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PROPERTIES OF BOOLEAN FUNCTIONS WITH
A TREE DECOMPOSITION*

G. V. BOCHMANN AND W.W. ARMSTRONG

Abstract.

Boolean functions that have a multiple disjoint decomposition scheme in the
form of a tree are considered. Properties of such functions are given for the case
that the functions are increasing, unate, and/or have no vacuous variables. The
functions with a binary decomposition scheme are of special interest. The modulus
of sensitivity is defined, and evaluated for some classes of functions. The modulus of
sensitivity is interesting from the point of view of semantic information processing.
It is found that the sensitivity for the class of funetions with a given disjoint
binary decomposition scheme is much smaller than for the unrestricted class of
boolean functions. This indicates that these functions are potentially useful in
pattern recognition of discrete data.

1. Introduction.

This paper treats boolean functions with a multiple disjoint decom-
position in the form of a tree. Properties of simple disjoint decompositions
have been given by Ashenhurst [1] who points out the existence of a
most decomposed form for any given boolean function. Some extensions
to functions with non-disjoint decompositions are given by Curtis [2].
In this paper, we present a description of disjoint tree decompositions
of boolean functions, and study properties of such tree functions which
are significant from the point of view of semantic information processing.

Our principal interest is in functions associated with a binary tree.
The value of such a function has a strong tendency to remain unchanged
when a few of the inputs are inverted, as is shown in section 5. This
represents a kind of “‘continuity’ which makes the functions potentially
useful for applications in pattern recognition. In fact, the discriminant
functions used in pattern classification [3, 4] are almost always smoothly
varying funections, such as linear or polynomial functions, and similarly,
the distribution functions used in stochastic approximation methods are
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simple polynomials. This is important when a system trained on one set
of data is to generalize its performance to a test set. Boolean tree func-
tions exhibit an analogous insensitivity for discrete arguments. The
authors have developed an adaptation algorithm for increasing tree
functions [5], which satisfies a theorem analogous to the perceptron
convergence theorem [4] for linearly separable functions. Generalization
from a training set to a test set has been very satisfactory when this
method was applied to handwritten numerals and measurements on iris
plants, as will be deseribed in a later paper.

The problem of finding an optimal realization of minimal cost for a
given function is greatly simplified if the function has a decomposition.
A family of tree functions, as defined in this paper, has been used to find
an optimal realization of some given function by Roth and Wagner [6].

In this paper we consider only disjoint decompositions of functions,
that is, within the decomposed form each variable appears only once.
We note that every boolean function can be realized by a (large enough)
non-disjoint decomposition, and that properties of the sensitivity similar
to those described for disjoint tree functions in section 5, would also hold
for a limited amount of non-disjointness (see [5], introduction).

In section 2, we give the basic definitions and show in theorem 2.3
some algebraic properties of multiple disjoint decompositions. In section
3, we define the concept of a tree function for a given decomposition
scheme, and study its realizations. We then restrict ourselves to tree
functions for binary trees, in section 4, and describe several classes of
such funections.

The number of tree functions on a fixed tree is determined. Finally,
in section 5, we introduce the modulus of sensitivity as a measure for the
relative frequency of change of the function value when some arguments
are perturbed. We determine its value for some classes of binary tree
functions, and find it to be much smaller than for tree functions of
higher order or for the unrestricted class of boolean functions of the
given number of inputs.

2. Tree decomposition of Boolean functions.

In the following, we generally consider a tree, defined as usual by a
set of nodes K, each node k € K having a certain number n, of suecessors
denoted by s;;,8k;. - - Sk, - The terminal nodes with no successor form
the set K, the nonterminal nodes form the set K. The root node of the
tree is denoted by r.
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We associate a set of distinet variables X with the terminal nodes K,
of the tree by a one-to-one correspondence between the variables x, € X
and the nodes k € K,. Together, tree and variables are characterized by
the triple (K,s,X), where s is the successor funetion.

2.1. Definition of a tree composition of boolean functions.
Given a tree with variables (K,s,X) and boolean functions

gr: {0,137 ~{0,1}

for each nonterminal node % € K, we define recursively, on the tree and
on its subtrees, the composite functions

fier {0,137 > {0,1}.

X, is the set of variables of the terminal nodes of the subtree of the node k.
More precisely

X, = {z,} for ke K,
i=1,... 0
and

Jo = 9l foppSoms- - -5 Foy) Tor ke Ky .

The function f, is the composite function on the entire tree, and the func-
tions g, are called the node functions of f,.

