
1

On the Extension of UML
with Use Case Maps Concepts

Daniel Amyot1 and Gunter Mussbacher2

1 SITE, University of Ottawa, 150 Louis-Pasteur, Ottawa (ON), Canada, K1N 6N5
2 Mitel Corporation, 350 Legget Dr., Kanata (ON), Canada, K2K 2W7

damyot@site.uottawa.ca | gunter_mussbacher@Mitel.com

Abstract. Descriptions of reactive systems focus heavily on behavioral aspects,
often in terms of scenarios. To cope with the increasing complexity of services
provided by these systems, behavioral aspects need to be handled early in the
design process with flexible and concise notations as well as expressive con-
cepts. UML offers different notations and concepts that can help describe such
services. However, several necessary concepts appear to be absent from UML,
but present in the Use Case Map (UCM) scenario notation. In particular, Use
Case Maps allow scenarios to be mapped to different architectures composed of
various component types. The notation supports structured and incremental de-
velopment of complex scenarios at a high level of abstraction, as well as their
integration. UCMs specify variations of run-time behavior and scenario struc-
tures through sub-maps "pluggable" into placeholders called stubs. This paper
presents how UCM concepts could be used to extend the semantics and nota-
tions of UML for the modeling of complex reactive systems. Adding a "UCM
view" to the existing UML views can help bridging the gap separating require-
ments and use cases from more detailed views (e.g. expressed with interaction
diagrams and statechart diagrams). Examples from telecommunications systems
are given and a corresponding design trajectory is also suggested.

1 Introduction

The modeling of reactive (event-driven) systems requires an early emphasis on be-
havioral aspects such as interactions between the system and the external world (in-
cluding the users), on the cause-to-effect relationships among these interactions, and
on intermediate activities performed by the system. Scenarios are particularly good at
representing such aspects so that various stakeholders can understand them.

Owing to their distributed and critical nature, telecommunications systems are rep-
resentative of complex reactive systems. Emerging telecommunications services re-
quire industries and standardization bodies (ANSI, ETSI, ISO, ITU, TIA, etc.) to
describe and design increasingly complex functionalities, architectures, and protocols.
This is especially true of wireless systems, where the mobility of users and of termi-
nals brings an additional dimension of complexity. Recent and upcoming technologies
based on agents and IP, which involve complex and sometimes unpredictable policy-
driven negotiations between communicating entities, also raise new modeling issues
as protocols and entities become more dynamic in nature and evolve at run time.

USERUSERUSERUSERUSERUSERUSERUSERUSERUSER
Submitted to UML'2000 on April 13.Please, do not cite or distributed yet...Comments and suggestions are most welcomed.Please send them to damyot@site.uottawa.caThank you!

The design and standardization of telecommunication systems and services results
from a design process frequently comprised of three major stages. At stage 1, services
are first described from the user’s point of view in prose form, with use cases, and
with tables. The focus of the second stage is on control flows between the different
entities involved, represented using sequence diagrams or Message Sequence Charts
— MSC [13]. Finally, stage 3 aims to provide (informal) specifications of protocols
and procedures. Formal specifications are sometimes provided (e.g. in SDL [11]), but
they are still of marginal use [1]. ITU-T developed this three-stage methodology two
decades ago to describe services and protocols for ISDN. Naturally, such descriptions
emphasize the reactive and behavioral nature of telecommunications systems. In this
methodology, scenarios are often used as a means to model system functionalities and
interactions between the entities such that different stakeholders may understand their
general intent as well as technical details.

1.1 Requirements for a Scenario Notation

Due to the inherent complexity and scale of emerging telecommunications systems,
special attention has to be brought to the early stages of the design process. The focus
should be on system and functional views rather than on details belonging to a lower
level of abstraction, or to later stages in this process. Many ITU-T members recognize
the need to improve this process in order to cope with the new realities cited above. In
particular, Study Group 10, which is responsible for the evolution of standards such as
MSC, SDL, and TTCN, recently approved a new research question that could lead to
a new recommendation by 2003 [14].

This research question will focus on what notation may be developed to comple-
ment MSCs, SDL and UML in capturing user requirements in the early stages of
design when very little design detail is available. Such notation should be able to
describe user requirement scenarios without any reference to states, messages or sys-
tem components. Reusability of scenarios across a wide range of architectures is
needed with allocation of scenario responsibilities to architectural components. The
notation should enable simpler modeling of dynamic systems, early performance
analysis at the requirements level, and early detection of undesirable interactions
among services or scenarios.

While UML activity diagrams provide some capability in this area [17], a notation
with dynamic (run-time) refinement capability and better allocation of scenario re-
sponsibilities to architectural components is required.

1.2 Extending UML with Use Case Maps Concepts

Use Case Maps (UCMs) [7][8] visually represent causal scenarios combined with
structures. They have a history of applications to the description of reactive systems
of different natures (e.g. [1][2][3][9]), to the avoidance and detection of undesirable
interactions between scenarios or services (e.g. [2][9][16]) and to early performance
analysis (e.g. [21]). A more extensive bibliography can be found in the virtual library
of the UCM User Group [23].

