
Modeling Work Distribution Mechanisms Using Colored

Petri Nets

M. Pesic and W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology, P.O.Box 513, NL-5600
MB, Eindhoven, The Netherlands.

m.pesic@tm.tue.nl, w.m.p.v.d.aalst@tm.tue.nl

Abstract. Workflow management systems support business processes and are driven by
their models. These models cover different perspectives including the control-flow, resource,
and data perspectives. This paper focuses on the resource perspective, i.e., the way the system
distributes work based on the structure of the organization and capabilities/qualifications
of people. Contemporary workflow management systems offer a wide variety of mechanisms
to support the resource perspective. Because the resource perspective is essential for the
applicability of such systems, it is important to better understand the mechanisms and
their interactions. Our goal is not to evaluate and compare what different systems do, but to
understand how they do it. We use Colored Petri Nets (CPNs) to model work distribution
mechanisms. First, we provide a basic model that can be seen as the “greatest common
denominator” of existing workflow management systems. This model is then extended for
three specific systems (Staffware, FileNet, and FLOWer). Moreover, we show how more
advanced work distribution mechanisms, referred to as resource patterns, can be modelled
and analyzed.

Key words: Work distribution, workflow management, business process management, resource patterns,

colored Petri nets.

1 Introduction

Workflow management systems are process-aware information systems [5, 20], which are used in
companies as a means for the computerized structuring and driving of complex business processes.
Workflow management systems implement business process models, and use them for driving the
flow of work by allocating the right employees to the right tasks at the right times. The system
manages the work of employees. It will determine which tasks an employee has to execute and when,
which documents will be used, which information will be available during work, etc. Typically,
a workflow management system offers several mechanisms to distribute work. Nevertheless, we
believe that existing systems are too limited in this respect. The goal of this paper is not to
propose advanced work distribution mechanisms. Instead, we focus on the analysis of functionality
in existing systems. The goal is not to evaluate these systems, but to understand how they offer
specific functionality. Since work distribution defines the quality of work, it is important to consider
research from the field of social sciences, e.g., social-technical design [13, 17, 21, 55]. We believe that
only by combining both technical and social approaches, one can truly grasp certain phenomena.
A deeper understanding of particular aspects of work distribution is essential for developing a new
breed of more user-centric systems.

The work reported in this paper can be seen as an extension of the workflow patterns initiative

[6] (cf. www.workflowpatterns.com). Within the context of this initiative 43 resource patterns [51,
49] have been defined. Using a patterns approach, work distribution is evaluated from the perspec-
tive of the end-user as a dynamic property of workflow management systems. The work reported
in this paper adds to a better understanding of these mechanisms by providing explicit process
models for these patterns, i.e., the descriptive models are augmented with executable models. Most
work reported in literature (cf. Section 4) uses static models to describe work distribution. Con-
sider for example the meta modeling approaches presented in [8, 40–42, 48]. These approaches use

static models (e.g., UML class diagrams) to discuss work distribution concepts. This paper takes a
truly dynamic model – a Colored Petri Net model – as a starting point, thus clearly differentiating
our contribution from existing work reported in literature.

Colored Petri Nets (CPNs) [31, 34] are a natural extension of the classical Petri net [46].There
are several reasons for selecting CPNs as the language for modeling work distribution in the context
of workflow management. First of all, CPNs have formal semantics and allow for different types
of analysis, e.g., state-space analysis and invariants [32]. Second, CPNs are executable and allow
for rapid prototyping, gaming, and simulation. Third, CPNs are graphical and their notation is
similar to existing workflow languages. Finally, the CPN language is supported by CPN Tools1

– a graphical environment to model, enact and analyze CPNs. In the remainder, we assume that
the reader is familiar with the CPN language and refer to [31, 34] for more details.

In this paper, we provide a basic CPN model that can be seen as the “greatest common
denominator” of existing workflow management systems. The model will incorporate concepts
of a task, case, user, work item, role and group. This model should be seen as a starting point

towards a more comprehensive reference model for work distribution. The basic CPN model is
extended and specialized for three specific systems: Staffware [54], FileNet [24], and FLOWer [43].
These three models are used to investigate differences between and similarities among different
work distribution mechanisms in order to gain a deeper understanding of these mechanisms. In
addition, advanced resource patterns that are not supported by these three systems are modeled
by extending the basic CPN model.

