
BIT 14 (1974), 1-13

PROPERTIES OF BOOLEAN FUNCTIONS WITH

A TREE DECOMPOSITION*

G. V. BOCHMANN AND W. W. ARMSTRONG

Abstract .

Boolean functions that have a multiple disjoint decomposition scheme in the
form of a tree are considered. Properties of such functions are given for the ease
that the functions are increasing, unate, and/or have no vacuous variables. The
functions with a binary decomposition scheme are of special interest. The modulus
of sensitivity is defined, and evaluated for some classes of functions. The modulus of
sensitivity is interesting from the point of view of semantic information processing.
I t is found that the sensitivity for the class of functions with a given disjoint
binary decomposition scheme is much smaller than for the unrestricted class of
boolean functions. This indicates that these functions are potentially useful in
pattern recognition of discrete data.

1. Introduction.

This paper t rea ts boolean funct ions wi th a mult iple disjoint decom-
posi t ion in the fo rm of a tree. Proper t ies of simple disjoint decomposit ions
have been given b y Ashenhurs t [1] who points ou t the existence of a
most decomposed form for any given boolean funct ion. Some extensions
to funct ions wi th non-disjoint decomposit ions are g iven b y Curtis [2].
I n this paper , we present a descript ion of disjoint t ree decomposit ions
of boolean functions, and s tudy propert ies of such t ree funct ions which
are significant f rom the point of view of semantic in format ion processing.

Our principal interest is in funct ions associated wi th a b inary tree.
The value of such a funct ion has a s t rong t endency to remain unchanged
when a few of the inputs are inver ted , as is shown in section 5. This
represents a k ind of " c o n t i n u i t y " which makes the funct ions po ten t ia l ly
useful for applicat ions in pa t t e rn recognit ion. In fact , the discr iminant
funct ions used in pa t t e rn classification [3, 4] are a lmost Mways smooth ly
va ry ing functions, such as l inear or polynomial funct ions, and similarly,
the dis t r ibut ion funct ions used in s tochast ic approx imat ion methods are

* The authors gratefully acknowledge the financial support of the National Research
Council of Canada through a postdoctoral fellowship and an operating grant respectively.

Received December 18, 1972. Revised September 13, 1973.

BIT 14 - -1

2 G,V. BOCHMANN AND W . W . ARMSTRONG

simple polynomials. This is important when a system trained on one set
of data is to generalize its performance to a test set. Boolean tree func-
tions exhibit an analogous insensitivity for discrete arguments. The
authors have developed an adaptation algorithm for increasing tree
functions [5], which satisfies a theorem analogous to the perceptron
convergence theorem [4] for linearly separable functions. Generalization
from a training set to a test set has been very satisfactory when this
method was applied to handwritten numerals and measurements on iris
plants, as will be described in a later paper.

The problem of finding an optimal realization of minimal cost for a
given function is greatly simplified if the function has a decomposition.
A family of tree functions, as defined in this paper, has been used to find
an optimal realization of some given function by Roth and Wagner [6].

In this paper we consider only disjoint decompositions of functions,
tha t is, within the decomposed form each variable appears only once.
We note that every boolean function can be realized by a (large enough)
non-disjoint decomposition, and tha t properties of the sensitivity similar
to those described for disjoint tree functions in section 5, would also hold
for a limited amount of non-disjointness (see [5], introduction).

In section 2, we give the basic definitions and show in theorem 2.3
some algebraic properties of multiple disjoint decompositions. In section
3, we define the concept of a tree function for a given decomposition
scheme, and study its realizations. We then restrict ourselves to tree
functions for binary trees, in section 4, and describe several classes of
such functions.

The number of tree functions on a fixed tree is determined. Finally,
in section 5, we introduce the modulus of sensitivity as a measure for the
relative frequency of change of the function value when some arguments
are perturbed. We determine its value for some classes of binary tree
functions, and find it to be much smaller than for tree functions of
higher order or for the unrestricted class of boolean functions of the
given number of inputs.

