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PROPERTIES OF BOOLEAN FUNCTIONS WITH 

A TREE DECOMPOSITION* 

G. V. BOCHMANN AND W. W. ARMSTRONG 

Abstract .  

Boolean functions that have a multiple disjoint decomposition scheme in the 
form of a tree are considered. Properties of such functions are given for the ease 
that the functions are increasing, unate, and/or have no vacuous variables. The 
functions with a binary decomposition scheme are of special interest. The modulus 
of sensitivity is defined, and evaluated for some classes of functions. The modulus of 
sensitivity is interesting from the point of view of semantic information processing. 
I t  is found that the sensitivity for the class of functions with a given disjoint 
binary decomposition scheme is much smaller than for the unrestricted class of 
boolean functions. This indicates that these functions are potentially useful in 
pattern recognition of discrete data. 

1. Introduction. 

This paper  t rea ts  boolean funct ions wi th  a mult iple  disjoint decom- 
posi t ion in the  fo rm of a tree.  Proper t ies  of simple disjoint  decomposit ions 
have  been given b y  Ashenhurs t  [1] who points  ou t  the  existence of a 
most  decomposed form for  any  given boolean funct ion.  Some extensions 
to funct ions  wi th  non-disjoint  decomposit ions are g iven b y  Curtis [2]. 
I n  this paper ,  we present  a descript ion of disjoint t ree  decomposit ions 
of boolean functions,  and  s tudy  propert ies  of such t ree  funct ions  which 
are significant f rom the  point  of view of semantic  in format ion  processing. 

Our principal  interest  is in funct ions  associated wi th  a b inary  tree.  
The value of such a funct ion  has a s t rong t endency  to remain  unchanged  
when  a few of the  inputs  are inver ted ,  as is shown in section 5. This 
represents  a k ind of " c o n t i n u i t y "  which makes the  funct ions  po ten t ia l ly  
useful for  applicat ions in pa t t e rn  recognit ion.  In  fact ,  the  discr iminant  
funct ions  used in pa t t e rn  classification [3, 4] are a lmost  Mways smooth ly  
va ry ing  functions,  such as l inear or polynomial  funct ions,  and  similarly, 
the  dis t r ibut ion funct ions  used in s tochast ic  approx imat ion  methods  are 
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simple polynomials. This is important when a system trained on one set 
of data  is to generalize its performance to a test set. Boolean tree func- 
tions exhibit an analogous insensitivity for discrete arguments. The 
authors have developed an adaptation algorithm for increasing tree 
functions [5], which satisfies a theorem analogous to the perceptron 
convergence theorem [4] for linearly separable functions. Generalization 
from a training set to a test set has been very satisfactory when this 
method was applied to handwritten numerals and measurements on iris 
plants, as will be described in a later paper. 

The problem of finding an optimal realization of minimal cost for a 
given function is greatly simplified if the function has a decomposition. 
A family of tree functions, as defined in this paper, has been used to find 
an optimal realization of some given function by Roth and Wagner [6]. 

In  this paper we consider only disjoint decompositions of functions, 
tha t  is, within the decomposed form each variable appears only once. 
We note that  every boolean function can be realized by a (large enough) 
non-disjoint decomposition, and tha t  properties of the sensitivity similar 
to those described for disjoint tree functions in section 5, would also hold 
for a limited amount of non-disjointness (see [5], introduction). 

In  section 2, we give the basic definitions and show in theorem 2.3 
some algebraic properties of multiple disjoint decompositions. In section 
3, we define the concept of a tree function for a given decomposition 
scheme, and study its realizations. We then restrict ourselves to tree 
functions for binary trees, in section 4, and describe several classes of 
such functions. 

The number of tree functions on a fixed tree is determined. Finally, 
in section 5, we introduce the modulus of sensitivity as a measure for the 
relative frequency of change of the function value when some arguments 
are perturbed. We determine its value for some classes of binary tree 
functions, and find it to be much smaller than for tree functions of 
higher order or for the unrestricted class of boolean functions of the 
given number of inputs. 