Fig. 1. A tree with terminal nodes 1,2,...7, nonterminal nodes 8, 9, 10, 11, 12, and
root node 12.
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2.2. As an example we take the tree of fig. 1. With node functions g,
(k=8,9,...12), the composite function f,, is given by

Srol@y,. .. 27) = 912(911(93(”1’-’752),99(5”3,-704)):910(955,956:5”7))-

We now consider the following properties for a boolean function f (see
for example [7]):

(a) f has no vacuous variables, i.e. f depends on all its variables X.

(b) fis a unate function, i.e. for each variable 2; € X, f is either positive
or negative.

(c) fis an increasing function (logically passive, positive unate function),
ie. f is positive in all variables.

2.3 THEOREM. Given a tree with variables (K,s,X), and a composite func-
tion f, defined by the node functions g,k € Ky), we have:

(a) f, has no vacuous variables iff all node functions g, have none.

(b) If all g, are unate then f, is unate, and if f, 18 unate with no vacuous
variables then all g, are unate.

(c) If all g, are increasing then f, 1s increasing, and if f, 48 increasing with
no vacuous variables and g,(0)=0 for all g, then all g, are increasing.

In order to keep this article short we refer to [8] for the proof.

3. Boolean tree functions.

3.1. Definition of tree functions (TF).

Given a tree with variables ¢=(K,s,X) and a boolean funetion
F:{0,1}X - {0,1}, we say that f is realizable by t or that f is a free function
on t iff there exists an assignment of boolean functions g,(k € Ky) such
that the composite function f, is equal to f. We say that the function as-
signment is a realization of f. We write F, for the set of all TF realizable
ont.

We mention that a given TF may have several distinct realizations on
a given tree, as in the following examples:

(a) g(z,,OR(xq,%5)) = g(2, AN D(%5,2;)) = g(2,,0) if the second argument of
g is vacuous.

(b) by(%y,b, (%9, %3)) = by(e1,b,(24, 5)) Where the functions b,(i=1,...,3) are
defined in Table 1 and the bar stands for complementation.
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Table I. The zero preserving (ZP) boolean functions of two variables.

Symbol Expression Comment
bi(z,y) z+y OR

62(1;’ Z/) xy AND
ba(w,y) xF

ba(z, y) Zy

bs(x, v} =@y exclusive OR
bg(x,y) x left connection
ba(z, ) y right connection
ba(x,y) 0 constant zero

A given boolean function f may be realizable on different trees. For ex-
ample, the overall 4 ND function is realized whenever all node functions
are AND functions.

3.2. The ZP realization.

A realization of a TF is called a ZP (zero-preserving) realization iff
9,(0)=0 for all k € K. (We note that for a ZP realization the values of
all subtree functions f,(k € K) are zero if all their arguments are zero.)

We have the following lemmas, the proof of which again can be found
in [8]:

(a) Given a tree with variables ¢=(K,s,X) and a tree function fe F,,
there exists a ZP realization of f iff f(0)=0.
(b) If f has no vacuous variables then this ZP realization is unique.

4. Tree functions for binary trees.

In the following we consider only binary trees, i.e. trees in which each
nonterminal node has exactly two successors. However, many of the state-
ments that follow can be generalized to arbitrary trees. We consider only
boolean functions f with f(0)=0. This does not significantly restrict the

generality, since we would otherwise consider f.

4.1 The boolean funcitons of two variables.

A realization of a TF on a binary tree consists of boolean funections
of two variables. A short summary of these functions is given in table L.
Besides the eight functions in the table, there are eight other functions of
two variables which are obtained from b,,...,b; by complementation.
We ignore them here because they do not appear in ZP realizations.
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We note that of these eight

(a) only by,b,,...,bs have no vacuous variables,
(b) only b, is not unate,
(¢) only by, b,, by are not increasing.

4.2. Some classes of tree functions.

We now define classes of TF which satisfy certain conditions. Later
we give some properties of these classes, such as their interrelations,
number of elements, and moduli of sensitivity.

Given a binary tree with variables i=(K,s,X), we denote by F® the
class of all TF that have a ZP realization using as node functions only
by,by,. . .,b;. We note that

(i) F/® consists of all functions f € F, with f(0)=0. From 3.2 we have
= F®u F® (disjoint) .
Furthermore, from theorem 2.3, we have the following:

(i) F® consists of all functions fe F; with f(0)=0 and no vacuous
variables.

