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From a purely scientific viewpoint, the members of the various working groups concerned 
with programming language standardization really ought to report to their parent com- 
mittees that their assigned task is impossible without a major prior effort by the technical 
community; and that this prior effort would have to produce an effective procedure for de- 
scribing the languages that are of concern. 

Thomas B. Steel, Jr., 1967 [$4] 

The current use of formal definitions of programming languages is very limited, 
largely because of a lack of fully developed techniques and because of user 
resistance to the poor human engineering of the definitions themselves. 
Nevertheless, usable formal definitions are essential for the effective design 
of programming languages and their orderly development and standardization. 

We present four well-known formal definition techniques: W-grammars, 
Production Systems with an axiomatic approach to semantics, the Vienna 
Definition Language, and Attribute Grammars. Each technique is described 
tutorially and examples are given; then each technique is applied to define the same 
small programming language. 

These definitions provide a usable basis for a critical discussion of the relative 
clarity of the different methods. This leads to a review of some of the debatable issues 
of formal definition. Among these issues are the advantages, if any, to the use of an 
underlying machine model, the precise nature of a valid program, the relative 
merits of generative and analytic definitions, and the place of implementation- 
defined features in the definition. 

Finally, a case is made for the importance of formal definitions and the need for 
a significant effort to make definitions suitable for human comprehension. 
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INTRODUCTION 

The programming language Tower of Babel is well known. Less discussed is the Tower of 
Metababel, symbolic of the many ways that programming languages are described and de- 
fined. The methods used range all the way from natural language to the ultramathematical. 
The former are subject to all the vagaries and inconsistencies that result from the use of 
normal prose; the latter frequently have their meaning hidden under abstruse notation. 

Often a mixture of methods is used. The formal part is generally limited to the use of 
Backus Naur Form (BNF), or some equivalent, to define the context-free aspects of the 
language. The context-sensitive restrictions and the semantics are then defined by some 
other method, usually prose. In this paper, we confine ourselves to completely formal tech- 
niques. 

Computer science has already made considerable progress without having a generally 
accepted formal technique for defining programming languages, just as the English language 
was well developed before the advent of Johnson's Dictionary of the English Language in 1755. 
However, the lack of general use of formal definitions has not been without severe conse- 
quences. For example: 

• Language designers do not have good tools for careful analysis of their decisions. 
• Standardization efforts have been impeded by a lack of an adequate formal notation. 
• Despite the fact that standards exist for programming languages, it is still risky to 

move a program from one implementation to another, even on the same hardware. 
• I t  is impossible to make a contract with a vendor for a compiler and be assured that 

the product will be an exact implementation of the language. 
• I t  is difficult to write reference manuals and tutorial texts without glossing over 

critical details that may change from implementation to implementation. 
• The answers to detailed questions about a programming language frequently have to 

be obtained by trying an implementation or hoping for a consensus from several im- 
plementations. 

Most of these problems would be avoided if there were good formal definitions for the 
languages. There would then be a single place for the precise details of each language, and no 
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question would be left unanswered, and importantly, there would be a tendency to im- 
prove the design of languages by bringing their complexities out into the open. I t  is easy to 
say, "Language X is block structured and jumps out of blocks are permitted," but without a 
formal description of language X, the consequences are not obvious. 

All methods of definition treat the following general problem. Given an alphabet of sym- 
bols S, the set S* is the set of all possible symbol strings that can be constructed from S. A 
definition both provides rules for selecting the set P ___ S* of legal programs of the language 
being defined, and specifies the meaning of each legal program p C P. 

There is considerable difference in the way the various definition methods select and 
specify the set of legal programs and their meanings. These differences give rise to the fol- 
lowing questions: 

1) What precisely constitutes a valid program: one whose context-free syntax is correct, 
one whose context-sensitive syntax is correct, or one that does not infringe any of the 
semantic rules of the language during execution? 

2) Should the definition model be based on the concept of an underlying machine? 
3) How should a formal definition show errors: explicitly in the definition, or implicitly 

by rules that only generate valid programs ? 
4) Should a definition attempt to indicate the places that an implementation may intro- 

duce restrictions, and is it possible to foresee all such restrictions? 
5) Should a definition also be suitable for automatic (machine) implementation? 

Indeed we, the authors, have differing answers to these questions. 
In this paper, we make the assumption that the raison d'etre of a language definition is to 

provide information, and in particular, to answer questions about a language. The questions 
may vary from the very general, "What data types are supported in the language?" to the 
more detailed, "Are both parts of a disjunction always evaluated?" The usefulness of a 
definition can, therefore, be judged by the quality of the answers it provides. 

Among the characteristics that are important to the successful use of any method are: 

• Completeness. There must be no gaps in the definition. In particular, there must be no 
questions about the syntax or semantics of the language that cannot be answered by 
means of the definition. 

• Clarity. The user of the definition must be able to understand the definition and to 
find answers to his questions easily. While it is obvious that some facility with the no- 
tation of the language is essential before being able to understand the definition fully, 
the amount of effort required should be small. 

• Naturalness. The naturalness of a notation has a very large effect on the ability of a 
user to understand a definition. The naturalness of a notation is more important than 
its conciseness, although there is a relation between the two. We have, therefore, used 
notational abbreviations only where there is a real gain in clarity, and we have chosen 
mnemonic names wherever possible. 

• Realism. Although the designer of a language may wish his universe of discourse to be 
free from such mundane restrictions as finite numeric ranges and bounded storage, 
these restrictions are the realities of the implementor's world. The definition provided 
by the designer, which is the implementor's manufacturing specifications, must specify 
exactly where restrictions or choices can be made, and where the designer's unob- 
structed landscape must be modeled exactly. 

We present here a prose description and four very different formal definitions of the same 
language. After giving these definitions, we pose several questions about the language being 
defined and examine the ease with which one of them can be answered by means of the 
definition. This leads to a critical review and evaluation of the techniques discussed. The 
language used in the analysis is ASPLE, taken from Cleaveland and Uzgalis [C1] where it is 
defined by a W-grammer, an extension of the method developed by van Wijngaarden [W2] 
and used to define A~aoL 68. Our first formal definition of ASPLE is derived from the 
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definition presented in [C1]. During the development of the other formal definitions, this 
W-grammar definition was taken as the final arbiter on the syntax and semantics of ASPLE. 

A W-grammar consists of two sets of rules, the metaproductions and the hyperrules. These 
combine to permit the formation of a potentially infinite set of productions, which are used 
to define the syntax and the context-sensitive requirements. The semantics are specified by 
using these productions to generate all possible execution sequences for a valid program. 

The second formal definition is a development of the Production Systems approach pro- 
posed by Ledgard [L2, L3]. Production Systems are used to construct a generative grammar 
that directly specifies both the context-free and the context-sensitive requirements of the 
language syntax. The semantics are specified by a second set of productions that map legal 
programs into another target language. In this paper, the axiomatic approach of Hoare 
[H1] is used as the basis for such a target language. 

The next formal definition uses the Vienna Definition Language [L4, L6, L7, W1]. With 
this method, a procedure is defined that transforms a program string into a tree representa- 
tion according to the context-free syntax of the language. This tree is then converted into an 
abstracted form that retains only those parts of the program that are required to express its 
meaning. During this conversion, the context-sensitive requirements of the language are 
checked. Finally, the meaning of the abstracted program is defined by its execution on an ab- 
stract machine. 

The final formal definition technique is that of Attribute Grammars [K1, L5, B1] which 
augments a context-free grammar with "attributes" attached to the syntactic categories. 
These attributes are given values computed from the productions of the parent or descendant 
nodes in the derivation tree for a program. This technique allows the designer to specify the 
context-sensitive requirements of a language directly and to define the meaning of a program 
by translating it into a separately defined sequence of actions. 

One other major definition approach, developed by Scott and Strachey [$2], is not con- 
sidered in this paper. ~For a more detailed discussion and bibliography of this method, 
see the recent works by Donahue [D1] and Tennent IT1]. 

We make no attempt to provide a formal proof of the equivalence of our four definitions of 
ASPLE. Such a proof is beyond the scope of this paper. It  is a reflection of the current state 
of formal definitions that an attempt at such a proof, even for a toy language like ASPLE, is 
excessively difl%ult. For a real programming language, the quantity of detail involved is be- 
yond the control of unaided human effort. So far, little has been done to provide mechanical 
aids for checking formal definitions. 

There are three important applications of formal definitions that we do not consider in this 
paper: 

1) theoretical study of the foundations of programming languages; 
2) automatic implementation of compilers; and 
3) automatic validation of programs. 
To assist the reader, we have included comments in the bodies of the actual definitions. 

These are separated from the formal part by the use of square brackets. 

1. INFORMAL DESCRIPTION OF ASPLE 

ASPLE is a very small language derived from ALGOL 68. Its context-free syntax is defined 
in Table 1.1 using BNF. 

An ASPLE program consists of a sequence of declarations followed by a sequence of execut- 
able statements. Each identifier used in an executable statement must appear once and only 
once in the declarations. A declaration associates a "mode" with one or more identifiers. The 
mode of an identifier specifies: 1) the type of the value (integer or Boolean) to which it may 
refer, and 2) whether the reference is made directly or through a declared number of pointers. 
The executable statements of ASPLE are assignments, if-then-else conditionals, while-do 
loops, input and output statements, all of which are of familiar syntax. 
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[BOI] <program> ::= begin <dcl train> , 
<stm train> end 

[Declarations] 

[B02] <dcl train> ::= <declaration> 
I <declaration> ; <dcl train> 

[B03] <stm train> ::= <statement> 
I <statement> , <stm train> 

[B04] <declaration> .= <mode> <idllst> 
I <exp> # <exp> 

[B05 ]  <mode> • = bool 
I int [Constants and Identifiers] 
I ref <mode> 

[B06] <ldlist> .'= <Id> [BI6] <constant> ::= <bool constant> 
I ,id> , <Idllst> I <int constant> 

[BI7] <bool constant> ,= true 
[Statements] I false 

[BI8] <int constant> : : =  <number> 
[B07] <statement> : = <asgt stm> 

I <cond stm> [BI9] <number> ::= <digit> 
I <loop stm> I <number> <dcglt> 

I <transput stm> [B20] <diglt > :'= 0 I I I ... ] 9 

[B08] <asgt stm? • = <Id = exp> [B21] <id> ::= <letter> 

[B09] <cond stm> ":= if <exp> I <id> <letter> 

then <stm train> fi [B22] <letter> :'= A I B I - "  I Z 
r if <exp> 

then <stm train> 
else <stm train> fi 

[BIO] <loop stm> ":= while <exp> do 
<stm train> end 

[BIll <transput stm> .'= input <id> 
] output <exp> 

[Expressions] : : =  < f a c t o r >  
# <exp>  + < f a c t o r >  

: : =  < p r i m a r y >  
[BI2] <exp> I <factor> * <primary> 

[BI3] <factor> ::= <id> 
I <constant> 

[BI4] <primary> I (<exp>) 
I ( < c o m p a r e > )  

[BI5] <compare> ::= <exp> = <exp> 

TABLE 1.1. BNF DESCRIPTION OF ASPLE 

An an example of an ASPLE program, consider the following: 
begin 

int X, Y, Z; 
input X; 
Y := 1; 
Z : = I ;  
i / (X  ~ O) then 

while (Z ~ X)  do 
Z : = Z + I ;  
Y : =  Y * Z  

end 

output Y 
end 

This program reads in a positive integer value, then computes and prints its factorial. The 
program declares three integer variables X, Y, and Z. It starts by reading the value of X 
from the input file and setting the values of both Y and Z equal to 1. If the value of X is not 
zero, the factorial is computed by successively multiplying Y by increasing values of Z until 
X equals Z. The final value of Y, the factorial of X, is then printed on the output file. 

This sample ASPLE program uses only identifiers that refer directly to integral values. 
These are similar, for example, to the variable A in the declaration: 

int A 
This variable, like all variables in ASPLE, must be given a value, either by assignment or 
input, before it can be used in an expression. Since A refers to integral values, its mode is 
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reference-to-integral. This declaration of A may be contrasted with a variable B declared as: 

ref int B 

Here B is a variable that refers to an integral value through a single level of indirection. Thus 
the mode of B is a reference-to-reference-to-integral. In this case, we say that the "primitive 
mode" of B is integral. Executing the assignment: 

B : f A  
sets the value of B to be a reference to A, which in turn refers directly to an integral value. 
Executing the assignment: 

A : = 7  

does not change the value of B, still a reference to A, but it does change the integral value to 
which A refers, the same value that B refers to indirectly. To obtain the integral value to 
which B refers, the value of B must be "dereferenced" twice. This is the "primitive value" of 
B. This mechanism is extended for variables declared with multiple levels of indirection and 
applies to Boolean values as well. 

To evaluate an expression consisting of two identifiers separated by a + o r . ,  the value of 
each of the identifiers must be dereferenced as many times as needed to obtain a primitive 
value of the same mode, integral or Boolean. The operators + and • placed between integral 
values represent addition and multiplication, respectively. Between Boolean values, they 
represent the logical "or" and "and" operations, respectively. The operators = and # apply 
only to integral values and yield a Boolean value as a result. An expression in parentheses al- 
ways yields a primitive value. 

In an assignment statement, the mode of the identifiers on the left side must be compa- 
tible with the mode of the value on the right side. To be compatible, two conditions must be 
satisfied: 

1) both sides must have the same primitive mode; 
2) if the mode of the identifier on the left side contains n, occurrences of "reference to" 

and the mode of the value of the right side contains n~ such occurrences, then the rela- 
tion n¢ - 1 <__ n~ must hold. 

For example, given the declarations: 

both the assignments: 

int A; 
bool B; 
re$ int C; 
rey ref int D; 

A := 16 n~ = 1, nr = 0 
C : = D  n e  = 2 ,  n~  = 3 

satisfy the two compatibility requirements. On the other hand, the assignment 
A : = B  

violates the first condition, and the assignments 
C : =  20 n~ = 2, nr = 0 
D : =  A n e  = 3 ,  n r  = 1 

both violate the second condition and are thus illegal. 
The process of assignment takes place as follows: 
1) The right side is evaluated to obtain a value v. 
2) The value v is dereferenced sufficiently so that the mode of the value obtained con- 

tains one fewer occurrence of "reference to" than does the mode of the identifier on 
the left side. 

3) The value referred to by the identifier on the left side is replaced by the value ob- 
tained in step 2). 
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To illustrate the mechanism of the assignment statment, consider the following program 1 

begin [01] 
int I N T A ,  I N T B ;  [02] 
ref i n t R E F I N T A ,  REFINTB;  [03] 
ref ref int REFREFINTA,  REFREFINTB;  [04] 

I N T A  := 100; [05] 
I N T B  := 200; [06] 
R E F I N T A  : = I N T A ;  [07] 
R E F I N T B  := I N T B ;  [08] 
R E F R E F I N T A  : = R E F I N T A ;  [09] 
R E F I N T A  := I N T B ;  [10] 
I N T B  := REFREFINTA;  [11] 
input R E F R E F I N T A  ; [12] 
output R E F I N T B  [13] 

end [141 

After line [09] has been executed, two chains of references will have been set up. The state is 
shown schematically in Figure 1. Note that R E F R E F I N T B  has not been assigned a value. 
The assignment of line [10] causes R E F I N T A  to refer to INTB ,  no other value being 
changed. The situation after executing this statement is as shown in Figure 2. 

Figure I. 

I I 

Figu re2 .  

i In  th is  program and th roughou t  th is  paper ,  line numbers  are included for reference purposes.  
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Figure  3. 

The assignment of line [11] makes no change in the value of I N T B  because of the effect of 
the statement of line [10]. The input statement of line [12] causes a value, say 300, to be read 
from the input file and assigned to the variable found by following the chain starting at 
REFREFINTA.  The semantics of ASPLE require that this chain be set up by a sequence of 
assignment statements before an input statement is executed. The result is depicted in Figure 
3. The final statement thus prints the value 300. An attempt to execute 

output REFREFI N TB ; 

in place of line [13] is illegal, since the value of REFREFINTB is undefined and cannot be 
dereferenced to produce a primitive value. 

There are a number of details of ASPLE that are left for the implementer to define. For 
example, the context-free syntax makes no limit on the number of variables that can be de- 
dared or on the length of the program. Any actual implementation will be bounded by 
machine constraints in these areas. Table 1.2 lists the features which the implementer must 
supply to complete the definition of the language. These values have a bearing on both the 
syntax and the semantics of ASPLE. 

As a final note, this informal introduction makes no pretense of being a complete definition 
of ASPLE. Indeed, it is our contention that a complete definition is almost impossible with- 
out the use of a full formal definition method. 

1) Maximum length of an ASPLE program, nl • 
2) Maximum number of declared identificrs, n2.  
3) Maximum number of digits in an integer constant,  n3 • 
4) Maximum number of letters in an identifier, n~. 
5) Maximum value that  can be taken by an integer variable, n~,  and the action performed 

when the addition and multiplication operations of the actuM result exceeds n~.  
6) Maximum size of the output  file, n6 .  

TABLE 1.2. IMPLEMENTATION-DEFINED FEATURES OF ASPLE 
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2. W-GRAMMARS 

The use of two-level grammars known as W-grammars was developed as a definition tech- 
nique by van Wijngaarden and used for the description of ALGOL 68 [W2]. Cleaveland and 
Uzgalis, who have given an easy to read exposition [C1] of W-grammars, are the source of the 
definition of ASPLE from which we have derived the W-grammar presented in this section. 
To maintain a consistent notation throughout this paper, we have departed slightly from the 
usage of [C1,W2]. 

A finite set of BNF productions is often used to define the context-free parts of a program- 
ruing language. A W-grammar consists of two finite sets of rules, the wetaproductions and the 
hyperrules. The hyperrules are prototypes for context-free productions and, together with 
the metaproductions, describe how the user can derive a conceptually infinite set of produc- 
tions. This infinite set of context-free productions is able to specify the context-sensitive re- 
strictions and semantics of a language. 

Metaproductions 

Metaproductions are context-free productions. The nonterminals of metaproductions, called 
metanotions, are written in upper case letters, for example, INTBOOL. ~ Their terminal 
strings consist of lower case characters with blanks added to improve readability, for ex- 
ample, le t te r  and ref  ref, the so-called protonotions, to be explained in the following para- 
graph. In conventional BNF, the nonterminals are distinguished by being enclosed in some 
form of brackets. In Table 1.1, angle brackets "< and >" are used for this purpose. In W- 
grammars, no such convention is used. The nonterminals of the productions derived from the hy- 
perrules are words and phrases chosen to give an almost prose-like quality to the grammar. 

Consider the following metaproductions taken from the W-grammar definition of ASPLE 
given in Table 2.1 (p. 200). 

[MP01] A L P H A  : : a ;  b ; . . .  ; z .  

IMP03] N O T I O N  : : A L P H A ;  
N O T I O N  A L P H A .  

[MP06] I N T B O O L  : :  int;  
bool. 

IMP07] M O D E  : : I N T B O O L ;  
ref M O D E .  

Each metaproduction specifies all production alternatives for a given metanotion. For ex- 
ample, the first metaproduction specifies that the metanotion ALPHA generates the proto- 
notions a, b , . . . ,  or z. The symbol "::" is used to separate the left side and the right side of 
the metaproductions, the symbol ";" is used to separate the alternatives of the right side, 
and the symbol "." is used to terminate a metaproduction. The metaproduction IMP03] 
specifies that the metanotion NOTION generates either the metanotion ALPHA, which in 
turn generates any lower case character, or the metanotion NOTION followed by ALPHA. 
Recursive application of this second alternative allows the generation of any string of lower 
case characters from the metanotion NOTION. Similarly, the metanotion INTBOOL gene- 
rates the protonotions in t  and bool, and the metanotion MODE generates infinitely many 
protonotions consisting of a (possibly empty) sequence of ref 's  followed by i a t  or bool.  

2 T h r o u g h o u t  t h i s  p a p e r  bo ldface  c h a r a c t e r s  u s e d  in  t h e  t e x t  correspond to the s a n s  se r i f  characters 
f o u n d  in  t h e  t ab l e s .  [Ed i to r i a l  no te ]  
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[MPOI] ALPHA a , b, .., z. IMP23] FILE 

IMP02] EMPTY IMP24] RELATE 

IMP03] NOTION ALPHA., 
NOTION ALPHA IMP25] OPER 

IMP04] NOTETY NOTION , 
EMPTY. 

[MP26] EXP 
IMP05] TAG l e t t e r  ALPHA, 

TAG l e t t e r  ALPHA. 

IMP06] INTBOOL Int, IMP27] DEREFSETY 
bool. 

[MP07] MODE INTBOOL, IMP28] REFS 
ref MODE. 

[MP29] STMT [MPO8] ONES one,  
ONES o n e .  

[MP09] NUMBER ONES, 
EMPTY . 

[MPIO] RADIX one one one one one 
one one one one on~. 

[MP30] STMTS 

[MPII] BOOL true, 
false. 

IMP31] STMTSETY 

[MPI2] VALUE NUMBER, 
BOOL. 

[ M P 3 2 ]  

[MPI3] BOX VALUE, 
undeflned, IMP33] 
TAG 

[MPI4] LOC Ioc TAG has MODE refers 
BOX end. IMP34] 

[MPI5] LOCS LOC, 
LOCS LOC 

[MPI6] LOCSETY LOCS, 
EMPTY. IMP35] 

[MPI7] TABLE LOCS. 

[MPI8] UNIT loop, 
asslgnment, IMP36] 
condltlonal , 
transput. 

[MPI9] SNAP memory LOCS FILE FILE 

[MP37] 

IMP20] SNAPS SNAP, 
SNAPS SNAP- 

IMP21] SNAPSETY SNAPS 
EMPTY IMP38] 

IMP22] DATA EMPTY 
space VALUE DATA - 

DATA e n d  o f  f i l e  • 

equa I s , 
not equa I s . 

plus , 
times , 
RELATE . 

left EXP OPER EXP rlght[ 
VALUE, 

DEREFSETY TAG. 

EMPTY, 
deref DEREFSETY 

ref 

REFS ref. 

EMPTY ; 
if EXP then STMTS else 

STMTS f i , 
while EXP do STMTS end, 
TAG becomes EXP val, 
DEREFSETY TAG input , 
EXP output. 

STMT , 
STMTS STMT. 

STMTS , 
EMPTY . 

ALPHABET abcdefgh I j klmnopqrstuvwxyz . 

MAXLEN • • 
[ implementation defined meaeure 
of maximum program length n I] 

MAXTABLE LOC LOC LOC. 
[ the number of occurrences of "LOC" ~.e 
the implementation defined quantity 
n] 
2 

MAXDIG ONES token ONES token 
ONES token 

[vhe maximum number of dig~te ~s the 
implementation defsned quantity ~ ] 

3 

MAXLENGID letter ALPHA . . letter 
ALPHA 

[the number of occurrences of "letter 
ALPHA" ie the smplementation defined 
quantsty n] 

M A X I N T  o n e  o n e  . .  o n e  
[the number of occurrence8 of "one" 
~e the implementation defined 
quantity n ] 

5 
MAXFILELEN space VALUE space 

VALUE. 
[vmplementat~on defined measure of 
maximum s~ze of an output f~le n ] 

6 

T A B L E  2.1.  METAPRODUCTIONS FOR THE W-GRAMMAR DEFINITION OF A S P L E  
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Hyperrules 
A hyperrule is a blueprint from which context-free productions can be obtained. For ex- 
ample, the hyperrule 

[HR94] N O T I O N  s e q u e n c e :  
N O T I O N ;  
N O T I O N  s e q u e n c e ,  
N O T I O N .  

is a prototype for the construction of productions for sequences. It  contains both metano- 
tions, in uppercase characters, and protonotions, in lower case characters. The notation is 
the same as that used for metaproductions, except that the symbol ":" is used instead of 
"::" to separate the left side from the right side of the rule, and the symbol "," is used to 
separate different protonotions within the same alternative. A context-free production is 
obtained from a hyperrule by replacing each metanotion by a protonotion derived from the 
metaproductions. In this example, the metanotion NOTION is to be replaced by a proto- 
notion. 

The metaproductions [MP01] and [MP03] allow us to generate an infinite set of protonotions 
from the metanotion NOTION, for example, value and identifier. Replacing NOTION by 
these protonotions in the preceding hyperrule, we can obtain in turn the productions: 

value sequence: value; 
value sequence,  
value. 

identifier sequence: identifier_; 
identifier sequence,  
identifier. 

The nonterminals of these context-free productions axe value sequence, value, identifier 
sequence, and identifier. This simple substitution technique is used in W-grammars to 
generate the infinite set of context-free productions required for the specification of the syn- 
tax and the semantics of a language. 

In making the substitution of protonotions for metanotions, all occurrences of the same 
metanotion in the hyperrule must be replaced by the same protonotion. This is the uniform 
replacement rule. For example, the production: 

value sequence: identifier_; 
value sequence,  
identifier. 

cannot be obtained [HR 94] since the uniform replacement rule would be violated; the meta- 
notion NOTION has not been replaced by the same protonotion throughout the hyperrule. 

The context-free productions obtained correspond closely to BNF productions. As we 
have already seen, the nonterminals in the generated productions are separated by commas 
and may consist of sequences that resemble English phrases when the names of metanotions 
and protonotions are chosen appropriately. Terminal notions, from which ASPLE programs 
are constructed, can appear on the right side of hyperrules and thus in the generated pro- 
ductions. 

It  is customary in W-grammars to write terminal notions as symbols, for example, "comma 
symbol" for the terminal notion that represents a comma in an ASPLE program. The ques- 
tion of how the symbols are actually represented in terms of character strings is left to the 
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[starting hyper-rule] 

CHROI] program, 

begin, 

dcl traLn of TABLE I , 

TABLE I restrlcttons, 

TABLE STMTS stm traln, 
I 

end, 

where MAXLEN centa{ns begin TABLE I 

FILE I stream, 

FILE 2 stream, 

execute STMTS wlth 
memory TABLE I FILE I end of file 
SNAPSETY 
memory TABLE 2 FILE 3 FILE 2. 

STMTS end, 

[hyper-rules for generating the declaration train of a program] 

[HR02] dcl traln of LOCS LOCSETY 
MODE declarer, 

ref MODE definltLons of LOCS, 

dcl train of LOCSETY, 

where LOCSETY is EMPTY, 
MODE declarer, 
ref MODE definitions of LOCS, 

[HR03] ref MODE declarer 
ref, 

MODE declarer. 

[HR04] int declarer int. 

[HROS] bool declarer bool. 

[HRO6] MODE deflnltlons of loc TAG has MODE refers undeflned end LOCSETY 
TAG ~dentlfter, 

~ODE d e f ~ n l t l o n s  o f  LOCSETY, 

where LOCSETY ts EMPTY, 
TAG [ d e n t i f ~ e r .  

[hyper-rules for checking context~sensitive requirements on the symbol table] 

[HR07] LOCSETY loc TAG has MODE refers undefined end restrictions 
where TAG is not in LOCSETY, 

where MAXTABLE contains LOC LOCSETY, 
LOCSETY restrictions, 

where LOCSETY ~s EMPTY. 

[HR08] where TAG I is not in loc TAG 2 has MODE refers undefined end LOCSETY 

where TAG I differs from TAG2, 

where TAG I Is not in LOCSETY, 

where LOCSETY Js EMPTY, 
where TAG I dlffers from TAG 2. 

