
HIERARCHICAL LANGUAGE
DEFINITION

Gregor V. Bochmann

Dept Informatique
U. de Montrgal

I Introduction:
This paper describes a project for the hie-

rarchical definition and implementation of lan-
guages. In the spirit of structured programming
[I] and in analogy to the hierarchical construc-
tion of operating systems [2,3] we define high
level languages, which are suitable for the de-
sign of operating and other software systems, in
several levels of abstraction. In particular,
we describe in this paper how an intermediate,
machine independent basic language can be used
to express the actions of a given high level
language in terms of simple actions of the basic
language. In conjunction with a translator
writing system, this allows a compact and rea-
dable formal definition of the syntax and seman-
tics [4,5] of the high level language, which is
in fact a description of the compiler which trans-
lates this language into the basic language.
This definition is independent of a particular
computer, however, an implementation of the basic
language must be furnished. We intend to use the
basic language to describe modules which are em-
bedded in a general system for multiple processes.
The language consists of a kind of macro instruc-
tions most of which can be implemented in a
straightforward manner. Some more complicated
instructions, such as primitives for inter-
process communication, can be implemented
through a hierarchical construction process
[2,3] as indicated in section III (see also
figure i).

II The basic language
Historically, we got interested in a basic

language when we tried to express the machine
independent semantics of the programming langua-
ge Pascal [6] in a formal way, using the approach
described in references 4 and 7. Our objective
is that the basic language
(a) be machine independent, so that a high level

language expressed in terms of it can be ea-
sily transferred onto another machine.

(b) be simple to understand, and easy to imple-
ment on most computers.

(c) be flexible so that it may be used to des-
cribe a variety of high level languages,
with different types of control structure
for sequential processes, including Fortran,
Algol, Simula etc.

(d) be a representation which is suitable for
all machine independent optimisation, such

as the evaluation of constants etc.
(e) contain primitives for inter-process commu-

nication (see section III).
Since there is no space to describe the basic
language in more detail, we mention the following
characteristic points:

(a) Data are represented by bitstrings of varia-
ble length. There is also a set of basic
specialised data types, such as integer,
real, character, etc.

(b) Operations on data, and control instructions
are represented by macro-like triplets,
such as "addinteger N M".

(c) There are characteristics that remain ma-
chine dependent, such as integer precision,
character representation etc. They must
be described for each particular implemen-
tation of the basic language. These machi-
ne dependent features also apply for any
higher level language which is defined in
terms of the basic language (see figure I).

(d) Ms~ia~les have an address within a linear
address space. Absolute and relative (re-
lative to a base) addressing is possible.

(e) Macros are available for the access of run-
time data structures, and for recursive
procedure calls. They represent a higher
level within the structured programming
hierarchy.

III The implementation of multiple processes
The basic language described above allows

to express independent parallel computations,
and coordinated sequential processes, such as
coroutines. In order to implement "really" pa-
rallel processes one has to implement an envi-
ronment for multiple processes, such as descri-
bed in reference 3, which includes primitives
for the execution of parallel processes, and
inter-process communication. Hierarchical me-
thods [2,3] for the implementation of parallel
processes are known. One could use the follow-
ing primitives:

(a) control primitives for process execu-
tion,

(b) semaphores for shared resourses,
(c) event queues with associated messages

for communication among processes,
eventually within a network of several
computers.

50.

We have e x p l a i n e d how t h e l a n g u a g e s used f o r
sy s t ems i m p l e m e n t a t i o n can be c o n s t r u c t e d i n a
h i e r a r c h i c a l o r d e r , such as shown i n f i g u r e 1.
Th i s a l l o w s a r e l a t i v e l y c o m p r e h e n s i v e and t h e -
r e f o r e e r r o r - f r e e d e f i n i t i o n a t each l e v e l . We
t r y to o b t a i n a sys t em which can be e a s i l y t r a n s -
f e r r e d on to a n o t h e r compute r . In f a c t , o n l y t h e
c o m p i l a t i o n o f t h e b a s i c l a n g u a g e and t h e c o n s -
t r u c t i o n o f t h e p r i m i t i v e s f o r p a r a l l e l p r o c e s -
ses a r e machine d e p e n d e n t . F i n a l l y , as i n d i -
c a t e d i n f i g u r e 1, we p r o p o s e t h e implemen-
t a t i o n o f a l anguage f o r a h i g h l e v e l d e s c r i p -
t i o n o f p a r a l l e l p r o c e s s e s , as f o r example g i v e n
i n r e f e r e n c e 8.

Acknowledgements : I would l i k e t o t h a n k J a c k
Denn i s , O l i v i e r Lecarme, and J e a n Vaucher f o r
i n t e r e s t i n g d i s c u s s i o n s on t h i s s u b j e c t .

R e f e r e n c e s :
i. E.W. Dijkstra, Notes on structured program=

ming, in Structured Programming by Dahl,
Dijkstra, and Hoare, Acad. Press 1972.

2. W.E. Dijkstra, The structure of THE multi-
programming system, Comm. ACM ii, 5
(May 1968), 341-346.

3. P. Brinch-Hansen, The nucleus of a multi-
programming system, Comm. ACM 13, 4
(April 1970), 238.

4 . D.E. Knuth, S e m a n t i c s o f c o n t e x t - f r e e l a n -
guages , Math. Sys tems Th . , 2, 127 (1968) .

5. G.V. Bochmann, Une definition syntaxique
et s~mantique des lang~ges pour un syst~me
d'~criture de compilatvurs, Universit~ de
MontrEal, Document de Travail #30 (1972).

6. N. Wirth, The programming language Pascal,
Acta Informatica, i, 35-63 (1971).

7. G.V. Bochmann, Semantics evaluated from
left to right, Publication #135, D~par-
tement d'Informatique, Univ. de MontrEal.

8. P. Brinch-Hansen, Structured multiprogram-
ming, Comm. ACM 15, 7 (July 1972), 574.

I S t r u c t u r e d
l a n g u a g e f o r

, p a r a l l e l p r o c e s s e s

Bas i c p r i m i t i v e s
f o r p a r a l l e l
p r o c e s s e s

\

!,,
I
|\1

Systems implementation
language for sequential

,processes

B a s i c macros
q,

Bas ic l anguage f o r s e -
_ ~ u _ e n t ! a l ~ r o c e s s e s

Machine d e p e n d e n t i m p l e -
m e n t a t i o n c h a r a c t e r i s t i c s

!

P a r t i c u l a r machine l a n g u a g e I
1

Figure i: A hierarchy of languages.

Starting from a particular machine language, a
number of higher level languages are defined
each described in terms of the languages defined
previously. Each arrow indicates the usage of a
lower level language for the definition of a
higher level language. We note that all langua-
ges except the particular machine language of
the lowest level are essentially machine inde-
pendent.

51.