(iii) F/@ is the set of all unate functions in F,®.
(iv) F/@ is the set of all increasing functions in ¥'®
4.3 Some examples.
(a) We consider the class of boolean functions of three variables which

are increasing and without vacuous variables. This class consists of the
following functions:

fi = AND(zy, AND(,,%,)) = %2525

fo = AND(z,,OR(xy,%;)) = %y%y+ 2125
f3 = AND(a,,OR(%5, %)) = a3+ 2y
f1 = AND(x3,OR(2,2,)) = @3, + 232,
fs = OR(xy, AND(y,%3)) = 2+ %y
fo = OR(xy, AND(25,2,)) = @p+232,
o = OR(25, AND(21,5))

fo = OR(x;,O0R(x,,25)) = X+ o+ Ty

= x:; + 3!?1332

fe = (nondisjoint tree) = 2,0y + By Xg + Loy
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X, X, Xj Xy Xy Xg X Xy Xz
{a) {b) (c)
Fig. 2. The binary trees with three terminal nodes.

The possible binary trees with three terminal nodes are shown in fig. 2.
One finds that for the tree

of fig. 2(a): F® = {f.fo.f5.fs}
for fig. 2(b): F®@ = {f,.fs.fe.fs}
for fig. 2(c): F® = {fi.fuf0fs}-

We see that all functions of the class except f, are realizable by some tree.
(b) The function f, above and

S = &%+ 24%5 4 T4+ X575 + Ty + 47y

which are increasing, without vacuous variables, symmetric, and linearly
separable (i.e. threshold functions [7]) have no (disjoint) tree realizations.
On the other hand, the function

f = (@4 2) (x5 +2y)

has a tree realization but is not linearly separable, i.e. there exist no real
numbers oy, &g, 065, %4, 0 such that f(&)=1 iff 3,«,£,2 6. (For, if so, oy +
oy 2 0 and g+ o, = 6, which would imply either oy + a2 6 or ag+ 0,20
which would give a wrong value for f).
We note that any boolean function can be realized by a non-disjoint
decomposition if a sufficiently large decomposition tree is chosen and
variables at different terminal nodes are identified.

4.4 LemMa. The set of all unate TEs is identical to the set of all functions
obtained from increasing TFs by complementing some non-vacuous variables.

The proof can be found in [8]. We note that a similar statement holds
without the restriction to tree-realizable functions, since increasing func-
tions are unate functions which are positive in each non-vacuous vari-
able [7].
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4.5 LeMMA. Reduction of a TF with vacuous variables.

Let t=(K,s,X) be a binary tree with n terminal nodes, and fe F,. If f
has jz 1 vacuous variables, then f s equal (up to the obvious projection
{0,1}» > {0,1}™) to a TF on a reduced tree with m=n—j terminal nodes
which depends on all m variables. (An example is shown in fig. 3). For the

proof see [8].

(a) (b)
Fig. 3. (a) A realization of the tree function
Swr,. . . x6) = bs(balbs(w1,22),bals, 1)), br (s, %))

which has three vacuous variables z;, 23, and 25. The replacements for a tree
reduction (section 4.6) are shown (dotted arrows). The functions b; are defined
in Table I.
{b} The tree function
Jr(xs, wa,26) = bs(ba(23,24), %6)

is obtained from (a) after reduction.

4.6 Theorem on the number of tree functions.
Given a fixed binary tree with n terminal nodes, the number

1) of functions (j=5)

(ii) of unate functions (j=4)
(iii) of tncreasing and decreasing functions (j =2) which have a realization
on t, is given by

1
v = fu3icg+ -1
with the value of j as indicated above.

Proor.

(a) The factor 2 is due to the two cases f(0)=0 and f(0)=1.
(b) The leftmost 1 accounts for the constant functions f=0 and f=1.
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) NG+ =1]=3" ., ()j™* is the number of non-constant
functions. To gee this we note that there are (J,) different sets of
m variables {(out of n) on which a funection can depend. Each set
corresponds to a reduced tree of m terminal nodes (see Lemma 4.5).
The number of functions in F¥ on a reduced tree is equal to jm!
for j £5 by 3.2(b), since these functions depend on all m variables.
Section 4.2 justifies the choice of values for j.

We note that the above number of TFs are calculated for a given
binary tree. For a given set of terminal nodes, these numbers do not
depend on the form of the tree, however, the classes of functions do.
{See example 4.3(a)).

A comparison with the number 22" of boolean functions of n variables
shows that for large n only a small fraction of the boolean functions are
TF on a given tree.

5. The modulus of sensitivity for tree functions.

In this section we introduce the concept of modulus of sensitivity of
a boolean function. We shall show that the probability of a change in
the value of an average tree function is rather small when some argument
values are complemented, compared to the probability of change for an
arbitrary boolean function. This property is inherent in the structure of
tree functions, and indicates that tree functions may be appropriate for
certain applications where “well-behaved” functions are required as ap-
proximants, such as for decision functions in pattern recognition. Tree
functions have the potential to provide a certain kind of generalization
from a training set to a test set of patterns.