T A B L E  2.2. HYPERRULES FOR THE W-GRAMMAR DEFINITION OF A S P L E  
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[hyper-rules for generating the statement train of a program] 

[HR09] TABLE STMT STMTSETY stm tram' 
TABLE STMT UNIT, 

TABLE STMTSETY stm train, 

where STMTSETY Is EMPTY, 
TABLE STMT UNIT 

[HRIO] TABLE TAG becomes EXP val assignment 
TABLE ref MODE TAG identifler, 

= 

~-ABLE EXP MODE value. 

[HBII]  

[HRI2] 

TABLE If EXP then STMTS I else STMTS 2 

if, 
TABLE EXP bool value, 
then, 
TABLE STMTS I stm train, 

TABLE STMTS 2 elsend. 

TABLE STMTS elsend 
fl, 

where STMTS ~s EMPTY, 

eleej 
TABLE STMTS stm train, 

fc. 

fl conditional' 

[HRI3] TABLE whlle EXP do STMTS end loop 
while, 

TABLE EXP bool value, 
do, 
TABLE STMTS stm t ra in ,  
end. 

[HRI4] TABLE EXP input transput. 
~nput, 

strong TABLE EXP ref INTBOOL ~deni l f }er,  

[HRI5] TABLE EXP output transput 
output ,  

TABLE EXP I NTBOOL va I ue. 

[hyper-rulea for generating an expression] 

[BRl6] TABLE left EXP I plus EXP 2 right INTBOOL value 

TABLE EXP I INTBOOL value, 

~t 
TABLE EXP 2 INTBOOL factor. 

[HRIT] TABLE EXP MODE value 
TABLE EXP MODE factor 

[HRI8] 

[BRIg] 

TABLE left EXP I tpmes EXP 2 right INTBOOL factor: 

TABLE EXP I INTBOOL factor, 

TABLE EXP 2 INTBOOL primary. 

TABLE EXP MODE factor: 
TABLE EXP MODE primary. 

TABLE 2.2.--Continued 
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[HR20] 

[HR21] 

[HR22] 

TABLE EXP M00£ primary 
strong TABLE EXP MODE idpnt~fler; 
TABLE EXP MODE value pack, 
MODE EXP denotatlon, 

where MODE Ls INTBOOL, 
TABLE EXP compare peck, 
where MODE ts bool. 

TABLE left EXP I RELATE EXP 2 right compare 

TABLE EXP i Int value, 

relate symbol, 
TABLE EXP 2 int value. 

equals symbol ~. 

[HR23] not equals symbol # 

[HR24] 

[HR25] 

[HR26] 

[HR27] 

[HR28] 

strong TABLE deref EXP MODE Identlfler 
strong TABLE EXP ref MODE identlfler. 

strong TABLE TAG MODE identlfLer 
TABLE MODE TAG identifier. 

TABLE MODE TAG tdenttfler 
TAG identifier, 

where TABLE contalns loc TAG has MODE, 
where MAXLENGID contains TAG. 

letter ALPHA identlfler' 
letter ALPHA symbol, 

TAG tdentlfler 

letter ALPHA identtfler. 
letter ALPHA symbol. 

[HR29] letter e symbol A. 

[HR39] letter b symbol B. 

etc. 

[HR54] letter z symbol Z, 

[HR55] bool true denotation true. 

[HR56] bool false denotation false. 

[HR5?] Int NUMBER l denotation 

NUMBER I token, 

fat NUMBER 2 denotetlon, 

NUMBER 3 token, 

where NUMBER 4 equals NUMBER 2 times RADIX, 

where NUMBER I equals NUMBER 4 plus NUMBER3, 

where MAXDtG contains NUMBER I denotation. 

TABLE 2.2.--Continued 
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[ H R 5 8 ]  

[ H R 5 9 3  

[ H R 6 0 ]  

[ H R 6 1 ]  

[ M R 6 2 ]  

[ H R 6 3 ]  

[ M R 6 4 ]  

[HR653 

[ H R 6 6 ]  

[HR67] 

t o k e n  0 

o n e  t o k e n  1,  

o n e  o n e  t o k e n  2 .  

o n e  o n e  o n e  t o k e n  3 ,  

o n e  o n e  o n e  o n e  t o k e n  4 .  

o n e  o n e  o n e  o n e  o n e  t o k e q  5 .  

o n e  o n e  o n e  o n e  o n e  o n e  t o k e n  6 .  

o n e  o n e  o n e  o n e  o n e  o n e  o n e  t o k e n  7.  

o n e  o n e  o n e  o n e  o n e  o n e  o n e  o n e  t o k e n  8 ,  

o n e  o n e  o n e  o n e  o n e  o n e  o n e  o n e  o n e  t o k e n  9. 

[hyper-rules for generating the representation of a file] 

[HR68] space VALUE FILE stream 
VALUE denotation, 

~LE stream. 

[MR69] end of file stream eof. 

[hyper-rules for checking the execution semantics of statements] 

[MR70] execute STMT STMTS wlth SNAPS I SNAP SNAPS 2 

execute STMT with SNAPS I SNAP, 

execute STMTS wlth SNAP SNAPS 2 . 

[HRTI] execute if EXP then STMTS I else STMTS 2 fl with SNAP SNAPS 

evaluate EXP from SNAP glvlng true, 
execute STMTS I wlth SNAP SNAPS, 

evaluate EXP from SNAP giving false, 
execute STMTS 2 wlth SNAP SNAPS. 

[HR72] execute while EXP do STMTS end wIth SNAP I SNAPSETY I SNAP 2 SNAPSETY 2 

evaluate EXP from SNAP I giving false, 

where SNAP I ~a SNAP2, 

where SNAPSETY I SNAPSETY 2 is EMPTY, 

evaluate EXP from SNAP I glvlng true, 

execute STMTS wlth SNAP I SNAPSETY I SNAP2, 

execute whlle EXP do STMTS end with SNAP 2 SNAPSETY 2 

execute TAG becomes EXP val wlth SNAP I SNAP 2 

evaluate EXP from SNAP glvlng BOX2, 

where SNAP I is 

memory LOCSETY I 

Ioc TAG has MODE refers 80X I end 

LOCSETY 2 FILE I FILE 2 , 

where SNAP Is 
memory L~CSETY I 

Ioc TAG has MODE refers BOX 2 end 

LOCSETY 2 FILE I FILE 2 

[ M R 7 3 ]  

TABLE 2.2.--Continued 
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LHR/4J 

[HR75] 

execute DEREFSETY TAG I ~nput with SNAP I SNAP 2. 

evaluate DEREFSETY TAG I from SNAP I giving TAG2, 

where SNAP I ts 

memory LOCSETY I 

Ioc TAG 2 has ref INTBOOL refers BOX I end 

LOCSETY 2 space VALUE FILE I FILE 2, 

where SNAP 2 ts 

memory LOCSETY I 

loc TAG 2 has ref INTBOOL refers VALUE end 

LOCSETY 2 FILE I FILE 2, 

where VALUE matches INTBOOL, 

where SNAP I is memory LOCS end of file FILE. 

[end of f~le error] abnormal termlnatlon. 

where NUMBER matches INTBOOL 
where INTBOOL is tnt, 
where INTBOOL is b(,ol, 

[~nput error] abnormal termination 

[HR76] where BOOL matches INTBOOL 
where INTBOOL is bool, 
where INTBOOL is tnt, 

[input error] abnormal termination. 

[HR77] execute EXP output wPth SNAP I SNAP 2 

evaluate EXP from SNAP I giving VALUE, 

where SNAP I is memory LOCS FILE I DATA end of file, 

where SNAP 2 Is memory LOCS FILE I DATA space VALUE end of flle, 

where MAXFILELEN contains DATA space VALUE, 

evaluate EXP from SNAP I g~vlng VALUE, 

where SNAP I is memory LOCS FILE I DATA end of file, 

where SNAP 2 ts memory LOCS FILE I DATA space VALUE end of f~le, 

where DATA space VALUE contalns MAXFILELEN, 
[output file overflow] abnormal termination. 

[HR?8] execute EMPTY with SNAP SNAP. true 

[hyper-rulee for evaluating expressions] 

[HR79] evaluate left EXP I OPER EXP 2 right from SNAP glvlng VALUE 

evaluate EXP I from SNAP glv~ng VALUE2, 

evaluate EXP 2 from SNAP glvlng VALUE 3, 

where VALUE I equals VALUE 20PER VALUE 3 

[HRBO] evaluate deref DEREFSETY TAG from SNAP glvtng BOX I 

evaluate DEREFSETY BOX 2 from SNAP giving BOXI, 

where SNAP contains loc TAG has MODE refers BOX 2 end. 

[HR81] evaluate BOX from SNAP g~vlng BOX 
where BOX differs from undefined, 
where BOX is undefined, 

[uninit~alized variable reference error] abnormal termlnatlen 

TABLE 2.2.--Continued 
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[HR82] 

[HR83] 

where NUMBER I equals NUMBER 2 plus NUMBER 3 

where MAXINT contalns NUMBER 2 NUMBER3, 

where NUMBER I Is NUMBER 2 NUMBER 3, 

where NUMBER 2 NUMBER 3 one contains MAXINT, 

[arithmetic overflow] abnormal termlnatlon. 

where NUMBER I equals NUMBER 2 times NUMBER 3 one. 

where MAXINT contains NUMBERI, 

where NUMBER I ts NUMBER 4 NUMBER2, 

where NUMBER 4 equals NUMBER 2 times NUMBER3, 

where NUMBER 4 NUMBER 2 one contains MAXINT, 

where NUMBER 4 equals NUMBER 2 tlmes NUMBER3, 

[arlthmet~c overflow] abnormal termination. 

[HR84] where NUMBER equals NUMBER t~mes one true. 

[HR85] where EMPTY equals NUMBER times EMPTY true 

[HR86] where true equals BOOL I plus BOOL 2 where BOOL I ~s true, 

where BOOL 2 is true. 

[HR87] where false equals false plus false true 

[HR88] where false equals BOOL I t~mes BOOL 2 where BOOL I is false, 

where BOOL 2 is false. 

[HR89] where true equals true times true true. 

[HR90] where true euqals NUMBER equals NUMBER true. 

[HR91] where f~ se equals NUMBER I equals NUMBER 2 where NUMBER I dlffers from NUMBER 2, 

[HR92] where false equals NUMBER not equals NUMBER true. 

[HR93] where true equals NUMBER I not equals NUMBER 2 ' where NUMBER I differs from NUMBER 2. 

[hyper-rules for defining sequences and packs, and for checking various condltlona] 

[HR94] NOTION sequence 
NOTION, 
NOTION sequence, 
NOTION. 

[HR95] 

[HR96] 

[NR97] 

[HR98] 

[HR99] 

[HRI00] 

NOTION pack 

NOTION, 
). 

true EMPTY. 

where NOTETY is NOTETY true. 

where NOTETY I NOTION NOTETY 2 contains NOTION true 

where NOTETY I ALPHA I dlffers from NOTETY 2 ALPHA 2 

where NOTETY I differs from NOTETY 2, 

where ALPHA I precedes ALPHA 2 tn ALPHABET, 

where ALPHA 2 precedes ALPHA I in ALPHABET 

where ALPHA I precedes ALPHA 2 In NOTETY I ALPHA I NOTETY 2 ALPHA 2 NOTETY 3 true. 

TABLE 2.2.--Continued 
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implementation. For example, in [C1] hyperrule [HR03] is given as 

r e f  M O D E  d e c l a r e r :  
r e f  s y m b o l ,  
MODE d e c l a r e r .  

The string ref  symbol  is a terminal notion, which in an ASPLE program would have the 
character string representation ref. 

For continuity between the four definition techniques, we use a different notation for 
terminal notions in this paper. These are written in italic or underlined characters, thus sug- 
gesting directly their character string representation. For example, the preceding hyperrule 
is written as 

[HR03] ref  MODE dec larer:  
re f ,  

MODE declarer .  

and the no t  equals  symbol  is defined by the hyperrule: 

[HR23] n o t  e q u a l s  s y m b o l :  _~. 

There is a close interplay between the metaproductions and the hyperrules. The hyper- 
rules are essentially parameterized macrostatements for context-free productions with the 
metanotions used as formal parameters. These metanotions are abstractions for constructs 
that are very much program dependent, for example, the symbol table and the abstracted 
statement train. 

Overview of the W-grammar Definition of ASPLE 

The metaproductions given in Table 2.1 and the hyperrules given in Table 2.2 form a W- 
grammar that defines all aspects of the context-free and context-sensitive syntax and se- 
mantics of ASPLE. The starting hyperrule [HR0I] affords an overview of these three seg- 
ments: 

[uaol ] program: 
begin, [01] 

dcl train o f  TABLE1 , [02] 
TABLE1 restrict ions,  [03] 
TABLE1 STMTS s t m  train,  [04] 
end, [05] 

w h e r e  M A X L E N  c o n t a i n s  b e g i n  TABLE1 STMTS end ,  [06] 
FILE1 s t r e a m ,  [07] 
FILE2 s t r e a m ,  [08] 
e x e c u t e  STMTS w i t h  [09] 

m e m o r y  TABLE1 FILE1 e n d  o f  f i le  [10] 
SNAPSETY [11] 
m e m o r y  TABLE2 FILEs  FI~LE2 . [12] 

Lines [01] and [05] give the terminals that mark the start and finish of an ASPLE program. 
Lines [02] through [04] are the prototypes for the nonterminals from which the declare train 
and the statement train of an ASPLE program can be derived. Lines [06] through [12] define 
the semantics of this program. An input file can be derived from line [07], and an output file 
can be derived from line [08]. Lines [09] through [12] ensure that the output file derived from 
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line [08] is the one that would be obtained by executing the program with the input file de- 
rived from line [07]. 

Line [02] gives the prototype for the nonterminal from which the declare train of the pro- 
gram can be derived. This line contains the metanotion TABLE~, which is an abstraction of 
the "symbol table" of the program being defined. The actual symbol table is a protonotion 
that can be derived from TABLE using the metaproductions. The next section describes the 
derivation of a symbol table from the declare train of a program. The subscript in TABLE~ 
serves to distinguish this metanotion from the metanotion TABLF~ in line [12], since, by 
convention, the uniform replacement rule applies only to nonterminals with identical sub- 
scripts. In addition to serving as a symbol table, TABLE~ also serves as the initial memory 
state for the execution of the program, with all variables having the initial value undefined.  

Line [03] applies the context-sensitive restrictions to the symbol table TABLE1, which 
matches the declare train. By applying metaproductions IMP17], [MP15], and IMP14], TABLE1 
in line [03] can be replaced by a protonotion that matches the left side of hyperrule [HR07] : 

[HR07] L O C S E T Y  loc  T A G  h a s  MODE refers  u n d e f i n e d  e n d  r e s t r i c t i o n s  : 
w h e r e  T A G  is  n o t  i n  L O C S E T Y ,  

w h e r e  M A X T A B L E  c o n t a i n s  L O C  L O C S E T Y ,  
L O C S E T Y  r e s t r i c t i o n s ;  

w h e r e  LOCSETY is  E M P T Y .  

This hyperrule is the only one whose left side contains restrictions.  Since restrict ions is a 
protonotion, it cannot be replaced and will appear on the left side of all productions derived 
from hyperrule [HR07]. This hyperrule must therefore be used next in the derivation from 
line [03]. It  is used to generate productions that will check that no identifier is declared more 
than once and that the number of declared identifiers does not exceed the implementation- 
defined maximum. As we shall see, W-grammars make checks of this kind by using the con- 
vention that certain parts of the derivation tree must terminate in an "empty sequence." The 
restrictions are enforced by ensuring that only for legal programs can every protonotion in 
the derivation tree be reduced to either an empty sequence or to a sequence of terminals 
forming the program. 

Line [04] specifies a statement train and uses the symbol table TABLE~ to check the con- 
text-sensitive requirements on statements. Line [04] also contains a metanotion STMTS 
which is replaced by protonotions derived from the metaproductions. These protonotions 
form an abstraction of the statement train described in the Subsection, Internal Representa- 
tion of the Statement Train [see page 213]. It  is this abstracted form of the program that is 
used to specify the semantics of the program, as is described in the Subsection, Semantic 
Definition [see page 215]. Line [06] is used to check that the program is not too long, as 
specified by the implementation-defined metanotion MAXLEN. 

Lines [07] and [08] generate the input and output files. FILE1 denotes the input file, and 
FILF_~ denotes the output file obtained after execution of the program. The terminal string 
generated by the W-grammar consists of a program text followed by a representation of the 
initial input file and the final output file. 

Lines [09] through [12] specify the semantics of executing STMTS, starting with the initial 
memory state in TABLE~ and the input file FILE~. Initially the output file is empty and 
this is represented by end of  file. The metanotion SNAPSETY is used to derive a 
series of "snapshots" that record the sequence of memory states caused by the execution of 
STMTS. Each snapshot contains the current memory state and the state of the input and 
output files. The final snapshot is line [12]. By the uniform replacement rule, the protonotion 
replacing FILF~ must be the same as the one in line [08] which generates the final output file. 
The metanotion FILE3 denotes the input file at the end of execution and contains the values 
of the input file that were not used as input to the program. 
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As already mentioned, there are checks that certain protonotions correspond according 
to the rules of ASPLE. For example, in line [02], TABLE, must be consistent with the declare 
train of the program; and in line [09], the sequence of memory snapshots must follow from 
the abstracted program STMTS. These checks are accomplished by rules in the grammar 
that  reduce to EMPTY, that is, empty sequence, if and only if certain conditions are satis- 
fied. For example, suppose we had a derivation that terminates in the nonterminal proto- 
notion 

w h e r e  o n e  t o k e n  e q u a l s  o n e  t o k e n  t i m e s  o n e  

From the hyperrule [HR84] 

[HR84] w h e r e  NUMBER e q u a l s  NUMBER t i m e s  o n e :  t rue .  

we can derive the production 

w h e r e  o n e  t o k e n  e q u a l s  o n e  t o k e n  t i m e s  o n e :  t r u e .  

The hyperrule [HR96] 

[HR96] t r u e :  E M P T Y .  

and the metaproduction [MP02] 

[MP02] EMPTY : : 

show that we can derive the empty sequence from t r u e .  Thus the empty sequence can be de- 
rived from the protonotion 

w h e r e  o n e  t o k e n  e q u a l s  o n e  t o k e n  t i m e s  o n e  

However, had the nonterminal in the derivation tree of a program been 

w h e r e  o n e  t o k e n  e q u a l s  t o k e n  t i m e s  o n e  

we would not have been able to generate a production that would lead to an empty sequence. 
It  is in this way that the W-grammar shows that a program is illegal. 

Similarly, line [03] generates the empty (terminal) string if and only if the context-sensi- 
tive restrictions of the symbol table are satisfied. Lines [09] through [12] will generate an 
empty sequence only if the input and output files correspond to the semantics of the pro- 
gram. If the conditions are not satisfied, there are no production rules that can be generated 
that will allow an empty terminal string to be derived from these lines. One of the difficulties 
with this technique is that, in general, there is no method of proving that the required pro- 
duction rules cannot be generated. The user must be convinced of this fact informally. 

Thus a legal program and its meaning are defined by a W-grammar as a program for which 
there exists a derivation'tree whose terminals, taken in left-to-right order, form: 

1) the program; 
2) the values of the input file before execution of the program; 
3) the values of the output file after execution of the program; 

and nothing else. 

Symbol Table 

The symbol table of the W-grammar is the major vehicle for the specification of the con- 
text-sensitive requirements and semantics of ASPLE. A symbol table is a protonotion de- 
rived from the metanotion TABLE. In this subsection, we will follow in detail the derivation 
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of a valid declare train of a program from line [02] of the hyperrule [HR01]. This derivation is 
typical of the rest of the W-grammar. 

The metaproductions: 

[MPi7] TABLE : : LOCS. 

[MP15] LOCS : : LOC; 
LOCS LOC. 

define a TABLE as a nonempty sequence of protonotions derived from LOC according to: 

[MPi4] L O C  : : l o¢  T A G  h a s  M O D E  refers 
BOX end. 

Here, the strings loe, has, refers, and end are included in the protonotion to be derived 
from LOC to help the user with the pattern matching required when searching the table for 
an applicable hyperrule to use, and to make these protonotions unambiguous. The metano- 
tion TAG is defined by: 

IMP05] T A G  : : letter A L P H A ;  
T A G  l e t t e r  A L P H A .  

Thus TAG produces a protonotion that represents an identifier. For example, the ASPLE 
identifier ABC is represented by the protonotion le t ter  a le t ter  b le t te r  e. As shown earlier, 
the metanotion MODE generates protonotions for the mode of an identifier. The metanotion 
BOX, which holds the value of an identifier, is defined as 

iMP 13] B O X  : : V A L U E ;  
undefined;  
T A G .  

showing that the value of an identifier is either an integral or a Boolean value, an identifier, 
or undefined. The fact that the replacement of TABLE1 in line [03] of hyperrule [HR01] 

TABLE1 r e s t r i c t i o n s ,  

must form a protonotion that matches a left side of hyperrule [HR07] requires that BOX be 
replaced in TABLE1 by u n d e f i n e d .  This shows that the initial value of an identifier is un- 
defined in ASPLE. 

As an example we consider a program with the declare train: 

int A; 
bool AB; 
ref int C 

The protonotion derived from TABLE corresponding to this declare train is 

loc  l e t t er  a h a s  r e f  i n t  refers  u n d e f i n e d  e n d  
loc  l e t t er  a l e t t er  b h a s  r e f  b o o l  re fers  u n d e f i n e d  e n d  
loc  l e t t e r  c h a s  re f  re f  i n t  refers  u n d e f i n e d  e n d  

Substituting this protonotion in line [02] of hyperrule [HROI ], 

del  train o f  T A B L E t  , 
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we obtain the protonotion 

dcl t r a i n  of  loc l e t t e r  a has  re f  i n t  refers undef ined  end  
loc l e t t e r  a l e t t e r  b has  re f  bool refers  undef ined  end 
loc l e t t e r  c has  r e f  r e f  i n t  refers  undef ined  end  

We next show how the hyperrules of the W-grammar can be used to derive the given de- 
clare train from this protonotion. The only hyperrule whose left side starts with dcl  t r a i n  
is [HR02]  : 

[HR02] de l  t r a i n  o f  LOCS L O C S E T Y :  
M O D E  d e c l a r e r ,  

r e f  M O D E  d e f i n i t i o n s  o f  LOCS,  
_;, 
dc]  t r a i n  o f  L O C S E T Y ;  

w h e r e  L O C SE T Y  is  EMPTY,  
M O D E  d e c l a r e r ,  
r e f  M O D E  d e f i n i t i o n s  o f  LOCS, 

i .  

If we make the following replacements: 

• loe l e t t e r  a has  ref  i n t  refers undef ined  end  
for LOCS 

• loc l e t t e r  a le t te r  b has  ref  bool refers undef ined  end  
loc l e t t e r  c has  r e f  r e f i n t  refers undef ined end  

for LOCSETY 

• i n t  
for MODE 

and, since LOCSETY is not EMPTY, if we choose the first alternative, we will obtain the 
following context-free production rule, which we refer to as production [X]: 

del t r a i n  of  loc le t te r  a has  re f  i n t  refers undef ined  end  
loc l e t t e r  a l e t t e r  b has  r e f  bool refers  undef ined  end 
loc le t te r  c has  re f  re f  i n t  refers undef ined  end:  

in t  declarer, 
r e f  i n t  def ini t ions  of  loc l e t t e r  a has  re f  i n t  refers undef ined  end, 

; ,  
dcl t r a in  of  loc l e t t e r  a l e t t e r  b has  re f  bool refers undef ined  end 

loe l e t t e r  c has  re f  re f  i n t  refers undef ined  end.  

The right side of~production [X] has three nonterminal protonotions and a terminal notion 
.;. The hyperrule [HR04] 

[HR04| i n t  d e c l a r e r :  int .  

allows us to derive the terminal int from the first of the three protonotions. The second proto- 
notion contains def ini t ions  o f loe  which forces us to choose hyperrule [HR06] : 

[HR06] M O D E  d e f i n i t i o n s  o f  loe  T A G  h a s  M O D E  r e f e r s  u n d e f i n e d  e n d  L O C S E T Y :  
T A G  i d e n t i f i e r ,  

M O D E  d e f i n i t i o n s  o f  LOCSETY;  
w h e r e  LOCSE T Y  is  EMPTY,  

T A G  i d e n t i f i e r ,  
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since this is the only hyperrule whose left side contains this sequence. By making the substi- 
tutions: 

• the empty string 
for LOCSETY 

• r e f  i n t  
for MODE 

• l e t t er  a 
for TAG 

we are able to form a production whose left side matches the second protonotion of produc- 
tion IX]. Since LOCSETY is EMPTY, we choose the second alternative, and have the pro- 
duction 

IX] ref  i n t  d e f i n i t i o n s  o f  l oe  l e t t e r  a h a s  re f  i n t  refers  u n d e f i n e d  end:  
w h e r e  is ,  
l e t t er  a ident i f i er .  

The protonotion w h e r e  is  generates the empty string. This can be seen by applying the 
hyperrules 

[HR96] t r u e :  EMPTY.  

[HR97J w h e r e  N O T E T Y  is  N O T E T Y :  true .  

with the substitution of the empty string for NOTETY, to obtain the production: 

w h e r e  is:  t rue .  

As we have already seen, hyperrule [HR96] allows us to derive the empty string from true .  
The protonotion le t ter  a identif ier  generates the terminal symbol A by using the hyper- 
rule 

[HR28] l e t t e r  A L P H A  i d e n t i f i e r :  
l e t t e r  ALPHA s y m b o l .  

with ALPHA replaced by a, and 

[HR29] l e t t e r  a s y m b o l :  A. 

Applying these production rules to the protonotions we have derived from the production 
IX]: 

int A; 
dcl  t r a i n  o f  loc  l e t t e r  a l e t t e r  b h a s  re f  b o o l  refers  u n d e f i n e d  e n d  

loc  l e t t e r  c h a s  re f  re f  i n t  refers  u n d e f i n e d  e n d  

This is the first part of the declare train of the program followed by a protonotion to which 
the same technique can be applied to derive the remaining part of the declare train. 

Internal Representation of the Statement Train 

The symbol table derived from the metanotion TABLE serves as an internal representation 
of the program's declare train. The W-grammar uses the symbol table, together with an in- 
ternal representation of the program's statement train, to specify the semantics. The in- 
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ternal form of the statement train is a protonotion that can be derived from the metanotion 
STMTS using the metaproductions [MP30] and [MP29]: 

IMP30] STMTS : : 

[Me29] STMT : : 

STMT; 
STMTS STMT. 
EMPTY; 
i f  EXP then  STMTS else 

STMTS fi; 
whi le  EXP do STMTS end; 
TAG becomes EXP val; 
DEREFSETY TAG input;  
EXP output .  

For example, the protonotion that corresponds to the statement train of the program 

is as follows: 

begin 
bool A ; 
ref bool C; 
C : = A ;  
input A; 
output C 

end 

l e t t e r  c b e c o m e s  l e t t e r  a v a l  
l e t t e r  a i n p u t  
d e r e f  d e r e f  l e t t e r  e o u t p u t  

The correspondence between this protonotion and the written form of the statements is 
established in the same way as the correspondence between TABLE and the written form 
of the declare train, described in the Subsection, Symbol Table. 