The remainder of this paper is organized as follows. Section 2 presents the basic CPN model
which should be considered a the “greatest common denominator” of existing workflow manage-
ment systems. Section 3 extends this model in two directions: (1) Section 3.1 specializes the model
for three different systems (i.e., Staffware, FileNet, and FLOWer), and (2) Section 3.2 extends
the basic model for selected resource patterns. An overview of related work is given in Section 4.
Section 5 discusses our findings and, finally, Section 6 concludes the paper.

2 Basic Model

Different workflow management systems tend to use different work distribution concepts and
completely different terminologies. This makes it difficult to compare these systems. Therefore, we
will not start by developing CPN models for different systems and see how these can be unified,
but, instead, start with modelling the “greatest common denominator” of existing systems. This
model can assist in comparing systems and unifying concepts and terminology. We will use the
term Basic Model to refer to this “greatest common denominator” and represent it in terms of a
CPN model.

The Basic Model represents a workflow management system where the business process is
defined as a set of tasks. Before the process can be initiated and executed, it has to be instantiated.
One (executable) instance of a process is referred to as a case. Each case traverses the process. If a
task is enabled for a specific case, a work item, i.e., a concrete piece of work, is created. There is a
set of users that can execute work items. The users are embedded in the organizational structure
on the basis of their roles, and the groups they belong to. Group is an organizational unit (e.g.,
sales, purchasing, production, etc.), while role represents a capability of the user (e.g., manager,
software developer, accountant, etc.). These concepts are mapped onto CPN types as shown in
Table 1.

During the work distribution work items change state. The change of state depends on previous
and determines the next actions of users and the distribution mechanism. A model of a life cycle
of a work item shows how a work item changes states during the work distribution. For more
detailed models about life cycle models we refer the reader to literature, e.g., [5, 18, 20, 30, 37, 41].
We develop and use the life cycle models as an aid to describe work distribution mechanisms. The
Basic Model uses a simple model of the life cycle of work items and it covers only the general, rather
simplified, behavior of workflow management systems (e.g., errors and aborts are not considered).

1 CPN Tools can be downloaded from wiki.daimi.au.dk/cpntools/.

Figure 1 shows the life cycle of a work item of the Basic Model. After the new work item has
arrived, it is automatically also enabled and then taken into distribution (i.e., state initiated).
Next, the work item is offered to the user(s). Once a user selects the work item, it is assigned to
him/her, and (s)he can start executing it. After the execution, the work item is considered to be
completed, and the user can begin working on the next work item.

Table 1. Basic Workflow Concepts

color Task = string;
color Case = int;
color WI = product Case * Task;
color User = string;
color Role = string;
color Group = string;

new

assigned

enabled

initiated

offered

selected

started

executed

completed

waiting for the
preconditions

ready to be
distributed

the distribution is
allocating users

in the queues,
waiting to be selected

withdrawn from
the other queuescan not be selected

again by other users

the user is executing
the work item

removed from the
distribution

Fig. 1. Basic Model - Work Item Life Cycle

For the simulation (execution) of the work distribution in the model it is necessary to initiate
the model by assigning values for four input elements2, as shown in Table 2. Initial values of input
elements describe a real-world situation that the model should execute.

Table 2. Input For The Basic Model

name color description

new work items color WI = product
Case * Task;

work items that have arrived and are ready to be dis-
tributed to users;

system users color Users = list
User;

a set of available users;

task maps color TMap = prod-
uct Task * Role *
Group;

decision about which work items can be executed by
which users is made based on the authorizations given
in the process definition, for every task;

user maps color UMap = prod-
uct User * Roles *
Groups;

the organizational structure is used to map users to the
authorization of tasks;

As a model of an abstract workflow management system, we have developed the Basic Model
on the basis of predefined assumptions: (1) we abstract from the process perspective (i.e., splits,
joins, creation of work items), (2) we only consider the “normal” behavior (i.e., work items are
completed successfully; errors and aborts are not included), and (3) we abstract from the user
interface.

The Basic Model is organized into two sub-systems: the Work Distribution and the Work Lists
module. The CPN language allows for the decomposition of complex nets into sub-pages, which
are also referred to as sub-systems, sub-processes or modules. By using such modules we obtain
a layered hierarchical description. Figure 2 shows the modular structure of the Basic Model. The
two sub-modules communicate by exchanging messages via six places. These messages contain
information about a user and a work item. Every message place is of the type (i.e., the CPN color
set) “user work item” (color UWI = product User * WI), which is a combination of a user and
a work item. Table 3 shows the description of the semantics of different messages that can be
exchanged in the model.