2. Tree decomposition of Boolean functions.

In the following, we generally consider a tree, defined as usual by a
set of nodes K , each node k ~ K having a certain number nk of successors

denoted by Skl,sk~ ,skn ~. The terminal nodes with no successor form
the set K T, the nonterminal nodes form the set K N. The root node of the
tree is denoted by r.

P R O P E R T I E S OF BOOLEAN FUNCTIONS WITH A T R E E DECOMPOSITION 3

We associate a set of dis t inct variables X wi th the terminal nodes K ~
of the t ree by a one-to-one correspondence between the variables x k e X
and the nodes k e K T. Together , t ree and variables are character ized b y
the t r iple (K , s , X) , where s is the successor funct ion.

2.1. Definition of a tree composition of boolean functions.
Given a t ree wi th variables (K , s , X) and boolean funct ions

gk: {0, 1)n~ _~ {0, 1)

for each nonte rmina l node k ~ KN, we define recursively, on the t ree a n d
on its subtrees, the composi te funct ions

{0,1)x, (0,1).

X k is the set of variables of the te rmina l nodes of the subtree of the node k.
More precisely

X k = {xk} for k ~ K ~

and

Xk = U xs~ / for k e K g
i= l, . . . ,nk

fk = xk for k e K r ,

fk = gk(fs~l,fs~ fsk,k) for k e K W .

The funct ion f , is the composite func t ion on the ent i re tree, and the func-
t ions g~ are called the node functions of fr"

I-2

11

IO

I

x t x~ x 3 x 4 x 5 x 6 x 7

:Fig. 1. A t ree w i t h t e r m i n a l nodes 1 , 2 , . . . 7, n o n t e r m i n a l nodes 8, 9, 10, 11, 12, a n d
roo t n o d e 12.

4 G . V . BOCHMANN AND W. W. ARMSTRONG

2.2. As an example we take the tree of fig. 1. With node functions gk
(k = 8, 9 12), the composite function fl~ is given by

f l~(X~ x7) = g~(gn(gs(x.x2),g9(x3,x4)),g~o(xh,xe,xT)).

We now consider the following properties for a boolean function f (see
for example [7]):

(a) f has no vacuous variables, i.e. f depends on all its variables X.
(b) f is a unate function, i.e. for each variable x~ e X, f is either positive

or negative.
(c) f is an increasing function (logically passive, positive unate function),

i.e. f is positive in all variables.

2.3 THEOREM. Given a tree with variables (K,s ,X), and a composite func-
tion fr defined by the node functions gk(k ~ KN), we have:

(a) fr has no vacuous variables i f f all node functions g~ have none.
(b) I f all gk are unate then fr is unate, and i f fr is unate with no vacuous

variables then all gk are unate.
(e) I f all gk are increasing then fr is increasing, and i f f r is increasing with

no vacuous variables and gk(O)= 0 for all gk then all gk are increa~"ing.

In order to keep this article short we refer to [8] for the proof.

3. Boolean tree functions.

3.1. Definition of tree functions (TF).
Given a tree with variables t = (K , s , X) and a boolean function

f : {0,1} x -~ {0,1}, we say t h a t f is realizable by t or t h a t f is a tree function
on t i f f there exists an assignment of boolean functions gk(k ~ K~v) such
that the composite function fr is equal to f . We say that the function as-
signment is a realization of f . We write F t for the set of all TF realizable
on t.

We mention that a given TF may have several distinct realizations on
a given tree, as in the following examples:

(a) g(xl, OR(x., x3)) = g(xI,AND(x~,z3)) = g(z . 0) if the second argument of
g is vacuous.

(b) b3(x~, b~(x2, Xa)) = b2(x ~, b~(x~, Xa)) where the functions b~(i = 1 ,3) are
defined in Table 1 and the bar stands for complementation.

PROPERTIES O F,BOOLEAN FUNCTIONS WITH A TREE DECOMPOSITION 5

Table I. The zero preserving (ZP) boolean functions of two variables.

Symbol Expression Comment

bl(x,y) x -by OR
b~(x, y) xy AND
ba(x,y) xFJ
b4(x,y) ~y
ba(x, y) xGy exclusive OR
b~(x,y) x left connection
b~(x, y) y right connection
bs(x,y) 0 constant zero

A given boolean function f may be realizable on different trees. For ex-
ample, the overall A N D function is realized whenever all node functions
axe A N D functions.