The addition of several useful concepts found in the UCM notation to UML would
make the latter a more appealing tool for designing reactive systems. UCMs have a

number of properties that satisfy many of the requirements described in Section 1.1:
scenarios can be mapped to different architectures, variations of run-time behavior
and structures can be expressed, and scenarios can be structured and integrated incre-
mentally in a way that facilitates the early detection of undesirable interactions. This
paper presents how UCM concepts could be used to extend the semantics and nota-
tions of UML for the modeling of complex reactive systems. Adding a "UCM view"
to the existing UML views can also help bridging the gap separating requirements and
use cases (e.g. as found in stage 1 of the ITU-T methodology) from more detailed
views expressed with interaction diagrams (stage 2) and statechart diagrams (stage 3).

Through examples from the telecommunications domain, this paper illustrates how
UCM concepts can be used to extend UML semantics and notations in the modeling
of reactive systems. Section 2 introduces Use Case Maps and defines its core concepts
in terms of the UML semantic metamodel (version 1.3). Section 3 shows how UCMs
combine behavioral scenarios and structures in a single view. The benefits of captur-
ing dynamic run-time behavior are illustrated in Section 4. Section 5 goes beyond the
core concepts and presents other potential benefits offered by UCMs, together with a
UCM/UML design trajectory suitable for reactive systems.

2 Use Case Maps Core Concepts

The Use Case Maps notation is based on various core concepts. This section focuses
on a subset of these concepts and links them to the existing UML semantic meta-
model. Advanced concepts more specific to UCMs, which will lead to suggestions on
how to improve the UML metamodel and notations, will be illustrated in Sections 3
and 4.

2.1 Overview of the UCM Notation

Use Case Maps are used as a visual notation for describing causal relationships be-
tween responsibilities bound to underlying organizational structures of abstract com-
ponents. Responsibilities are generic and can represent actions, activities, operations,
tasks to perform, and so on. Components are also generic and can represent software
entities (objects, processes, databases, servers, etc.) as well as non-software entities
(e.g. actors). The relationships are said to be causal because they involve concurrency
and partial orderings of activities and because they link causes (e.g., preconditions
and triggering events) to effects (e.g. postconditions and resulting events).

UCMs are useful for describing telecommunications services at an early stage in
the design cycle, even when no component is involved. For example, Fig. 1(a) de-
scribes the basic call process of a simplified telecommunications system, the Tiny
Telephone System (TTS), accompanied by the Originating Call Screening (OCS)
feature in Fig. 1(b).

This map contains many of the elements that form the core of the UCM notation.
Informally, a start point (filled circle) is where scenarios are caused, upon the arrival
of a triggering event and/or the satisfaction of preconditions. The scenario effect is
represented as an end point (bar), which describes some resulting event and/or post-
conditions. Responsibilities are represented as crosses. UCM paths, which connect the

different elements discussed so far, may fork and join in different ways. OR-forks
represent alternative paths, which may be guarded by conditions. AND-forks (narrow
bars) represent concurrent paths along which the scenario evolves. OR-joins are used
to merge common paths whereas AND-joins (not shown here) are used to synchronize
concurrent paths. The diamonds represent stubs and act as containers for sub-maps
called plug-ins. For instance, the OCS map in Fig. 1(b) could be plugged in the
Originating stub of the Basic Call map. This requires a binding relationship that
would specify how the start and end points of the plug-in map would be connected to
the path segments going into or coming out of the stub. In this example, the binding
relationship is {<IN1, s1>, <OUT1, e1>, <OUT2, e2>} .

Fig. 1 Tiny Telephone System example, with one feature.

According to the UCM notation and semantics, the TTS scenarios are interpreted
in the following way. Upon the arrival of a call request (req), the OCS feature checks
whether the call should be allowed or denied (chk). If denied, then a call denied reply
is prepared (pd) and signaled (sig). If allowed, then the system verifies whether the
called party is busy or idle (vrfy). If busy, then a busy reply is prepared (pb) and
signaled. If idle, then a ringback reply is prepared (prb) and signaled concurrently
with the update of the system status (upd) and a resulting ringing event (ring).

This example illustrates how UCM descriptions abstract from messages, data and
control (UCMs are neither dataflow diagrams nor control flow diagrams) while fo-
cusing on general causal flows between causes, responsibilities, and effects.

2.2 Current UCM Semantics

The UCM abstract syntax and static semantics are currently based on a graph struc-
ture (more specifically a hypergraph) and described in a XML document type defini-
tion [4]. The concrete syntax is visual and was introduced in the previous section. All
of these are supported by a visual editing tool, the UCM Navigator [15], together with
a set of valid transformations that ensure the satisfaction of well-formed rules. Dy-
namic semantics is yet informal, although one has been indirectly provided in terms
of the formal language LOTOS, whose underlying semantics is based on labeled tran-
sition systems, on CCS and on CSP [2][3].