2. Tree decomposition of Boolean functions. 

In  the following, we generally consider a tree, defined as usual by a 
set of nodes K ,  each node k ~ K having a certain number nk of successors 

denoted by Skl,sk~ . . . .  ,skn ~. The terminal  nodes with no successor form 
the set K T, the nonterminal  nodes form the set K N. The root node of the 
tree is denoted by r. 



P R O P E R T I E S  OF BOOLEAN FUNCTIONS WITH A T R E E  DECOMPOSITION 3 

We associate a set of dis t inct  variables X wi th  the  terminal  nodes K ~  
of the  t ree  by  a one-to-one correspondence between the  variables x k e X 
and  the  nodes k e K T. Together ,  t ree  and  variables are character ized b y  
the  t r iple  ( K , s , X ) ,  where s is the  successor funct ion.  

2.1. Definition of  a tree composition of  boolean functions. 
Given a t ree  wi th  variables ( K , s , X )  and boolean funct ions 

gk: {0, 1)n~ _~ {0, 1) 

for  each nonte rmina l  node k ~ KN, we define recursively,  on the  t ree  a n d  
on its subtrees,  the  composi te  funct ions  

{0,1)x, (0,1). 

X k is the  set of variables of the  te rmina l  nodes of the subtree of the node k. 
More precisely 

X k = {xk} for k ~ K ~  

and  

Xk = U xs~ / for  k e K  g 
i=  l, . . . ,nk 

fk = xk for k e K  r ,  

fk  = gk(fs~l,fs~ . . . . .  fsk,k) for k e K W . 

The  funct ion  f ,  is the  composite func t ion  on the  ent i re  tree,  and the  func- 
t ions g~ are called the  node functions of fr" 

I-2 
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IO 

I 

x t x~  x 3 x 4 x 5 x 6 x 7 

:Fig. 1. A t ree  w i t h  t e r m i n a l  nodes  1 , 2 , . . .  7, n o n t e r m i n a l  nodes  8, 9, 10, 11, 12, a n d  
roo t  n o d e  12. 



4 G . V .  BOCHMANN AND W. W. ARMSTRONG 

2.2. As an example we take the tree of fig. 1. With node functions gk 
(k = 8, 9 . . . .  12), the composite function fl~ is given by  

f l~(X~ . . . . .  x7) = g~(gn(gs(x.x2),g9(x3,x4) ),g~o(xh,xe,xT)). 

We now consider the following properties for a boolean function f (see 
for example [7]): 

(a) f has no vacuous variables, i.e. f depends on all its variables X. 
(b) f is a unate function, i.e. for each variable x~ e X, f is either positive 

or negative. 
(c) f is an increasing function (logically passive, positive unate function), 

i.e. f is positive in all variables. 

2.3 THEOREM. Given a tree with variables (K,s ,X),  and a composite func- 
tion fr defined by the node functions gk(k ~ KN), we have: 

(a) fr has no vacuous variables i f f  all node functions g~ have none. 
(b) I f  all gk are unate then fr is unate, and i f  fr is unate with no vacuous 

variables then all gk are unate. 
(e) I f  all gk are increasing then fr is increasing, and i f  f r is increasing with 

no vacuous variables and gk(O)= 0 for all gk then all gk are increa~"ing. 

In  order to keep this article short we refer to [8] for the proof. 

3. Boolean tree functions.  

3.1. Definition of tree functions (TF). 
Given a tree with variables t = ( K , s , X )  and a boolean function 

f :  {0,1} x -~ {0,1}, we say t h a t f  is realizable by t or t h a t f  is a tree function 
on t i f f  there exists an assignment of boolean functions gk(k ~ K~v ) such 
that  the composite function fr is equal to f .  We say that  the function as- 
signment is a realization of f .  We write F t for the set of all TF realizable 
on t. 

We mention that  a given TF may have several distinct realizations on 
a given tree, as in the following examples: 

(a) g(xl, OR(x., x3)) = g(xI,AND(x~,z3)) = g(z .  0) if the second argument of 
g is vacuous. 