3.2. The ZP realization.
A realization of a TF is called a ZP (zero-preserving) realization if/

gk(O) = 0 for all/c e K N. (We note tha t for a ZP realization the values of
all subtree functions fk(k e Klv) are zero if all their arguments are zero.)

We have the following lemmas, the proof of which again can be found
in [8] :

(a) Given a tree with variables t = (K , s , X) and a tree function f e F t,
there exists a ZP realization of f i~ f (0)=0 .

(b) If f has no vacuous variables then this ZP realization is unique.

4. Tree functions for binary trees.

In the following we consider only binary trees, i.e. trees in which each
nonterminal node has exactly two successors. However, many of the state-
ments tha t follow can be generalized to arbitrary trees. We consider only
boolean functions f with f (O)=O. This does not significantly restrict the

generality, since we would otherwise consider f.

4.1 The boolean functions of two variables.
A realization of a TF on a binary tree consists of boolean functions

of two variables. A short summary of these functions is given in table I.
Besides the eight functions in the table, there are eight other functions of
two variables which are obtained from b 1 ,bs by complementation.
We ignore them here because they do not appear in ZP realizations.

6 G. V. BOCHBIANN A N D W. W. A R M S T R O N G

We note t h a t of these eight

(a) only bl, b ~ b 5 have no vacuous variables,
(b) only b 5 is no t unate,
(c) only ba, b 4, b 5 are not increasing.

4.2. S o m e classes o f tree funct ions .
We now define classes of TF which sat isfy certain conditions. La te r

we give some properties of these classes, such as their interrelations,
number of elements, and moduli of sensitivity.

Given a b inary tree wi th variables t = (K , s , X) , we denote by Ft (~) the
class of all TF tha t have a ZP realization using as node functions only
bl, b2 , . . . , b i . We note t h a t

(i) Ft (s) consists of all functions f e F t with f (0) = 0. F rom 3.2 we have

F t = Ft (s) u Ft (s) (disjoint) .

Fur thermore , f rom theorem 2.3, we have the following:

(if) F~ (a) consists of all functions f e Ft with f(0) = 0 and no vacuous
variables.

(iii) Ft (4) is the set of all unate functions in F~ (s).

(iv) Ft (~) is the set of all increasing functions in F~ (s).

4.3 Some examples.
(a) We consider the class of boolean functions of three variables which

are increasing and wi thout vacuous variables. This class consists of the
fo l low~g functions :

f l

A=

A =

A=

A=

A=

f .=

A=

f ,=

A N D (x 1 , A I D (x ~ , xa)) = XxX~X3

A N D (x l , 0 R (x ~ , x a))

A N D (x ~ , O R (x a , x i))

A N D (x 3 , OR(x1, x2))

OR(x. AND(x2, x3))
O R (x 2 , A N D (x a , x~))

OR(xa, A N D (x l , x ~))

O~7~(Xl, 0R(X2,X3))

(nondisjoint tree)

= XlX ~ + xlxa

= x~x a + x ~ l

= xax 1 + xax2

= X 1 "~ X2X 8

= x 2 + x3xl

= x a + xlx2

= X l + X 2 + X a

= x l x ~ + xlxa + x~xa

PROPERTIES OF BOOLEAN FUNCTIONS WITH A TREE DECOMPOSITIOI~ 7

X t X 2 X~ X~ X z X~ X I X z X s

(o) (b) (c)

Fig. 2. T h e b i n a r y t rees w i t h th ree t e r m i n a l nodes .

