procedure. Inherited
attributes, which specify the context in which a non-terminal
is found, are represented by value parameters (in the sense of
PASCAL), whereas synthesised attributes, which specify
semantic information derived from the subtree of the non-
terminal, are represented by variable parameters (in the sense
of PASCAL). Local attributes are represented as local variables
and the semantic actions of the production are simply incor-
porated in the procedure body at the appropriate places.

Since the syntactic analysis and the semantic evaluation are
performed during the same pass over the program text, one
can use semantic information for solving an ambiguity of
syntax analysis in cases where the LL(1) conditions are not
satisfied. Although we believe that this practice should be
avoided, the system provides means for handling such cases.
The automatic provision by a compiler writing system of the

handling of syntactic errors (i.e. proper detection, significant
message and safe recovery) is a complicated subject. However,
in the case of LL(1) parsing, some relatively simple schemes for
error recovery are compared by Stasyna (1977) and seem to
give satisfactory results. The system provides for error handling
according to such a scheme.

3. From the user's viewpoint. . .
The system we have described has been used for research
projects and a compiler writing course, but it is relatively new,
and little experience has been gained in using it. Rather than
trying to summarise this existing experience, we discuss in this
section some aspects of the system which we believe particularly
important for the potential user. In the following, the different
evaluation aspects listed in the Introduction are discussed one
after the other.

Broad coverage of problem areas
The system tries to offer aids to the user in all aspects of
compiler writing, and not only in those which are easiest to
formalise.

For the lexical analysis the system uses the scanner generator
already used in the bottom-up system (Lecarme, 1973). Adopt-
ing a pragmatic approach, the system produces scanners
similar to handmade ones, and provides for scanning of most
programming languages, except languages like FORTRAN
or PL/1, in which the absence of reserved or delimited key-
words makes it impossible to separate scanning from parsing
and semantic analysis.
For syntax analysis the system uses the LL(1) parsing method

extended to regular expressions, as explained in Section 2.
Although more restrictive than certain bottom-up parsing
methods this is, we believe, a reasonable approach because of
the simplicity of the method. In fact, Hoare (1973) suggests
to use only precedence or top-down grammars for the design

of new languages, since a programmer can easily understand
programming languages with only a simple type of syntax.
We note that the system automatically includes a mechanism
in the generated compilers for handling syntactic program
errors.
For the semantic processing the use of semantic attributes is

very valuable. They simplify the specification of the semantic
actions, while being extremely simple to understand and to
use. The use of PASCAL for the specification of semantic
actions, because of the intrinsic quality of the language,
provides for easily attained readability and efficiency of the
semantic actions. In addition a set of utility procedures gives
powerful yet minimal tools for handling common situations,
and an intermediate language may be used for code generation.

Similarity with the bottom-up system
We do not discuss here those aspects of the system that are the
same as for the bottom-up system (Lecarme and Bochmann,
1974). In particular, we believe that the system is simple to
use and flexible. The fact that it is written in standard PASCAL
and uses no system dependent features makes the system
easily portable to any computer where PASCAL is available.
The use of PASCAL and structured programming methods
increases the comprehensibility of the system's structure and
makes it easy to read. The same applies for the generated
compilers.

Readability of the input language
An integrated description of the syntax and semantics of the
language to be compiled serves as input to the compiler writing
system. Grouping all parts of the language specification into
one integrated description gives much more readability than
the customary approach, which separates scanning, parsing,
semantic analysis, code generation and error analysis into
different description parts, with very error-prone interfaces.
The integrated description of a language is structured accord-

ing to its syntax; the production rules for each non-terminal
of the language form a certain unit of description. Similarly
as the non-terminal symbols define the syntactic interface
between these different units of description, the semantic
attributes of the symbols define the interface between these
units as far as the semantic actions are concerned. The use of
regular expressions and several semantic actions, in the right
sides of production rules, makes it possible to combine into a
single production rule parts of the language description that,
in the case of a description in BNF, would have necessitated
several production rules. Therefore, the units of description
can be constructed larger than in the case of BNF. This
facilitates a natural structuring of the language specification.
Local attributes, as described by Bochmann (1975), can be
used like variables for handling the semantics of repeated sub-
expressions, or for making some semantic information available
to or from several alternative subexpressions.
Another advantage of regular expressions, in the case of