However, the main semantic concepts behind Use Case Maps are hidden behind
various details and implementation-related concerns. Fig. 2 captures, in general terms
and independently of the current hypergraph-based semantics, the UCM core concepts
in the form of a class diagram. This diagram abstracts from many class attributes,
relationships, and constraints in order to focus on the essence of what concepts should
be preserved in the context of an integration with UML.

b) OCS plug-in map

s1

e2

e1
chk [allowed]

[denied]pd

req
ring

Originating
upd

sig

[idle]

[busy]
pb

vrfy

a) Basic Call map

IN1 OUT1

OUT2

Start Point AND (fork)Stub Condition

End Point

Responsibility

OR (fork)OR (join)

prb

Fig. 2 Overview of UCM core concepts.

In this diagram, the white classes are the ones implicitly used by the TTS example
in Fig. 1 and they are described in Table 1. The shaded classes will be discussed in
other examples to be given in the remaining sections.

Table 1 Description of UCM concepts.

Class Name Description
Map Composition of path elements and components. Maps can be used as plug-

ins for stubs. Maps must contain at least one start point and one end point.
Path Element Superclass similar to a node in a connected graph.
Start Point Beginning of a causal scenario (cause) possibly with preconditions.
End Point End of a causal scenario (effect), possibly with postconditions.
Action Element A path element on a causal path. References a responsibility.
Responsibility Performs an action, activity, task, function, etc. Dynamic responsibilities

(not discussed in this paper) possess additional attributes.
Continuation
Element

Superclass representing a location where multiple path elements can con-
nect together in a non-sequential way (i.e. with multiple predecessors
and/or successors) as specified by a continuation rule. Each subclass de-
fines its continuation rule (may be user-specified). In the case of a stub,
the sub-map is the continuation rule.

OR Composition (fork or join) of paths as alternatives. Conditions (guards)
can be attached to paths that fork.

AND Composition (fork or join) of concurrent paths.
Stub Superclass representing a container for sub-maps (plug-ins).
Static Stub Stub with a single sub-map (plug-in) and its binding relationship.

Map

OR AND

Path
Element

Waiting
Place

1 2..*

1

1..*

0..*

0..*

Stub

Timer

is predecessor for

must include1

1..*

1..*

0..*

Continuation
Element

+ continuationRule

Action
Element

0..*

1..*

Selection
Policy1..* 1

1

End Point

+ postconditions

Start Point

+ preconditions

0..1

0..*

0..* Component

+ componentType

Responsibility

+ dynamicAttributes

is allocated to

Static
Stub

+ bindingRel 1

Dynamic
Stub

+bindingRel*

0..*

is bound
 to

is bound
 to

0..*

0..*

2.3 Linking UCM Concepts to UML

UCM concepts can be linked to UML in many ways. In this paper, we take advantage
of similarities between UCMs and activity diagrams to facilitate this connection.
Activity diagrams share many concepts with UCMs. They have common constructs
and even the notations are alike, to some extent. The TTS example in Fig. 1 could
effectively be described in terms of activity diagrams without any difficulty. The
suggested uses of these notations are however slightly different. They both target the
modeling of system-wide procedures and scenarios, but activity diagrams focus on
internal processing, often found in business-oriented models (e.g. workflows),
whereas UCMs are also concerned with external (asynchronous) events, which are
essential to the modeling of systems that are reactive in nature.

Despite these usage differences, it seems appropriate to link the UCM concepts to
the semantic model of activity diagrams: the Activity Graphs metamodel. Use Case
Maps could be cast into this metamodel by using extension mechanisms that UML
proposes, such as stereotypes, tagged values, additional OCL constraints and appro-
priate notation icons [17]. However in this paper, we suggest that several UCM con-
cepts not supported by activity diagrams are important, simple, and useful enough to
be included as part of the UML metamodel itself. In this way, the whole UML com-
munity would benefit from the suggested enhancements, whereas the use of exten-
sions would lead to yet another notation based on UML which would not really be
integrated to other notations that also extend UML (hence leading to interworking and
compatibility issues).

Even in this context, the integration of UCMs to UML could be done in many
ways. Fig. 3(a) presents an option where the UML Behavioral Elements package,
found in the UML metamodel layer, is extended with a new sub-package for UCM
concepts (shaded package). The latter depends on metaclasses found in Activity
Graphs (for UCM paths) and on Collaborations (for UCM components, to be covered
in Section 3,). However, this option would result in a new package with a lot of dupli-
cation in an already crowded set of packages and metaclasses.

Fig. 3 Integrating UCM concepts to the UML metamodel layer.

Fig. 3(b) illustrates an alternative where the modifications are done directly to the
Activity Graphs package. The latter would still depend on State Machines and, unlike
the current UML standard, it would also depend on Collaborations.

Table 2 presents, through a simple mapping, how Activity Graphs metaclasses al-
ready support many UCM concepts discussed in Table 1.

b) Extending Activity Graphs to support UCMs

Activity
Graphs

Collabo-
rations

Common
Behavior

State
Machines

Use
Cases

a) UCM concepts in the UML metamodel

Activity
Graphs

UCM
Concepts

Collabo-
rations

Common
Behavior

State
Machines

Use
Cases

Table 2 Mapping UCM concepts to Activity Graphs metaclasses.