5.1 DerFiNTTION. We define the modulus of sensitivity u for a class €
of boolean functions of n variables as the function u: {0,1,...,2} - [0,1]
given by

-1
um) = { cara 2 )} S S cardft | dE.E)=m; f(6)+AE))
M/} feC gefo, 1y

which represents the average probability over all functions of C and over
all argument vectors that a change of m argument values gives rise to
a change of the function value (d =Hamming distance).

For the set of all boolean functions of n variables we find u{m)=0.5
for m=1,2,...,n.

For C={b,| k=1,...,i} where the functions b, are listed in the table I,
we find by direct calculation
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w(l) = 0.5, u(@) =05 fori=24;
u(l) = 0.6, u(2) =04 fori=5.

We denote these numbers by u,® and u,®.

5.2 The modulus of sensitivity of the tree functions for a balanced binary tree.

In general it may be quite complicated to calculate u(m) for a class C
of functions and values m=1,2,...,n. In [8] we give a lemma which
allows recursive calculation of u(m) for the classes F/® (§=2,4,5). In

Fig. 4. A balanced binary tree with I=3 levels.

the case of a balanced binary tree ¢t (see fig. 4), the left and right subtrees
for any given node are isomorphic, so we can characterize a subtree by its
level I. We then have for the class F® (1=2,4,5) and m=0,1,...,2 the

recursion formula:
22 -1 m 2i-1 9i-1
Haim) = (m) b3 (m )(m—m)
Mg=0 8 &

{u P pg_p(m ) + pg-p(m — m )1+ [pe® — 20O pg_plm ) g _p{m —my)}

One finds, for example, pp(1) = (¢,?) which is the sensitivity with re-
spect to the complementation of one variable.

5.3 Limsting values for large trees.

For balanced trees, ug(m) approaches a limit as the level [ of the tree
goes to infinity and the proportion of complementations m/n, where
n=2! remains constant. The value of this limit is independent of m/n.
We have a limit gum{m/n) of ug(m) if from one level (I—1) to the next
level I, the equilibrium condition

palm) = pg-p(m(2) = pum(m/n)
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is satisfied. In [8] it is shown that

(20,9 — Dypiasm(mfn) 4 (4o® ~ 2p,P) [pim(m/n) 2 = 0

with the stable solution
2 ”l(ﬁ -1
Hiim = WMIZ({)
Inserting values for 4, we find the limit of the modulus of sensitivity
for I - o« to be
pum(m/n) = 0.25 for the class F|{»
and
mim(mfn) = 0.0 for the classes F® and F @ .

We note that this limit is independent of the relative number m/n of
complementations of variable values.

We have also evaluated the modulus of sensitivity u for the classes
F® (i=2,4,5) on balanced trees of levels up to I=9, using the formula
of section 5.2. The results are shown in fig. 5a,b.

6. Conclusions.

We have described properties of boolean functions that have a multiple
disjoint decomposition scheme in the form of a tree. We have specially
mentioned the classes of tree functions that are increasing, or unate,
and/or which have no vacuous variables. For the class of all binary TF
on a large, balanced tree, the probability that the complementation of
a number of variables induces a changed function value, is very small.
For very large trees, the modulus of sensitivity is almost 0.25 for the
class of functions with no vacuous variables, and 0.00 for the classes of
unate and of increasing functions with no vacuous variables. Surprisingly
enough, this is the case even when almost all of the variables are com-
plemented. The difference in the values arises since the exclusive OR
function b, is not allowed as node funection in a unate tree function. In
contrast to this, the average of the modulus of sensitivity over all boolean
functions of n variables is u(d)=0.56 for 1 <d <n. The relatively small
sensitivity of tree functions is inherent in the decomposition property,
and is particularly remarkable for binary trees. For example, in the case
of tree functions with decomposition into node functions of three vari-
ables (in contrast to two variables in binary trees), the limiting value of u
for large balanced trees is pum=0.18 [8] for the class of unate functions
with no vacuous variables as eompared to 0.0 for binary trees.
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Fig. 5. The modulus of sensitivity py(m) for the class F;(3) of tree functions on balanced
trees with I levels and n=2% variables. The abscissa m/n represents the relative number
of complementations of variables, i.e. the proportion of perturbed input signals, and the
ordinate represents the probability of the output changing due to this perturbation.

{a) ¢=25: the class of tree functions with no vacuous variables.

{b) =2 and 4: the classes of increasing and unate tree functions with no vacuous
variables. The limit is constant 0.
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It is clear that some insensitivity is also present if we allow some
non-digjointness in the decomposition schemes. This kind of insensitivity
of binary tree functions has been found useful in the construction of
discriminant functions where generalisation (i.e. insensitive extrapola-
tion) from a training set to a test set is required.
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