The rules that establish this correspondence also specify the context-sensitive require- 
ments of ASPLE. For example, for the assignment statement, the hyperrule: 

[HRI O] TABLE TAG becomes EXP val ass ignment:  
TABLE ref  MODE TAG identifier,  

TABLE EXP MODE value. 

contains in the left-side part the string TAG b e c o m e s  E X P  val which is the internal repre- 
sentation of the statement. The right side of the hyperrule reflects the written form: 

i d e n t i f i e r  :=  v a l u e  

of the assignment statement. The protonotion derived from TAG is the representation of 
the left-side identifier of the assignment statement, and EXP is a representation of the 
right-side expression. The mode of the identifier and the mode of the expression value must 
be compatible, that is, their primitive modes must be the same. This is ensured by the uni- 
form replacement rule which causes both occurrences of MODE in hyperrule [ttR]0] to be 
replaced by the same protonotion. In addition, the mode of the value must contain one less 
r e f  than the declared mode of the identifier in the TABLE. This is indicated by the addi- 
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tional ref  for the mode of the identifier. The fact that ref  MODE is the declared mode 
of the identifier in the TABLE is enforced by the production rules generated from: 

[HR26] T A B L E  M O D E  T A G  i d e n t i f i e r :  
T A G  i d e n t i f i e r ,  

w h e r e  T A B L E  c o n t a i n s  l o e  T A G  h a s  MODE,  
w h e r e  M A X L E N G I D  c o n t a i n s  TAG.  

The protonotion substituted for MODE in this hyperrule contains the additional ref  so that 
the left side of the resulting production matches the protonotion on the right of the pro- 
duction derived from hyperrule [HR10]. The protonotion obtained by substitution in 

where TABLE conta ins  loc TAG has  MODE 

can only be reduced to the empty string if the symbol table contains TAG declared with 
MODE. 

Semantic Definition 

The execution of a program is defined by the sequence of states through which the memory 
and the input and output files pass. The transition from one state to the next corresponds 
to the execution of a statement of the program. The sequence of states is represented by 
the protonotion derived from SNAPSETY. This is a sequence of protonotions derived from 
SNAP (meaning snapshot) which is of the form m e m o r y  LOCS FILE FILE (see metao 
productions [MP15] and IMP23]). As we have already seen, LOCS generates a protonotion 
that records the values of the variables and was initially set up as part of TABLEt. The 
two protonotions derived from FILE represent the input and output files. Lines [09] through 
[12] of hyperrule [HR0|] provide the root of the derivation tree for the execution 

e x e c u t e  S T M T S  w i t h  
m e m o r y  TABLE1 FILEx e n d  o f  f i l e  
S N A P S E T Y  
m e m o r y  TABLE2 FILEz F I L E 2 .  

The initial snapshot is m e m o r y  TABLE1 FILE1 end of  file, where TABLE, is the symbol 
table, in which all the variables have the vMue undefined, FILEt is the input file, and the 
output file is empty since it consists only of end of  file. The final snapshot contains the 
output file FILEs which, by the uniform replacement rule, will be the same as the proto- 
notion substituted into line [08] of hyperrule [HROI]. Lines [09] through [12] of hyperrule 
[HR01] will reduce to EMPTY only if this sequence of snapshots corresponds exactly to the 
execution of the protonotion derived from STMTS. For each executed statement of the 
program, a production must be generated that will check that the differences in the states 
of the memory and files before and after execution of the statement correspond exactly 
to the semantics of the statement. 

The starting and final snapshots corresponding to the execution of the ASPLE program: 

begin 
bool A; 
ref bool C; 
input A; 
C : = A ;  
output C 

end 

with an initial input file containing the sequence of three values true, are: 
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and 

m e m o r y  l o c  l e t t e r  a h a s  r e f  b o o l  r e f e r s  u n d e f i n e d  e n d  
l o c  l e t t e r  c h a s  r e f  r e f  b o o l  r e f e r s  u n d e f i n e d  e n d  
s p a c e  t r u e  s p a c e  t r u e  s p a c e  t r u e  e n d  o f  f i le  
e n d  o f  f i le  

m e m o r y  l o c  l e t t e r  a h a s  r e f  b o o l  r e f e r s  t r u e  e n d  
l o c  l e t t e r  c h a s  r e f  r e f  b o o l  r e f e r s  l e t t e r  a e n d  
s p a c e  t r u e  s p a c e  t r u e  e n d  o f  f i le  
s p a c e  t r u e  e n d  o f  f i le  

respectively. 
The execution semantics of the assignment is described by the hyperrule: 

HP.73] execute  TAG becomes  EXP val wi th  SNAP1 SNAP2 : 
evaluate  EXP from SNAP giving BOX2,  

where  SNAP1 is 
m e m o r y  LOCSETYI 
loc TAG has MODE refers BOX1 end 
LOCSETY2 FILE1 FILE2, 

where  SNAP2 is 
m e m o r y  LOCSETYI 
loc TAG has MODE refers BOX2 end 
LOCSETY2 FILE1 FILEI.  

This hyperrule specifies that the snapshot before execution, SNAP1, is identical to the snap- 
shot after execution, SNAP2, except that the BOX1 to which TAG refers in SNAP1 has 
been replaced by BOX2, which contains the result of evaluating the expression EXP with 
the variable values of snapshot SNAP1. 

The arithmetic involved in the evaluation of the expression is performed with numbers 
expressed in an internal form consisting of strings of the digit o n e .  The metano- 
tion MAXINT is used to apply the implementation-defined restriction on the maximum 
value that can be taken by an integer value. 

A similar technique is used to define the semantics of all the ASPLE statements. The 
series of snapshots traces the execution of the program, and the output file shows the result 
of the computation. 

Although the two-level form of W-grammar seems complex, the consistent use of the 
underlying derivation tree is claimed to give the model an inherent simplicity. 

3. PRODUCTION SYSTEMS AND THE AXIOMATIC APPROACH 

We now explore the use of Ledgaxd's Production Systems [L2, L3] and Hoare's axiomatic 
approach [H1] to define the syntax and the semantics of ASPLE. The Production Systems 
approach has had a long history, stemming originally from the Production Systems de- 
scribed by Post [P1] and later developed by Smullyan [$3], and by Donovan and Ledgaxd 
[D2]; Ledgaxd continued to develop and describe the approach in writings which, after 
several iterations, resulted in [L3]. 

A Production System is a generative grammar somewhat like BNF. Compared with 
BNF, Production Systems possess an additional power that allows one to define sets of 
n-tuples and to name specific components of n-tuples. These capabilities axe sufficiently 
powerful to describe any recursively enumerable set, including the set of syntactically 
legal programs in a language and the translation of those programs into a target language. 

In addition to the use of a theoretically complete formal system, the recent development 
of the Production Systems notation has been mainly guided by principles believed im- 
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portant to a clear and concise notation. These principles include: 1) the strict adherence 
to a given underlying formal system, allowing only abbreviations that can be mapped 
directly into the underlying notation; 2) the  isolation of the context-free requirements 
from the context-sensitive requirements on syntax; 3) the belief that many aspects of a 
definition are better suited to an algorithmic (versus generative) notation. These principles 
are more fully described in [L3]. 

Hoare's axiomatic approach is used as a target language to define the semantics of ASPLE 
and is discussed in the Subsection, Semantics Using the Axiomatic Approach [see page 224]. 

Syntax Using Production Systems 

A definition of the complete ASPLE syntax, including context-sensitive requirements, is 
given in Table 3.1. To understand this definition, the concept of a syntactic "environment" 
must first be clarified. An environment is a correspondence between identifiers and modes 
derived from ASPLE declarations. An environment is computed by applying the function 
DERIVED ENV [PS26]-[PS27] to the declare train of a program. For example, applying 
this function to the declare train: 

int A; 
ref int B; 
ref ref int C 

yields the environment: 

pl -- {A - -*REF INTEGER,  
B -+ REF REF INTEGER,  
C --+ REF REF REF INTEGER} 

To specify the context-sensitive requirements of ASPLE, several other functions are 
defined. The DOMAIN [PS48] of an environment p is the list of identifiers occurring in p. 
For example, using pl from the preceding environment: 

DOMAIN(p1) ---- A, B, C 

The function DERIVED EXP MODE [PS28]-[PS37] operates over pairs. Given an ex- 
pression and an environment, this function yields the mode of the expression obtained by 
using the modes of the identifiers given in p. Using pl above: 

D E R I V E D  E X P  MODE(B : pl) ------ REF REF I N T E G E R  
D E R I V E D  EXP  M O D E ( A + B  : pl) ---- I N T E G E R  

The derived mode of A + X in pl is undefined (in the sense that it is not derivable) since X 
has not been declared. A function DERIVED P R I M  M O D E  [PS38] is also defined, which, 
given an expression and an environment, yields the primitive mode obtained by deref- 
erencing the derived mode to obtain one of the primitive modes, INTEGER or BOOLEAN. 
For example, 

D E R I V E D  P R I M  MODE(B : pl) ---- I N T E G E R  
D E R I V E D  P R I M  M O D E ( A + B  : pl) ---- I N T E G E R  

Similarly, the functions P R I M  M O D E  [PS39]-[PS41] and N U M  REFS [PS45]-[PS47], 
when applied to a mode, yield the corresponding primitive mode and the number of refer- 
ences. For example, 

P R I M  M O D E ( R E F  INTEGER)  ~ I N T E G E R  
N U M  R E F S ( R E F  INTEGER)  -~ 1 

Next consider the production [PS07] for assignment statements: 
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[Main Productions] 

[PSOI ]  prog 

[PSO2] dt 

LPSO3] dcl 

[PS04] m 

PROGRAM <begin dt ; st end> 

÷ p ~ DERIVED ENV(dt) & DIFF IDLIST<DOMAIN(p)> 

[All declared identifiers must be different] 

LEGAL<st:p> & n ~ PROGRAM LENGTH(*). 
I 

[The statement train must be legal in p; 
is the maximum program length] 

1 

DECLARE TRAIN <dcl , ... , dcl > 
1 n 

÷ ~ ~ NUN DECLARED IDS(*). 
Z 

[n is the maximum number of declared identifiers] 
2 

DECLARATION <m Id , . . .  , Idn> 
1 

÷ DIFF IDL IST<Id  , . . .  , Id > . 
I n 

MODE <int I bool I r e f  m>. 

[PSO5] st STM TRAIN <stm , ...; stm • & LEGAL <~:p> 
I n 

÷ LEGAL<stm -p> & ... & LEGAL <stm p>. 
I n 

[A statement train is legal in p only if all contained 
statements are legal in p] 

[PS06] stm STATEMENT <stm> 

ASGT STM<stm> I COND STM<stm> I LOOP STM<stm> I I O STM<stm> ). ÷ ( 

[PSO7] stm ASGT STM < id  "= exp•  & LEGAL <~-p> 

÷ LEGAL<id:o> & LEGAL<exp :p> & 

dm -= DERIVED EXP MODE(Id:p) & dm r ~ DERIVED EXP MODE(exp p) £ 

PRIM MODE(dm ) = PRIM MODE(dm ) & 
r 

[The primitive modes of id and exp in p must be identical] 

n£ =- NUN REFS(dm£) & n r = NUN REFS(dmr) & n£ _< nr + I. 

[The mode of id must be obtainable from the mode of exp by 
deferencing exp] 

[PS0B] stm COND STM <if exp then s t  fi> & LEGAL <w:p> 

÷ LEGAL<exp:p> & LEGAL<st:p> & 

DERIVED PRIM MODE(exp.p) = BOOLEAN. 

[The mode of exp in p must be boolean] 

[PSO9] stm COND STM <if exp then st else st fi> & LEGAL <*.p> 
1 2 

÷ LEGAL<exp'o> & LEGAL<stI'p> & LEGAL<st :p> 
2 

DERIVED PRIM MODE(exp'p) = BOOLEAN. 

T A B L E  3.1. PRODUCTION SYSTEM SPECIFYING THE COMPLETE SYNTAX OF A S P L E  
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stm 

stm 

stm 
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LOOP STM <mhile exp do st end> & LEGAL <*,p> 

÷ LEGAL<exp'p> & LEGAL<st:p> & 

DERIVED PRIM MODE(exp'p) = BOOLEAN. 

IO STM <input id> & LEGAL ~* p> 

÷ LEGAL<Id:p> . 

IO STM <output exp> & LEGAL <*:P>v 

÷ LEGAL<exp.p>. 

219 

[PSI3] 

[PSi4] 

[PSiS] 

[PSlS] 

EPSI7] 

[PSIS]  

[ P S I 9 ]  

[PS20] 

exp 

exp 

fac 

fac 

prim 

prpm 

prlm 

EXPRESSION <fac> & LEGAL <,'p> 

LEGAL<fac'p>. 

EXPRESSION < f a c +  exp> & LEGAL <. p> 

* LEGAL<fac:p> & LEGAL<exp'p> & 

DERIVED PRIM MODE(~ac.p) = DERIVED PRIM MODE(exp p). 

[The derived primitive modes of fac and exp 
must be tdentical] 

FACTOR <prlm> & LEGAL <* p> 

÷ LEGAL<prlm'p>. 

FACTOR <prim *fac> & LEGAL <*-p> 

÷ LEGAL<prlm:p> & LEGAL<fac'p> & 

DERIVED PRIM MODE(prlm:p) = DERIVED PRIM MODE(fac :p) .  

PRIMARY <(expl = exp 2 ) J (exp I # exP2)> & 

÷ LEGAL<exp "p> & LEGAL<exp :p> & 
I z 

DERIVED PRIM MODE(exp p) : INTEGER & 
i 

DERIVED PRIM MODE(exp :p) : INTEGER. 
2 

LEGAL <*'p> 

PRIMARY <(exp)>  & LEGAL <* 'p>  

÷ LEGAL<exp'o>. 

PRIMARY <|d> & LEGAL < , ' v >  

÷ LEGAL<id:p>. 

prim PRIMARY <true I false I Int> & LEGAL <*:p>. 

EPS2f] int INTEGER < d l . . . d n  > 

÷ n ~ n. In i8 the maximum length of integers] 
3 3 

TABLE 3.1.--Continued 
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[PS223 

[PS233 

[PS243  

[PS253 
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Id IDENTIF IER <~ . . . ~  > & LEGAL <*'p> 
I n 

+ £ . . . £  ¢ DOMAIN(p) & ~ >n.  
t n 4 

[Each identifier muet be declared in p; 
n 4 is the maximum length of an identifier] 

DIGIT <0 I I I . ' -  I 9>. 

LETTER <A I B I . . .  I z>. 

dm DERIVED ASPLE MODE <INTEGER I BOOLEAN [ REF dm>. 

[Auxiliary Functions] 

[PS26] DERIVED ENV(dcl ; ... ;dcl ) 
I n 

{ DERIVED ENV(dcl ) ..... DERIVED ENV(dcl ) }. 
I n 

[PS27] DERIVED ENV(m id ... Id ) z id ~dm, ... id ~dm 
I' ' n I ' n 

÷ dm ~ DERIVED MODE(m). 

[PS28] 

[PS293  

[PS3O] 

[PS31] 

[PS32] 

[PS33] 

[PS34] 

DERIVED EXP MODE(exp + fac :p) z INTEGER 

÷ DERIVED PRIM MODE(exp p) = INTEGER 

DERIVED PRIM MODE(fac.o) = INTEGER. 

DERIVED EXP MODE(exp + fac p) ~ BOOLEAN 

÷ DERIVED PRIM MODE(exp p) = BOOLEAN 

DERIVED PRIM MODE(fac-p) = BOOLEAN. 

DERIVED EXP MODE 

DERIVED EXP MODE 

÷ DERIVED PRIM 

DERIVED PRIM 

DERIVED EXP MODE( 

DERIVED EXP MODE( 

DERIVED EXP MODE( 

÷ id+dm ~ p,  

(fac ~ pr~m p) ~ DERIVED EXP MODE(fac + pr~m .p). 

( ~exp = exp ) p) ~ BOOLEAN 
I 2-- 

MODE(exp .p) = INTEGER & 
1 

MODE(exp p) = INTEGER. 
2 

(exp # exp p) ~ DERIVED EXP MODE( (exp = exp ) 
- -  1 2 - -  - -  1 2~  

(exp) p) ~ DERIVED PRIM MODE(exp'p). 

id:p) ~ dm 

[id÷dm must occur in p] 

p ) .  

[PS353  

[PS363  

[ P S 3 7 ]  

DERIVED EXP M O D E ( t r u e ' p )  ~ BOOLEAN. 

DERIVED EXP M O D E ( f a l s e : p )  ~ BOOLEAN. 

DERIVED EXP MODE(~nt p) ~ INTEGER. 

[PS38] DERIVED PRIM MODE(exp'p) ~ dm' 

+ dm ~ DERIVED EXP MODE(exp-p) & dm' ~ PRIM MODE(dm). 

T A B L E  3.1.--Continued 
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[PS39] 

LPS4O] 

[PS41J 

[PS42] 

[PS433 

EPS443 

[PS45] 

[PS463 

[PS47] 

[PS483 

[PS49] 

[PS50] 

PRIM MODE(INTEGER) ~ INTEGER. 

PRIM MODE(BOOLEAN) ~ BOOLEAN. 

PRIM MOOE(REF dm) ~ PRIM MOOE(dm). 

DERIVED MOOE(int) ~ REF INTEGER. 

DERIVED MODE(bool) E PEF BOOLEAN. 

DERIVED MODE(ref m) E REF dm 

÷ dm ~ DERIVED MODE(m). 

NUM REFS(INTEGER) ~ O. 

NUM REFS(BOOLEAN) ~ O. 

NUM REFS(REF dm) ~ I + NUM REFS(dm). 

DOMAIN( {Id ÷din , ... ,tdn÷dm n} ) 
I I 

Id , ... , I d  . 
! n 

DIFF IDLIST<A I ~d>. 

[The symbol "A" denotes the empty Isst] 

DIFF IDLIST<~, td> 

÷ £ # A & id ~ ~. 

[Functions for Implementation Dependent Requirements] 

[PS51] NUM DECLARED IDS(dcl ; .., dcl ) 

NUM DECLARED IDS(dcl ) + ... 
I 

[PS52] NUM DECLARED IDS(m Id , ... , Id n) 
1 

+ NUM DECLARED IDS(dCln). 

LPS533 PROGRAM LENGTH(prog) ~ . • 

[Implementation defined function to compute the length 

of a program n ] 
1 

TABLE 3.1.--Continued 
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[PS07] s t m  
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ASGT STM <id := exp> & LEGAL <*:p> 
+-- LEGAL <id:p> & LEGAL <exp:p> & 

dme~-  DERIVED E X P  MODE( id :p )  & 
d m r  =-- ..DERIVED E X P  MODE(exp:p)  & 
P R I M  MODE(dine) = P R I M  MODE(din , )  & 

[The primitive modes of id and exp in p must be identical] 
ne ~ N U M R E F S ( d n ~ )  & n ,  ~- N U M R E F S ( d m ~ )  & n~_< n , - b  1. 

[The mode of id must be obtainable from the mode of exp by deferenclng exp] 

In detail, this production may be read: A string of the form 

id := exp 

is an assignment statement, and the pair 

<id :.~ exp :p> 

is a member of the set LEGAL, if 
1) id is an identifier that is legal in p, and 
2) exp is an expression that is legal in p, and 
3) dine is the derived mode obtained by applying the function DERIVED EXP MODE 

to the id on the left side in p, and 
4) dmr is the derived mode obtained by applying the function DERIVED EXP MODE 

to the exp on the right side in p, and 
5) the function PRIM MODE maps dm~ and dm~ into identical primitive modes, and 
6) nt  is the integer obtained by applying the function NUM REFS to dine, and 
7) nr is the integer obtained by applying the function NUM REFS to dm~; and 
8) m is less than or equal to nr + 1. 
Conditions (3) through (5) indicate that the primitive modes of id and exp must be 

identical, and conditions (6) through (8) indicate that the mode of id must be obtainable 
by sufficiently dereferencing exp. 

In production [P$071, the symbol, "*" in the conclusion for LEGAL is used in place 
of the string: 

id := exp 

being defined, and the production system variables id, exp, p, din, and n (possibly with 
subscripts) are defined in subsequent productions. The underline on the symbol ": =" is 
used to specify that the ":" is an object symbol, and not a Production System punctuation 
mark separating items in an n-tuple. 

More briefly, we shall read several productions from Table 3.1. 

[PSOl ] 
p r o g  P R O G R A M  <begin d t  ; s t  end> 

*-- p -= DERIVED ENV(d t  ) & D I F F  IDLIST <DOMAIN(p)> & 
[All declared identifiers must be d~fferent] 

LEGAL<st  p> & ~L > P R O G R A M  LENGTH(*) .  
[The statement train mu~t be legal zn p; ~ is the maximum ~rogram length] 

A string of the form 

is a valid program if 

begin dt  ; st  end 

Computing Surveys, Vol. 8, No. 2, June 1976 



A Sampler of Formal Definitions • 223 

1) p is the environment derived from the declare train d t ,  and 
2) the domain of p is a list of different identifiers, and 
3) s t  is a s ta tement  train tha t  is legal in p, and 
4) nl is greater than or equal to the (implementation defined) 

length of the program. 

[PS05] 
8 t  S T M  T R A I N  < s t m l ;  . . . ; s tmn> & L E G A L  <*:p) 

*-- L E G A L < s t m I : p >  & . . . & L E G A L  <s tmn:p>.  
[A statement train is legal in p only if all contained statements are legal in p] 

A sequence of statements of the form 

s t m z  ; . . .  ; S t m n  

is a s tatement  train, and the statement train is legal in p if s t m z  through S t m n  are state- 
ments tha t  are legal in p. 

[P514] 
exp E X P R E S S I O N  <fac A- exp> & L E G A L  <*:p> 

¢-  L E G A L < f a c : p >  & LEGAL<exp :p>  & 
D E R I V E D  P R I M  M O D E ( f a c :  p) = D E R I V E D  P R I M  M O D E ( e x p : p ) .  

[The derived prim~twe modes of fac and exp must be identical] 

A string of the form 

f a c  + exp 

is an expression, and the expression is legal in p, if 
1) fac  is a factor tha t  is legal in p and 
2) exp is an expression that  is legal in p and 
3) the derived primitive mode of fac  in p is identical to the derived primitive mode of 

exp in p. 

Examples of Production Systems 

We now consider two ASPLE programs, the first of which is syntactically legal, and the 
second of which is not. The two programs differ only in the declared modes of B. 

program 1 program 2 

begin begin 
int A; int A; 
ref int B; int B; 
ref ref int C; ref ref int C; 

A := 100; A := 100; 
B := A; B :-- A; 
C := B; C :=  B;  
input C; input C; 
output A output A 

end end 
a 
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Using the productions for D E R I V E D  E N V  [PS26]-[PS27], the environments for the two 
programs are: 

pl 

{A -- ,  R E F  I N T E G E R ,  
B --* R E F  R E F  I N T E G E R ,  
C -'* R E F  R E F  R E F  I N T E G E R }  

Pj 

{A --* R E F  I N T E G E R ,  
B --* R E F  I N T E G E R ,  
C --* R E F  R E F  R E F  I N T E G E R }  

From the premise LEGAL(st:p) in the production for PROGRAM [PS01], the statement 
trains are legal only if the statement trains are legal using px and p2, respectively. Using 
the production for STM TRAIN [PS05], each statement in a statement train is legal only 
if each individual statement is legal using px and p2, respectively. 

Using the production for ASGT STM [P$07], a statement of the form: 

id :---- e x p  

is legal in p if 
1) dine is the derived mode of id in p, and 
2) dmr is the derived mode of exp in p, and 
3) the primitive modes obtained from dm~ and dmr are identical, and 
4) the number of references in dm~ is less than or equal to 1 plus the number of refer- 

ences in dmr. 

For programs 1) and 2), the statement " A  :-- 100" is legal, since for both m and p2: 

dm~ -- DERIVED EXP MODE (A : p) 
- -  R E F  I N T E G E R  

d m r  - D E R I V E D  EXP MODE (100 : p) 
-- I N T E G E R  

P R I M  M O D E ( d m ~ )  --  I N T E G E R  

P R I M  M O D E ( d i n  ) - I N T E G E R  

ne --  N U M  REFS(dm~) 
- -1  

nr - N U M  R E F S ( d m r )  
------0 

n~ = n r -~- 1 

On the other hand, the assignment."C : = B" is legal in m, but not in p~, since: 

for pl , for p2 
n~ ~ 3 n t  --  3 
nr  --  2 nr = 1 
n t  - -  n r "l- 1 n ~  ~> n r  "~- 1 

The productions given in Table 3.1 should now be clear. Foi more detail on the Produc- 
tion Systems notation, see [L3]. 

Semantics Using the Axiomatic Approach 

The Production Systems approach given here relies on another language for defining se- 
mantics. The only role of Production Systems in defining "semantics" is the specification 
of a mapping from legal programs into a target language that expresses the meaning of a 
program. In this subsection, we use the axiomatic approach of Hoare [H1] as the basis for 
such a target language. A mapping of syntactically legal ASPLE programs into this target 
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language is given in Table 3.2. Production Systems could be used directly to define se- 
mantics by specifying a mapping: 

program : input file --, output file 

giving the corresponding output file for each input file and each legal program. This ap- 
proach has not been tried. 

The axiomatic approach differs significantly from most semantic approaches in that the 
method is entirely "synthetic" and thus does not rely on any execution model. To define 
semantics using an axiomatic approach, the following question is addressed: Upon termi- 
nation of a program, what assertions can be made? The axiomatic approach of Hoare [H1] 
is based on the first-order predicate calculus [M3] which permits assertions about the mem- 
berslfip of objects in sets and the results of applying operations to objects; for example, 
the kinds of objects stored on some external medium and the values of expressions. To de- 
fine the semantics of "programs," a correspondence between programs and the relevant 
assertions must be defined. 

This correspondence has two basic parts: a specification of assertions that can be gen- 
erated directly from the program text, and a specification of points where the user must 
derive new assertions based on those already generated. In the paper by Hoare [H1], this 
issue is only lightly touched upon. We believe this separation to be important, for it shows 
the user when to proceed automatically and when to make "mental leaps" in the attempt 
to prove a program correct. However, there is some research being done on the automatic 
generation of such deductions. 

In the specification of ASPLE semantics here, we adopt the following conventions: 
1) SEM PROG, SEM STM, and SEM EXP are the names of Production System func- 

tions that map legal ASPLE constructs into assertions. 
2) a, at, as, etc., are Production System variables denoting members of the set of asser- 

tions. The class of well-formed assertions is not defined here, but may be obtained 
from [M3]. 

3) PROVABLE is a Production System predicate naming a set of ordered pairs (al : as}, 
where a t  and as are assertions. This predicate is true only if a s  can be derived from 
a t  by the user. The rules used to derive as from al are those of the predicate calculus. 