top-down syntax analysis, is that they can be used to specify
production rules which would otherwise be specified with left
recursion, which is not allowed in top-down parsing.
As an example we consider again the production rule for the

non-terminal <expr> given in Section 2. Table 2 (a) contains the
integrated description of the production rule for this non-
terminal specifying, in addition to the syntax, a particular
semantics. The example contains the synthesised attributes
type and location which indicate the type of the expression
or a term, i.e. the value integer or real, and the location
where the value of the expression or a term is stored during
the execution phase of the program. The local attributes
interm-type and interm-location take on corresponding inter-
mediate values. The local attribute operation of the sub-

146 The Computer Journal

 at U
niversity of O

ttaw
a on Septem

ber 17, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

expression (© + 0) indicates the arithmetic operation to be
performed, i.e. the value plus or minus. The function generate
has the side effect of generating the appropriate code for
executing the operation and furnishes the location where the
result of this operation will be stored. The definition of this
function must be given by the compiler writer in the supple-
mentary declarations.
The integrated description (a) of Table 2 conforms with the

concept of attributes for regular expressions as described by
Bochmann (1975). The description (b) is an equivalent but
optimised version of it. This second version makes use of the
fact that the synthesised attributes are represented, in the
generated procedure of the compiler, by variable parameters
which can be assigned successively different values during the
parsing from left to right over the program text.
We hope that the input language of the system is flexible

enough so that very few changes have to be done by the com-
piler writer to the 'description grammar', which was first
written by the language designer to obtain the 'compilation
grammar' which is accepted by the system. The fewer the
necessary changes the less are the chances of human errors.
An advantage of LL(1) parsing is its relative simplicity.

This is reflected in the fact that the structure of the generated
compiler is closely related to the syntax of the language to be
compiled (see also Section 2). For example, the production
rule (b) of Table 2 gives rise to the PASCAL procedure (c) of
the table, which is part of the generated compiler. The fact
that this procedure is similar to the production rule given as
input to the system facilitates the understanding and debugging
of the semantic parts of the generated compiler.

Efficiency
The cost of using a compiler writing system is on the one hand
related to the effort necessary for installing the system and
understanding its use, and on the other hand to the computer
time and space necessary for generating a compiler. The time
and space requirements of the system on the CDC Cyber 74
computer are as follows. The system needs less than 13,000
words, plus about 5,000 for treating a large grammar, for a
language such as ALGOL 60. The complete generation of a
medium size compiler takes about 10 seconds central processor
time. These values are similar to those found for the bottom-up
system. The generated compilers are comparable, in size and
performance, to one which would be produced by hand, and
may easily be improved and modified, since they are written
in PASCAL. We found a space and time performance better
than for the compilers generated by the bottom-up system.

Availability
Anyone interested in obtaining a copy of the system should
contact the authors.

4. Conclusions
We have presented a compiler writing system for top-down
syntax analysis which was designed following the principles
outlined in the Introduction. These principles are the same
as those used for the design of the bottom-up compiler writing
system of Lecarme and Bochmann (1974). The different
parsing methods and the introduction of regular expressions,
in the case of the top-down system, for the integrated descrip-
tion of the language to be compiled imply certain differences
between the two systems which are discussed in this paper.
In general it was found that the choice of the LL(1) top-down
parsing method simplified many aspects of the compiler
construction, such as semantic processing, syntactic error
handling, obtaining a readable integrated description of the
language to be compiled, etc. For a comparison of the parsing
aspects of top-down and bottom-up syntax analysis methods

we refer to the literature (see for example Aho and Ullman,
1972; Griffiths and Petrick, 1969).