UCM Concept Corresponding Metaclasses
Map ActivityGraph (from Activity Graphs), a child class of StateMachine.
Path Element StateVertex (from State Machines), the parent class of State and Pseudo-

State, which is also similar to a node in a graph.
Start Point SimpleState (from State Machines), a State without nested states.
End Point SimpleState (from State Machines), a State without nested states.
Action Element ActionState (from Activity Graphs), an atomic action. In UML, an Ac-

tionState is a SimpleState with an entry action whose only exit transition is
triggered by the implicit event of completing the execution of the entry
action. This is similar to a UCM responsibility.

Responsibility Associated with ActionState (from Activity Graphs), an atomic action
referenced by an Action Element (in UCM terms).

Continuation
Element

StateVertex (from State Machines), the parent class of PseudoState and
(indirectly) of SubActivityState.

OR PseudoState (from State Machines), of kind choice for an OR-fork and of
kind junction for an OR-join.

AND PseudoState (from State Machines), of kind fork for an AND-fork and of
kind join for an AND-join.

Stub CompositeState (from State Machines), which may contain submachines.
Static Stub SubActivityState (from Activity Graphs), which may reference only one

sub-ActivityGraph, just like a UCM static stub contains only one plug-in.

The Activity Graphs metamodel hence possess all the necessary elements to sup-
port the UCM concepts discussed so far. The different relationships in Fig. 2 are also
covered by the underlying State Machines metamodel: "is predecessor for" is captured
by the transitions linking the different states, "is bound to" is taken care of internally
by the SubActivityState representing the UCM static stub, and "must include" could
be refined as a new OCL constraint.

There are still minor differences between these UCM concepts and the semantics
of Activity Graphs. In Activity Graphs, all of the paths leaving a fork must eventually
merge in a subsequent join, and multiple layers of forks and joins must be well nested.
There is currently no such restriction on UCMs. Also, UCM static stubs may have
multiple incoming path segments, and plug-ins can have multiple start points, whereas
a SubActivityState is limited to one initial state in the corresponding sub-
ActivityGraph. However this can be overcome in a number of ways as SubActivity-
Graph is a child class of SubmachineState (see Fig. 7), which does not have such
limitation. Enhancements to the binding relationship between SubActivityState and
ActivityGraph could also solve this problem.

The next section will discuss the role of UCM components for linking scenarios to
structures, as well as their potential impact on the UML metamodel.

3 Combining Scenarios and Structures

One of the main strengths of UCMs resides in their capacity to visually integrate
scenarios and structural components in a single view. In the design of reactive sys-

tems, such view is most useful for understanding scenario paths in their context, and
for enabling high-level architectural reasoning.

3.1 UCM Component Notation

UCM scenarios can be bound to structures by visually allocating path elements to
underlying components. The UCM notation distinguishes, through different shapes,
several types of components useful in a reactive system context (e.g. processes, ob-
jects, agents, interrupt service routines, etc.). However, such distinctions are beyond
the scope of this paper, and simple rectangles will be used as a notation for generic
UCM components representing software entities as well as non-software entities.

UCM paths can be bound to various component structures. Fig. 4 uses a simplified
version of the TTS system in Fig. 1 to illustrate this concept. In Fig. 4(a), a UCM path
is bound to an agent-based architecture where User s can communicate only through
their respective Agent s. Start points indicate where users initiate events (causes)
whereas end points indicate where resulting events (effects) are observed. The various
components are responsible for performing the responsibilities allocated to them.

Fig. 4 UCM path bound to two different component structures, and potential MSCs.

As they can easily be decoupled from structures, UCM paths improve the reusabil-
ity of scenarios and lead to behavioral patterns that can be utilized across a wide range
of applications. For instance, Fig. 4(b) reuses the same scenario path in a very differ-
ent context where components are based on the Intelligent Network (IN) reference
model [1]. In this architecture, the Switch is the component responsible for estab-
lishing communication between users. However, the "intelligence" behind many IN
features is located outside the switch, inside network elements called service nodes

UserA Switch SN UserB
req

chk

upd

msg2

ring

msg5

msg4
msg3

UserA AgentA AgentB UserB

req

msg1

ring

vrfy

upd

chk
User:A Agent:A Agent:B User:B

req ring
vrfy updchk

a) Agent-based architecture c) A possible MSC for (a)

req

chk

upd

User:BUser:A Switch

SN

b) Intelligent Network-based architecture d) A possible MSC for (b)

vrfy

vrfy
ring

(SN). In this context, the chk responsibility, which is associated to the OCS feature, is
performed by the SN component.