The first production of Table 3.2 specifies the assertions for programs: 

Wro ! ] 
SEM PROG(begin d t  ; s t  end) m t r u e  {*} a u 

~-- a m D E R I V E D  A S S E R T I O N ~ i ( d t )  & 
a" --~ a A aprlm A (Fin -- /3) A (Fout  = e m p t y  f i l e )  & 
p m D E R I V E D  E N V ( d t )  & S E M  S T M ( s t : p )  = a '  {s t}  a n . 

[ar,,,,~ ~ a,n, A aCooz A a¢,! A am. are the respective assertions for 
integers, booleans, reference and files] 
[B is the user supplied input file] 

This production may be read as follows. If: 

a is the assertion derived from the declare train dr, and 
apam is the assertion for primitive objects: integers, booleans, references, and files, and 
F i n  is the user-supplied input file/3, and 
F o u t  is the empty file, and 
a' is the assertion a h aprlm A (Fin = /~) h ( F o u t  - -  e m p t y  file), and 

t? • 
a is the assertion obtained after execution of the statement train, given that a' is true 

before execution of the statement train; 

then 

a 'p is the assertion upon termination of the program. 
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[Assertions for Programs] 

[PTOI] SEM PROG(begin dt , st end) ~ true {*} a" 

÷ a ~ DERIVED ASSERTIONS(dt) & 

a' ~ a ^ aprlm ^ (Fin = 8) ^ (Fout = empty file) & 

# ~ DERIVED ENV(dt) & SEM STM(st p) = a T {st} a". 

[aprim ~ ain t ^ abool ^ are f ^ afile are the reepectsve assertions for 
~ntegers, booleans, reference and files] 

[6 is the user supplied input file] 

[Assertions for Declarations] 

[PT02] DERIVED ASSERTIONS(dcl ..... dcl ) 
I n 

÷ a ~ DERIVED ASSERTIONS(dcl ) 
I I 

[PT03] DERIVED ASSERTIONS(m id , ..., id n) 
! 

÷ dm ~ DERIVED MODE(m). 

(a  ^ . . .  ^ a ) 
1 n 

& & a n ~ DERIVED A S S E R T I O N S ( d c  

( i d  cdm)  ^ . . .  ^ ( i d  ~dm) 
1 n 

n ) • 

[Assertions for Statements] 

[ P T 0 4 ]  SEM STM(stm ,stm ... ; stm n p) -= a {*} a' 
1 2 1 n + l  

÷ PROVABLE<a a~> & SEM STM(stm p) = a' {stm } a & 
1 1 1 1 1 2 

PROVABLE<a a'> & SEM STM(stm p) = a' {stm } a & 
2 2 2 2 2 3 

• . & 

PROVABLE<a n an> & SEM STM(stmn'P) = a'n {Stmn} an+l & 

PROVABLE<an+I 'a 'n+l > . 

[Before or after statements, a new assertion a~ may need to be 
created and derived from ai] ' 

I d £ &  
a [ P T 0 5 ]  SEM S T M ( I d  := I d r : P )  

-- deref(idr,n) 

÷ dm 

n 

^ ( d e r e f ( l d r , n )  c dmr.) { * }  a 

-= DERIVED EXP MODE(~d~ O) & dm -- DERIVED EXP MODE(~d r p) & 
r 

-= NUM REFS(dm£) & n -= NUM REFS(dm ) & n ~= (n -n ) + i. 
r r r 

[The assignment of an identifier on the:-right side requs~ea 
dereferencing to obtain a mode compatible wtth the identifier 
o n the left side] 

[Checking that the dereferenced value of ~d r is contained in dm r 

ensures that id r is not undefined7 

[PT06] SEM STM(Id '= e×p • p) E aexp, ^ (e×p' c dm r) {*} a 

+ exp' ~ SEM EXP(exp.p) & 

dm r ~ DERIVED EXP MODE(exp.p) & NUM REFS(dmr) = O. 

[The assignment of an expression that is not an identifier simply 
changes the value of the target identifier on the left side] 

[Checking that exp r is contained in dm r ensu~res that exp' ~s 
not undefined.] 

TABLE 3.2. PRODUCTION SYSTEM MAPPING LEGAL A S P L E  PROGRAMS INTO VERIFICATION RULES 

Computing Surveys, VoL 8, No. 2, June 1976 



[PTO7] 

EPT08] 

[PT09] 

[PTIO] 

SEM STM(If exp then st fl 

÷ exp' ~ SEM EXP(exp p) 

PROVABLE<a ^ no.~t(exp') 

A Samp~r of Formal Definitions 

p) ~ a {*} a' 

& SEM STM(st p~ = a A exp' {st} a' 

SEM STM(If exp t hen  st e l s e  st f i  P) ~ a {*} a' 
I 2 

÷ exp' E SEM EXP(exp p) & SEM STM(st p) a A exp'{st } a' 
I I 

SEM STM(st p) = a A no t(exp') {st } a'. 
2 2 

SEM STM(while exp do st end P) ~ a {*} a A not(exp') 
InV 

+ exp' ~ SEM EXP(exp p) & PROVABLE<a • alnv > & 

SEM STM(st p) = atn V A exp'{st} aln v. 

[aln v ~e the ~nvar~ant for the loop] 

/ 

SEM STM(input Id . p) ~ (not(eof(Fln)) A (flrst(Fln) ~ dm) A 

td'~ F 
~d' = deref(id,n) A a in 1 {*} a 

ftrst(F~n) rest(Fin) I 

÷ dm ~ DERIVED PRIM MODE(Id p) & n ~ NUM REFS(dm) - 1. 

[The first value in Fin must be compatible with the mode of id] 

[Oereferenc~ng id by n refe must yield an identifier] 

227 

[PT I I ]  SEM STM(output exp P) £ aF°ut {*} a 

cat(Fou + exp') 

÷ exp' ~ SEM EXP(exp p). 

[Assertions for Expressions] 

[PTI2] SEM EXP(exp + fac 

[PTI3] 

EPTI4] 

[PTI5] 

O) ~ sum(exp',fac') 

+ exp' ~ SEM EXP(exp.p) & fac' { SEM EXP(fac'p) 

DERIVED PRIM MODFF(exp p) = INTEGER. 

SEM EXP (exp + fac P) ~ o r(exp',fac') 

+ exp' ~ SEM EXP(exp p) & fac t ~ SEM EXP(fac p) 

DERIVED PRIM MODE(exp.p) = BOOLEAN, 

SEM EXP(fac ~ prlm:p) ~ produet(fac',prtm') 

÷ fac' ~ SEM EXP(fac.p) & prim' ~ SEM EXP(prim.p) 

DERIVED PRIM MODE(prim.p) = INTEGER. 

$EM EXP(fac * prim.p) £ and(exp',prtm') 

÷ exp' £ SEM EXP(fac p) & prlm' ~ SEM EXP(prlm p) 

DERfVED PRIM MODE(fac.p) = BOOLEAN. 

TABLE 3.2.--Continued 
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[ P T i 6 ]  

[PTI7] 

[PTIe] 

[ P T I 9 ]  

[ P T 2 0 ]  

[ P T 2 1 ]  

[ P T 2 2 ]  

M. Marcot~y, H. F. 

SEM EXP( (exp  = exp 2) 
! 

e x o '  ~ SEM EXP(exp 
1 , 1 

SEM EXP( (exp  # exp ) 
1 2 - -  

÷ exp' ~ SEM EXP(exP 
I I 

SEM EXP( (exp) • p) 

Ledgard, and G. V. Bochmann 

P) ~ egual(exp', e x p ' )  
1 2 

p) & exp~ ~ SEM E X P ( e x P 2 . p ) .  

p) ~ not(egual(exp' , exp')) 

p) & exp ~ ~ $EM EXP(exp ~). 
2 2 

exp' 

e x p '  ~ SEM EXP(exp p ) .  

SEM EXP(~d p) a deref(Id,n)4 

÷ dm ~ DERIVED EXP MODE(id'p) & n = NUM REFS(dm) - I 

[Identifiers in expressions must be full~ dereferenced] 

SEM EXP(int'p) ~ int. 

SEM EXP(true p) ~ True. 

SEM E X P ( f a l s e ' p )  ~ false. 

[The assertions aprim for primitive values are ant A abool A are f ^ afile] 

[Assertions ain t for integers; IMAX ~s the ~mplementation defined quantity n5 ] 

[PT23] O,IMAX e INTEGER 

[PT24] (,nt # IMAX) = suc~( 

[PT25] (int = IMAX) = . . 

[PT26] ([nt # O) = pred 

[PT27] sum(int,O) " int. 

[PT28] (tnt # IMAX) A (int 
1 2 

nt) ¢ INTEGER. 

[Implementation defined result upon arithmetic overflow] 

nt) ¢ INTEGER. 

# O) : sum(Int ,irt 
- -  1 2 

sum(succ(Int ),pred(int )) 
1 2 

[The eonventsonal axioms for non-negatlve ~n~egers] 

[Assertions abool for booleans] 

[PT29] true,false ¢ BOOLEAN. 

[PT30] and(true,true) = true. 

[PT31] and(true,false) = false. 

. . .  [The conventional axioms for booleans] 

[Assertsons are f for dereferencing, v ¢ IDENTIFIER u INTEGER u BOOLEAN] 

[PT32] deref(v,O) = v 

[PT33] (md+ = v) ^ (n z I) = (deref(id,n) = deref(v,n-1)) 

TABLE 3.2.--Continued 
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[Assertions a . for input and output files] f~le 

[Ib ¢ INTEGER u BOOLEAN, f ¢ FILE] 

[PT34] empty file e FILE. 

[PT3 ~ n > FILELENGTH(f) 
6 

[FILELENGTH is the 
the file length 

[PT36] first(cat(ib,f)) = ib. 

[PT37] rest(cat(ib,f)) = f. 

[PT38] eof(empty file) = true. 

[PT39] eof(cat(Ib,f)) = false. 

calt(ib,f) e FILE. 

implementation defined function for computing 
n] 
6 

TABLE 3.2.--Continued 

The assertions derived from ASPLE declare trains [PT03] are simply the assertions of set 
membership for each declared identifier. For example, the declare train: 

ref int A ;  
ref bool B 

yields the assertion 

(A C REF REF INTEGER) A (B E REF REF BOOLEAN) 
Each statement in a statement train gives rise to a production of the form: 

SEM STM(stm) - at {*} a2 
6--- p t ,  p 2 ,  " " " , pn.  

Here at is any assertion that is true before execution of the statement; a2 is the assertion 
derived from at after execution of the statement; and pl through p~ are Production System 
predicates that must be true in order to generate a2 from at. 

The semantics of assignment statements and while-do statements are particularly im- 
portant. For assignment of identifiers, we have: 

[Fros] 
S E M  S T M ( i d e  : =  i d r : p )  id l~  ------ ade re f ( td r ,n  ) A ( d e r e f ( i d r ,  n ) e  d m r )  {*} a 

~ -  d m ~  -~ D E R I V E D  E X P  M O D E ( i d a : p )  & d m r  ~ D E R I V E D  E X P  M O D E ( i d r : p )  

n e ~ N U M R E F S ( d m ~ )  & n r  ~ N U M R E F $ ( d m r )  & n ~z ( n r - -  n~) + 1. 

[The assignment of an identifier requires dereferencing the identzfier 
to obtain a mode compatible 
with the identifier on the left side] 
[Checking that the dereferenced value of id~ is contained in dm¢ insures that id, 
is not undefined.] 

& 

This production may be read as follows: The assertion a may be derived from the assertion • 

id~ 
a A (deref(idr, n) E dmr) 
deref(Idr, n)  

dine and dmr are the derived modes of id~ and idr in p, and 
n~ and nr are the number of refs in dm~ and dmr, and 
nequals ( n r -  n,) Jr 1. 

The arrow pointing downward, " ~ ," denotes a reference to a value. In general, the nota- 
tion a~ denotes the assertion obtained from a by replacing occurrences of x by y. In the 
preceding production, y is deref(idr, n), that is, the derefereneed value of idr. The assertion 
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tha t  y E d m r  insures tha t  this value must be well defined, tha t  is, not undefined. In  a 
sense, the proof rule for assignment appears to be the wrong way around, for the assertion 
replacing idt  ~ by  a value must be derivable before the statement.  This initially counter- 
intuitive definition reflects two facts: 

• the dereferenced value of idr must be obtained before the statement is executed; 
• any invariant derived after execution of the s ta tement  must be true when id~ 

is replaced by the deferenced value of idr before execution of the statement.  
For assignment of expressions ( that  are not identifiers), we have 

[PT06] 
S E M  S T M ( i d  :=  exp :p)  ~- aexp, A (exp 'e  d m r )  {*} a 

• -- e x p '  --- S E M  E X P ( e x p "  p) & 
d m r  ~- D E R I V E D  E X P  M O D E ( e x p ' p )  & N U M  R E F ~ ( d m r )  = 0. 

[The assignment of an expression that is not an identifier simply changes the 
value of the target zdentzfier on the left side] 
[Checking that exp' is contained in dmr ensures that expt is not undefined.] 

The assignment of expressions can only be made to identifiers with one syntactically de- 
clared reference. Since the rules for expression semantics result in primitive values that  are 
integers or Booleans (with zero references), generation of the new assertion results from a 
simple replacement. 

For  while-do loops, the rule is: 

[PT09] 
SEM STM(whzle e x p  do s t  end : p) ---- a {*} a i n v / ~  not(exp') 

¢ -  e x p '  --- S E M  E X P ( e x p :  p) & P R O V A B L E < a  : ainv> & 
S E M  S T M ( s t :  p) = alnv/~ e x p ' { s t }  ainv. 

[a,n~ is the invariant for the loop] 

Here the predicate PROVABLE must be used to derive the loop invariant atnv from any 
assertion a tha t  is true before the loop, and SEM STM.(st : p) must be shown to not alter 
the t ruth of ajn¢ when the value of exp'  is true. The invariant ain~ must be devised by 
the user. The creation of this invariant is the major mental leap required by the user in 
the correctness proofs of ASPLE programs. 

For  s ta tement  trains [PT04], the generation of a terminal assertion involves two steps: 
• the generation of an assertion al' obtained from the assertion al from the previous 

s tatement  or declaration; 
• a proof tha t  the assertion al+l after each statement is provable from the assertion 

al' obtained from execution of the previous statement.  
In particular, the semantics of a s tatement  t rain is specified in [PT04] 

[PT04] 
S E M  S T M ( s t m l ;  s t m ~  . . . ; s t m n  :p)  ~- a l  {*} a f n + l  

~-- P R O V A B L E < a l  : a l '>  & S E M  ~ T M ( s t m l  :p)  = a l '  { s tm l}  a2 & 
P R O V A B L E < a 2  : a 2 ' )  & S E M  S T M ( s t m 2  :p)  = a2 '  { s tm~l  as  & 
• • . & 

P R O V A B L E < a n  : an ' >  & S E M  S T M ( s t m n  : p) = a n '  { s t m n }  an-I-I & 
P R O V A B L E < a n + /  : aln~-l>. 

[Before or after statements, a new assertion a /  may need to be created and demved 
from a,] 

f 
The creation of new assertions al ' ,  a2', • • • , an', and an+~ that  are provable from al, a2, • • • , 
an,  an+l reflect the mental leaps required by the user regarding proofs about subsequent 
statements.  

The semantics for ASPLE expressions are quite straightforward. For numeric expres- 
sions, for example: 
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IPT121 SEM E X P ( e x p  d- f ac  :p)  ~- s u m ( e x p ' ,  f ac ' )  
~- exp '  ~- SEM E X P ( e x p :  p) & f ac '  -~ S E M  E X P ( f a c : p )  & 

~)ER][VED P R I M  MODE(exp :  p) = I N T E G E R .  

[PTI4] SEM E X P ( f a c  * p r i m :  p) ~ , p r o d u c t ( f a c ' ,  p r i m ' )  
e -  f a c '  ~- SEM E X P ( f a c :  p) & p r i m '  -= SEM E X P ( p r i m :  p)~ & 

D E R I V E D  P R I M  M O D E ( p r i m :  p) -- INTEGER.  

the basic axioms for " s u m "  and "p roduc t "  over positive integers follow the usual rules 
for finite arithmetic: 

[fir23] 0, I M A X  e INTEGER.  

[PT24] ( i n t  ~ IMAX)  ~ s u e c ( i n t )  • INTEGER.  

[PT26] ( i n t  ~ 0) ~ p r e d ( i n t )  • I N T E G E R .  

and so forth. The number IMAX is the implementation defined maximum integer 75. 
For deferencing identifiers we have: 

[PT32] deref.(v, O) = v 

that is, dereferencing a value by zero refs yields the value itself, and 

[PT33] (id ~ = v) /~ (n >__ 1) ::) (dere f ( id ,  n )  = de re f (v ,  n - -  1)) 

that is, dereferencing a value by n refs results in removal of n refs. 
The axioms for ASPLE flies are straightforward, and are given in Table 3.2. 
As a final note observe that in the axiomatic approach a program may have many "se- 

mantics" in the sense that several mutually consistent final assertions are derivable from 
a given program. 

Examples of the Axiomatic Approach 

Consider the following simple ASPLE program: 

begin [01] 
int N,  I, SUM; [02] 
N := 10; [03] 
I := 0; [04] 
SUM := 0; [05] 
while (I  ~ N) do [06] 

I := I q- 1; [07] 
S U M  : = S U M  + I [08] 

end; [09] 
output SUM [10] 

end [11] 

For an empty input file 3, productions [PT01] through [PT03] specify that 

p ~- {N  ---* R E F  INTEGER, 
/ - ~  R E F  I N T E G E R ,  
S U M  -+  R E F  I N T E G E R  } 

a --  (N E R E F  I N T E G E R )  ^ (1 E R E F  I N T E G E R )  ^ ( S U M  E R E F  INTEGER) 

a p ~- a A aprim A (Fin = e m p t y  file) A (Four  = e m p t y  file) 

SEM STM(st  :p) --  a ' { s t } a  't 

The semantics of the program are specified by deriving a", where st  is the statement train 
in lines [03] through [10]. 
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The semantics of statement trains allow the creation and derivation of new assertions 
before using the semantic rules for each contained statement. From a' we may create and 
(trivially) derive the assertion 

? 
-- (a'A(N  =lo))fo  

Using production [PT05] for assignment after line [03].we may immediately derive 

a04 -- a' A ( N ~  -- 10) 

Similarly, we may derive 

a 0 6  ~--- a 0 4  A ( I ~  = 0)  A (SUM~ = O) 

Before execution of the while loop, the loop invariant must be created. This invariant is 
k- r  

This major mental leap is based on a proper abstraction from the while loop, that is, that 
the assertion a04 remains unchanged, that I ~ is always less than or equal to N ~, and that 
S U M  ~ represents the sum of integers up to I ~. This invariant is easily provable from 
a06, where I ~ -- 0. 

From production [PT09] we must now prove that the statement train in the body of the 
loop preserves the invariant aj.v, that is, 

ainv h n o t ( e q u a l  (/~,,  N J,)) {st} ainv 
Since from 

al, ,  A n o t ( e q u a l  (I ~, N $ )) 

we can readily make a mental leap to the assertion 

, (. ( )" ao~ ~- 04 A ( I ,  < N $  + 1) A SUM.{. = k 
\ k--O *r~+l 

after execution of statement [07] we have 

ao8 ~ ao4 A ( I ,L  < N,L - { - 1 )  A SUM,L = k 
\ k--O 

Similarly, after execution of statement [08], we have 

ao9 = ao~ h ( I ~ < N ~ + 1 )  h S U M S  \ k-6 / 

from which we can create and derive the assertion 

, ( a09 -- a04 A ( I *  _< N * )  ^ S U M *  = k 
\ k-O 

which is precisely the loop invariant ajnv. 
Accordingly, the semantics of the entire loop is specified as 

ainv h e q u a l  (I  ~ ,  N ~ ) 
from which we may assert 

Production [PT11] thus specifies that 

Fout = eat(55, e m p t y  file) 
which is the desired result. 

The major issue left in the semantics of ASPLE is that of indirect addressing. Consider 
the program given in Section 1, Informal Description of ASPLE [see page 197]: 
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begin [01] 
int I N T A ,  INTB:  [02] 
ref int REFINTA,  REFINTB;  [03] 
ref ref int REFREFINTA,  REFREFINTB;  [04] 

I N T A  := 100; [05] 
I N T B  := 200; [06] 
R E F I N T A  :ffi I N T A ;  [07] 
R E F I N T B  :ffi INTB;  [08] 
REFREFINTA :-- REFINTA;  [09] 
R E F I N T A  :ffi INTB;  [10] 
I N T B  := REFREFINTA;  [11] 
input REFREFINTA ; [12] 
output R E F I N T B  [13] 

end [14] 

For/~, the user-supplied input file, equal to cat(300, e m p t y  file) after the statement [13] 
we have the (partial) assertion 

( INTA $ = 100) h ( INTB ~ =300)  h (REFINTA ~ • INTB)  h 
(REFINTB ~ = INTB)  ^ (REFREFINTA ~ = REFINTA)  ^ 
(Fin -- e m p t y  file) h (Four -- cat(300,  e m p t y  file) 

The generation of this assertion from Table 3.2 is left to the reader. 
Finally, we discuss one important point. In the Production System given in Table 3.2, 

no explicit mention is made of cases where syntactically legal programs result in semantic 
errors. Like BNF and Production Systems with regard to the specification of syntax, se- 
mantic errors in the axiomatic approach can be deduced only by the impossibility of deriving 
a valid result. For example, in the semantic definition of assignment statements, the at- 
tempt to evaluate an arithmetic expression containing an undefined identifier results in 
an execution error. This error can only be deduced by observing that no assertions can be 
derived from an identifier whose dereferenced value is not defined. 

4. VIENNA DEFINITION LANGUAGE 

One of the earliest proposals for the rigorous definition of a programming language was 
Garwick's suggestion that an actual implementation be used [G1]. Two major objections 
to this technique are: 1) the inevitable encroachment of the host hardware into the language 
being defined; and 2) the restricted availability of the definition. To escape these objec- 
tions, the IBM Vienna Laboratories developed the idea of a hypothetical machine, as pro- 
posed by McCarthy [M1, M2], Landin ILl], and Elgot [Ell, on which to make an imple- 
mentation. This work led to the Vienna Definition Language (VDL) and was used origi- 
nally for a formal definition of PL / I  [L6]. 

Overview of VDL 

In VDL a formal definition is based on the concept of an abstract machine (see Figure 4). 
The meaning of a program is defined by the sequence of changes in the state of the abstract 
machine as the program is executed. The rules of execution are defined by an algorithm, 
the Interpreter. To make a distinction between those properties of a program that can be 
determined statically and those that are intrinsically connected to the dynamics of the 
program's execution, the original program is transformed into an abstracted form before 
execution. This transformation is performed by another algorithm, the Translator, which 
corresponds to the early phases of a compiler in a real computer system. During the trans- 
formation, the context-sensitive requirements on syntax can be checked. 
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ASSTRACT 
MACHINE 

I INTERPRETER 

~''~qt'~l iI~l~ ~ --( ~ ABSTRACTED| ~,. 
-- ~ TRANSLATOR , .,~ 

P R O ~ R A M ~ " ~ .  J PROGRAM I ~ ~OUTPUTDATA 

INPUT ~. I 
D A T A  f _ L, , /  

Figure  4. Schematic  of a p rogramming  language definit ion in VDL. 

The notation of VDL is fully defined in [I.A, L6, LT, W1]. In this section we give a brief 
description of notation, introducing only those parts that are needed for the definition of 
ASPLE. 

In VDL both the abstract machine and the program are objects. An object can be repre- 
sented as a tree. There are two classes of objects: elementary objects, with no components; 
and composite objects, with a finite number of immediate components that are also objects. 
Thus, in the tree representation, an elementary object is a terminal node and a composite 
object is a nonterminal or branch node. 

Figure 5 shows a representation of a composite object named A. This object has three 
immediate components, each uniquely named by its selector, x l ,  x~, or x , .  We denote the 
immediate component xl of A by x,(A). This is the elementary object B. Similarly, we 
denote the elementary object D by x , 'x , (A)  since D is the x, component of x,(A). The 
selector x,'x= is a composite selector. The application of a selector to an object that has no 
selector of that name yields the null object, denoted by ft. For example, xT(A) = ft and 
x , . x , ( A )  = ft. 

A 

/ % DE 

Figure 5. Composite VDL object. 

The composite object xs(A) has two components named x, and x~. These components 
are the elementary objects D and E, respectively. We may describe the construction of 
xa(A) by showing it as a set of two selector-object pairs: 

x,(A) --= (<x, : D>, <x~ : E>) 
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Similarly, we can show the construction of the composite object A by  a set of three selector- 
object pairs: 

A -- (<xl : B>, <X~ : C>, <x, : (<x, : D>, <x, : E>)>) 

The object in the third of these pairs is the composite object x,(A) whose composition was 
shown earlier. 

To specify subclasses of the class of objects, VDL uses predicates that are true for mem- 
bers of the subclass and are false for all other objects. All such predicates have the prefix 
is-, for example, is-f~(Z) will be true if and only if Z is a null object. 

Objects can be modified by using the ~ operator. The result of ~(A: <x, : F>) is an object 
constructed from a copy of A by: 

1) deleting the component x~(A), if it exists; 
2) adding a component <xl : F>. 

The result of ~(A: <x, : F>), where A is the object A of Figure 5, is a copy of A with the 
elementary object B replaced by the elementary object F. 

A special case of the ~ operation is the m operator which constructs a new object from a 
set of selector-object pairs. For example, the object A can be constructed by: 

~0(<Xl : B>, <X2 : C>, <X, : (<x, : D>, <x5 : E>)>) 

Objects that represent lists are often used in VDL. If L is an object that represents a 
list of n obj ects, none of them null, then the elements o f L are named by the selectors, e lem (i), 
1 < i < n. For such a list L, VDL also makes use of the elementary functions: 

length (L) 
head (L) 
tail (L) 

L1 ~ L2 

value n; 
object selected by elem(1); 
objects elem(1) (L), 2 _< i _< n, in the form of a list with selectors 
elem(j) ,  1 _< j _< n - l ,  respectively; 
concatenation of the two lists L1 and L2 to form a single list. 

By convention, all objects that satisfy the predicate is-x-list are lists each one of whose 
components satisfies the predicate is-x. The empty list is denoted by ( > and is different 
from the null object ~. 

Abstract Machine 

The abstract machine used to define ASPLE, the ASPLE Machine, is specified by its 
machine state ~. This is an object satisfying the predicate is-state which is defined by four 
predicate definitions in Table 4.1. Rule [M10] in this table: 

[M01] i s - s tate  = ((program: is-abs-program),  
]abstraction of concrete program] 

(control:  i s -abs-control) ,  
[control of abstract maehinel 

(store: is-abs-storage) ,  
( input :  i s -abs-const - l i s t ) ,  

[input file] 
(output :  i s -abs -const - l i s t )  

[output file] 
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shows that a composite object $ satisfying the predicate i s -s tate  has five components: 
1) program:  the abstracted program to be interpreted. This component will be de- 

scribed in the Subsection, VDL Representation of Programs [page 237]. 
2) control:  the control part of the Machine. 
3) store: the storage part of the Machine. 
4) inpu t :  the input file. 
5) output :  the output file. 
The control  part determines the action of the ASPLE Machine as the abstracted pro- 

gram is interpreted. The object selected by control  is an object that satisfies the predicate 
is-control .  This is a stack of machine operations that will be described in the Subsection, 
VDL Interpreter [page 248]. 