2 Initial marking for the CPN model.

to be offered

UWI
withdrawn offer

UWI
selected

UWI

approved

UWI

rejected

UWI
completed

UWI

work distribution

workdistribution

work lists

worklists

Fig. 2. Basic Model - Main

Table 3. Messages Between Modules

Place Message

to be offered A work item is offered to the user.

withdrawn offer Withdraw the offered work item
from the user.

selected The user requests to select the work
item.

approved Allow the user to select the work
item.

rejected Do not allow the user to select the
work item.

completed The user has completed executing
the work item

Work Distribution. The Work Distribution module manages the distribution of work items by
managing the process of work execution and making sure that work items are executed correctly. It
allocates (identifies) users to whom the new work items should be offered, based on authorization
(TMap) and organization (UMap) data. Three (out of four) input elements are placed in this
module: new work items, user maps and task maps. The variables used in this module are shown
in Table 4.

Table 4. Basic Model - Variables in Work Distribution Module

var tmaps: TMaps;
var umaps: UMaps;
var wi: WI;
var wis:WIs; (color WIs = list WI;)
var uwi: UWI;

Figure 3(a) shows the Work Distribution module. The allocation function offer appears on the
arc between the transition offers and the place to be offered. This function contains allocation rules
(allocation algorithm) of the specific distribution mechanism. Work items that are offered to users
are stored in the place offered work items. After receiving a request from the user to select the
work item, the decision is made whether to allow the user to select the item (and thus to execute
it), or to reject this request. This decision is made based on the assumption that at one moment,
only one user can work on the work item. If the work item has already been selected (i.e., it is not
in the place offered work items), then the model rejects this request. If nobody has selected the
work item yet, the approval is sent to the user and the work item is moved to the place assigned

work items. A work item that is moved to the place assigned work items cannot be selected again.

Work Lists. Figure 3(b) shows the Work Lists module. This module receives messages from the
Work Distribution module about which work items are to be offered to which users. The Work
Lists module further manages events associated with the activities of users. It is decomposed
into three units, which correspond to three basic actions users can make: log on and off (cf.
Figure 3(c)) in the system, select work (cf. Figure 3(d)), start work (cf. Figure 3(e)), and stop

work (cf. Figure 3(f)). Once the work item has been offered to users, they can select it. When a
user selects the work item, the request is sent to the Work Distribution module. If the request is
rejected, the action is aborted. If the Work Distribution Module approves the request, the user can
start working on the work item. Once the user has started working, the work item is considered
to be in progress. Next, the user can stop working, and the work item is completed. In order to
perform any of these actions, it is necessary that the user is logged on in the system.

rejected

UWI
Out

approved

UWI
Out

completed

UWI
In

user map

UMaps

iUMaps

selected

UWI
In

new work items

WI

iWI

to be offered

UWI
Out

task map

TMaps

iTMaps

withdrawn offer

UWI
Out

closed work items WI

offered work items

WIs

[]

assigned work items

WI

offers

selects

[elt(wi,wis)]

reject

[not(elt(wi,wis))]

completes

(u,wi)

uwi

(u,wi)

wi

umaps

wi

(u,wi)

tmaps

(u,wi)

offer(wi,tmaps,umaps)

umaps

tmaps

offer(wi,tmaps,umaps)

wis

wis

wi

wis

del(wi,wis)

wi::wis

wi

(* function "offer" takes new work items,
and offers them to users,
based on task maps and user maps. *)

(* input *)

(* input *)

(* input *)

(* work item cannot
be selectd
more than once *)

(* allow user
to select
the work item *)

(* prevent users
to select
the work item again,
after someone
has selected it*)

(a) Work Distribution

logged off

User

iUser

logged on

User

[]

I/O

log off log on

uu

uu

(* users that are
working/avalaible
at the moment *)

(* users that are
currently not
working/available *)

(c) Log On and Off

active work items

UWI

selected

UWI
Out

withdrawn offer

UWI
In

logged on

User

[]

I/O

requested

UWI
Out

to be offered

UWI
In

insert delete

select

uwiuwi

(u,wi)

(u,wi)

uwi

u

(u,wi)

uwi

(* offer work items
 to users *)

(* remove
 the offered
 work item *)

(* send request
 for the work item *)

(d) Select Work

rejected

UWI
In

completed

UWI
Out

approved

UWI
In

selected

UWI
Out

to be offered

UWI
In

withdrawn offer

UWI
In

logged on

User

in progress

UWI

requested

UWI

abort

select work

selectwork

logon and off

logonandoff

stop work

stopwork

start work

startwork

uwi

uwi

(* request has been sent,
wait for the response *)