This UCM view, where scenarios and structures are combined, is most useful for
architectural reasoning early in the design cycle. UCM paths are also more likely to
survive evolutions and other modifications to the underlying architecture than sce-
narios described in terms of message exchanges or interactions between components.
For instance, note how the two following message sequence charts differ in nature
and complexity (UML sequence diagrams could have been used just as well). Fig.
4(c) is an MSC capturing the scenario from Fig. 4(a) in terms of message exchanges.
This is a straightforward interpretation with artificial messages (in italic characters).
Other such MSCs could possibly be derived from the same scenario path. Fig. 4(d) is
a potential MSC of the same scenario path, but this time bound to the IN-based ar-
chitecture. Complex protocols could be involved between the switch and the service
node, hence resulting in multiple messages. Communication constraints also prevent
users from communicating directly with service nodes; therefore the switch needs to
be involved as a relay. By using a UCM view, all these issues related to messages,
protocols, communication constraints, and structural evolutions (e.g. from one version
of the structure to the next) can be abstracted from, and the focus can be put on reus-
able causal scenarios in their structural context. If a structure is modified, path ele-
ments need only to be rebound to appropriate components.

3.2 UML Semantics Support

The UCM core concepts (Fig. 2) contains a class representing the Component con-
cept. Components may be of different types and may contain other sub-components.
Path elements are allocated to such components, as discussed in the previous section.

In the UML metamodel, the ClassifierRole metaclass (from the Collaborations
package) seems to fit best the concept of a UCM component. Like ClassifierRoles,
UCM components are interpreted as roles rather than as particular instances; e.g. Fig.
4(a) uses two generic component types for users and agents, with roles A (originating
party) and B (terminating party). Being UML Classifiers themselves, ClassifierRoles
may declare other ClassifierRoles nested in their scope, just like UCM components
may contain sub-components. A ClassifierRole specifies a restricted view of a more
generic Classifier. Similarly, a UCM component shows only a partial view of the
overall behavior of that component type. For all these reasons, we believe that the
current ClassifierRole can support the UCM component concept as is. Note that the
UCM component concept is not equivalent to the UML Component metaclass (from
the Core package), which represents a replaceable part of a system that packages
implementation and provides the realization of a set of interfaces.

The need for ClassifierRole explains the additional dependency between Activity
Graphs and Collaborations in Fig. 3(b). Still, the allocation of UCM path elements to
their components cannot be easily captured by Activity Graphs. The latter possess the
concept of Partition, which is a mechanism for dividing the states of an activity graph
into groups. Partitions are visualized as swimlanes in UML activity diagrams. Unfor-
tunately, Partitions have poor semantics because they simply regroup instances of the
very abstract ModelElement metaclass (from the Core package) and they are quite
removed from the rest of the UML metamodel. Hence, the metamodel needs to be

enriched to support the useful "is allocated to" relationship found in Fig. 2. In that
regard, Fig. 5 proposes two potential solutions:

Fig. 5 Two possible solutions for the support of the UCM component concept.

Since StateVertex captures the essence of UCM path elements (see Table 2), they
could be allocated directly to components, represented by ClassifierRole. Another
solution would be to reuse the Partition concept of Activity Graphs and allocate a
partition to a ClassifierRole (all relevant classes of Activity Graphs, and even State-
Vertex, are subclasses of ModelElement). Both solutions achieve our goal, but we
prefer the second one because it is expressed in terms of Activity Graphs, not in terms
of State Machines, and it has the capability of supporting non-StateVertex elements.

4 Modeling Dynamic Run-Time Behavior

Another important characteristic of the UCM notation is its capability of combining
and integrating scenario paths in a way that enables the modeling of dynamic run-time
behavior. This section presents how dynamic stubs can be used to localize and visu-
alize, at design time, how alternative behavioral scenarios could evolve at run time.

4.1 UCM Notation for Dynamic Stub and Timers

UCMs can help structuring and integrating scenarios in various ways. The most inter-
esting construct to do so is certainly the Dynamic Stub, shown as a dashed diamond.
While static stubs contain only one plug-in map, dynamic stubs may contain multiple
sub-maps, whose selection can be determined at run-time according to a selection
policy. Such a policy can make use of preconditions, assertions, run-time information,
composition operators, etc. in order to select the plug-in(s) to use. Selection policies
are usually described with a (formal or informal) language suitable for the context
where they are used.

Fig. 6(a) extends our original TTS Basic Call with two dynamic stubs. Whether the
underlying architecture is based on agents, IN, or other types of components is not
essential to the understanding of this example, hence components are not included.
This new system contains three features: the original OCS feature, Call Name Deliv-
ery (CND — displays the caller's phone number with disp), and TEENLINE. This last
feature prevents several users (often teenagers) to use the phone for pre-set time inter-
vals (e.g. from 7 PM to 10 PM), although users (e.g. parents) who provide a valid
personal identification number (PIN) in a timely fashion can establish a call.

All these features are captured by plug-in maps (Fig. 6(b-e)). To simplify bindings,
plug-in start/end points have been given the same names as the input/output stub
segments to which they are bound. The Originating stub contains three plug-ins:
DEFAULT (b), TEENLINE (d), and OCS (e). The Display stub contains only two: CND

StateVertex

(from State Machines)

0..* ClassifierRole

(from Collaborations)

0..1

(UCM Path Element) (UCM Component)

Partition

(from Activity Graphs)

0..1 ClassifierRole

(from Collaborations)

0..1

(UCM Path Element Group) (UCM Component)

or

(c) and DEFAULT (b). The latter shows that a plug-in can be reused in multiple stubs.
Together, these five UCMs integrate multiple end-to-end sequential scenarios in a
structured and concise way.