(b) b3(x~, b~(x2, Xa) ) = b2(x ~, b~(x~, Xa)) where the functions b~(i = 1 . . . .  ,3) are 
defined in Table 1 and the bar stands for complementation. 
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Table I. The zero preserving (ZP) boolean functions of two variables. 

Symbol Expression Comment 

bl(x,y) x -by OR 
b~(x, y) xy AND 
ba(x,y) xFJ 
b4(x,y) ~y 
ba(x, y) xGy  exclusive OR 
b~(x,y) x left connection 
b~(x, y) y right connection 
bs(x,y) 0 constant zero 

A given boolean function f may be realizable on different trees. For ex- 
ample, the overall A N D  function is realized whenever all node functions 
axe A N D  functions. 

3.2. The ZP realization. 
A realization of a TF is called a ZP (zero-preserving) realization if/ 

gk(O) = 0 for all/c e K N. (We note tha t  for a ZP realization the values of 
all subtree functions fk(k  e Klv ) are zero if all their arguments are zero.) 

We have the following lemmas, the proof of which again can be found 
in [8] : 

(a) Given a tree with variables t = ( K , s , X )  and a tree function f e F  t, 
there exists a ZP realization of f i~ f (0 )=0 .  

(b) If  f has no vacuous variables then this ZP realization is unique. 

4. Tree functions for binary trees. 

In the following we consider only binary trees, i.e. trees in which each 
nonterminal node has exactly two successors. However, many  of the state- 
ments tha t  follow can be generalized to arbitrary trees. We consider only 
boolean functions f with f (O)=O. This does not significantly restrict the 

generality, since we would otherwise consider f.  

4.1 The boolean functions of two variables. 
A realization of a TF on a binary tree consists of boolean functions 

of two variables. A short summary of these functions is given in table I. 
Besides the eight functions in the table, there are eight other functions of 
two variables which are obtained from b 1 . . . .  ,bs by complementation. 
We ignore them here because they do not appear in ZP realizations. 
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We note  t h a t  of these eight 

(a) only bl, b ~ . . . . .  b 5 have no vacuous variables, 
(b) only  b 5 is no t  unate,  
(c) only ba, b 4, b 5 are not  increasing. 

4.2. S o m e  classes o f  tree funct ions .  
We now define classes of TF  which sat isfy certain conditions. La te r  

we give some properties of these classes, such as their  interrelations, 
number  of elements, and  moduli  of sensitivity. 

Given a b inary  tree wi th  variables t =  ( K , s , X ) ,  we denote by  Ft  (~) the 
class of all TF  tha t  have a ZP realization using as node functions only 
bl, b2 , . . . , b i .  We note t h a t  

(i) Ft  (s) consists of all functions f e F t with f ( 0 ) =  0. F rom 3.2 we have 

F t = Ft (s) u Ft  (s) (disjoint) .  

Fur thermore ,  f rom theorem 2.3, we have the following: 

(if) F~ (a) consists of all functions f e Ft with f(0) = 0 and no vacuous 
variables. 

(iii) Ft (4) is the set of all unate  functions in F~ (s). 

(iv) Ft  (~) is the set of all increasing functions in F~ (s). 

4.3 Some  examples.  
(a) We consider the class of boolean functions of three variables which 

are increasing and  wi thout  vacuous variables. This class consists of the 
fo l low~g functions : 

f l  

A= 

A =  

A= 

A= 

A= 

f .=  

A= 

f ,=  

A N D ( x 1 ,  A I D ( x ~ ,  xa)) = XxX~X3 

A N D ( x l , 0 R ( x ~ , x a ) )  

A N D ( x ~ , O R ( x a ,  x i ) )  

A N D ( x 3 ,  OR(x1, x2)) 

OR(x. AND(x2, x3)) 
O R ( x 2 , A N D ( x a ,  x~)) 

OR(xa, A N D ( x l , x ~ ) )  

O~7~(Xl, 0R(X2,X3)  ) 

(nondisjoint tree) 

= XlX ~ + xlxa 

= x~x a + x ~ l  

= xax 1 + xax2 

= X 1 "~ X2X 8 

= x 2 + x3xl 

= x a + xlx2 

= X l + X 2 + X  a 

= x l x  ~ + xlxa + x~xa 
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X t X 2 X~ X~ X z X~ X I X z X s 

(o)  (b) (c )  

Fig. 2. T h e  b i n a r y  t rees  w i t h  th ree  t e r m i n a l  nodes .  