Table 2
(a) The integrated description of one production rule
<expr> flocationO : typloc ftypeO : typtype

= local intermlocation : typloc ; intermtype : typtype
<term> flocationl ftypel
: intermlocation := location 1 ; intermtype := typel $
*[[local operation : typop

" + " : operation : = plus $
v " —" : operation := minus $]

<term> flocation2 |type2
: intermlocation : = generate (operation, typel,

type2, location 1,
Iocation2) ;

if type2 = real then intermtype : = real $
]*
: locationO : = intermlocation ; typeO : = intermtype $

(b) An optimised version of the integrated description of (a)
<expr> ^location : typloc ftyp : typtype

= <term> ^location jtyp
*[[local operation : typop

" + " : operation : = plus $
" —" : operation := minus $]

<term> |location2 ftyp2
: location : = generate (operation, typ,

typ2, location, Iocation2) ;
if typ2 = real then typ : = real $

]*

(c) The corresponding generated procedure
procedure proc3 (var location : typloc ; var typ : typtype) ;

(*<expr>*)
var operation : typop ; Iocation2 : typloc ; typ2 : typtype ;
begin
proc4 (location, typ) ;
if not fenetredans (follow-qf-^expry)
then repeat
if fen&redans ([1])
then begin if fenetre = 1 then lexical else pastrouve (1, first-

operation : = plus
end

else if fenetredans ([2])
then begin if fenetre = 2 then lexical else pastrouvd
(2,first-of-(term>);
operation : = minus
end

else nondans ([1, 2], first-of-(term}) ;

proc4 (Iocation2, typ2) ;
location : = generate (operation, typ, typ2, location,

Iocation2);
if typ2 = real then typ : = real ;
until fenetredans (follow-of-(expry)

end ;

The procedure uses the following internal representation of
the syntactic symbols in terms of integers :

terminal symbols: " + •• i

nonterminal symbols : <expr>
<term>

2
3
4

Volume 21 Number 2 147

 at U
niversity of O

ttaw
a on Septem

ber 17, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

The procedure uses the following standard compiler pro-
cedures :

fenetredans (S : set-of-terminal) : boolean
verifies if the value of the variable fenetre, i.e. the window,
is contained in the set given as parameter.

lexical
is the scanner which places into the window the internal
representation of the next syntactic symbol of the program
text.

pastrouve (Sym : terminal ; recovery : set-of-terminal),
i.e. 'terminal symbol not found', or

nondans (Sym, recovery : set-of-terminal) ,
i.e. 'window not contained in . . .', are called in the case of
syntax errors. They print a message indicating that the window
is not equal to, or respectively contained in the first parameter.
The second parameter is used for the error recovery, which
consists of possibly skipping text until the syntactic symbol
of the window is an element of the recovery set.

References
AHO, A. V., and ULLMAN, J. D. (1972). The theory of parsing, translation, and compiling, Prentice-Hall.
BOCHMANN, G. V. (1975). Semantic attributes for grammars with regular expressions, Publication # 195, Departement d'Informatique,

Universite de Montreal.
BOCHMANN, G. V. (1976). Semantic evaluation from left to right, CACM, Vol. 19, pp. 55-62.
CROWE, D. (1972). Generating parsers for affix grammars, CACM, Vol. 15, pp. 728-734.
GRIFFITHS, T. V., and PETRICK, S. R. (1969). Top-down versus bottom-up analysis, Inform. Processing 68, North Holland Publ. Co.
HOARE, C. A. R. (1973). Hints on programming language design, ACM Symposium on principles of programming languages, Boston.
JENSEN, K., and WIRTH, N. (1974). PASCAL User Manual and Report, Springer-Verlag, Berlin.
KNUTH, D. E. (1968). Semantics of context-free languages, Math. Systems Th., Vol. 2, p. 127, and Vol. 5, p. 95 (1971).
KNUTH, D. E. (1971). Top-down syntax analysis, Acta Informatica, Vol. 1, pp. 79-110.
KOSTER, C. H. A. (1971). Affix grammars, in Algol 68 Implementation, North Holland Publishing Co., Amsterdam.
LECARME, O. (1973). Un generateur d'analyseurs lexicaux, Document de travail # 40, Departement d'Informatique, Universite de Montreal

(in French).
LECARME, O., and BOCHMANN, G. V. (1974). A (truly) usable and portable compiler writing system, Proceedings IFIP Congress 1974, pp.