The storage part of the ASPLE Machine is defined by the predicate definition [14021 : 

[M021 is-storage = ({ ( i d :  i s - a b s - v a l u e )  II i s - a b s - i d e n t i f i e r ( i d ) } )  
[each element of the set of components of the storage part is selected by an identifier and is 
an object satisfying is-abs-value] 

The notation here is similar to set notation and defines the storage part as a finite set of 
selector-object pairs of the form (id: is-abs-value); a selector id and an object that satis- 
fies the predicate is-abs-value. The "-abs-" indicates that the object is part of the ab- 
stract machine. The latter part of the definition states that the selector id satisfies the 
predicate is-abs-identifier.  The value part of the pair represents an object that can be 
obtained by applying an identifier as a selector to the storage component of the ASPLE 
Machine. 

The predicate is-abs-value is defined by the predicate definition [M03] : 

[Mo3] i s - a b s - v a l u e  = i s - a b s - c o n s t  ~ / i s - a b s - i d e n t i f i e r  

By this rule, an ASPLE value is either a constant or an identifier. The input and output 
files, input(G) and o u t p u t ( 0  respectively, are objects satisfying the predicate is-abs- 
const-Iist .  These objects are therefore lists of objects each element of which satisfies is- 
abs-const .  By rule [1404]: 

[M04] is-abs-const  = i s - a b s - b o o l e a n  V is-abs-integer 

an object that satisfies is-abs-const  will be one that satisfies either is-abs-boolean or 
is-abs-integer.  

The second part of Table 4.1 defines the initial state of the ASPLE Machine, ~0: 

G0 ffi m ( ( p r o g r a m :  t r a n s l a t e ( P R O G ) ) ,  
[initialized by performing translate function on the concrete program PROG] 

(control: interpret-program), 
(store: fl 
( input: [input file for program, obtained from a source outside this definition]) 
(output:  i s - ( ) ) )  [output file is initially empty] 

The program part of the ASPLE Machine is an abstracted ASPLE program, described 
in the Subsection, VDL Representation of Programs [page 237]. The program part is ini- 
tialized by attaching with the selector program the object obtained by evaluating the func- 
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[MOI] is-state 

[M02] Is-storage 

(•program Is-abs-program>, 
• c o n t r o l '  is-abs-control>, 
<store is-abs-stora[e>, 
<Input Is-abs-const-llst>, [znput f~le] 
< output Is-abs-const-llst>) [ o u t p u t  fvle] 

[abstraction of concrete program] 

[control of abstract maohvne] 

({<ld Is-abs-value> [ I  i s -abs- lden t l f l e r (~d) } )  

[each  e l e m e n t  o f  the s e t  o f  components  o f  the  s t o r a g e  
part * e  selected by an *dent~fler and ~a an oboect 
satvsfyvng vs-abs-value] 

[M03] Is-abs-value Is-abs-const v Is-abs-ldentlfler 

[M04] Is-abs-const = ls-abs-boolean v Is-abs-lnteger 

[INITIAL STATE OF THE ASPLE MACHINE] 

~o(<program. translate(PROG) ~, [vnzt~alzzed by performzng t r a n s l a t e  f u n c t $ o n  on the  
concrete peoqram PROG] 

<control" interpret-program>, 
<store fl , 
<Input [znput f~e for program, obtained from a source outside this def~nitlon]> 

<Output: IS-<>>) [The output f~le is ~nitially empty] 

T A B L E  4.1 .  D E F I N I T I O N  OF THE A S P L E  M A C H I N E  STATE 

tion translate with PROG, the VDL representation of the original source program. The 
Translator is described in the Subsection, VDL Translator [page 241]. The control part of 
the ASPLE Machine is initialized to the machine operation interpret-program, which is 
described in the Subsection, VDL Interpreter [page 248]. The storage part of the ASPLE 
Machine is initially empty, reflecting the ASPLE rule that the values of all variables are 
undefined at the start of execution. The input file is initialized to the input data for the 
program and the output file is initialized to an empty list. 

VDL Representation of Programs 

The input to the ASPLE Translator is a class of objects, concrete-programs, that satisfy 
the predicate is -c-program defined in Table 4.2. The "-c-" indicates that the object is 
part of the concrete program. This definition is derived directly from the BNF syntax of 
ASPLE shown in Table 1.1. There is a one-to-one correspondence between concrete pro- 
grams and the character-string representation of well-formed ASPLE programs. 

The definition of concrete programs makes use of certain standard selectors, si, s2, . . .  
assumed to be mutually distinguishable. Objects with these selectors are objects whose 
structure differs from VDL lists only in that some of the components may be null. These 
objects are referred to as "slists." A function, s length,  that corresponds to the length  
function for VDL lists, gives the minimum value n such that for all i > n, st selects the 
null object. 

Informally, the correspondence between the predicate is -c-program and the context- 
free syntax of ASPLE can be seen by comparing production [B01] of Table 1.1: 

[B01] ( p r o g r a m )  : :=  b e g i n  <dc l  t r a i n )  ; 
( s t m  t r a i n )  end 
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[co~] 

[co2] 

[co3] 

[co4] 

[co5] 

[co6] 

[co7] 

[co8] 

[C09] 

[c~o] 

[ c~ ]  

[c~2] 

[C13] 

[C14] 

[c~5] 
[c16] 

[C l7 ]  

[c~]  

[C19] 

[C20] 

[c21] 

[c~2] 

[c~3] 

is-c-program 

] s - c - d c l - t r a ~ n  

1 s - c - s t ~ - t r a l ~  

i s - c - d e c l a r a t l o n  

~s-c-s~atement 

~s-c-mode 

l S - c - ~ d l l s t  

i s -c -asg t -s tm 

IS-C-cond-stm 

~s-c- loop-stm 

IS-C- ,nput -s tm 

lS-C-output-s tm 

I s - c - e l s e - p a r t  

lS-C-exp 

~s -c - fac to r  

~s-c-pr~mary 

,s -c -parenthes lzed-exp = 

,s-c-compare 

~s-c-bool -const  

I S - C - l n t - c o n s t  

~s-c-~d 

~s-c-d~g~t 

~ s - c - l e t t e r  
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(<S1 1s-beg~n>, <s 2, ~ s - c - d c l - t ~ l ~ > ,  <s 3. 1S-~>, 
<S~' I s - c - s t m - t r a l n > ,  <s5: Is-end>) 

(<s-del is-x>~ <s t " I s -c -dec la ra t10n>,  . ) 

(~s-de l :  , s -x> ,  <s I Is -c -s ta tement> ,  . .  ) 

(<s I '  is-c-mode>. <s 2' i s - c - l d l l s t ~ )  

i s -c -asg t -s tm v Is-c-cond-stm v Is-c-100p-stm v lS-C- lnput -s tm 

v i s - c -ou tpu t - s tm  

(<s~ ~s-~ v (<s I I s - t e l > ,  . )>, <s 2 I s -boo l  v I s - ~ . t > )  

(<s-del ,s-~>,  <s I l S - c - l d > ,  ) 

(<s I i s -c -~d>,  <s 2 is - - - -> ,  <s 3 Is -c -exp>)  

(<si  i $ -~ f> ,  <s 2" I s -c -exp>,  <s 3 , IS- then>, <s 4 I s - ¢ - s t m - t r a l n > ,  

<s 5 IS-R v i s - c - e l s e - p a r t > ,  <s~ IS- f~>)  

(<s l '  lS-~h~le>, <s 2 lS-C-exp>, <s 3 is -do>,  <s 4 i s - c - s t m - t r a l n > ,  

<S 5 1s-end>) 

(<s I lS-~npUt>o <s 2 lS - c - l d> )  

(<s I • I s - o u t p u t > ,  <s 2 ,s -c -exp>)  

(<s I Is-eZse>, s 2 • i s - c - s t m - t r a l n > )  

I s - c - f a c t o r  v (<s I i s -c -exp> ,  <s 2" Is -~>,  <s 3 I s - c - f a c t o r > )  

i s - c -p r lmary  v (<sl  i s - c - f a c t o r > ,  <S 2 IS-~>, <s 3 I s -c -p r lmary>)  

I S - c - l d  v I s - c - b o o l - c o n s t  v I s - c - i n t - c o n s t  v I s -c -paren thes lzed-exp  

(<s I i s -~>,  <s 2 I s -c -exp  v Is-c-compare>, <s 3 i s - ) > )  

(<s I • lS-C-exp>, <s2: Is -= v i s - f > ,  <s 3 lS-C-exp>) 

1S- t rue v 1S-fals~ 

(<S I l S - c - d l g l t >  . . . .  ) 

(<s I ~ s - c - l e t t e r > ,  ) 

1 S - O V 1 S - ] V .  v l S - 9  

1 S - A V 1 S - B V . . . V 1 S - Z  

TABLE 4.2. DEFINITION OF PREDICATE IS-C.PROGRAM 

with definition [C01] of Table 4.2: 

[col ] i s - c - p r o g r a m  = (<Sl : is-begin), <s2 : i s - c - d c l - t r a i n > ,  <s3 : i s - i ) ,  
<s4 : i s - c - s t m - t r a i n > ,  <ss : is-end>) 

Definition [C01] specifies that an object satisfying i s - c - p r o g r a m  has five immediate com- 
ponents with names s l ,  . . .  , ss. Three of these components, those selected by Sl ,  s8, and 
ss ,  are elementary objects satisfying the predicates is-begin, is-;, and is-end, respectively. 
These elementary objects correspond to the begin, ; ,  and end shown in [B01]. The other 
two components are composite objects corresponding to the (dc l  t ra in )  and <stm t ra in )  
of Table 1.1. 

The component selected by s2, is an object satisfying i s - c - d c l - t r a i n ,  defined in rule 
[C02]: 

[C02] is-c-dcl-train = (<s-del: is-.;), <Sl : is-c-declaration> . . . .  ) 

This predicate definition shows the V D L  convention for representing a sequence of items 
separated by a delimiter. The special selector s -de l  selects an elementary object repre- 
senting the delimiter, and s l ,  s2,  • • • select the successive items of the sequence. Thus an 
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object satisfying is-c-dcl-train represents a sequence of declarations separated by semi- 
colons. The declarations are represented by objects satisfying is-c-declaratlon. For 
example, a declare train consisting of three declarations could be represented by the tree 
shown in Figure 6. Each of the objects dl, d2, and d3 satisfies the predicate is-c-declara- 
tion. 

dl d2 d3 

Figure 6. Tree representation of declaration train. 

The objects that satisfy is-c-declaration have two components defined by the predi- 
cates i s -e-mode and is-c-idlist.  The first of these predicates is defined in rule [C06]: 

[co6] i s - e - m o d e  -- ( ( s !  : is- l ]  V ( ( s l  : i s - t e l ) ,  . . . ) ) ,  ( s2  : is-boot V is-int)) 

An object that satisfies i s -c-mode has two components. The first is either t ,  the null ob- 
ject, or is a list of elementary objects defined by is-tel. The second component is an ele- 
mentary object that satisfies either is-bool or is-int. A tree representation of the object that 
corresponds to the mode declaration: 

ref ref ref int 
is shown in Figure 7. 

ref ref ref 

F i g u r e  7. O b j e c t  s a t i s f y i n g  i s - e - m o d e  

The remainder of Table 4.2 completes the definition of the predicate is-c-program. 
The algorithm that converts the character-string representation of an ASPLE program 
into the corresponding VDL object is not specified in this definition. Because of the one- 
to-one correspondence between syntactically correct ASPLE programs and objects satis- 
fying is-c-program, Table 4.2 defines the context-free syntax of ASPLE. 

The ASPLE program executed by the ASPLE Machine is obtained from concrete pro- 
grams by removing the syntactic devices that were associated with their character-string 
representations. These abstracted programs are the essence of the corresponding ASPLE 
programs. Abstracted programs are objects that satisfy the predicate is-abs-program 
defined in Table 4.3. The definition of the elementary objects has been left somewhat in- 
formal, indicated by the use of italic type. Some of these predicates and elementary objects 
are used in the Machine-state. 
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The degree of abstraction between concrete and abstracted programs is, to a certain ex- 
tent, a matter of the definer's choice. In this definition, the aim has been to define an ab- 
straction that leaves only those parts of an ASPLE program that are essential for execution. 

Abstracted ASPLE programs are simpler than the corresponding concrete programs. 
There are .no declarations and the only explicit type information is contained in the 
abstraction of the input statement. The type information is needed there to check that the 
types of the input value and target value match. There is, however, some implicit type 
information contained in the representation of operators. For example, either pZu~ ores,  
depending on the type of the operands, are used to represent the -t- operator of the original 
program. This is a similar situation to that which exists in compiled machine code for real 
computers where there is implicit type information contained in the choice of the operation 
codes. 

[AOI] }s-abs-program f f i  ~s-abs-statement-l~st 

[A02] is-abs-statement ~s-abs-asslgnment v Is-abs-condltlonal v Is-abe-loop v is-abs-lnput 
v is-abe-output 

[A03] is-abe-assignment (<target is-abs-ident~f~er>, <source" is-abs-expr>) 

[A04] Is-abs-cond~tlonal (<condltlon' is-abs-expr>, <true-part is-lbs-statement-llst>. 

<false-part is-abs-statement-llst>) 

[the false part may be an empty l~st] 

[AOS] is-abs-loop (<condition: is-abs-expr>, <body is-abs-statement-llst>) 

[A06] is-abs-lnput (<target is-abs-loc>, <mode" is-abs-mode>) 

[the mode part g~ves the mode of the target so that the 
mode of the ~nput value can be checked] 

[AOI] ~s-abs-output (<source ~s-abs-expr>) 

[AO8] is°abs-loc (<name" is-abs-ldentl f ler>, <deref' is-abs-lnteger>) 

[a location ~ an ~dent~f~er to which the deref operation 
zs to be applied a specified number of t$mes] 

[AO9] Is-abs-expr Is-abs-value v Is-abs-lnf~x-op v is-abs-loc 

[AIOJ Is-abs-value Is-abs-const v is-abs- ldent i f ler  

[A l l ]  Is-abs-const Is-abs-boolean v Is-abs-lnteger 

[AIZ] ~s-abs-lnflx-op (<operand-l' is-abs-expr>, <operand-2 Is-abs°expr>, 
<actlon is-abs-operator>) 

[AI3] is-abs-mode ~ set of two elementary objects represented by (~nt, booZ}) 

[A14] is-abs-ldentlfler = ~n ~nf~n~te set of d~st~ngu~shable elementary objects] 

[A15] is-abs-lnteger ~n ~nf~n~te set of elementary objects denoting the ~nteger values. 

The subset that denotes the ~nteger values less than ]0 ~s 

represented by ~0, ~ .... , ~}I 

[A16] ls-abs-boolean = ~ set of two elementary objects denoting truth values and 

~epresented by J t~, ~£~¢} | 

[AI~] lS-abs-operator = ~ set of elementary objects represented by J~£~, m~Z~, S~, ~d, 

[T~e sets of elementary objects sat~sfyln~ the predicates is-abs- ldent l f ler ,  is-abs-integer, 
Is-abs-boolean, is-abs-mode, and Is-abs-operator are mutually exclueive.] 

TABLE 4 .3 .  DEFINITION OF THE PREDICATE IS-ABS-PROGRAM 
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VDL Translator 

The construction of an abstracted program from its corresponding concrete program is 
defined by an algorithm, the Translator. This algorithm checks that the concrete program 
satisfies the context-sensitive requirements of ASPLE and, if so, constructs the correspond- 
ing abstracted program. The Translator is defined by the set of functions, many of them 
recursive, specified in Table 4.4. To explain the notation of this table, we describe the work- 
ing of some of these functions. 

Generally, the functions consist of conditional expressions of the form 

p l  ---~ e l  , p 2  - - +  e 2  , " "  , p ~  ---~ e ~  

where p, is a predicate expression and e, is an expression defining an action to be taken. 
The value of this conditional is the value of the first evaluated expression e, for which p, 
is true. In this definition, the conditional expressions are all written so that at least one 
predicate is true. 

The top-level function t rans la te  is defined in [T01]: 

IT01 ] t r a n s l a t e ( t )  -- 
p r o g r a m - l e n g t h ( t )  ~ n l  --* t r a n s - p r o g r a m ( t )  
t r u e  --~ error  [program too long] 

This function has a single parameter, t, corresponding to an object satisfying the predicate 
is-c-program. The function is evaluated in the process of initializing the Machine-state 
with PROG, the VDL representation of the source program. 

The function translate checks that the length of the program, calculated by program- 
length, is less than the implementation defined limit, n l .  If this condition is satisfied, 
the abstracted program obtained by evaluating t rans-program(t)  is returned as the value 
of translate. This abstracted program will be attached as part of the initial Machine-state 
G0 by the selector program (see Table 4.1). If the length of the program is too great, the 
Translator terminates in an error. This is typical of the checks that the Translator makes. 
If the program being translated fails a test, the process is stopped and the program is left 
undefined. 

The function t rans -program [T02]: 

[T02] t r a n s - p r o g r a m ( t )  = 
n u m b e r - o f - i d e n t i f i e r s ( s ~ ( t ) )  < n2 [n~ is  an implementation defined maximum] 

-~ t r a n s - s t m - t r a i n  (s4 (t ) )  
t r u e  -~ error  [too many variables declared] 
[where: i s - c - d e l - t r a i n ( s 2 ( t ) )  and i s - c - s t m - t r a i n ( s 4 ( t ) ) ]  

first checks that the number of variables declared is less than the implementation defined 
maximum, n2. The number of variables declared is obtained by evaluating number-of-  
identifiers with the argument s2(t). This function also checks that no identifier is declared 
more than once. The parameter t of trans-program is PROG that was passed on by trans- 
late. Applying the selector s2 using rule [C01] selects the object representing the declare 
train. While counting the number of variables declared, number-of- ident i f iers  also 
checks that no identifier is declared more than once. If there are not too many declared 
identifiers, t r an s - s tm- t r a in  is evaluated with the s4(t), which is the statement train. 

The translation of the statement train is specified in statement [T03]: 

[1"03] 
t r a n s - s t m - t r a i n ( t )  = 

s l e n g t h ( t )  = 0--* ( )  [if the statement train conlains no statement, return an empty list; this can arise 
when translating the else part of a conditwnal] 

t r u e  --* m ( { ( e l e m ( i ) :  t r a n s - s t m t ( s i ( t ) )  > J[ 1 < i • s l e n g t h ( t ) } )  
[where: i s - c - s t a t e m e n t ( s i ( t ) ) ,  1 _~ i _~ s l e n g t h ( t ) ) ]  
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[TOI] t rans]ate( t )  = 
program-length(t) ~ n I --* trans-program(t) 
true ~ error [program too long] 

IT02] trans-program(t) = 
number-of-~dentlf lers(s2(t)) < n 2 [n 2 ~e an ~mplementat~on defined maximum] 

trans°stm-tra~n(s ( t ) )  
true ~ error [too many variables declared] 

[where 1s-c-dc1-traln(s2(t))  and lS-C-stm-tra~n(s~(t))] 

[TO~] t rans-stm-t ra ln( t )= 
slength(t) = 0 -~ <~ [~f the etatement train contains no statement, return an 

empty l~st, this can ar~se when translating the else 
part of a conditional] 

true -'~ ~o({<elem(1) trans-stmt(s~(t))> lJ I ~ ~ ~ s length( t ) } )  

[where Is -c-s ta tement(s l ( t ) ) .  1 ~ 1 ~ s length( t ) ) ]  

IT04] trans-stmt(t)= 
IS-C-asgt-stm(t) 
is-c-cond-stm(t) 
is-c- loop-stm(t) 
~s-c-lnput-stm(t) 
is-c-output-stm(t) 

[TO5] trans-asgt-stm(t)= 
valld-mode-for-asslgnment(t) 
true 

[TO6] 

trans-asgt-stm(t) 
trans-cond-stm(t) 
trans-loop-stm(t) 
t rans-~put-s tm(t )  
trans-outpu~ stm(t) 

translate-assignment(t) 
error [modee not compatible for assLgnmentl 

translate-assignment(t} = [~f the reference chain length of the target ~e I then 
the r~ghthand s~de ~s treated as an expression, other- 
w~ee the r~ght e~de ~s a reference and the appropriate 
amount of de-referencing mue~ be calculated] 

ref-chaln- length(s1(t))  = ~ ~ Uo(<target: make-ld(s1(t))>, 
<source: trans-exp(s3(t))>) 

true ~ po(<target • make-ld(s1(t))> , 

<source: t rans- re f (ss ( t ) .  
ref-cha~n-length(s1(t))- l> ) 

[where lS-c-ld(Sl(t))and IS-c-exp(s3(t) ) ]  

IT07] trans-cond-stm(t) = 
prlmltlve-mode(s2(t)) = boo[ --~ 

~o(<condltlon. trans-expr(s2(t))>, <true-part" t rans-stmt- t ra ln(s~( t ) )>,  
<false-part.  t rans-stmt-traln(s2oss(t))> ) 

true ~ error [mode of conditional expression not 
boolean] 

[where. i s -c-exp(s2( t ) ) ,  i s -c -s tm- t ra ln (s~( t ) ) ,  and i s -c-s tm-t ra ln(s2oss( t ) ) ]  

[TO8] trans-]oop-stm(t)= 
prlm~tlve-mode(s2(t)) = boe£ ~ ~o(<cond~tlon trans-expr(s2(t))> , 

<body" t rans-s tm- t ra ln(s . ( t ) )>)  
true ~ error [mode of conditional expression not 

boolean] 

[where Is -c-exp(s2( t ) ) ,  and I s -c -s tm- t ra ln (s4( t ) ) ]  

[TOg] trans-lnput-stm(t)= 

po(<target, trans-ref(s2(t), !)>, <mode' prlmltlve-mode(s2(t))>) 

[where Is-c-ld(S2(t))] 

TABLE 4.4. ASPLE TRANSLATOR 
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[TIu] ~rans-output-stm(~)= 
valid-exp(t) ~ uo(<Source, trans-exp(s2(t))>) 

true ~ error [~nval~d expression] 

[where Is-c-exp(s2(t))] 

243 

[T~] trans-exp(t)= 

~s-c-bool-const(t) 
~s-c-~nt-const(t) 
~s-c-ld(t) 
~s-c-parenthes~zed-exp 
true 

make-bool-const(t) 
--~ make-lnt-const(t) 

trans-ref(t,O) [dereference sufficiently to get value] 

trans-exp(so(t)) It ~8 a parenthesized expression] 

uo(<operand-I trans-exp(s~(t))>, <operand-2: trans-exp(s ( t ) )>,  
<actlon" make-operator(t)>) 

[~f t ~s not a constant, ~dent~f~er, or parenthesized 
expression then t consists of two operands and an operator] 

IT]2] t rans-ref ( t ,n)= [construct a reference to a variable such that the length of the 
reference chain of the value ~s n] 

~o(<name: make-~d(t)>, <deref- ref-chaln-length(t)-n> 

[Tl3] 

[T14] 

[Tl5] 

I T 1 6 ]  

[Tl7] 

make-ld(t)= 
slength(t) < n 4 [~mplementation defined maximum] 

~[an elementary object satisfying ~s-~dent~f~er such that 

( v t l , t  2) (~s-c- ld( t  I )  & is -c - ld ( t2 )  & (make-id(tt) : 
make-ld(t 2) • t1= t 2) ) that ~s, there ~s a one-to-one mapping 

hetween t and the result of this operation] 

true ~ e r r o r  [~dent~f~er longer than implementation defined length] 

make-bool-const(t)= 
~s-true(t) ~ true 
I s - fa l se ( t )  ~ ~aZse [there can be no other possibility] 

make-lnt-const(t)= 
value-of- ln t -const( t )  ~ n 5 
true 

value-of- int-constant( t )= 
IS-C(t ) ~ 
l s - ~ ( t )  ~ I 

value-of - ln t -const ( t )  
error [integer constant too bsg for 

~mplementat~on] 

Is-9_(t) ~ 9_ 

slength(t) < n 3 
iml 

t r u e  ~ [ t o o  many 

[where l s - c - d l g l t ( s l ( t ) ) ,  1 -< 1 

make-operator(t)= 

pr~mltlve-mode(sl(t)) = bool & 
prlmlt lve-mode(s/(t))  = booZ & 
prlm~tlve-mode(s1(t)) = ~__~_~ & 
prlmlt lve-mode(Sl(t)) = ~._~_~ & 
prlmltlve-mode(s1(t)) = ~ t  & 
prlmltlve-mode(s1(t)) = ~r~t & 

[where is-c-exp(sl ( t ) ) ]  

slength(t) 
¥alue-of-lnt-const(s1(t) ) olO + (slength(t)-i) 

d~g~t s  vn ~ n t e g e r  c o n s t a n t ]  

slength(t)] 

IS-~(s2(t)) ~ o~ 
Is-~(s2(t)) ~ an~ 

IS-~(s2(t)) ~ 

~s-~(s2(t)) ~ muZt 
l S ' ~ ( S 2 ( t ) )  ~ equaZ  

l S ' L ( s 2 ( t ) )  ~ n o t e q u ~ l  

TABLE 4.4--Continued 
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prlmltive-mode(t) = [check validity of expression and obtain ~e primtt~ve mode] 

~s-c-~d(t) ~ prim~t~ve-mode-of-~d(t) 
~s-c-bool-const ~ boo£ 

is -c- ln t -const  ~ ~n£ 

~s-c-parenthes~zed-express~on(t) ~ pr~m~tlve-mode(s2(t)) 
val~d-compare(t) ~ boo£ 

val~d-exp(t) ~ prlm~t~ve-mode(s.(t)) 
[primitive mode ~f valid expression ~s 
primitive mode of e~ther operandi 

true ~ error [invalid expression] 

ref-chaln- length(t )  = 
] s -c - ]d ( t )  --~ slength(s~,mode-of-~d(t))+ 

[th~s is an elementary object satisfying ~s-~nteger] 

true ~ I 
[where s1~mode-of-ld(t) ~s the l~st of ref~s ~n the declaration of the 

~denti~er t ]  

prlmlt~ve-mode-of-ld(t)= 

~ s . b o o l ( s 2 ( m o d e . o f . l d ( t ) )  ) ~ boo£ 
IS_~nt(s2(mode.of.~d(t)) ) ~ ~n~ 

[T21] mode-of-ld(t)= [f~nd declaration that contains ~dent~f~er equal to t and select 
mode part of declarat~onl 

(3:< I ) (Xl,S2(PROG)=t)~ s1, ( ( ix  2) (Is-c-declaratlon(x2(PROG)) & 
( 3i ) (s 1*s2,x 2 (PROG)=t))) (PROG) 

true ~ er~'or [~dent~f~er was not declared] 

[where I s-c-dc l - t ra ln (s2 (PROG)) ] 

[T22] program-length(t)= 
- l ls-sl  i s t ( t )  ~ /. 

slength(t) 
true ~ ~ program-length (sl ( t ) )  

i=1 

[TZ3] number-of-ident i f lers (t)= 
slength(t) 

val ld-declare-traln ( t )  ~ ~ slength(s2,sl ( t ) )  
I=I 

true 
[where 

[T24] 

error [duplicate declarations ~n declare train] 

~s-c- ld l ls t (s2es1( t ) ) ,  l ~ i ~ s length( t ) ]  

va l ld -dec la re - t r ' In ( t )=  
] ( ] x i , x 2 )  (xl#x2 & l s - c - l d ( x l ( t ) )  & I s -c - ld (x2 ( t ) )  & x1(t) = x2( t ) )  
[th~s ~s only true of the declare train t ~f there do not exist two d~fferent 
selectors that select equal ~dent~fiers, ~.e., ~f there are no duplicate 
declarations] 

[T25] valld-mode-for-asslgnment(t): 
(prlmltlve-mode(s1(t)) = prlmltlve-mode(ss(t)) & 

( re f -cha ln- length(s l ( t ) ) -  ~ ( re f - cha ln - leng th (s3 ( t ) ) )  

[true ~f the mode of the r~ght etde of an assignment statement ~s valid for 
assignment to the left s~de] 

[where IS-C-ld(s1(t))  and is-c-exp(s3(t))  ] 

[T26] valld-compare(t)= 
Is-c-compare(t) & (prlmltlve-mode(~1(t)) = ~n~) & (prlmltlve-mode(s3(t)) = ~m___.££) 
[where I s -c -exp(s l ( t ) )  & Is-c-exp(s3(t))  ] 

[T27] val ld-exp(t)= 
l ls-~(s2( t ) )  & ] I s -~ (s2( t ) )  & (prlmltlve-mode(s1(t)) = prlm~tlve-mode(s3(t)) ) 
[where Is-c-exp(s1(t))  & is-c-exp(s2(t))  ] 

TABLE 4.4.--Continued 
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In this function, if the parameter is the null obj ect, then an empty list is returned. This could 
happen while translating the conditional statement if the else-part is empty. Otherwise, 
trans-stm-train returns a list constructed by applying the ~0 operation to the result of 
evaluating trans-stmt for each statement of the train. 

