
Foil no 1

MSC

Simple MSC
Introduction to
Message Sequence
Charts

Foil no 2

MSC for interaction behaviour properties

Realisation
software electronics mechanics

Deployment

Functionality
(Structure Behaviour)

Descriptions

Performance …
Dependability
….

Objects Properties

Tests…
Measurements

Services …

Foil no 3

Basic MSC

•Emphasizes interaction between instances (objects, actors)

•Describes cases/traces of behaviour and (normally) not the total behavior

User AC System

Code

OK

Push door

msc User_accepted

Look for MSC info at http://www.sdl-forum.org/

Foil no 4

Introduction

Informal use:

• Long history in telecom and electrical engineering

• Dialects: Sequence diagrams (UML), Relay diagrams, message
sequence diagrams…

Standardized:

• MSC standardized by ITU in 1992 as Z-120 (“MSC-92”)

• Major revision and extension in 1996 and 2000 (“MSC-96”, “MSC-
2000”)

• MSC has a formal semantics

Tools:

• MSC-tools as part of SDL-tools

• Stand-alone MSC-tools

Foil no 5

Instance

Instances are the actors of an MSC system

User

instance name

instance head

timeline (instance axis)

instance end

Foil no 6

MSC diagram

• Message lines may be horizontal or with downward slope, and bended

the frame
(environment
border)

the msc name

message to
the environment

page
number

User AC System

Code[Cid]

OK

Push door

msc User_accepted 1(3)

message
with data

Foil no 7

MSC semantics

• Messages have one output event, and one input event

• Input is normally interpreted as consumption of the message

• The output event must occur before the input event

• Events are strictly ordered along an instance’s timeline

Code[Cid]

OK
Unlock

User AC System

output event input event

message with data

msc User_accepted_1 1(9)

Push door

Foil no 8

MSC semantics

• What event sequences are possible here?

a

b

ZYX

MSC A

Foil no 9

Alternative instance naming

• Can also show type of instance.
• Instance name (excluding type) must be unique

Jack : User User

Jill

AC System

Code[Cid]
Code[Cid]

OK
Ignored

Foil no 10

Message Overtaking

• MSC describes asynchronous communication.

• When messages are asynchronous, it is important to be able to describe
message overtaking i.e. that one message may be consumed before another
event though the latter was output before the first one.

User AC System

Code

OK

Push door

msc User_accepted_2

UnlockCard out

Input of OK
comes before
input of Card
out

Output of
Card out
comes before
output of OK

Foil no 11

Condition

• A condition describes either a global system state (global condition) referring to all
instances contained in the MSC, or a state referring to a subset of instances
(shared condition). In the second case the condition may be local, i.e. attached to
just one instance.

• The term “condition” is inspired by the Hoare logic (Hoare 1969), but there is no
predicate logic behind the MSC term. The MSC condition is merely a label.

a b c

Global condition

Shared condition Local condition

Shared condition

Foil no 12

Condition example

• The idea is that an MSC may have a start condition and an end condition. Combining
two MSCs where the end condition of the first is equal to the start condition of the
second is legal. Combining MSCs with unequal conditions is not legal.

User AC System

Code

OK

msc User_accepted_3

UnlockCard outfinal
condition

Idle

Door unlocked

initial
condition

Foil no 13

Timers

• Timers are messages which are sent by the instance to itself according to time.

• A timer can be set (started) and reset (terminated) by the instance. A timer may
expire, which means an input event. Reset timers will not expire.

User AC System

msc Unlocked_reset

door

Opened
Push door

Door unlocked

Idle

Closed

Lock

door

Lock

User AC System

msc Unlocked_timeout

Door unlocked

Idle

reset expire

Foil no 14

Alternatives and Iteration
by conditions

The two MSCs Unlocked_reset and Unlocked_timeout represent alternative courses of
action from the state Door Unlocked. We also notice that they both end in Idle which is
also the start condition of User_accepted_3 on a former slide. This may be interpreted
as describing an iterative situation.

User AC System

msc Unlocked_reset

door

Opened
Push door

Door unlocked

Idle

Closed

Lock

door

Lock

User AC System

msc Unlocked_timeout

Door unlocked

Idle

Foil no 15

Coregion

• Coregion is a concept which is motivated by the fact that sometimes one does not
care in which order a set of events occur

User AC System

Code

O K

m sc U ser_ac cepted_4

U nloc k

Card out

Idlecoregion

D oor unlocke d

Foil no 16

Decomposition

• When an instance contains an inner structure, the internal interactions may be
described in a separate MSC diagram.

• This way specification MSCs are related to design MSCs

User AC System

Code

OK

msc User_accepted_5

Unlock

Card out

Idle

Door unlocked

declaring
decomposition

decomposed

Foil no 17

Instance decomposition

• The static requirement is that the interface should be exactly matching

• There cannot be more than one MSC with the same name in one document

Panel Local StationControl

Code

OK

msc AC System

Unlock

Card out

Central Unit

Code
Code

OK

OK

MSC
heading decomposed

general
ordering

Foil no 18

Instance creation
• The idea here (though rather far fetched) is that the CUControl needs to create a

new process in the big mainframe computer to perform the task of authorizing the
received Code. We see a situation where several Authorizers may work in parallel

CUControl

OK

msc Central Unit

instance
stop

Code

instance
create

Authorizer

Foil no 19

Basic MSC Summary

• Message are asynchronous, the output of one message must come before the
corresponding input.

• The events on an instance’ timeline are strictly ordered (if it contains no coregion).

• The distance between events is not significant.

• An MSC document consists of a set of MSCs.

• Different MSCs within the same MSC document may be related by conditions.

• An instance (within an MSC) may be decomposed.

• In a coregion the events may come in any order.

• Dynamic creation and termination of instance

Foil no 20

Realisation
software electronics mechanics

Deployment

Functionality
(Structure Behaviour)

Descriptions

Performance …
Dependability
….

Objects Properties

Tests…
Measurements

Services …
1

objects properties

context

content

•••

•••

•••

•••

1

MSC is used to:

1. Precisely define behaviour properties
such as:

• use cases

• interface behavior cases, protocol sequences

• service behaviors

2. Partially synthesise designs

3. Verify that designs satisfy specified behaviour properties

4. Describe test cases

5. Document simulation traces

6. Generally improve understanding and communication about interaction problems

4,52

3 3

Foil no 21

Structural features not covered here

• MSC references – such that MSCs may be referenced within other
MSCs

• MSC expressions – combining MSCs to express alternatives, parallel
merge and loops

• Gates – flexible connection points between references/expressions
and their surroundings

• HMSC – High level MSC for better better overview of MSC documents

• General ordering – when neither strict order nor no order is the
situation

• Substitution – generalizing MSCs wrt. message, instance and MSC
names

• MSC Document – declaring a collection of MSC and their data

• Decomposition – decomposing instances