The possible b inary  trees wi th  three terminal  nodes are shown in fig. 2. 
One finds t ha t  for the  tree 

of fig. 2(a): F~(2) -- {A,f2,h,fs} 

for fig. 2(b): Ft(~) = {A,A,A,A} 

for fig. 2(c): Ft(~) = {A,A,fT,A}- 

We see t h a t  all functions of the  class except f9 are realizable by  some tree. 
(b) The function f9 above and  

f = xlx ~ + xlxa + xlx4 + x~ca + x~a + xax4 

which are increasing, wi thout  vacuous variables, symmetr ic ,  and  l inearly 
separable (i.e. threshold functions [7]) have no (disjoint) tree realizations. 
On the other hand,  the  funct ion 

f = (xl + x~)(x3 + x~) 

has a tree realization but  is not  l inearly separable, i.e. there exist no real 
numbers  ~1,~2,~3,~a,0 such tha t  f ( ~ ) = l  iff ~ i ~ >  0. (For, if so, ~1+ 
~3 > 0 and  ~2 + ~4 > 0, which would imply  either ~1 + ~2 > 0 or as + ~4 > 0 
which would give a wrong value for f ) .  

We note  t h a t  a n y  boolean funct ion can be realized by  a non-disjoint  
decomposit ion if a sufficiently large decomposition tree is chosen and  
variables a t  different terminal  nodes are identified. 

4.4 LEMMA. The set of all unate TFs is identical to the set of all functions 
obtained from increasing TFs by complementing some non-vacuous variables. 

The proof can be found in [8]. We note  t ha t  a similar s t a tement  holds 
wi thout  the  restriction to tree-realizable functions,  since increasing func- 
t ions are una te  functions which are positive in each non-vacuous vari- 
able [7]. 
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4.5 L E M ~ .  Reduction of a T F  with vacuous variables. 
Let t = ( K , s , X )  be a binary tree with n terminal nodes, and f e e t .  I f  f 

has j > 1 vacuous variables, then f is equal (up to the obvious projection 
(0,1} n ~ (0,1} ~n) to a T F  on a reduced tree with m = n - j  terminal nodes 
which depends on all m variables. (An example is shown in fig. 3). For the 
proof see [s]. 

Xm X2 X3 X4 Xs X6 

Co) 
Fig .  3. (a) A rea l iza t ion  of t h e  t ree  f u n c t i o n  

X3 X4 X6 

(b) 

f(Xl . . . .  2:6) ---- b5(b4(bS(Xl,X2),b4(x3,x4)),bT(xa,xS)) 

w h i c h  h a s  t h r e e  v a c u o u s  va r i ab l e s  xi ,  x2, a n d  xs.  T h e  r e p l a c e m e n t s  for  a tree 
r e d u c t i o n  (sect ion 4.6) are  s h o w n  (do t ted  arrows).  T h e  func t i ons  b~ are  defined 
i n  Tab le  I .  

(b) T h e  t ree  f u n c t i o n  

fr(X3,X4,x6) .-~ b5(b4(x3,x4),x6) 

is  o b t a i n e d  f r o m  (a) a f t e r  r educ t ion .  

4.6 Theorem on the number of tree functions. 
Given a fixed binary tree with n terminal nodes, the number 

(i) of functions (j = 5) 
(ii) of unate functions (j  = 4) 

(iii) of increasing and decreasing functions (j  = 2) which have a realization 
on t, is given by 

Nj = 2 1 + _ [ ( j + 1 ) , ~ - 1 ]  
3 

with the value of j as indicated above. 

PROOF. 