The Translator often uses predicate functions for making context-sensitive checks. For 
example, the predicate valid-mode-for-assignment, defined in statement [T25]: 

[T25] 
v a l i d - m o d e - f o r  - a s s i g n m e n t  ( t )  = 

( p r i m i t i v e - m o d e ( s l ( t ) )  = p r i m i t i v e - m o d e ( s 3 ( t ) )  & 
( r e f - e h a i n - l e n g t h ( s l ( t ) )  --  1 _< r e f - c h a i n - l e n g t h ( s 3 ( t ) ) )  

[true i f  the mode of the right side of an assignment statement is valid for assignment to the left side] 
[where: i s - e - i d ( s l ( t ) )  and i s - c - e x p ( s 3 ( t ) ) ]  

is true if the modes of the expression and the target of the assignment statement t are 
compatible. This predicate specifies the rule needed for legal modes in assignment; that is, 
the primitive modes of both sides must be identical, and the number of levels of indirection 
of the source and target must be compatible. The functions pr imi t ive-mode and ref- 
cha in - leng th  are defined in statements [T18] and [T19], respectively. 

The function mode-of- id  [T2I]: 

IT21] 
m o d e - o f - i d ( t )  = [find declaration that contains identifier equal to t and select mode part of declaration] 

(~ ]x~) (x I ' s2 (PROG)  = t )  -+ sl" ( ( ~ x ~ ) ( i s - e - d e c l a r a t i o n ( x ~ ( P R O G ) )  & 
(~li) ( s l . s2 .x2 (PROG)  = t ) ) )  ( P R O G )  

t r u e  -~ error [identifier was not declared] 
[where: i s - c - d c l - t r a i n  (s2 ( P R O G ) )  ] 

checks that there exists a declaration for the identifier t and, if so, selects the mode part 
of the declaration of t. The existence of the declaration is verified by the predicate 

(3xl)(xl.s2(PROG) = t) 

which is true if and only if there exists a composite selector xl which, when applied to 
s2(PROG), yields the identifier t. The object s2(PROG) is the declare train from the con- 
crete program; see rule [C01]. If the selector x, exists, then there must be an occurrence of 
the identifier t in the declare train, and t must have been declared. If xl does not exist, 
then t has not been declared and the program is in error. 

If there is a declaration of t, then the value of mode-of-id(t) is 

s l"(( ,X~) ( i s - c - d e c l a r a t i o n ( x 2 ( P R O G ) )  & 
( 3 i )  ( s i ' s 2 " x z ( P R O G )  = t ) ) )  ( P R O G )  

The iota function, e, applied here yields the composite selector x2, which satisfies two con- 
ditions. The object x2(PROG) must be a declaration and there must exist an i such that 
s,.s2.x2(PROG) is equal to t. If x~(PROG) is a declaration, then s2.x2(PROG) is the 
list of identifiers being declared; see rule [C04]. Applying s, to this list of identifiers yields 
an identifier. This condition requires that x~ select the declaration that contains t in the 
identifier list. We know that x~ must be unique; otherwise, the function declare train [T23] 
would have detected an error. The iota function thus yields the unique composite selector 
x2 such that x~(PROG) is the declaration of t. Applying the selector sl to this declaration 
yields the mode of t. 

The translation process thus consists of executing a sequence of operations that pass 
back a value to the caller. The final result, provided all the validity checks are passed, is 
the translated program. This is attached as a component of the initial Machine-state. 
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Interpret°program = lnterpret-statement- l ls t (program({))  

In te rpre t -s ta tement - l l s t ( t )  

Is-<>(t)  ~ ~ [ z f  t is empty l~st. do nothing] 
true ~ in te rp re t -s ta tement - l i s t ( ta11( t ) ) ;  

Interpret-statement(head(t)) 

[I03] ~nterpret-statement(t) = 

Is-abs-ass~gnment(t) 
is -abs-condl t lonal ( t )  

Is-abs-loop(t)  
lS-abs-lnput(t)  
Is-abs-output(t) 

[I04] Interpret-asslgnment(t) = 

[defines ~nterpretat~on sequence 
of statements in program] 

interpret-asslgnment(t) 
i n te rp re t -cond l t lona l ( t )  
in te rpre t - loop( t )  
in te rpre t ° inpu t ( t )  

in terpret -output ( t )  

ass lgn( target( t ) ,  value), [evaluate the r~ght s~de then pass value to asszgn 
operation] 

value eval-exp (source(t)) 
[where i s - a b s - l d e n t l f l e r ( t a r g e t ( t ) )  and ls.abs-exb(source(t) ) ]  

[I05] In terpre t -cond l t lona l ( t )  = 
eval -exp(condl t lon( t ) )  = true --+ ]~ te rp re t -s ta tement - l l s t ( t rue -par t ( t ) )  
true ~ In terpre t -s ta tement° l l s t ( fa lse 'p  a r t ( t ) )  

[where Is -abs-s ta tement - l l s t ( t rue-par t ( t ) ) ,  l s -abs -s ta tement - l l s t ( fa l se -pa r t ( t ) ) ,  

and Is-abs- expr (cond l t lon( t ) ) ]  

[I06] in terpret - loop( t )=  
eval-exp(condl t lon( t ) )  = true --+ ~nterpret - loop( t ) ,  

~nterpret-statement- l ls t (body(t))  

true ~ 
[where is-abs-expr(condlt lon(t))  and Is-abs-statement- l ls t (body(t))  

[I07] Interpret-~nput(t)= 
asslgn(destlnatlon, value), 

destlnat~on eval-ref(nameotarget(t) ,  dere fe target ( t ) ) ;  
value read(mode(t)) 

[where I s -abs - loc ( ta rge t ( t ) ) ,  is-abs-mode(mode(t))] 

[I08] ~nterpret-output(t)= 
wr l te(va lue) ,  

value eval-exp(source(t)) 

[io9] evai-exp(t)= 
Is-abs- loc( t )  
Is-abs- lnf~x-op(t)  

eval°ref(~ame(t),  de re f ( t ) )  
overate(valuel,  value2, ac t l on ( t ) ) ;  

valuel '  eval -exp(operand- l ( t ) ) ,  
value2- eval-exp(operand-2(t)) 

Is-abs-value(t) --+ PASS t 

operate(vl ,  v2, op) = 

op = pZu~ ~ add(vl, v2) 
op = mult ~ mult~ply(vl ,  v2) 
op = o~ ~ l o g l c a l - o r ( v l ,  v2) 

op = a n d  ~ log lca l -and(v l ,  v2) 
op = equaZ --+ compare-equal(vl, v2) 
op = notequaZ --+ compare-notequal(vl, v2) 

T A B L E  4.5. DEFINITION OF THE A S P L E  INTERPRETER 

[ l lO]  
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[~]2] 

[II~) 

I l l 6 ]  

A Sampler of Formal Definitions 
add(a,b)= 

a + b < ns[an ~mplementat~on-def~ned maximum] 
t rue 

mul t~p ly (a ,b)=  

a b • n5[an ~mplementatvon-def~ned maximum] 

t rue 

• 247 

PASS a + b 

--~ PASS. implementat lon-def lned r e s u l t  

PASS a b 

PASS: ~mpleme~tat~on-def~ned r e s u l t  

l og~ca l -o r (a ,b )  = 

a = t r u e  ~ PASS" t r u e  

t rue ~ PASS b [~f a ~s false, the value is the value of b] 

lo91ca l -and(a,b)  

a = ~alse ~ PASS ~alae 

t rue ~ PASS b [~f  a ~s true, the value ~s the value o f  b] 

compare-equa1(a,b)= 

a = b ~ PASS t rue  

a ~ b -+ PASS. ~aZse 

compare-not-equal(a,b)= 

a - b --* PASS ~aZ~e 

a # b --* PASS t r ue  

[ I 1 7 ]  ass l gn ( t a rge t ,  value)= 

= p ( s t o r e ( C ) :  

I l l S ]  e v a l - r e f ( I d ,  n)= 

n = 0 

t rue 

I l l 9 ]  dere ference( id)=  

3 ~ s - ~ ( I d o s t o r e ( { ) )  

true 

[~20] 

[121] 

U22] 

[perform the a~tual asetq~me~t of a ~alue to etorage] 

~target  value>) 

PASS' }d 

e v a l - r e f ( r e f ,  n - ~ ) ,  

r e f  dere ference( id )  

w r l t e ( v ) =  

l eng th (ou tpu t ( c ) )  < n 
6 

PASS. ~d t s to re ( c )  [obtain value of variable ~d from store] 

e r r o r  [reference to val~e that has not been eet] 

[an ~plementat~on-def~ned maximum] 

U(~ '<output  output(C) v>) [concatenate value v 

on end of output f~le] 

true ~ error [number of vtems on output fvle greater than 
implementation defined maximum] 

read(t)= [read and check value from vnput fvle 

I s -<> ( Inpu t (C ) )  ~ e r r o r  [end of f~le] 

mode-o f -const (head( input (c ) )= t  ~ ~(~:<~nput .  t a 1 1 ( i n p u t ( ~ ) ) > )  

PASS" head~nput(C)) 

t rue ~ e r r o r  [mode o f  input ~ncompat~ble] 

m o d e - o f = c o n s t ( v ) =  [ o b t a i n  mode o f  vaZue tn  the  ~nput  f~Ze]  

I s -abs-boo lean(v)  ~ PASS. boo£ 

I s - a b s - l n t e g e r ( v )  --+ PASS- ~n£ 

T A B L E  4.5.--Continued 
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For example, the tree representation of Go, corresponding to the ASPLE program: 

begin 
int A; 
input A; 
A : = A + 5 ;  
output A 

end 

and an input file containing the value 7 is shown in Figure 8. 

elem(1) 

p r ° g r a ~ u t p u t  

ret-program N 

1•rget mode 

n a m e ~ e r e f  ~-~_..~ 

,4 1 

source 

name deref 

target source 

A~ op .... d-l~actlon 

name deref 

A I 

elem(l) 

7 

Figure 8. Initial machine-state. 

VDL Interpreter 

In the previous subsections we described the construction of the abstracted program and 
its attachment as part of the initial Machine-state of the abstract machine. The control 
part of ~ contains the operation in terpre t -program.  Execution of this operation begins 
the interpretation of the abstracted program. Interpretation will continue until the control 
part becomes empty or until an error is detected. 

The control part of ~ is a composite object with operations at the nodes. Since ASPLE 
is a language without side effects, we can simplify this and treat the control part informally 
as a stack of machine operations, some with arguments. The operation most recently added 
to the stack is the next one to be executed. When execution is complete, the operation is 
removed from the stack. The execution of an operation causes one of the following: 

• the addition of new operations to the instruction stack; 
• the insertion of a value into the argument list of an operation already on the stack, 

possibly accompanied by a change to some other components of ~. 
The machine operations of the ASPLE Machine are defined in Table 4.5. The interpret- 

program operation is defined in statement [101]: 

[ 1 0 1 ]  i n t e r p r e t - p r o g r a m  = interpret-statement-list(program(~)) 
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Its effect is to cause in te rp re t - s t a tement - l i s t  to be put on the operation stack with the 
abstracted program from ~ as argument. The abstracted program, defined in Table 4.3, 
consists of a statement list. 

The operation in te rp re t - s t a t emen t - l i s t  is defined in [102]: 

[to2] interpret-statement- l ist  ( t)  = 
i s - ( ) ( t )  --* l~ [if t is empty list, do nothing] 
true -~ interpret -statement-l ist  (tail ( t ) )  ; 

i n t e r p r e t - s t a t e m e n t  ( h e a d  ( t ) )  
[defines interpretation sequence of statements in program] 

and uses the same type of conditional expression as is used in the Translator. Here the ex- 
pression to the right of the arrow specifies the operation that is to be added to the stack. 
If the statement list t is empty, then nothing, signified by ~, is added to the operation 
stack. This is the way that the control part of ~ will become empty at the end of the in- 
terpretation. If the statement list t is not empty, the pair of operations: 

interpret-s tatement- l i s t  (tail (t)); 
interpret -s tatement  (head (t)) 

replaces the current operation on the stack in the order shown. The semicolon after in-  
terpret-statement- l ist  separates the two operations. The i n t e rp r e t - s t a t emen t  opera- 
tion is thus executed next. The argument of this operation is the first statement from the 
statement-list t, making this statement the next ASPLE statement to be interpreted. When 
this is completed, interpret-statement- l is t  will become the next operation in the stack 
to be executed. Its argument is the statement list t with its first element deleted. This 
mechanism defines the sequence of execution of the statements of the ASPLE program. 

As an example of the way statements are interpreted, consider interpret-asslgnment,  
defined in [104]: 

[io4] interpret-assignment(t)  = 
assign(target(t),  v a l u e ) ;  [evaluate the right side then pass v a l u e  to assign operation] 

v a l u e :  e v a l - e x p  ( s o u r c e ( t ) )  
]where: i s - a h s - i d e n t i f i e r ( t a r g e t ( t ) )  and  is-abs-exp(source(t))] 

Execution of in te rpre t -ass ignment  causes it to be replaced on the stack by: 

assign (target (t), value); 
value: eval-exp (source (t)) 

The term "value ." denotes that the execution of eval-exp will return a value, which will 
be known locally as value. This value will be substituted into the argument list of an, as 
yet, unexecuted instruction on the operation stack. The value replaces the argument de- 
noted by value in assign. In this way, the value computed by eval-exp is passed to as- 
sign for assignment to storage. 

The definition of eval-exp: 

[J09] e v a l - e x p ( t )  = 
is-abs-loc (t) 
is-abs-infix-op(t) 

i s - a b s - v a l u e ( t )  

-~  e v a l - r e f ( n a m e ( t ) ,  deref(t)) 
--, o p e r a t e ( v a l u e 1 ,  v a l u e 2 ,  action(t)); 

value1 : eval-exp(operand-l(t)) ; 
value2: eval-exp (operand-2 (t)) 

--* P A S S :  t 
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shows how the return of a value is expressed. This operation has a three-way conditional, 
and the action depends on the kind of expression passed to the operation as an argument. 
If the expression t is a reference, that is, if is-abs-]oe(t) is true, then a single new opera- 
tion, eval-ref, is put on the stack. If the expression is an infix operation, then three new 
operations are added to the stack. However, if it is a value, that is, if it corresponds to a 
constant in the original program, the actual value of the constant is returned. This is signi- 
fied by PASS:, followed by the value to be returned. 

Value-returning operations can also make changes to other parts of ~ through the use of 
the # operator. For example, read, defined in statement [i21]: 

[12 i ] r e a d  ( t )  = [read and check value from input file] 
i s - ( ) ( i n p u t ( t ) )  -~ e r r o r  [end of file] 
m o d e - o f - c o n s t ( h e a d ( i n p u t ( t ) )  = t --* ~( t  : ( i n p u t :  t a i l ( i n p u t ( t ) ) ) )  

P A S S :  h e a d ( i n p u t ( t ) )  

t r u e  --* e r r o r  

[mode of input incompatible] 

first checks that the end of file has not been reached. If it has, this is an error and interpre- 
tation stops at this point. The next check is that the mode of the value to be read is the 
same as that  of the variable to which it is to be assigned. This latter mode was determined 
by the Translator and inserted into the abstracted program. If the modes are compatible, 
two things take place simultaneously: the u operator replaces the input component of 
by its tail, and the head of the input component ~ is returned with the PASS: mechanism. 

Discussion 

The VDL definition of ASPLE specifically indicates the points at which errors can be de- 
tected in programs that are in accordance with the context-free syntax. These points are 
marked explicitly in the Translator and Interpreter algorithms. For example, if the modes 
of two operands in an expression are not compatible, then an error will be detected by 
primitive-mode [T18]. If a reference is made to a variable that has not been assigned a 
value, the error will be detected by dereference [n9]. 

By making a distinction between the Translator and the Interpreter, this VDL definition 
shows the difference between the static and dynamic aspects of ASPLE. While some errors 
can be detected statically, others seem to require interpretation. The dividing line between 
the two is a matter of judgment by the writer of the definition. Here, we have left to the 
Interpreter the detection of any error that required the manipulation of some data. In the 
VDL technique of definition, errors will only be detected by the Interpreter if the part of 
the program containing the error is actually executed. 

This technique of language definition continues to be developed. Later work aimed at 
proving the correctness of implementations has shown a need to make the definitions even 
more abstract. These developments are described by B~kic et al. [B0]. 

5. ATTRIBUTE GRAMMARS 

We now discuss the definition technique of attribute grammars originally due to Knuth 
[K1]. Attribute grammars and related concepts have been described in different places 
[B1, B2, K1, K2, L5]. The notation used here is closely related to that used in [B1, B2, L5]. 

Overview 

A context-free grammar of a language defines a derivation tree for each syntactically cor- 
rect program of the language. An attribute grammar is based on a context-free grammar 
and associates attributes with the nodes of a derivation tree. Attribute evaluation rules are 
associated with the context-free productions of an attribute. The evaluation rule associated 
with a given production is applied for all instances of this production in the derivation tree. 
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Attributes can be of two kinds: the inherited attributes, whose values are obtained from 
the immediate parent node and its production in the derivation tree, and the synthesized 
attributes, whose values are obtained from the immediate descendants in the tree and 
the productions generating these. The inherited attributes of the left side of a production 
and the synthesized attributes of the right side represent values obtained from the surround- 
ing nodes in the derivation tree. The evaluation rules of a production specify the computa- 
tion of the other attributes, that is, the inherited attributes of the right side and the syn- 
thesized attributes of the left. The values of these attributes are passed to the surrounding 
nodes. More generally, one can say that the synthesized attributes of a node represent in- 
formation which is synthesized in the subtree of the node and passed up toward the root 
node of the derivation tree, whereas the inherited attributes represent information which is 
passed down, from the root nodes towards the leaves. Inherited attributes indicate the 
context in which the node and its subtree are found. 

The context-sensitive constraints of a language are expressed by conditions included in 
its attribute grammar. These conditions specify relations between the attribute values that 
must be satisfied in the derivation tree of a valid program. 

Different methods can be used for specifying the attribute evaluation rules. The concept 
of attribute grammars is not a complete method for making formal definitions of program- 
ming languages. For general use, it must be combined with a method for the specification of 
its evaluation rules. In the attribute grammar for ASPLE, we use action symbols [L5] to 
specify evaluation rules other than simple value transfers. 

Several approaches can be used with attribute grammars for the specification of the 
semantics of a program. Knuth [K1] proposed that the "meaning" of a program be given 
by the value of a special attribute at the root node of the derivation tree. For the specifi- 
cation of the ASPLE semantics, we have chosen a different approach, which corresponds 
to the practice of implementing programs in two phases: translation into a lower level target 
language, followed by the execution of the translated program. Therefore we distinguish 
two kinds of action symbols: 1) those symbols that are executed during a translation phase 
and that evaluate attribute values in the derivation tree, and 2) those that are executed 
later during an execution phase [B2]. The meaning of a program is specified by the sequence 
of action symbols and certain attribute values obtained during the translation of the source 
text of the program. Rather than choosing a rigidly defined set of actions for the execution 
phase (for example, a particular machine language) we have, as is customary, left the 
meaning of the action symbols informally defined. 

Attribute Grammar for ASPLE 

An attribute grammar for ASPLE is shown in Table 5.1. The production for the starting 
symbol <program) is shown in lAG01]. 

[AG01 ] 
<program)  ~" m e m o r y  : :=  begin 

<del  t r a i n )  ~ e/np~-enu ~ze2w-Zdt~emp£y-rae~0~j 
env  ~ n u m - i d s  ~ m e m o r y  

<s tm t r a i n )  ~ env 
end 
c o n d i t i o n :  n u m - i d s  < n2 

[number of declared identifiers must be tess than the implementation 
defined numberl 

c o n d i t i o n :  p r o g - l e n g t h  < n l  
[prog-length zs an implementation defined attribute whose evaluation rules 
must be added to the grammar] 
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[AG01] <program> #memory 

[AG02] <dcl train> +env 
i 

[ A G 0 3 ]  < s t m  t r a i n >  # e n v  

I < d e c l a r a t l m n >  

< d c l  t r a i n >  

< s ~ a t e m e n t >  

I < s t a t e m e n t >  

begin 

<dcl Tram> ~mpty -env  ~z~ro-~ds ~£~t~-mcmory 
÷ e n v  ÷ n u m - l d s  ÷ m e m o r y  

<stm traln> +env 

end 

eond~tlmn num-lds < 
2 

[n~mber of declared ~dent~f~ers must be lees than 

the ~mplementat~on defined number] 

c o n d ~ l o n  prmg~length < 
] 

[prog-length ~e an implementation defined attribute 

whose evaluation rules must be added to the grammar] 

~ n u m - l d s  ~ m e m o r y  l ÷ e n v  ÷ n u m - t d s  ÷ m e m o r y  2 
1 2 2 

< d e c l a r a t i o n >  ~ e n v  ~ n u m - l d S  ~memory  1 ÷ e n v  
l 1 2 

~ n u m - l d S  2 ~mem°rY2 

~ e n v  ~ n u m - l d s  + m e m o r y  ÷ e n v  
[ t [ 3 

+num-ids 3 ÷mem°ry3 

~env +num-~ds ~memory ÷env 
3 3 3 2 

÷num-lds ~memory 
2 2 

+ a n y  

+ e n v  

< s t m  t r a i n >  + e n v  

[AG04] <declaration> ~ e n v  

[AG05] <mode> #prlm-mode 

l A G 0 5 ]  < I d - l l s t >  ~ e n v  
i 

~num-lds ~memory ÷env ÷num-lds ÷memory 2 
I i I 2 2 

<mode  > f p r l m - m o d e  f r e f s  

< l d - I l s t >  ~ e n v  ~ n u m - l d s  ~ p r t m - m o d e  4 r e f s  
i 1 

~ m e m o r y  I ÷ e n v  2 ÷ n u m - l d s  2 ÷ m e m ° r Y 2  

÷ r e f s  
1 

' : bool  
~IVe value to aTtrlbute +bcol ÷prlm-mode 

9tve value to aTtrlbute ~oa¢-r~f *refs 
i 

]int 

~ve value to attrLbute ~£ ~prlm-mode 

value to attrlbute ~0ne-ref ÷refs 9,re 
1 

I ref 

<mode> ÷ p r i m - m o d e  ~ r e f s  
2 

add  one  r e f  ~ r e f s  ÷ r e f s  
2 1 

~ n u m - l d s  ~ p r l m - m o d e  + r e f s  # m e m o r y  ÷ e n v  ÷ n u m - l d s  ÷ m e m o r y  
1 2 2 2 

l < d e e l e r e d  i d>  ~ e n v  ~ p r l m - m o d e  ~ r e f s  ~ m e m o r y  
] 1 

÷ e n v  ÷ m e m o r y  

add one  i d  4 n u m - I  s ~ n u m - l d s  
1 2 

I < d e c l a r e d  Id>  ~ e n v  ~ p r l m - m o d e  ~ r e f s  ~ m e m o r y  
1 1 

# e n v  ÷ m e m o r y  
3 3 

add  o n e  Id  ~ n u m - l d s  + n u m - l d s  
1 3 

< l d - I l s t >  ~ e n v  ~ n u m - l d s  ~ p r l m - m o d e  ~ r e f s  4 m e m o r y  
3 3~  
÷ e n v  ~ n u m ~ l d s  ~ m e m o r y  

2 2 2 

T A B L E  5.1. ATTRIBUTE GRAMMAR OF A S P L E  
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[ A G 0 7 ]  

EAGOB] 

[ A G 0 9 ]  

[AGIO] 

[ A G I I ]  

< d e c l a r e d  id> ~env 
1 

< s t a t e m e n t >  ~env 

< a s g t  stm> ~env 

<cond stm> ~env  

< l o o p  stm> +env 

~p r rm-mode  1 ~ r e f s  I +memory 1 +env 2 +mem°ry2 

< l d >  +name 
1 

i n s e r t  d e c l a r a t i o n  +env ~name ~ p r i m - m o d e  4 r e f s  f e n v  
I i i I 2 

~nclude varlable ~memory i ~namel +memorY2 

[the name is added to memory and its va~ue ~n~t~alised t o  
undefined] 

condltton l(3t)(t=(name2,Prtm-mode2, refs2) & 

t e env & name =name ) 
I 2 ! 

[duplicate declarationa are not allowed] 

<asgt stm> ~env 

I <cond stm> ~env 

I <loop stm> ~env 

I <input stm> ~env 

I <output stm> ~env 

<used id> ~env +prlm-mode +refs +name 
i I 

= 

subtract one ref ~refs ,refs 
i 2 

<exp> +env ~refs ÷prlm-mode +VALUE 
2 2 

STORE ~name +VALUE 

condttlon prlm-mode = prlm-mode 
I 2 

[primitive modes must be compatible for assignment] 

if 
<exp> ~env +z£ro-re~6 +prlm-mode +VALUE 

BRANCH ON FALSE ~VALUE ~label 
i 

then 

<stm t r a i n >  4env 

BRANCH ~ l a P e l  
2 

e l s e  

LOCATE + l a b e l  
! 

<stm t r a i n >  Tenv 

f~ 
LOCATE + l a b e l  

2 
c o n d i t i o n  p r i m - m o d e  = bo0~ 

~f 
<exp> ~env ~ z ~ o - r £ ~ b  , p r i m - m o d e  +VALUE 

BRANCH ON FALSE ~VALUE ~ l e b e l  

then 

<stm train> 4env 

f~ 

LOCATE ÷label 

condition prlm-mode = boo~ 

wh~le 

LOCATE ¢label 
! 