218-221.
MARCOTTY, M., LEDGARD, H. F., and BOCHMANN, G. V. (1976). A Sampler of Formal Definitions, Computing Surveys, Vol. 8, pp. 191-276.
STASYNA, J. (1977). Error recovery in LL(1) syntax analysis, Thesis in preparation, McGill University, Montreal.
WARD, P. (1975). Un systeme d'ecriture de compilateurs a analyse syntaxique descendante, Manuel d'utilisation, Document de travail # 55,

Departement d'Informatique, Universite de Montreal (in French).
WATT, D. A. (1974). LR Parsing of affix grammars, Report No. 7, Computing Science Department, University of Glasgow.
WILHELM, R. et al. (1976). Design evaluation of the compiler generating system MUG1, in Second International Conference on Software

Engineering, San Francisco.

Book review
Computational Analysis with the HP-25 Pocket Calculator, by P.

Henrici, 1977; 280 pages. (John Wiley, £7-75)

First, what is the HP-25? It is a pocket calculator with approxi-
mately 25 function keys, eight registers, is programmable to 49
steps, costs around £100 (mid-1977) and comes with a compre-
hensive manual containing handy dandy programs. Model HP-25C,
with a continuous memory, can be switched off and on yet not
forget anything.
Second, what about the author? He is Professor of Mathematics

at the Eidgenossiche Technische Hochschule, Zurich and the
author of several well known books on numerical analysis.
Third, what is the book all about? It contains 35 program descrip-

tions with their purpose, method, flow chart, storage and program,
operating instructions, together with examples and timing. Although
the programs are machine and language dependent, with thought
they can be adapted on any similar or more powerful computer.
They are grouped into number theory, iteration, polynomials,
power series, numerical integration and special functions (e.g.
Gamma, Bessel). The library of programs covers well the gamut of
the numerical aspects of a university degree course in mathematics
except for statistics, which are covered in the complementary
Scientific Analysis on the Pocket Calculator by J. M. Smith. There is a
curious deficiency in omitting the Monte Carlo technique, because
in my opinion it is the most practical method to perform integration;
however this method certainly works best on fast and big computers.
This last statement is true for everything described, however the
tremendous feature of this book is that technology has at last
(or very soon will) produced for us a cheap, portable microcom-
puter so that students can quickly learn for themselves relative
accuracy and timing of calculations. Indeed this area of mathe-
matics can be made very exciting with the ideas presented in this
book.

I. R. WILLIAMS (London)

Multi-Coordinate Data Presentation, by V. Z. Priel, 1977; 150 pages.
{Business Books, £1200)

The object of this book is to provide a technique for converting
data into information. Mr Priel defines the difference between
the two by stating

'Data can be regarded as building blocks, as part of a jigsaw
puzzle or as daubs of paint on a canvas. The various components
only make sense—convey a message—if the arrangement is
right, i.e. if it forms a complete whole.'

The book is divided into four parts. The first part provides the
argument that what managers are receiving is data when it ought to
be information. The second part defines the types of and relation-
ships between data and the uses to which it is put. The author
states seven postulates which he uses to support the use of the
MCDP technique. In part three he defines the coordinates against
which data must be viewed to ensure meaning. The fourth and final
part introduces MCDP proper and by means of worked examples
shows the technique in use. There are three further examples in the
appendix which compare the conventional layout with the equiva-
lent MCDP layout.
There are a number of unfortunate typographical errors, which

in at least two cases reverse the meaning of the sentences in which
they appear. The values in table 4 in part 2 are incorrect, but the
correct values can be easily established. The criticism must also
be made that the worked examples, which should be the easiest
parts of the book to follow, are in fact the most difficult. This should
not deter anyone who is interested in providing management with
information as opposed to data, it just makes these parts of the
book take longer to understand. The technique is designed to reduce
the time managers spend studying large volumes of paper, if this
can be achieved it is worth attempting.

D. D. BLACK (Crawley)

148 The Computer Journal

 at U
niversity of O

ttaw
a on Septem

ber 17, 2012
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