The possible b inary trees wi th three terminal nodes are shown in fig. 2.
One finds t ha t for the tree

of fig. 2(a): F~(2) -- {A,f2,h,fs}

for fig. 2(b): Ft(~) = {A,A,A,A}

for fig. 2(c): Ft(~) = {A,A,fT,A}-

We see t h a t all functions of the class except f9 are realizable by some tree.
(b) The function f9 above and

f = xlx ~ + xlxa + xlx4 + x~ca + x~a + xax4

which are increasing, wi thout vacuous variables, symmetr ic , and l inearly
separable (i.e. threshold functions [7]) have no (disjoint) tree realizations.
On the other hand, the funct ion

f = (xl + x~)(x3 + x~)

has a tree realization but is not l inearly separable, i.e. there exist no real
numbers ~1,~2,~3,~a,0 such tha t f (~) = l iff ~ i ~ > 0. (For, if so, ~1+
~3 > 0 and ~2 + ~4 > 0, which would imply either ~1 + ~2 > 0 or as + ~4 > 0
which would give a wrong value for f) .

We note t h a t a n y boolean funct ion can be realized by a non-disjoint
decomposit ion if a sufficiently large decomposition tree is chosen and
variables a t different terminal nodes are identified.

4.4 LEMMA. The set of all unate TFs is identical to the set of all functions
obtained from increasing TFs by complementing some non-vacuous variables.

The proof can be found in [8]. We note t ha t a similar s t a tement holds
wi thout the restriction to tree-realizable functions, since increasing func-
t ions are una te functions which are positive in each non-vacuous vari-
able [7].

8 G. V. BOCHMANN AND W. W. ARMSTRONG

4.5 L E M ~ . Reduction of a T F with vacuous variables.
Let t = (K , s , X) be a binary tree with n terminal nodes, and f e e t . I f f

has j > 1 vacuous variables, then f is equal (up to the obvious projection
(0,1} n ~ (0,1} ~n) to a T F on a reduced tree with m = n - j terminal nodes
which depends on all m variables. (An example is shown in fig. 3). For the
proof see [s].

Xm X2 X3 X4 Xs X6

Co)
Fig . 3. (a) A rea l iza t ion of t h e t ree f u n c t i o n

X3 X4 X6

(b)

f(Xl 2:6) ---- b5(b4(bS(Xl,X2),b4(x3,x4)),bT(xa,xS))

w h i c h h a s t h r e e v a c u o u s va r i ab l e s xi , x2, a n d xs. T h e r e p l a c e m e n t s for a tree
r e d u c t i o n (sect ion 4.6) are s h o w n (do t ted arrows). T h e func t i ons b~ are defined
i n Tab le I .

(b) T h e t ree f u n c t i o n

fr(X3,X4,x6) .-~ b5(b4(x3,x4),x6)

is o b t a i n e d f r o m (a) a f t e r r educ t ion .

4.6 Theorem on the number of tree functions.
Given a fixed binary tree with n terminal nodes, the number

(i) of functions (j = 5)
(ii) of unate functions (j = 4)

(iii) of increasing and decreasing functions (j = 2) which have a realization
on t, is given by

Nj = 2 1 + _ [(j + 1) , ~ - 1]
3

with the value of j as indicated above.

PROOF.

(a) The factor 2 is due to the two cases f (0) = 0 and f (0) = 1.
(b) The lcf tmost 1 accounts for the constant funct ions f--- 0 and f = 1.

P R O P E R T I E S O F B O O L E A N F U N C T I O N S W I T H A T R E E D E C O M P O S I T I O N 9

(c) (l[j)[(j-t-1)n-l]---~,~l (~)jm-~ is the number of non-constant
functions. To see this we note tha t there arc (~) different sets of
m variables (out of n) on which a function can depend. Each set
corresponds to a reduced tree of m terminal nodes (see Lemma 4.5).
The number of functions in F (t) on a reduced tree is equal to jm-1
for j < 5 by 3.2(b), since these functions depend on all m variables.
Section 4.2 justifies the choice of values for j .

We note tha t the above number of TFs are calculated for a given
binary tree. For a given set of terminal nodes, these numbers do not
depend on the form of the tree, however, the classes of functions do.
(See example 4.3(a)).

A comparison with the number 2 ~" of boolean functions of n variables
shows that for large n only a small fraction of the boolean functions are
TF on a given tree.