Fig. 6 Basic Call UCM with dynamic stubs and their plug-ins.

The TEENLINE plug-in contains a Timer named getPIN and shown with a clock
symbol. Timers are special waiting places awaiting an event from their environment
(which is the case here) or from other scenarios when visually connected to an end
point (synchronous triggering) or to an empty path segment (asynchronous trigger-
ing). If the required event does not arrive in time, then the timeout path (shown with a
zigzag symbol) is followed.

The selection policy for the Display stub could be as simple as: use CND if the
called party has subscribed to the CND feature, else use DEFAULT. For the Origi-
nating stub however, the selection policy would need to be more complex because a
user could have subscribed to both the OCS and TEENLINE features. There could po-
tentially be an undesirable interaction between these two features, and the selection
policy can be used to solve it, either in a fixed way (e.g. with priorities) or by stating a
run-time resolution rule. Dynamic stubs make more local the potential conflicts that
could arise between scenarios (hence leading to simpler analysis), and their selection
policies can help avoiding or resolving these conflicts [2][9]. This particular way of
looking at scenario combinations is at the basis of a feature interaction filtering
method where undesirable interactions can be detected and dealt with early in the
design cycle [16].

4.2 UML Semantics Support

As shown in Fig. 2, a Dynamic Stub is a Stub to which multiple Maps (plug-ins) are
bound and to which a Selection Policy is associated. A selection policy instance
should be defined as a potentially reusable object rather than as a mere attribute.

Stubs and Static Stubs were respectively mapped to CompositeState and Subactiv-
ityState in Table 2. Currently, the Activity Graphs and State Machines metamodels
cannot represent, in a simple way, multiple bindings of sub-maps (i.e. ActivityGraph)

a) Basic Call map

req
ring

Originating
upd

sig

[idle]

[busy]
pb

vrfyIN1 OUT1

OUT2

Dynamic Stubs

prb

IN1 OUT1

Display

e) OCS plug-in map

in1

out2

out1
chk [allowed]

[denied]pd

in1 out1

b) DEFAULT plug-in map
in1

out1

disp

c) CND plug-in map

d) TEENLINE plug-in map

in1

out2

out1
chkTime [notInInterval]

[inRange]

pd

getPIN

[invalid]

[valid]

to a stub. As a consequence, extensions appear necessary. Fig. 7 proposes a solution
with DynamicStub as a new child class of CompositeState. Dynamic stubs may refer-
ence possibly many sub-maps, and they handle a binding relationship for each refer-
ence (instead of only one as in SubactivityState and SubmachineState). A Selection-
Policy, which is an abstract Relationship, is associated to each dynamic stub.

Fig. 7 Extending Activity Graphs with dynamic stubs.

The support of the Waiting Place and Timer concepts (as illustrated in the TEENLINE

plug-in map, Fig. 6(d)) could be achieved with StateVertex. When such "wait states"
are required, many UML methods suggest that statechart diagrams be used instead of
activity diagrams [19]. However, we believe that wait states have their place in activ-
ity diagrams and UCMs for the modeling of reactive systems.

5 Beyond the Core Concepts

This section describes our vision on how Use Case Maps would fit in a UML-based
design process. We go beyond the core concepts to address issues like connections
between models and design trajectories suitable for telecommunications systems.

UML regroups various diagram techniques, which capture different views or par-
tial representations of a same system. Some are more appropriate for the early stages
of design (close to the requirements) while others are more appropriate for later stages
(e.g. detailed design and implementation). These diagram techniques often focus on
two orthogonal axes. Structural diagrams target software and conceptual entities and
their relationships (e.g. class, object, component, and deployment diagrams), whereas
behavioral diagrams emphasize behavior (e.g. sequence, collaboration, and statechart
diagrams).

Structural diagrams can capture some aspects of system requirements such as the
architecture and the application domain. They also share connections with behavioral
diagrams, where the referenced entities often come from structural diagrams. Yet,
there exists a conceptual gap between functional requirements (and use cases) and
their realization in terms of behavioral diagrams, as illustrated in Fig. 8.

A UCM view represents a useful piece of the puzzle that helps bridge this gap. Re-
quirements and use cases usually provide a black-box view where the system is de-
scribed according to its external behavior. UML behavioral diagrams have a glass-box
view describing the internal behavior in a detailed way. UCMs can provide a trace-
able progression from functional requirements to detailed views based on states, com-

Selection
Policy

Dynamic
Stub

SubmachineState

(from State Machines)

ActivityGraph

(from Activity Graphs)

Relationship

(from Core)

1 0..*

1..*
0..*

SubactivityState

(from Activity Graphs)

(Static Stub)

CompositeState

(from State Machines)

(UCM Stub)

1..* 1

ponents and interactions, while at the same time combining behavior and structure in
an explicit and visual way. Whereas sequence and collaboration diagrams usually
show the behavior of several objects within a single use case and statechart diagrams
show the behavior of a single object across many use cases, UCMs show the behavior
of many objects for many use cases. In our experience, this view contributes greatly
to the understanding of complex reactive systems.