(a) The factor  2 is due to the two cases f ( 0 ) =  0 and  f ( 0 ) =  1. 
(b) The lcf tmost  1 accounts  for the  constant  funct ions f--- 0 and f =  1. 
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(c) (l[j)[(j-t-1)n-l]---~,~l (~)jm-~ is the number of non-constant 
functions. To see this we note tha t  there arc (~) different sets of 
m variables (out of n) on which a function can depend. Each set 
corresponds to a reduced tree of m terminal nodes (see Lemma 4.5). 
The number of functions in F (t) on a reduced tree is equal to jm-1 
for j < 5 by 3.2(b), since these functions depend on all m variables. 
Section 4.2 justifies the choice of values for j .  

We note tha t  the above number of TFs are calculated for a given 
binary tree. For a given set of terminal nodes, these numbers do not 
depend on the form of the tree, however, the classes of functions do. 
(See example 4.3(a)). 

A comparison with the number 2 ~" of boolean functions of n variables 
shows that  for large n only a small fraction of the boolean functions are 
TF on a given tree. 

5. The modulus of sensitivity for tree functions. 

In  this section we introduce the concept of modulus of sensitivity of 
a boolean function. We shall show tha t  the probability of a change in 
the value of an average tree function is rather small when some argument 
values are complemented, compared to the probability of change for an 
arbitrary boolean function. This property is inherent in the structure of 
tree functions, and indicates that  tree functions may be appropriate for 
certain applications where "well-behaved" functions are required as ap- 
proximants, such as for decision functions in pattern recognition. Tree 
functions have the potential to provide a certain kind of generalization 
from a training set to a test set of patterns. 

5.1 DEFINITIOn. We define the modulus of sensitivity/~ for a class C 
of boolean functions of n variables as the function ~u: (0,1 . . . . .  n} -~ [0,1] 
given by 

/~(m) = {card(C)2 n ( n ) } - i  ~ eard{~',d(~,~')=m;f(~).f(~')} 
m / c o  ~e(0,1} n 

which represents the average probability over all functions of C and over 
all argument vectors tha t  a change of m argument values gives rise to 
a change of the function value (d = Hamming distance). 

:For the set of all boolean functions of n variables we find ~(m)= 0.5 
for m-- 1 ,2 , . . . ,n .  

For C=  (bkl/c = 1 . . . . .  i} where the functions b k are listed in the table I, 
we find by direct calculation 
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~(1) = 0.5, ~(2) = 0.5 for i = 2 , 4 ;  

/~(1) = 0.6, #(2) = 0.4 for i = 5 .  

We denote these numbers by #1 (i) and  #2 (i). 

5.2 The modulus of sensitivity of the tree functions for a balanced binary tree. 
In  general it  m a y  be quite complicated to calculate #(m) for a class C 

of functions and  values m =  1,2 . . . . .  n. In  [8] we give a lemma which 
allows reeursive calculation of /~(m) for the  classes Ft (l) ( i=2 ,4 ,5) .  In  

Fig.  4. A b a l a n c e d  b i n a r y  t ree  w i t h  l = 3 levels .  

the case of a balanced binary  tree t (see fig. 4), the left  and  right  subtrees 
for any  given node are isomorphic, so we can characterize a subtree by  its 
level 1. We then  have for the class Ft(i) ( i=2 ,4 ,5 )  and  m=O, 1 . . . . .  2 7 the 
recursion formula:  

/~(~)(m) \ m /  m~o \ms / k i n - m s / "  

One finds, for example,  #(~)(1)=(/~1(t)) ~ which is the  sensi t ivi ty with re- 
spect to the  eomplementat ion of one variable. 

5.3 Limiting values for large trees. 
For  balanced trees, #(~)(m) approaches a l imit  as the  level 1 of the tree 

goes to inf ini ty and  the proport ion of complementat ions m/n, where 
n = 2 l, remains constant .  The value of this l imit  is independent  of rain. 
We have a l imit  t~nm(m/n) of/~(1)(m) if f rom one level ( l - 1 )  to the nex t  
level l, the equil ibrium condition 

~(1)(m) = t , ( t -1 ) (ml2 )  - t , l ~ m ( m / n )  
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is satisfied. In  [8] it is shown that  

(2 1 (t)- = 0 

with the stable solution 
2~i(i)- 1 

# l l m  - . . 
2#t(~) - #2(~) 

Inserting values for ~(t), we find the limit of the modulus of sensitivity 
for l -+ co to be 

#nm(m/n) = 0.25 for the class Ft (~) 
and 

]~um(m/n) = 0 . 0  for the classes Ft(~) and Ft (2) . 