<exp> ~env ~ z e ~ o - ~ e ~  + p r i m - m o d e  ÷VALUE 

BRANCH ON FALSE ~VALUE ~ l a b e l  
2 

do 

<stm t r a i n >  +env 

end 

BRANCH ~label 
i 

LOCATE ÷label 
2 

condition prlm-mode = boo~ 

TABLE 5.1.--Continued 
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[AGI2] <input stm> +env snput 
< u s e d  id>  + e n v  + p r i m - m o d e  ÷ r e f s  ÷name 

1 
< d e r e f  actlon> +name + r e f s  +o~e-~ef +NAME 

2 ! 
<input value> +prim-mode +VALUE 

STORE +NAME +VALUE 
2 

[AGI3] <input value> +prlm-mode +VALUE 

READ INTEGRAL +VALUE 

condltlon prim-mode : ~nt 

I READ BOOLEAN +VALUE 

condltlon p r i m - m o d e  = b 0 o l  

[value ~nput must be compatsble wsth target] 

[AGI4] <output stm> +env output 

< e x p >  + e n v  + z + r o - ~ e f 5  + p r l m - m o d e  +VALUE 

< o u t p u t  a c t l o n >  + p r l m - m o d e  +VALUE 

[AGI5] <output action> +prlm-mode +VALUE 

,= WRITE INTEGRAL +VALUE 

condition, prpm-mode : ~nt 

I WRITE BOOLEAN +VALUE 

conditlon prlm-mode : boo£ 

[ A G I 6 ]  < e x p >  + e n v  + r e f s  + p r l m - m o d e  #VALUE 
! i 

<factor> +env +refs +prlm-mode +VALUE 
1 I 

I <exp> +env +zcro-rcfs fprlm-mode! ÷VALUE 2 

+ 

<factor> +env +zero-ref$ +prlm-mode +VALUE 
2 3 

<+ action> +prim-mode +VALUE +VALUE ÷VALUE 
l 2 3 1 

c o n d i t i o n  p r i m - m o d e  : p r i m - m o d e  

1 correspond~ [pr~mstive modee must 

c o n d i t i o n  r e f s  = zero-refs 
[the mode of the factor is without any references] 

[ A G I T ]  <+ a c t i o n >  + p r l m - m o d e  +VALUE +VALUE #VALUE 

AD~ +VALUE 2 +VALUE 3 *VALUE 
- -  1 2 3 
c o n d i t i o n  p r i m - m o d e  : ~ n t  

I OR +VALUE +VALUE +VALUE 
-- I 2 3 
condttlon prlm-mode : ~OOl 

[ A G I a ]  < f a c t o r >  + e n v  + r e f s  f p r l m - m o d e  +VALUE 
1 1 

< p r i m a r y >  + e n v  + r e f s  ÷ p r i m - m o d e  +VALUE 
1 I 

I < f a c t o r >  + e n v  + z e ~ 0 - r R f 5  + p r i m - m o d e  1 +VALUE 2 

< p r i m a r y >  + e n v  + z ~ r 0 - r e ~ 6  ÷ p r i m - m o d e  +VALUE 
2 3 

< *  a c t l o n >  + p r l m m m o d e  +VALUE +VALUE +VALUE 
1 2 3 1 

c o n d i t i o n  p r i m - m o d e  = p r i m - m o d e  
1 

[prims¢ive modes must correepond~ 
condltlon refs = z ~ r o - ~ R f ~  

[the mode of the faator ss w~thout any referencea] 

TABLE 5.1.--Continued 
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[ A G 2 0 ]  

[AG21] 

lAG22] 

[ A G 2 3 ]  

< "  a c t i o n >  

A Sampler of Formal Definitions 
+ p r i m - m o d e  4VALUE ~VALUE +VALUE 

MULT IPLY  ~VALUE +VALUE +VALUE 
1 2 3 

c o n d i t i o n '  p r l m - ~ o d e  = i ~ t  

1 AND ~VALUE +VALUE tVALUE 
- -  1 2 3 
c o n d i t i o n  p r i m - m o d e  = boo£ 

< p r i m a r y >  + e n v  + r e f s  + p r i m - m o d e  +VALUE 
1 

< u s e d  I d >  

= < u s e d  i d >  ~ e n v  + p r t m - m o d e  ÷ r e f s  ÷name 
2 1 

< d e r e f  a c t i o n >  ~name ~ r e f s  ~ r e f s  +VALUE 
1 2 ! 

[some dereferenc~ng may possibly be done] 

< c o n s t a n t >  ÷ p r i m - m o d e  +VALUE 

c o n d i t i o n  r e f s  = z£&O-r¢fS 
! 

( 

~ e x p >  + e n v  ~ z e & o - & ¢ ~  + p r i m - m o d e  tVALUE 

) 

c o n d l t l o n  r e f s  = zero-r~f6 
i 

( 

< c o m p a r e >  + e n v  +VALUE 

) 

~ l v e  v a l u e  t o  a t t r t b u , t e  ~bool + p r i m - m o d e  

condltion refs = Z ¢ & O - ~ £ ~  
! 

~ e n v  ÷ p r i m - m o d e  f r e f s  +name 

= < l d >  ÷name 

c o n d i t i o n  ( n a m e ,  p r i m - m o d e ,  r e f s )  s e n v  

< d e r e f  a c t i o n >  +name 

<compare> +env ÷VALUE i 

+ r e f s  + r e f s  +VALUE 
1 2 ! 

9 p v e  v a l u e  t o  a t t r i b u t e  +name +VALUE 
1 

c o n d i t i o n  refs = r e f s  
1 2 

[no dereferencing *e necessary] 

! LOAD +name ÷VALUE 
2 

[an under*ned etored value Elves rise to an error condition] 

[one level of dereferenc~ng ~s done] 

subtract one ref ~refs ÷refs 

[refs w~ll alwaye belgreaterSthan zero] i 
<deref actlon> ~VALUE +refs ~refs +VALUE 

2 3 2 l 
c o n d i t i o n  r e f s  > r e f s  

2 
[several level~ of dereferenc~g oen be done recurs.rely 

The number of tvmes the recursvon is invoked depends on 

the d*fference of the values of refs I and refe ] 
2 

< e x p >  ~ e n v  +zero-&¢~ ÷ p r i m - m o d e  1 +VALUE 2 

< e x p >  + e n v  +zero-refs  f p r l m - m o d e  2 +VALUE3 

COMPARE EQUAL +VALUE ~VALUE ÷VALUE 
2 3 ! 

c o n d i t i o n  p r i m - m o d e  = ~ t  
1 

c o n d i t i o n  p r i m - m o d e  = ~ t  
2 

< e x p >  + e n v  ÷z~ro-ref~ + p r i m - m o d e  ~VALUE 

< e x p >  ~ e n v  +zero-refs  + p r i m - m o d e  2 +VALUE3 

COMPARE NOT EQUAL +VALUE +VALUE +VALUE 
2 3 1 

c o n d i t i o n  p r i m - m o d e  = ~ n t  
] 

c o n d i t i o n  p r i m - m o d e 2  ~ n t  

TABLE 5.1.--Continued 
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<constant> ÷prlm-mode 

[AG25] <bool constant> +value 

lAG26] <Int constant> +value 

lAG27] <number> +num-dlgtts 
1 

lAG28] <dlglt> ÷value 

[AG29] <id> +name 

lAG30] <pdentlfJer> 

[AG31] <letter> +name 

+ v a l u e  

' = <bool constant> ÷value 

~ive value to attrlbute +booZ +prlm-mode 

I <int constant> +value 

~ive value to attrlbute +cn£ +prlm-mode 

true 

~Ive value to attrlbute 4true +value 

false 

~Ive value to attrlbute + ~ a £ a e  +value 

<number> +num-diglts +value 

condition num-dlglts < n 
3 

[number of d~gzts zn an ~nteger constant must be 

less than the ~mplementat~on defined maximum ~ ] 
3 

+value 
i 

-= < d i g i t >  + v a l u e  
1 

give value to attrlbute 4ane-d~9~£ +num-dlglts 1 

I <number> +num-dtgits +value 
2 2 

<dlglt> +value 
3 

multiply +value 410 +value 
2 

add +value +value +value 
- -  h 3 1 
add one dlg~t +num-dlglts ÷num-dlg~ts 

2 ! 

0 

~ve value to attrlbute 40 +value 

1 

give value to attrlbute 41 ÷value 

I 9 

~ve value to attrlbute 49 +value 

<~dentlfler> +num-letters +name 

¢ondltlon num-letters < q 
h 

[number of letters ~n an ~dent~f~er must be less than 

the ~mplementat~on defined maxsmum n 4] 

+num-letters +name 
1 i 

<letter> ~name 
! 

~Ive value to attribute +one-letter ÷num-letters 
i 

<rdentlfler> ÷hum-letters +name 
2 2 

<letter~ +name 
3 

concatenate +name +name +name 
2 3 1 

add one letter +hum-letters +num-letters 
2 i 

A 

91ve value to attribute +A +name 

B 

~Ive value to attrlbute 4B ÷name 

g 

~Ive v a l u e  to attrlbute +Z +name 

TABLE 5.1.--Continued 
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This production specifies the context-free rule [B01]: 

( p r o g r a m )  :: = begin (del t ra in)  ; ( s t m  t r a i n >  end 

The terminal symbols are written in italic characters. In the attribute grammar, each sym- 
bol of the right side of a production starts a new line. Attributes are represented by names 
which are written on the same line, following the syntactic symbol to which they apply. 
Synthesized attributes are prefixed by an arrow pointing upward; inherited ones by an 
arrow pointing downward. The attributes of a given symbol are always written in the same 
order. 

The synthesized attribute T m e m o r y  of the root node (program) represents the initial 
state of the program variables, each one being initialized to the undef ined value. The vaIue 
of this attribute is given by the sixth attribute of the (dcl t rain) .  Since the latter is a syn- 
thesized attribute of a symbol on the right side of the production, its value is obtained from 
the lower productions in the derivation tree. In this case, the value is synthesized in the 
subtree of the node (del t rain) .  The transfer of the attribute value from the right-side 
symbol (del t ra in)  to the left-side symbol (program) is indicated by the use of same name 
T memory  at both places. In general, attribute evaluation rules that are simple value 

transfers are specified by the use of identical names. 
The value of the attribute env represents the environment of the program and is a set of 

triples associating identifiers, primitive modes, and reference chain lengths. The value of 
e n v  is synthesized in the subtree of the node (del t ra in)  and is transferred to the inherited 
attribute of the node ( s t m  t r a i n ) .  

The names ea~ty-e~v, zeao-id6, and v, pty-memoaq represent constant attribute values, 
written in script characters. These are the values taken by the first three attributes of the 
node (dcl train> and passed down to its subtree. Table 5.2 lists the set of possible values 
for each attribute type, the names of constant values used in the attribute grammar, and 
the action symbols associated with the attribute type. 

There are two conditions imposed on the values of the attributes in [AG01]. The value of 
the attribute n u m - i d s ,  which represents the number of declared identifiers in the program, 
must be less than the implemen.tation defined constant n~ and the attribute p r o g - l e n g t h ,  
which serves to represent the length of the program, must be less than the constant nl.  
The attribute prog-length is not associated with any symbol, since its computation is 
left for implementation definition. 

The attribute evaluation rules of production [AG01] can be summarized as follows: the 
values of the attributes memory  of (program) and env of ( s t m  t r a i n )  are defined by 
simple value transfers, indicated by the use of identical names, and the first three attributes 
of <del t ra in)  are defined to have constant values. The values of all other attributes are 
determined by surrounding productions within the derivation tree, in this case by the pro- 
duction for (del t rain) .  In addition, certain conditions must be satisfied by the obtained 
attribute values. A program that does not satisfy these conditions is invalid. 

The production of (del t ra in)  is given in [AG02]: 

lAG02] (dc l  t ra in )  ~ envx ~ n u m - i d s l  ~memoryx  T env2 T num- ids~  T m e m o r y :  
: := ( d e e l a r a t l o n )  $ envl  ~ n u m - i d s l  ~ memory1 T env2 

hum-iris2 ~ memory2 
[ ( d e c l a r a t i o n )  ~ envl  ~ n u m - i d s l  ~ m e m o r y l  T env ,  

num- ids3  T memorys  

(dc l  t ra in )  ~ envz ~ num- ids3  ~ memoryz  T env2 
n u m - i d s 2  T memory2 

In this production, the subscripts on the attribute names distinguish different instances of 
attributes of the same type. Attributes distinguished in this way can have different values. 
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[AT01] pr~m-mode [primary mode] 

values" boo£ and ~n t  

EAT02] refs [length of reference chain] 

values 

constants 

[AT03] name 

[AT04] env 

[AT05] value 

E A T 0 6 ]  

E A T 0 7 ]  

[AT08] 

s t o r e d - v a l u e  

b o o l e a n  

I n t e g r a l  

poslt~ve ~ntegers 

z t r o - r £ f ~  = 0 

one-tel = 2 

action symbols add one re~ +refs +refs 
1 2 

imp~%e8 r e f s  = r e f s  + i 
2 1 

s u b t r a c t  o n e  r e f  + r e f s  ÷ r e f s  
1 2 

~ m p l i e s  r e f s  = r e f s  - 1 
2' 1 

[name o f  v a r i a b l e ]  
values arbitrary length character strings 

constants A, B, ..., Z 

action symbols" concatenate ÷name +name ÷name 
i 2 3 

~mplies name is the concatenation of 
3 

n a m e  with name 
I 2 

[environment, i.e "symbol table"] 

values: sets of triples of the form (name, prlm-mode, refs) 

constants empty-shy = ¢ 

a c t i o n  symbol.  In~rt declaration +env +name +prlm-mode ~refs 
1 

~mpl~es 

÷env 
2 

e n v  = e n v  u { ( n a m e , p r l m - m o d e , r e f s ) }  
2 1 

[boolean, integral, or reference value] 

va lue s"  un~on o f  boolean, integral, and name 

va lue s"  union o f  v a l u e ,  and { a n d z ~ n e d }  

values 

action symbols. 

t ru~  and fa£s¢ 

or ~boolean + b o o l e a n  ÷ b o o l e a n  
1 2 3 

~mpl~es b o o l e a n  = b o o l e a n  v b o o l e a n  
3 1 2 

a n d  + b o o l e a n  + b o o l e a n  ÷ b o o l e a n  
- -  i 2 3 

~mplies b o o l e a n  = b o o t e a n  ^ b o o l e a n  
3 1 2 

values. 

constants: 

action symbols. 

positive integers 

O, I ,  . . . ,  9, 10 

n 5 = implementat~Onvalues define~ ma=imum value for ~ntegral 

ad_~_d +~ntegral +~ntegral ÷~ntegral 
i 2 3 

smplies if integral + integral2< n 
I 5 

then integral = ~ntegral + ~ntegral 
3 i 2 

otherwise smplementat~on defined result 

m u l t l p l y  +~ntegral +~ntegral ÷~ntegral 
1 2 3 

~mpl~ee ~f ~ntegral x ~ntegral < n 
! 2 5 

then integral3 = ~ntegral i x ~ntegral 2 

otherwise ~mplementation defined result 

TABLE 5.2. DEFINITION OF ATTRIBUTES AND ACTION SYMBOLS 
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[ATO8] continued 

c o m p a r e  e e u a l  + i n t e g r a l  ~ l n t e g r a l  + b o o l e a n  
1 2 

~mpl~es ~f integral = integral 
! 2 

then boolean = ~ r ~  

otherwise boolean = ~a~e 

compare not equal ~ntegral ~ntegral +boolean 
i 2 

~mplies if ,ntegral = integral 
i 2 

then b o o l e a n  : ~ r ~ ¢  

o t h e r w i e e  b o o l e a n  = ~ ¢  

EAT09] memory [memory state] 

values sets of padre of the form (name, stored-value) 

c o n 6 t a n t  e m p t y - m e m o r y  = 

a c t i o n  s y m b o l .  In~l~@ variable 4memory I tname +memory 2 

implies memory I = memory z u {(name,~dtf~ntd )} 

[ATI0] brog-length [program length (implementation def~ned)] 

cons#ant" n l = ~mplementat~on defined maximum 

[ATII] num-ids [number of ~dent~f~ers declared] 

values poe~t~ve ~ntegers 

constants z ~ o - ~ d ~  = 0 

n 2 = ~mplementat~on defined maximum 

action symbol, add  o n e  I d  ~ n u m l ~ d S  ~ n u m - l d s  m - l d s  
] 2 2 

implies n u m - l d s  = n u m - l d S  + 1 
2 ] 

C A T I 2 ]  n u m l d l g t t s  [~umber of d~g~ts in a constant denotation] 

values positive integers 

conetante o n ¢ - d ~ 9 ~ t  = ] 

n 3 = ~mplementat~on defined maximum 

a c t i o n  s y m b o l  add o n e  d i g i t  ~ n u m - d l g l t s  ÷ n u m - d l g ~ t s  
! 2 

smplses num-dlglts = num-diglts + 1 
2 i 

[ATI3] num-letters [number of letters ~n an sdentsfser] 

values positive ~ntegera 

constants o n ~ - l ~ t t c r  = 1 

n = ~mplementat~on defined maximum 

action symbol add one letter ~num-letters tnum-letters 

• mpl$ea num-letters - hum-letters + 
2 

Additional Data Type for the Execution Phase 

The global state space is a product of a m e m o r y  state and two f ~ l e  states for the ~nput and output. 

[ATI4] file [content of the ~nput or output f~le] 

values eequencee (v 1, v~, . . . ,  V n) where n ~ 0 and the 

v i (is,sn) are of type integral or boolean 

constants ( ) = the empty sequence [file containing only an end 

of f=le mark] 

TABLE 5.2.--Continued 

Computing 8urveye, Vol. 8, No. 2, June 1976 



260 • M. Marco~ty, H. F. Ledgard, and G. V. Bochmann 

Addlt~onal Act ions f o r  the Execution Phase 

(a) Interaction with the global memory state 

Execu t ion  o f  LOA..__~D +name ÷s to red-va lue  I : 

~f  (~ t )  (t=(name. s tored_value2)  ) & t ¢ g loba l  memory 
& stored va lue  ~ und¢~Zned) 

2 
then s to red -va~ue  = s to red  va lue  

2 
otherwise execution error [undefined variable reference] 

execution of STO~£ ~name ~ s t o r e d - v a l u e ]  
(name, s t o r e d - v a l u e  ) ¢ g l o b a l  memory be fo re  

2 
implies global memOrYafter = (global memorYbefore - {(name, s to red -va lue2 ) } }  u 

{(name, s t o r e d - v a l u e l ) }  

[the stored value of the variable name is ~eplaced by stored-value 1 ] 

(b) Interaction w~th global ~nput fFle state 

Execution of READ INTEGRAL +value 

~f  ~nput f l t e b e f o r e  = (v , v , , . . , V  n) & n ~ ] 1 2 

then ~f v ~s of type tntegra~ 
I 

then value = V 1 and input f l l e s f t e  r = ( v 2 , . . . ~ v n )  

otherwise execution error [~ncompat~ble ~nput data type] 

otherwise executvon error [attempt to read beyond end of vnpu$ file] 

Execution of REAP BOOLEAN ÷volue 

i f  ~nput f J l e b e f o r e  = ( V l , V 2 , . . . v  n) & n ~ l 

then if v ~8 of type boolean 
! 

then  v a l u e  = v and i n p u t  f ~ L e a f t e  r = (v , . . . , v  n) 
1 2 

o#herwvse executvon error [~ncompat~ble input data type] 

otherwvse execution error [attempt to read beyond end of input f~le] 

(c) Interaction w~th global output f i l e  state 

Execution of WRITE INTEGRAL +va|ue 

if output fllebefore ffi (v1,...v n) & n < a 6 

then output f~leafte r = (Vl,...JVn, value) 

otherwise executvon error [implementation defvned e~ze of output file exceeded] 

Execu t ion  o f  WRITE BOOLEAN ~value 

if output f l l S b e f o r e  = ( V l , . . . , v  n) & n < n 6 

t h e n  o u t p u t  f l l e a f t e  r = ( V l , . . . s V n ,  v a l u e )  

otherwise e~ecut$on error [implementation defined s~ze of output f~le exceeded] 

(d) Action symbols for spec~fyzng non-sequential execution 

LOCATE +label [global state unchanged, locates a unique label to which 
the branching action symbol can be connected; the next 
action symbol to be executed is the next one ~n sequence] 

BRANCH +label [global state unchanged, the next action symbol to be 
executed is the locate symbol of the same label] 

BRANCH ON FALSE +value +label 

[global state unchanged, ~f value = ~aZse then the next 
action symbol to be execution ~s the ~ocate symbol of the 
same labelj otherwise the nemt action symbol ~n sequence 
w~ll be executed] 

TABLE 5.2.--Con$inued 

Computing Surveys, Vol. 8, No. 2, June 1976 



A Sampler of Formal Definitions • 261 

Any order of evaluation of the attributes that leads to well-defined values in the deriva- 
tion tree is allowed. If we take the second alternative in [AG02], the following sequence of 
evaluation will be followed for the e n v  attribute: 

1) the value envl is inherited by <dcl train> on the left side of the production; 
2) this value is passed down to <declaration> and the synthesized attribute value of 

env8 is obtained from the subtree of <declarat ion>;  
3) the value of env3 is then passed down to <dcl train> on the right side of the produc- 

tion, and the value of env2 is obtained as a synthesized attribute of the right side, 
<dcl train>;  

4) the value of env2 is then passed up as a synthesized attribute of <del train> on the 
left side of the production. 

This process is illustrated in Figure 9, where part of the derivation tree for a declare 
train with more than one declaration is represented. The solid lines indicate the syntactic 
structure of the derivation tree, and the broken lines show the transfer of values of the env 
attribute between the nodes as specified by the productions. 

I 
<declaration> 

I 

<dcl train> +env ÷env 

~env ÷e~v ~- <dcl train> *env ÷e~v 

I 
<declaration> *env ÷en~ 

I I 

Figure 9. Par t i a l  der iva t ion  t ree  for <del train> showing eva lua t ion  of e n v  a t t r i b u t e .  

Action Symbols 

In a production where the evaluation of an attribute value requires more than a simple value 
transfer, action symbols are used. In the attribute grammar, action symbols are always 
shown with underlined names. The meaning of the actions and their attribute values are 
defined informally in Table 5.2. 

A simple example of the use of action symbols is shown in [AG05]: 

[AG05] <mode> 1̀  p r i m - m o d e  1̀  refs l  
: . =  bool 

give  va lue  to  a t t r i b u t e  J, boo£ T p r i m - m o d e  
g ive  va lue  to  a t t r i b u t e  ~one-~¢~1` refst  
in t  
$ive  va lue  to  a t t r i b u t e  ~ 1" p r i m - m o d e  
give  va lue  to  a t t r i b u t e  ~0ne-~e~ 1" refs l  
re/ 
<mode> T p r i m - m o d e  1̀  refs2 
add o n e  ref  ~ refsz 1̀  refs l  
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The category <mode> has two synthesized attributes: pr im-mode and refs~. In the first 
two alternatives of [AG05], values are given to these attributes by means of the action sym- 
bol, give value to attribute, which denotes a function that takes a value, which is in this 
case a constant, and it returns an attribute with that same value. The attribute refs repre- 
sents the length of the reference chain of a variable. The action symbol: 

ffive v a l u e  t o  a t t r i b u t e  ~ o a e - ~  1" re f s l  

defines the value of the attribute refsl to be a reference chain of length 1. In the third al- 
ternative, the action symbol: 

a d d  o n e  r e f  ~ refs2 T re f s l  

defines the length of the reference chain represented by refs~ to be 1 greater than that rep- 
resented by refs2. 

An example of the use of action symbols and the value-passing mechanism is shown in 
Figure 10. This diagram depicts the sequence of attribute evaluations for obtaining the 
value of the env attribute in the derivation tree for the ASPLE program: 

begin 
int A; 

end 

As before, only those attributes that contribute to the evaluation of the env attribute are 
ncluded in the figure. 

I 
~nt 

bel~n 

<mode> pr im-mode r e f s  

I I ~ " - ' ~  . . . .  ~ 
i 

~i,ve value ~yut pr~m-mode 
to al-rr i bute "~lJilw~' 

<program> 

<dcl train> en~0tg-e~v env ~_ <st train> ~env 

<doclaratlon> env env ~, (A, -~ , one-~e.~) 

I '-*-------., "i 
< ld  l i s t >  env pr im-mode r e f s  env 

J v 2 ! A  
~k < d e c l a r e d  id> enu p r i m -  e f s  env I 

i J i 
ve v a l u e  0vLe-re~_ . re fs  

to '  attr l bute % ~  I "'<'.'.4 
. I  I ~ ~ p r i m -  • I 

<1o> n~Lme i n s e r t  env name mode r e f s  env 

I 0 ,o o,,o0 
< I den t  I f t e r  > name 

IA 
< I e t t e r >  name 

A glve value A name 

to attr,lbute l~ljilpJ 

Figure 10. Derivation tree for attribute grammars. 
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So far we have only considered action symbols whose attributes can be evaluated during 
the translation phase. In the following examples, we encounter action symbols that are also 
part of the translation of the program and that are executed during the subsequent execu- 
tion phase. Those attribute values and action symbols that in general can only be evaluated 
during the execution phase are written in upper case characters. An example occurs in the 
definition of the loop statement in [AG11]: 

[AGll] <loopstm> ~env : := while 
LOCATE T label1 
<exp) J, env ,~ ze/w-~te~ 1" prim-mode T VALUE 
BRANCH ON FALSE ~ VALUE $ label~ 
do 
< s t m  train> $ env 
end 
BRANCH ~ label l  
LOCATE T label2 
c o n d i t i o n :  p r i m - m o d e  = boo[ 

The last attribute of <exp> represents the value of the actual expression. This attribute is 
written in upper casc characters to show that it can only be evaluated during the execution 
of the program. The action symbols written in upper case characters can be regarded as 
part of the translated program. The left-to-right order of the italic terminals in the deriva- 
tion tree specifies the written form of the source program. Similarly, the left-to-right order 
of the upper case action symbols in the derivation trec specifies the translation of the source 
program. During execution of the program, these symbols are interpreted strictly according 
to their written sequence, except for deviations caused by the BRANCH actions. These 
actions change the execution sequence, making use of label attributes that are evaluated by 
the LOCATE action. In the case of the loop statement, the control flow during the execution 
phase is as indicated in Figure 11. 

Figure 11. Control flow in loop statement.  