Fig. 8 UCMs as a missing piece of the UML puzzle.

Investment in UCMs can also be leveraged by connecting them to other UML
views or to other modeling/specification languages. For instance:
• Buhr and Casselman use UCMs to generate class diagrams [7]. Similarly, Paech

uses activity diagrams as a bridge between use cases and class diagrams [18].
• Once protocols and communication constraints are known (may be described by

AssociationRoles connecting ClassifierRoles), UCMs can lead to various MSCs,
sequence diagrams, and collaboration diagrams (e.g. Fig. 4). This generation is in
the process of being formalized and automated in the UCM Navigator tool.

• Bordeleau presents a method for the generation of MSCs and hierarchical state
machines (e.g. statechart diagrams and ROOMcharts) from UCMs [5][6]. Sales
and Probert are doing similar work for the generation of SDL models [20].

• Amyot et al. use LOTOS as a formal means to validate UCMs and high-level de-
signs and to detect undesirable interactions early in the design cycle [2][3].

• Other research projects include the generation of performance models (e.g. in Lay-
ered Queuing Networks—LQNs) and of abstract test cases (e.g. in the Tree and
Tabular Combined Notation—TTCN).
These connections enable the creation of many design trajectories relevant to tele-

communications systems, as suggested in the introduction. In particular, we envision
the following trajectory, inspired from [1][6]: requirements capture and architectural
reasoning is done with UCMs (stage 1), which are first transformed into MSCs or
interaction diagrams (stage 2), then into state machines in SDL/UML [12] or UML-

UML structural
diagrams

Present classes,
objects, components,

and processing
elements, as well as
their relationships.
Although they may
be used to imply

behavior (by
indicating

associations), they do
not describe actual

behavior.

Requirements
(Informal) descriptions

of functionalities,
and (textual) use cases

(often black-box).

UML behavioral diag.
Describe behavior in a way
that is detailed and focused
on states, components, and
interactions (glass-box).

Use Case Maps
Project gray-box visual
descriptions of system-
level behavior directly

onto structures of
abstract components.

Provide a visual representation
of use cases in terms of causes,

responsibilities and effects
along paths.

Provide a framework for
making detailed design

decisions to be expressed with
more appropriate UML views.

Visually combine
behavior with

structure at the
system level.

RT [22] statechart diagrams (stage 3), and finally into concrete implementations (pos-
sibly through automated code generation). Validation, verification, performance
analysis, interaction detection, and test generation could be performed at all stages.

6 Conclusions and Future Work

This paper illustrates how UCMs satisfy some of the requirements described in Sec-
tion 1.1. Section 2 shows, at a semantic level, how the UML Activity Graphs meta-
model already supports most of the core concepts behind the UCM notation. Ad-
vanced UCM concepts can be used to combine structure and behavior (through the
allocation of path elements to components) and to model dynamic run-time behavior
(with dynamic stubs and selection policies). These concepts can be integrated to the
UML metamodel by extending Activity Graphs and connecting them to Collabora-
tions (Sections 3 and 4). Other UCM concepts and notations not discussed in this
paper include exceptions, failure points, (a)synchronous interactions between paths,
and dynamic components and responsibilities [8], and they are left for future work.

In this paper, we attempted to minimize the number of modifications to the seman-
tics of UML 1.3. However, in UML 2.0, Activity Graphs may be decoupled from
State Machines. A reorganization of these packages could represent a good opportu-
nity for including the UCM concepts discussed here.

Both the UCM notation and activity diagrams could be used to visualize these con-
cepts. However, the latter would need to be extended to support bidimensional struc-
tures (swimlanes show partitions in one dimension only). As a consequence, straight
lines used to represent causality between activities might need to become splines in
order to adapt better to complex structures and to distinguish them from component
boundaries. Also, the symbol used for activities might be too large to fit into these
components. Hence, from a layout perspective, there are some advantages in using
splines (as in UCM paths) and small crosses (as in UCM responsibilities). Note also
that UCM may diminish the need for use case diagrams as many relationships be-
tween use cases (e.g. inclusion, extension, generalization) can be, to some extent,
modeled by judicious use of stubs and plug-ins. Again, a good compromise between
use case diagrams, activity diagrams, and UCMs requires further study.

The UCM notation enjoys an enthusiastic community of users and it has been used
successfully in the domains of telecommunications and other reactive systems. How-
ever, users also complain about the lack of formal semantics and of a few concepts
found in UML (such as actors distinguished from other components). We see in this
an opportunity to add UCMs as a useful view of UML models, to integrate new ex-
pressive concepts to the UML metamodel, to precise the semantics of UCMs, to link
UCMs to other languages and methodologies, and to move beyond reactive systems.

Acknowledgement. We are indebted towards Bran Selic and other members of the
UCM User Group for their judicious comments, and to CITO for its financial support.