5. The modulus of sensitivity for tree functions.

In this section we introduce the concept of modulus of sensitivity of
a boolean function. We shall show tha t the probability of a change in
the value of an average tree function is rather small when some argument
values are complemented, compared to the probability of change for an
arbitrary boolean function. This property is inherent in the structure of
tree functions, and indicates that tree functions may be appropriate for
certain applications where "well-behaved" functions are required as ap-
proximants, such as for decision functions in pattern recognition. Tree
functions have the potential to provide a certain kind of generalization
from a training set to a test set of patterns.

5.1 DEFINITIOn. We define the modulus of sensitivity/~ for a class C
of boolean functions of n variables as the function ~u: (0,1 n} -~ [0,1]
given by

/~(m) = {card(C)2 n (n) } - i ~ eard{~',d(~,~')=m;f(~).f(~')}
m / c o ~e(0,1} n

which represents the average probability over all functions of C and over
all argument vectors tha t a change of m argument values gives rise to
a change of the function value (d = Hamming distance).

:For the set of all boolean functions of n variables we find ~(m)= 0.5
for m-- 1 ,2 , . . . ,n .

For C= (bkl/c = 1 i} where the functions b k are listed in the table I,
we find by direct calculation

10 G. V. BOCHMANN AND W. W. ARMSTRONG

~(1) = 0.5, ~(2) = 0.5 for i = 2 , 4 ;

/~(1) = 0.6, #(2) = 0.4 for i = 5 .

We denote these numbers by #1 (i) and #2 (i).

5.2 The modulus of sensitivity of the tree functions for a balanced binary tree.
In general it m a y be quite complicated to calculate #(m) for a class C

of functions and values m = 1,2 n. In [8] we give a lemma which
allows reeursive calculation of /~(m) for the classes Ft (l) (i=2 ,4 ,5) . In

Fig. 4. A b a l a n c e d b i n a r y t ree w i t h l = 3 levels .

the case of a balanced binary tree t (see fig. 4), the left and right subtrees
for any given node are isomorphic, so we can characterize a subtree by its
level 1. We then have for the class Ft(i) (i=2 ,4 ,5) and m=O, 1 2 7 the
recursion formula:

/~(~)(m) \ m / m~o \ms / k i n - m s / "

One finds, for example, #(~)(1)=(/~1(t)) ~ which is the sensi t ivi ty with re-
spect to the eomplementat ion of one variable.

5.3 Limiting values for large trees.
For balanced trees, #(~)(m) approaches a l imit as the level 1 of the tree

goes to inf ini ty and the proport ion of complementat ions m/n, where
n = 2 l, remains constant . The value of this l imit is independent of rain.
We have a l imit t~nm(m/n) of/~(1)(m) if f rom one level (l - 1) to the nex t
level l, the equil ibrium condition

~(1)(m) = t , (t -1) (ml2) - t , l ~ m (m / n)

P R O P E R T I E S O F B O O L E A N F U N C T I O N S W I T H A T R E E D E C O M P O S I T I O N 11

is satisfied. In [8] it is shown that

(2 1 (t)- = 0

with the stable solution
2~i(i)- 1

l l m - . .
2#t(~) - #2(~)

Inserting values for ~(t), we find the limit of the modulus of sensitivity
for l -+ co to be

#nm(m/n) = 0.25 for the class Ft (~)
and

]~um(m/n) = 0 . 0 for the classes Ft(~) and Ft (2) .

We note that this limit is independent of the relative number m/n of
complementations of variable values.

We have also evaluated the modulus of sensitivity # for the classes
Ft (i) (i = 2, 4, 5) on balanced trees of levels up to l= 9, using the formula
of section 5.2. The results are shown in fig. 5a,b.

6 . C o n c l u s i o n s .