The first three attributes of the category <exp> can be evaluated during the translation 
phase. The second attribute indicates the length of the reference chain in the mode of the 
expression value. If necessary, a sufficient number of dereferencing operations have to be 
performed. In the case of the loop statement, this attribute is set to ze~o-~e~, since an actual 
primitive value is required. The value of the synthesized attribute p r im-mode  is the primi- 
tive mode, that is, integral or Boolean, of the expression value, which is determined in the 
subtree of the node <exp> according to the inherited attribute env and the program text. 
The condition specifies that this primitive mode must be Boolean. 
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Dereferencing is described by the production [AG22]: 

[AG22] 
<deref  a c t i o n )  ~ n a m e  ~ refsl  ~ refst  ~ VALUEr 

: :-- ~ive v a l u e  to  a t t r i b u t e  ~ n a m e  ~ VALUE1 
c o n d i t i o n :  refst  = refs2 

[no dereferencing is necessary] 
J LOAD ~ n a m e  TVALUEt 

[an undefined stored value gives rise to an error condition] 
[one level of dereferencing is done] 

s u b t r a c t  o n e  re f  ~ refsl  ~ refsz 
[refsl will always be greater than zero] 

<deref  ac t ion>  ~ VALUE2 ~ refsa ~ refs2 T VALUEl 
c o n d i t i o n :  refs l  > refs2 

[several levels of dereferencing can be done recursively. 
The number of times the recursion is invoked depends o n  

the difference of the values of refs, and refs~] 

The attributes name and refsl represent an identifier name and the value of the length of 
its reference chain, respectively, refs2 represents the length of the reference chain required 
for the mode of the value to be obtained. The subtree of <deref action> performs the neces- 
sary dereference operations and returns the value as a synthesized attribute. This subtree 
does not generate any terminal source symbols. However, it generates LOAD actions for 
the execution phase. The structure of the subtree, and the number of LOAD actions gen- 
erated, depend on the values of the attributes refsl and rcfs2. Similarly, the choice of the 
appropriate alternative of the production [AG15], and others, depends on the value of the 
inherited attribute, p r im-mode .  For example, consider the program: 

begin 
int A ; 
ref int B; 
A :=O; 
B := A; 
while (A # 12) do 

A : = A + 2  
end; 
output B 

end 

Using the productions of Table 5.1, after all possible attributes on the derivation tree of 
the program have been evaluated during the translation phase, the only action symbols 
that remain for the execution phase are: 

STORE ~ 'A' $ 0 
STORE ~ 'B' ,!, 'A' 
LOCATE T label1 
LOAD ~ 'A '  T value1 
COMPARE NOT E(~UAL ~ valuer ~ 12 ~ value2 
BRANCH ON FALSE ~ value2 ~ label2 
LOAD ~ 'A' T value3 
ADD ~ values ~ 2 T value4 
STORE ~ 'A' ~ value4 
BRANCH ~ label1 
LOCATE T label2 
LOAD ~ 'B' T value5 
LOAD ~ value5 T valueo 
WRITE INTEGRAL ~ value6 
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This sequence of action symbols with the indicated attribute values is the translation of the 
source program and represents the meaning of the program. 

As has been shown, the attribute grammar approach that uses action symbols relies on 
the existence of some other target language for specifying semantics. In the case of ASPLE, 
this target language consists of the action symbols informally described in Table 5.2. They 
operate over three global variables: the memory  state, the input file state, and the output 
file state. These states are changed by a number of actions that take place during the execu- 
tion of the program. 

6. CRITIQUE OF THE DEFINITION TECHNIQUES 

The four formal definitions of ASPLE illustrate a variety of models whose usability can be 
compared. Any full definition of a programming language must supply information to a 
range of users. Language designers need to review their work and to assess the full impact 
of their design decisions. Language implementors need a precise formulation of a language as 
part of their job description. Writers of textbooks and reference manuals need information 
at all levels, from the general to the particular. Serious programmers need to resolve detailed 
questions about facets of the language that are often omitted from informal language defini- 
tions. 

To all these users, the formal definition must be a definitive source of answers to their 
questions. Beyond this essential minimum function, the quality of the definition is critically 
determined by the ease with which users can obtain the required information. As an illustra- 
tion, Table 6.1 lists six questions that might be posed about ASPLE. To compare the four 
definition techniques we will consider Question 4: 

In  this example ASPLE program, is the assignment of an integer constant  to the variable X valid? 

begin 
ref znt X; 
X : = Z  

end 

and follow through the process of obtaining answers from each definition. We will also look 
at each definition in a critical light. 

W-grammars 

Since the question involves the assignment statement, we first look for a hyperrule for as- 
signments. Hyperrule [HR10] contains the protonotion for assignment: 

[He10] TABLE TAG becomes EXP val ass ignment :  
TABLE ref  MODE TAG identif ier,  

:--, 
TABLE EXP MODE value. 

This hyperule shows that the right side of an assignment statement must be derivable from 

TABLE E X P  M O D E  v a l u e  
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1) General question about the language: 
What data types are available in ASPLE? 

2) More detailed question on the data types of the language: 
Are mixed mode expressions permitted in ASPLE? 

3) Detailed question on the context-free syntax of the language: 
In this example ASPLE program, is the semicolon after the second input statement correct? 

begin . 
int X;  
input X;  
while (X ~ O) do 

output X;  
input X; 

end 
end 

4) Detailed question on the context-sensitive syntax of the language: 
In this example ASPLE program, is the assignment of an integer constant to the variable X 
valid? 

begin 
ref int X;  
X : - - $  

end 

5) Detailed question on the semantics of the language: 
In  this example ASPLE program, is the disjunction between two variables, one of which has 
the value true and the other has an undefined value, legal? 

begin 
bool A,  B; 
A : ~- true; 
if (A + B) 

then B := true 
else B := false 

end 

6) Detailed question on the implementation defined features of the language: 
In this example ASPLE program, is the value printed defined by the language or is it 
dependent on the implementation? 

begin 
int X ,  Y; 
X :ffi I ;  ° 

Y : -  1; 
while (X ~ 1000) do 

output Y; 
X : f f i X + I ;  
Y:ffi Y * $  

end 
end 

TABLE 6.1 SAMPI~E QUESTIONS ON ASPLE 
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Following this form takes us through several hyperrules, [HR17], [HRIg], and [HR20]: 

267 

[HR17] 

[HRI 9] 

[HR20] 

T A B L E  E X P  M O D E  value: 
T A B L E  E X P  MODE factor. 

TABLE E X P  MODE factor: 
T A B L E  E X P  M O D E  primary. 

TABLE E X P  MODE primary: 
strong T A B L E  E X P  MODE i d e n t i f i e r ;  
T A B L E  E X P  MODE value pack; 
MODE E X P  denotat ion,  

where M O D E  is I N T B O O L ;  
T A B L E  E X P  compare pack, 

w h e r e  MODE is  bool .  

Since the right side of the assignment is a constant, a "denotation" in the W-grammar, we 
choose the third alternative. The uniform replacement rule applied to hyperrule [HR10] 
causes MODE in hyperrule [HR20] to be replaced by the declared mode of the target of the 
assignment. The phrase 

where MODE is INTBOOL 

from hyperrule [HR20] specifies that this mode must be int or bool. Hence the mode ref int 
is not permitted for X and the assignment statement is illegal in the given program. 

Conceptually, the W-grammar is the simplest of the formal systems presented here. All 
aspects of the definition are covered by a single formalism that is based on the familiar 
notion of context-free grammars. However, this one formalism has been pushed to an ex- 
treme. The reader must simultaneously follow protonotions down several branches of the 
tree keeping in mind many possible replacements and combinations. 

The expression of a complete definition in a formalism based entirely on symbol manipu- 
lation leads to some unnatural constructions. For example, all arithmetic must be performed 
on sequences of one's. This technique is at first difficult to understand. Only after con- 
siderable thought can the reader make the appropriate mental abstraction. However, it 
should be noted that the W-grammar definition is the only one of the four that defines the 
arithmetic operations fully. Once the reader has verified the way that the arithmetic works, 
plus  and t imes  serve as abstractions for that part of the derivation tree. 

The use of a generative grammar for the definition of semantics is not followed exclu- 
sively. There are points at which this approach has been abandoned and the explicit detec- 
tion of errors is used for clarity. For example, in hyperrule [HR75]: 

[HR75] where NUMBER matches  I N T B O O L :  
where I N T B O O L  is i n t ;  
w h e r e  I N T B O O L  is boo l ,  
[input error] abnormal terminat ion.  

a mismatch of types during input is specifically trapped. The reasons for the distinction 
between explicit and implicit detection of errors is a property of the definition and' is not 
concerned with the semantics of ASPLE. 
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Production Systems 

Here, we go directly to the production that deals with assignment statements: 

[PS07] 
s t m  A S G T  S T M  <id  :-- exp> & L E G A L  <*:p> 

*-- L E G A L < i d  :p> & L E G A L < e x p : p >  & 
d m ,  ~ D E R I V E D  E X P  M O D E ( i d : p )  & d m r  ~- D E R I V E D  E X P  M O D E ( e x p : p )  
P R I M  M O D E ( d m , )  = P R I M  M O D E ( d m r )  & 

[The primilive modes of ,d and exp in p must be identical] 
n ,  ------ N U M  R E F S ( d m , )  & n r  --- N U M  R E F S ( d m r )  & n ,  ___ n r  + 1. 

[The mode of id must be obtainable from the mode of exp by deferencing exp] 

& 

From this we see that the primitive mode of the identifier must be identical to the primitive 
mode of the expression. We also see that nt,  the value of NUM REFS of the declared mode 
of the identifier, must be less than or equal to nr + 1, the value of NUM REFS of the de- 
clared mode of the expression plus 1. The value of NUM REFS for the identifier X de- 
clared as ref int is derived from the following rules: 

[PS42] 

[PS44] 

[PS45] 

[PS47] 

D E R I V E D  MODE(int) =--. R E F  I N T E G E R .  

D E R I V E D  MODE(tel m )  ----- R E F  d m  

~-- d m  ------ D E R I V E D  M O D E  (m) .  

N U M  R E F S ( I N T E G E R )  ---- 0. 

N U M  R E F S ( R E F  d m )  -~ 1 + N U M  R E F S ( d m ) .  

From these we see that the value of NUM REFS for an identifier is one more than the 
number of occurrences of ref in the declaration for the identifier. For X, the value of n is 2. 
The value of NUM REFS for the expression, an integer constant, is obtained from: 

[PS37] 

[PS45] 

D E R I V E D  E X P  M O D E ( i n t : p )  --ffi I N T E G E R .  

N U M  R E F S ( I N T E G E R )  m 0. 

The value of nr is thus 0. Applying these values to the relation in production [PS07]: 

n ,  = 2 n r  = 0 n ,  > nr + 1 

the assignment is shown to be illegal in the given context. 

The notation for Production Systems is based on a combination of generative and analytic 
concepts. Sets are defined generatively and the properties are defined analytically. This 
interplay leads to definitions that are short and provide some degree of abstraction. Further- 
more, the use of a static environment leads to a conceptually clear definition of the context- 
sensitive requirements. If the user is only concerned with the context-free syntax, only the 
left-most conclusion in each production need be considered and all premises and predicates 
involving an environment may be ignored. One debit with Production Systems is that they 
have not been used for the direct definition of semantics. The user is therefore required to 
learn another method. 

The axiomatic approach to semantics is based primarily on generative concepts and does 
not rely on any machine model of execution. I t  concentrates on the essence of semantics by 
specifying only relevant assertions about objects and operations. The approach also has the 
advantage of giving the user tools for proving properties about programs. The major debit 
is the need to make mental leaps in order to select the relevant assertions. Since the process 
is generative, the detection of errors is implicit rather than explicit. 
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Vienna Definition Language 

Since the legality of the statement can be determined statically, we start with the function 
trans-asgt-stm IT05] in the Translator: 

IT05] t rans -asgt - s tm(t )  - 
v a l i d - m o d e - f o r - a s s i g n m e n t ( t )  -~ t rans la te -ass ignment ( t )  
true  -*  e r r o r  

[modes not compatible for assignment] 

Here we see that the predicate function val id-mode-for-ass ignment  is used to check the 
legality of the statement before translation. This predicate: 

[T25l 
val ld-mode- for-ass ignment( t )  = 

( p r i m i t i v e - m o d e ( s ! ( t ) )  = p r i m i t i v e - m o d e ( s 3 ( t ) )  & 
(re f -chain- length(s l ( t ) ) -  1 _<: ref-ehain- |ength(s3(t ) ) )  

[true i f  the mode of the righl sute of an assignment statement is valid for assignment to the left side] 
[where: i s - c - i d ( s l ( t ) )  a n d  i s - c - e x p ( s 3 ( t ) ) ]  

requires that the primitive-mode of the identifier on the left match the primitive-mode of 
the expression on the right. Also, the value of ref-chain-length for the identifier must 
not be greater than 1 plus the value of ref-chain-length for the expression. From the 
definition: 

[Ti9] ref -eha in- length( t )  = 
i s -e - id( t )  -~  s l e n g t h ( s l . m o d e - o f - i d ( t ) )  -~ 1 

[this is an elementary ob£ect satisfying is-integer] 
true --* I_ 
[where: s t . m o d e - o f - i d ( t )  is the list of ref' s in the declaration of the identifier t ]  

the value of ref-ehain-length for an identifier is one more than the number of occurrences 
of ref in its declaration. For the variable X, this value will be 2. The value of ref-chain-  
l ength  for any other type of expression, including constants, is 0. Thus the relationship in 
valid mode-for -ass ignment  does not hold and the statement is rejected as being illegal 
in the context. 

The VDL approach is based entirely on the model of a hypothetical machine. The concept 
of a computer is familiar to many users and an abstract machine provides a precise and 
readily grasped metaphor. Because of the resemblance between the hypothetical machine 
and real computers, implementation restrictions can be introduced naturally. 

A VDL definition is split into two parts, the Translator and the Interpreter. For many 
languages there is no sharp distinction between the statically and dynamically applied 
rules, and the writer of the VDL definition is forced to superimpose this structure. The di- 
viding line will generally be drawn in order to make both parts as clear as possible, and in a 
large language, there are bound to be some arbitrary decisions. 

One debit of the approach is that the use of the hypothetical machine brings extraneous 
detail into the definition that tends to obscure its meaning. For example, the mechanism for 
passing values from one operation to another in the Interpreter has no direct connection 
with ASPLE semantics. The mechanistic nature of this definition technique provides little 
help in deriving general properties of language constructs. The user can only attempt to 
draw conclusions about the general behavior of these constructs from specific examples. 
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For most programming languages it is not too difficult to draw these conclusions. The ex- 
plicit detection of errors by the interpreter helps the user, particularly the implementor, to 
understand the language more easily. 

Attribute Grammars 

The production for the assignment statement is [AG09]: 

[AO09] <asgt s t m )  ~ env  : := <used id> ~ env  T p r i m - m o d e l  T refsx T n a m e  

s u b t r a c t  o n e  re f  ~ refsx T refs2 
(exp> ~ env  ~ re fs ,  ~ p r i m - m o d e s  ~ VALUE 
STORE ~ n a m e  ~ VALUE 
condition: p r i m - m o d e l  -- p r i m - m o d e z  

[primitive modes must be compatible for assignment] 

The syntactic category <used id> is specified in production [AG21]: 

[AG21 ] (used  id)  ~ env  T p r i m - m o d e  T refs  T n a m e  
: := (id> T n a m e  

condition: (name ,  p r i m - m o d e ,  refs) e env  

This shows that the number of references, the value of the attribute refs, associated with the 
identifier is to be obtained from the environment. This value is specified in [AGO5]: 

[AG05] <mode> T p r i m - m o d e  T refsl 
: := bool 

6 i re  va lue  to a t t r i b u t e  ~ boo£ T p r i m - m o d e  
give v a l u e  to  a t t r i b u t e  ~ oae-;te~ T refsl  

I i n t  
give v a l u e  to  a t t r i b u t e  ~ ~ T p r i m - m o d e  
give v a l u e  to  a t t r i b u t e  ~ one-neg T refsl  

I re/ 
<mode> T p r i m - m o d e  T refsz 
add  o n e  r e f  ~ refs2 T refst  

The value of refs is one greater than the number of occurrences of ref in the declaration. 
Thus the value of the attribute refs associated with (used id> in production [AG09] is 2. 
This is reduced by 1 by the action symbol sub t r ac t  one  ref  to give 1 as the value of the 
attribute refs passed to the production for (exp). Following this attribute through the 
productions for <exp> and <factor>, we arrive at the production for (primary> [AG20]: 

lAG20] <primary> ~ env ~ refsl  T p r i m - m o d e  T VALUE 
: := (u s e d  id)  ~ env T p r i m - m o d e  T refss T nam er  

<deter  ac t ion> ~ n ame r  ~ refs~ ~ refst  T VALUE 
[some derefereneinff may possibly be done] 

I ( c o n s t a n t >  T p r i m - m o d e  T VALUE 
condition: rcfsl  = ze~w-ae~ 

I ( 
(exp)  ~ env ~zeyw-;te~T p r i m - m o d e  T VALUE 
) 
c o n d i t i o n :  refsl  = zea0-ae~ 

I(_ 
(compare> ~ env  T VALUE 
_) 
give v a l u e  to  a t t r i b u t e  ~ boo£ T p r i m - m o d e  
condition: refsl  = ze)t0-~e~ 
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Since the right side of the assignment is a constant, the second alternative applies and the 
condition stipulates that refs --ze2w-z£~. Since the value of refst is 1, the assignment 
statement is illegal in the given context. 

This method clearly shows the underlying context-free syntax of the language. By over- 
laying the evaluation of attributes on the parse tree, the interrelation between the various 
parts of the tree is seen. Clarity is helped by including the attributes in the productions, 
thus keeping the information localized. 

Attribute Grammars are limited in the amount of attribute evaluation that can be per- 
formed directly and by the lack of a method for defining the semantics. These require further 
action symbols. While action symbols correspond most closely to an actual implementation 
and may appeal to writers of compilers, the formal definition of the action symbols is trouble- 
some. There is no way that this can be done within the Attribute Grammar system, though 
it would be possible to replace the action symbols with some other more formal system. 
This would require the user to learn a second formalism to understand the definition. 

Evaluation 

A comparative evaluation of the four techniques is indeed subjective. One way of presenting 
such an evaluation is in a tabular form, similar to that used for computer system selections 
or for reports on cars, shavers, and other objects whose characteristics are mainly assessed 
subjectively. Table 6.2 was obtained by combining the views of the authors of this paper. 
Although there was some disparity between these views, the disagreement was not large, 
and no gre~t feat of compromise was required in deriving the table. 

Some remarks on this table are in order. 
• Completeness. By this we mean the ability of a formal system to define the entire 

programming language. As we have presented the formal definitions here, only the 
Attribute Grammars are incomplete, though they could have been coupled with 
axioms in the same way that we have done for Production Systems. 

• Simplicity of model. There are two aspects to this criterion: the initial difficulty of 
learning the model, and the effect of the model on the clarity of the definition itself. 
Here, we only evaluate the first of these. The second is subsumed in other criteria. 
It  could be argued that the initial difficulty of learning the technique is of relatively 
minor importance since this is only a "one time expense." 

• Clarity of defined syntax. In particular, this includes the definition of the context- 
sensitive requirements. We believe that isolation of these requirements from the 
context-free specification and semantics is important to clarity. 

• Clarity of defined semantics. This is the category in which we had the greatest di- 
vergence of opinion. Each of us found the technique we knew the best to be the 
clearest. 

• Ability to show errors. It  is not clear how valuable it is for a definition to show errors. 
From the theoretical point of view, a definition need only define the class of legal 
programs and their meaning. From the practical point of view, however, many of 
the questions that a definition will have to answer will be of the form shown in 
Table 6.1 and the explicit indication of errors is helpful in providing replies. I t  is 
probably of assistance to compiler writers that the definition show errors in the source 
program explicitly. 

• Ability to show detads. This criterion measures the ease with which the user can find 
detailed information about the language. 

• Ease of modification. This is of great importance during the design of the language, 
but much less so once the design is complete. 
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VIENNA ATI'RIBUTE PRODUCTION AXIOMATIC DEFINITION 
W-GRAMMARS SYSTEMS APPROACH LANGUAGE GRAMMARS 

COMPLETENESS -I- NA NA + - 

+ + o - o SIMPLICITY OF 
MODEL 

CLARITY OF 
DEFINED SYNTAX 

CLARITY OF DE- 
FINED SEMANTICS 

ABILITY TO SHOW 
ERRORS IN PRO- 
GRAMS 

0 

+ 

NA 

+ 

NA 

, 0 

+ 

+ 

m 

ABILITY TO SHOW 
DETAILS 0 + 0 -{- 0 

EASE OF MODIFICA- 0 0 0 0 0 TION 

RATINGS : 
+ Positive 
0 Neutral 
- Negative 
NA Not Applicable 

TABLE 6.2 COMBINED AUTHOR RATINGS OF THE DEFINITION METHODS 

7. FORMAL DEFINITIONS IN GENERAL 

At present, most formal definitions are used exclusively by  humans. The direct machine 
use of formal definitions is limited and is used primarily for the automatic construction of 
recognizers from context-free grammars. Even with great advances in compiler technology, 
humans will remain the major users of formal definitions. 

While it may seem to be trite to remark on the importance of clarity in formal definitions 
for human use, the subject of clarity has hitherto received but  scant attention. 
Completeness and conciseness have generally been considered to be of greater importance. 
Completeness is indeed important,  so important  that  it must be assumed in any formal 
definition without special comment. Conciseness, while sometimes helpful to clarity, is a 
dangerous mistress. She is the siren that  lures programmers onto shoals of octal coding and 
the APL one-liner. 

A comparison of the way our four definitions answer the sample questions shows that  
clarity depends critically on the formal model being used, and on what the reader is used to. 
However, even with a given formal system, there is still room to exercise the care and talent  
of the writer. The method of presentation also plays a vital par t  in the formal mechanism. 

In  the preparation of the example definitions in this paper, we have taken care to promote 
clarity. Among the principles we have used are: 

• introduction of the minimum amount  of notation required for the defmition of 
ASPLE;  

• use of abbreviations only where there is a clear gain in readability; 
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• separation of context-free, context-sensitive, and the semantic parts of the language 
as much as possible; 

• arrangement of the tables in a way that makes them easy to read, even at the ex- 
pense of almost doubling the conventional space requirement; 

• selection of mnemonic names that help the reader in making abstractions; 
• use of different type styles to separate different types of objects; 
• use of comments. 
I t  is clear that for a language of any magnitude, the production of a formal definition 

without the aid of some text preparation system is almost impossible. The incidence of 
typographic errors will always be too high to produce reliable tables. Even with the small 
tables we have produced here, we have had problems of this sort. Had we had access to a 
document preparation system with output provided in a choice of type styles, we would 
certainly have used it. 

I t  should be remembered that our four definitions describe a toy language only. Even so, 
the labor of producing the tables was considerable, requiring at least a week for a first draft 
and then a large number of iterations to remove errors and improve clarity. For real pro- 
gramming languages, the mass of detail required in any formal definition becomes immense. 
A complete understanding and checking of such a definition certainly approaches and may 
exceed human abilities. 

While there can be little argument about the need for clarity in formal definitions, there 
are several topics where debate continues. 

What Constitutes a "Valid" Program. ~ 

Since a definition provides rules for selecting the set of legal programs from the set of all 
possible strings in the language, it is important that the properties of a "valid" or "legal" 
program be defined. There are several possibilities; for example, a valid program may be 
defined as one with: 

1) no context-free syntax errors; 
2) no context-free or context-sensitive syntax errors; 
3) no syntax errors and whose execution terminates when encountering a particular set of 

input data; 
4) no syntax errors and whose execution terminates for all possible sets of input data; 
5) no syntax errors and whose execution terminates for all possible sets of input data and 

produces a "correct" answer. 
In our example definitions, Production Systems and Attribute Grammars go as far as 

level 2). VDL and W-grammars include level 3) and the axiomatic approach allows level 4). 
However, only the W-grammars, by a requirement for a finite tree, touch on the problem 
of termination. A final opinion on this issue is left open. 

How Should a Formal Definition Show Errors. e 

There are two fundamentally different ways that formal definitions specify "errors." A 
definition may be analytic, rejecting erroneous programs explicitly, or the definition may be 
generative, making it impossible to generate an erroneous program. From the user's point of 
view, the generative method leaves the question of whether a program is really erroneous or 
whether the user has not been able to think of a way to use the grammar to generate the 
program. None of our sample definitions takes a pure position in this matter. For example, 
VDL rejects programs with context-sensitive or semantic errors explicitly, but uses a 
generative approach that prevents the construction of a program with a context-free syntax 
error. The W-grammar is mainly generative but detects some semantic errors explicitly. 
Of our four definitions, the VDL formalism shows errors the most clearly. 
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How Should Definitions Show Implementation Restrictions? 
Two subsidiary questions are: 1) How should definitions attempt to indicate the places 
where an implementation may introduce restrictions?; and 2) Furthermore, is it possible to 
foresee all such restrictions? 

The second question begs the prior question, whether a language definition should allow 
any implementation-defined restrictions. If the language is completely specified by the de- 
signer, the implementor may be forced to take uneconomic expedients to meet the specifi- 
cation exactly. I t  may be a contractual condition that the language definition be completely 
implemented. 

With the technology available at this time, it seems that the implementor must be left 
with several points at which he is free to make decisions. We contend that these implementa- 
tion-defined points, if any, should not be ignored, but explicitly shown in the formal defi- 
nition. It  is important to users of a language, as well as to implementors, to know what can 
be counted on in all implementations. The question whether it is possible to foresee all such 
restrictions is still open. Currently, the closest to a formal definition for an official language 
standard is the draft proposed standard for PL/ I  [E2]. This uses a VDL-like model of an 
abstract machine, but the algorithms are expressed more informally in a disciplined style of 
English prose. This specification has attempted to mark all the implementation-defined 
features by listing 40 of them. However, the definition permits a standard implementation 
to make quantitative restrictions that are not included in the list. Much of the reason for 
this is not connected with the technology of the definition but with the more practical legal 
question of restraint of trade. 

8. IMPORTANCE OF FORMAL DEFINITIONS 
Because BNF is clear and easy to use, most definitions of programming languages include a 
BNF description of the context-free syntax. This is generally as far as the formal content of 
the definitions go. As a result, there is an unfortunate tendency to believe that this is all 
that is required of a formal definition. There is an analogous confusion in many textbooks 
on compilers where the subject matter is limited to the theory of parsing. In formal defini- 
tions, as with compilers, the more difficult parts are the context-sensitive requirements and 
the semantics. 

It  is precisely in the context-sensitive and semantic areas that formalism is needed. There 
is generally little argument over the precise syntax of a statement even if there is no formal 
description of it. All too often, however, an intuitive understanding of the semantics turns 
out to be woefully superficial. I t  is only when an attempt at implementation (which is, after 
all, a kind of formal definition) is made that ramifications and discrepancies are laid bare. 
What was thought to have been fully understood is discovered to have been differently 
perceived by various readers of the same description. By then, it is frequently too late to 
change, and incompatibilities have been cast in actual code. 

Our example definitions indicate that the technology for full definitions is available but 
that there is still much work to do before any notation achieves the level of general ac- 
ceptance of BNF. This work must overcome considerable user resistance. For example, the 
definition of the proposed standard for PL / I  [E2], the VDL definition of PL/ I  [L7], and the 
W-grammar definition of ALGOL 68 [W2] have all received mixed reactions. Resistance to 
formal defmitions will only be overcome by great attention to the human engineering so that 
the general user feels that the definition is understandable by other than formal definition 
specialists. 

Despite the urgent need for the development of readable formal definitions, formal deft- 
nitions must never be thought of as self-contained arenas with no user contacts. The inter- 
face with users is the key area where most of the effort is needed. The metalanguage of a 
formal definition must not become a language known to only the high priests of the cult. 
Tempering science with magic is a sure way to return to the Dark Ages. 
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