References
1. Amyot, D. and Andrade, R.: "Description of Wireless Intelligent Network Services with Use

Case Maps". In: SBRC'99, 17th Brazilian Symposium on Computer Networks, Salvador,
Brazil, May 1999. http://www.UseCaseMaps.org/pub/sbrc99.pdf

2. Amyot, D., Buhr, R.J.A., Gray, T., and Logrippo, L.: "Use Case Maps for the Capture and
Validation of Distributed Systems Requirements". In: RE'99, Fourth IEEE International
Symposium on Requirements Engineering, Limerick, Ireland, June 1999, pp. 44-53.
http://www.UseCaseMaps.org/pub/re99.pdf

3. Amyot, D. and Logrippo, L.: "Use Case Maps and LOTOS for the Prototyping and Validation
of a Mobile Group Call System". In: Computer Communication, 23(8), April 2000.
http://www.UseCaseMaps.org/pub/cc99.pdf

4. Amyot, D. and Miga, A.: Use Case Maps Document Type Definition 0.18. Working docu-
ment, April 2000. http://www.UseCaseMaps.org/xml/

5. Bordeleau, F. and Buhr, R.J.A.: "The UCM-ROOM Design Method: from Use Case Maps
to Communicating State Machines". In: Conference on the Engineering of Computer-Based
Systems, Monterey, USA, March 1997.http://www.UseCaseMaps.org/pub/UCM-ROOM.pdf

6. Bordeleau, F.: A Systematic and Traceable Progression from Scenario Models to Communi-
cating Hierarchical Finite State Machines. Ph.D. thesis, SCS, Carleton University, Ottawa,
Canada, August 1999. http://www.UseCaseMaps.org/pub/fb_phdthesis.pdf

7. Buhr, R.J.A. and Casselman, R.S.: Use Case Maps for Object-Oriented Systems, Prentice-
Hall, USA, 1995. http://www.UseCaseMaps.org/pub/UCM_book95.pdf

8. Buhr, R.J.A.: "Use Case Maps as Architectural Entities for Complex Systems". In: Transac-
tions on Software Engineering, IEEE, December 1998, pp. 1131-1155.
http://www.UseCaseMaps.org/pub/tse98final.pdf

9. Buhr, R.J.A., Amyot, D., Elammari, M., Quesnel, D., Gray, T., and Mankovski, S.: "High
Level, Multi-agent Prototypes from a Scenario-Path Notation: A Feature-Interaction Exam-
ple". In: PAAM'98, 3rd Conf. on Practical Application of Intelligent Agents and Multi-
Agents, London, UK, March 1998. http://www.UseCaseMaps.org/pub/4paam98.pdf.

10. ISO, Information Processing Systems, OSI: LOTOS — A Formal Description Technique
Based on the Temporal Ordering of Observational Behaviour. IS 8807, Geneva, 1989.

11. ITU-T: Recommendation Z.100, Specification and Description Language. Geneva, 2000.
12. ITU-T: Recommendation Z.109, SDL combined with UML. Geneva, 2000.
13. ITU-T: Recommendation Z. 120, Message Sequence Chart (MSC). Geneva, 2000.
14. ITU-T, SG10: Proposal for a new question to define a notation for user requirements. Ca-

nadian contribution, COM10-D56, November 1999.
15. Miga, A.: Application of Use Case Maps to System Design with Tool Support. M.Eng. the-

sis, Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada,
October 1998. http://www.UseCaseMaps.org/tools/ucmnav/

16. Nakamura, M., Kikuno, T., Hassine, J., and Logrippo, L.: "Feature Interaction Filtering with
Use Case Maps at Requirements Stage". In: Sixth International Workshop on Feature Inter-
actions in Telecommunications and Software Systems (FIW'00), Glasgow, Scotland, UK,
May 2000. http://www.UseCaseMaps.org/pub/fiw00_filter.pdf

17. Object Management Group: Unified Modeling Language Specification, Version 1.3. June
1999. http://www.omg.org

18. Paech, B. "On the Role of Activity Diagrams in UML". In: Int. Workshop, UML'98, pp. 267-
277. http://www4.informatik.tu-muenchen.de/papers/Pae_UML98.html

19. Rumbaugh, J., Jacobson, I., and Booch, G.: The Unified Modeling Language Reference
Manual. Addison Wesley, 1999.

20. Sales, I. and Probert, R.: "From High-Level Behaviour to High-Level Design: Use Case
Maps to Specification and Description Language". Submitted to SBRC'2000, 18th Brazilian
Symposium on Computer Networks, Belo Horizonte, Brazil, May 2000.

21. Scratchley, W.C. and Woodside, C.M.: “Evaluating Concurrency Options in Software
Specifications”. In: MASCOTS’99, Seventh International Symposium on Modelling, Analysis
and Simulation of Computer and Telecommunication Systems, College Park, MD, USA,
October 1999, pp. 330-338. http://www.UseCaseMaps.org/pub/mascots99.pdf

22. Selic, B.: Turning Clockwise: Using UML in the Real-Time Domain. In: Communications of
the ACM, 42(10), October 1999, pp. 46-54.

23. Use Case Maps Web Page and UCM User Group, 1999. http://www.UseCaseMaps.org