We note that  this limit is independent of the relative number m/n of 
complementations of variable values. 

We have also evaluated the modulus of sensitivity # for the classes 
Ft (i) (i = 2, 4, 5) on balanced trees of levels up to l=  9, using the formula 
of section 5.2. The results are shown in fig. 5a,b. 

6 .  C o n c l u s i o n s .  

We have described properties of boolean functions tha t  have a multiple 
disjoint decomposition scheme in the form of a tree. We have specially 
mentioned the classes of tree functions tha t  are increasing, or unate, 
and/or which have no vacuous variables. For the class of all binary TF 
on a large, balanced tree, the probability tha t  the complementation of 
a number of variables induces a changed function value, is very small. 
For very large trees, the modulus of sensitivity is almost 0.25 for the 
class of functions with no vacuous variables, and 0.00 for the classes of 
unate and of increasing functions with no vacuous variables. Surprisingly 
enough, this is the case even when almost all of the variables are com- 
plemented. The difference in the values arises since the exclusive OR 
function b~ is not allowed as node function in a unate tree function. In 
contrast to this, the average of the modulus of sensitivity over all boolean 
functions of n variables is #(d)= 0.5 for 1 <d  <n.  The relatively small 
sensitivity of tree functions is inherent in the decomposition property, 
and is particularly remarkable for binary trees. For example, in the case 
of tree functions with decomposition into node functions of three vari- 
ables (in contrast to two variables in binary trees), the limiting value of # 
for large balanced trees is/~l,m = 0.18 [8] for the class of unate functions 
with no vacuous variables as compared to 0.0 for binary trees. 
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~(m) 

0,6 

0.5 

0.4 

0.3 

0.2 

0.I 

0 

#(m) 

0.6 

0.5 

0.4 

0,3 

0,2 

O.I 

X 

o × J = l  
o o 

o o o o o ° J = 2  
0 1 = 3  

0 . . ' ,  " " " " " " " " " " ° " ° ° ° " ° " " ° j = 5  

. . . .  ~ ' ' "  LIM 1T 4=9 

I I I I 
0.25 0,50 0.75 1.0 

(a) m / n  

x x,~" I 

o 

o 
0 

o 
~ t e o  o ° ~ °  

o 

o 

0 i • 

"'~I I I I 
0 0.25 0.50 0.75 1.0 

(b) m/n 

o o 1=2 

O O O 1 = 3  
+ 

. . . . . .  • o .  , . I = 5  

*,I=9 

Fig.  5. T h e  m o d u l u s  of sensi t iv i ty /~( / ) (m)  for t he  class  F~(~) of  t ree  f unc t i ons  on  balanced 
t r ees  w i t h  l levels  a n d  n = 2~ var iables .  T h e  absc issa  m/n r ep r e sen t s  t h e  re la t ive  n m n b e r  
of  c o m p l e m e n t a t i o n s  of var iab les ,  i.e. t h e  p ropor t ion  of p e r t u r b e d  i n p u t  s ignals ,  a n d  t he  

o rd ina t e  r e p r e s e n t s  t h e  p r o b a b i l i t y  of  t h e  o u t p u t  chang ing  due  to  t h i s  p e r t u r b a t i o n .  

(a) i----5: t h e  c lass  of t ree  f u n c t i o n s  w i t h  no  v a c u o u s  var iab les .  

(b) i = 2  a n d  4:  t h e  c lasses  of inc reas ing  a n d  u n a t e  t ree  f u n c t i o n s  w i th  no  v a c u o u s  
var iables .  T h e  l imi t  is c o n s t a n t  0. 
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It  is clear that some insensitivity is also present if we allow some 
non-disjointness in the decomposition schemes. This kind of insensitivity 
of binary tree functions has been found useful in the construction of 
discriminant functions where generalisation (i.e. insensitive extrapola- 
tion) from a training set to a test set is required. 
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