We have described properties of boolean functions tha t have a multiple
disjoint decomposition scheme in the form of a tree. We have specially
mentioned the classes of tree functions tha t are increasing, or unate,
and/or which have no vacuous variables. For the class of all binary TF
on a large, balanced tree, the probability tha t the complementation of
a number of variables induces a changed function value, is very small.
For very large trees, the modulus of sensitivity is almost 0.25 for the
class of functions with no vacuous variables, and 0.00 for the classes of
unate and of increasing functions with no vacuous variables. Surprisingly
enough, this is the case even when almost all of the variables are com-
plemented. The difference in the values arises since the exclusive OR
function b~ is not allowed as node function in a unate tree function. In
contrast to this, the average of the modulus of sensitivity over all boolean
functions of n variables is #(d)= 0.5 for 1 <d <n. The relatively small
sensitivity of tree functions is inherent in the decomposition property,
and is particularly remarkable for binary trees. For example, in the case
of tree functions with decomposition into node functions of three vari-
ables (in contrast to two variables in binary trees), the limiting value of #
for large balanced trees is/~l,m = 0.18 [8] for the class of unate functions
with no vacuous variables as compared to 0.0 for binary trees.

12 G. V. BOCHMANN AND W. W. ARMSTRONG

~(m)

0,6

0.5

0.4

0.3

0.2

0.I

0

#(m)

0.6

0.5

0.4

0,3

0,2

O.I

X

o × J = l
o o

o o o o o ° J = 2
0 1 = 3

0 . . ' , " " " " " " " " " " ° " ° ° ° " ° " " ° j = 5

. . . . ~ ' ' " LIM 1T 4=9

I I I I
0.25 0,50 0.75 1.0

(a) m / n

x x,~" I

o

o
0

o
~ t e o o ° ~ °

o

o

0 i •

"'~I I I I
0 0.25 0.50 0.75 1.0

(b) m/n

o o 1=2

O O O 1 = 3
+

. • o . , . I = 5

*,I=9

Fig. 5. T h e m o d u l u s of sensi t iv i ty /~(/) (m) for t he class F~(~) of t ree f unc t i ons on balanced
t r ees w i t h l levels a n d n = 2~ var iables . T h e absc issa m/n r ep r e sen t s t h e re la t ive n m n b e r
of c o m p l e m e n t a t i o n s of var iab les , i.e. t h e p ropor t ion of p e r t u r b e d i n p u t s ignals , a n d t he

o rd ina t e r e p r e s e n t s t h e p r o b a b i l i t y of t h e o u t p u t chang ing due to t h i s p e r t u r b a t i o n .

(a) i----5: t h e c lass of t ree f u n c t i o n s w i t h no v a c u o u s var iab les .

(b) i = 2 a n d 4: t h e c lasses of inc reas ing a n d u n a t e t ree f u n c t i o n s w i th no v a c u o u s
var iables . T h e l imi t is c o n s t a n t 0.

PROPERTIES OF BOOLEAN FUNCTIONS WITH A TREE DECOMPOSITION 13

It is clear that some insensitivity is also present if we allow some
non-disjointness in the decomposition schemes. This kind of insensitivity
of binary tree functions has been found useful in the construction of
discriminant functions where generalisation (i.e. insensitive extrapola-
tion) from a training set to a test set is required.

REFERENCES

1. R. L. Ashenhurst, in Proceedings of an International Symposium on the Theory of
Switching, 1957, Vol. 29 of Annals of Computation Laboratory of Harvard Uni-
versity, p. 74, 1959.

2. H. A. Curtis, A new approach to the design of switching circuits, D. Van Nostrand Inc.,
Princeton, N.J. , 1962.

3. J . M. Mendel and K. S. Fu, Adaptive, learning, and pattern recognition systems, Aca-
demic Press, 1970.

4. N. J . Nilsson, Learning Machines, McGraw-Hill, 1965.
5. W. W. Armstrong and G. V. Bochmann, A convergence theorem for logical network

adaptation. Publication #95, D6partement d'Informatique, Universit6 de Montreal,
1972.

6. J . P. Roth and E. G. Wagner, Algebraic topological methods for synthesis of switching
systems: Minimisation of non-singular boolean trees, IBM J. of Res. and Dee., 4
(October 1959), 326-344.

7. R. E. Miller, Switching theory, Vol. l, Wiley, New York, 1965.
8, G. V. Bochmarm and W. W. Armstrong, Properties of Boolean Functions with a Tree

Decomposition, Publication #87, D~partement d 'Informatique, Universit~ de Mont-
real, May 1972.

DEPARTEMENT D'INFORNIATIQUE
UNIVF-,~RSITE DE MONTREAL
CANADA