(* the user is executing
 the work item *)

(* request approvement
 for executing the work item *)

(* the user has completed the work item *)

(* request approved *)

(* request rejected *)

(* only the user which is
logged on can work*)

(b) Work Lists

in progress

UWI
Out

logged on

User

[]

I/O

requested

UWI
In

approved

UWI
In

start

(u,wi)

u

(u,wi)

uwi

(* the request
is approved *)

(* the work item
is assigned to
the user *)

(* the user is
logged on *)(* the user is currently

 executing
 the work item *)

(e) Start Work

logged on
User

[]

I/O

in progress

UWI
In

completed

UWI
Out

complete
u

(u,wi)

(u,wi)
(* when transition "complete"
fires, execution of a work
item is completed *)

(f) Stop Work

Fig. 3. Basic Model

3 Work Distribution Models

The Basic Model presented in previous section (Section 2) is used as a reference for different
extensions and specializations of work distribution. In this section, we first extend and specialize
the Basic Model to accommodate the capabilities of Staffware, FileNet and FLOWer (Section 3.1).
In Section 3.2 we select four of the more advanced resource patterns reported in [49, 51]. These
four patterns are not supported by Staffware, FileNet and FLOWer, but we will show that it is
easy to extend the Basic Model to adequately address the patterns.

3.1 Workflow Management Systems

We have modelled the work distribution mechanisms of three commercial workflow management
systems: Staffware, FileNet and FLOWer. FileNet and Staffware are examples of two widely used
traditional workflow management systems. FLOWer is based on the case-handling paradigm, which
can be characterized as “the more flexible approach” [3, 9]. Each of the models we have developed
will be described shortly in the remainder of this section. For a more detailed description of the
models we refer the reader to a technical report [44].

Staffware The Basic Model is upgraded to represent the work distribution of Staffware. The way
of modelling the organizational structure and resource allocation algorithm are changed, while the
concept of work queues and the possibility of the user to forward and suspend a work item are
added to the model.

Organizational Structure. Simple organizational structure can be created in Staffware using the
notions of groups and roles. The notion of group is defined as in the Basic Model, i.e., one group
can contain several users, and one user can be a member of several groups. However, specific for
Staffware is that a role can be defined for only one user. This feature does not require any changes
in the model itself. It changes the way the initial value for the user maps should be defined – one
role should be assigned to only one user.

Work Queues. Groups are used in Staffware to model a set of users that share common rights.
The work item can be allocated to the whole group, instead of listing the names of users that can
execute it. Staffware introduces a work queue for every group. The work queue is accessible to all
members of the group. Single users are also considered to be groups that contain only one member.
Thus, one work queue is also created for every user and this personal queue is only accessible by
a single user. From the perspective of the user, (s)he has access to the personal work queue and
to work queues of all the groups (s)he is a member of. Table 5 shows which color sets are added
to the model to represent work queues in Staffware. While the Basic Model (Section 2) offers the
work item directly to users, Staffware offers items in two levels. First, the work item is offered to
work queues (color set WQ). We refer to this kind of work items as to queue work item (color set
QWI). Second, after a queue work item is offered to a group (work queue) it is offered to each
of its members and only one member will execute the queue work item once. We refer to a queue
work item that is offered to a member as to user work item (color set UWI).

Table 5. Staffware - “Work Queue” Color Sets

color WQ = string;
color QWI = product WI * WQ;
color UWI = product User *QWI;

Figures 4 and 5 show that we create two levels in the Work Distribution module to support
the two-level distribution of Staffware:

1. In the module itself a new work item is offered to work queues (as a queue work item). The
new work item is completed when each of its queue work items is executed. Thus, if a new
work item is offered to multiple work queues, it is executed multiple times.

2. In the sub-module Offering to Users every queue work item is offered to the queue members
(user work item). A queue work item is completed when one of the members executes the user
work item.

rejected

UWI
Out

approved
UWIOut

completed

UWIIn

user map

UMaps

iUMaps

selected

UWIIn

new
work items

WI

iWI

to be offered

UWIOut

task map

TMaps

iTMaps
withdrawn offer

UWIOut

completed
queue work items

QWI

to offer
to work queues

QWI

offered
work items

WI

closed
work items

WI

suspended
UWIIn

forwarded

UWIxWQ
In

fields

FMaps

iFMaps

offers to
work queues

completes
work item

Offering

offering

wi

tmaps umaps

wi

offer_qwi(wi,tmaps,umaps,fmaps,[])

wi

offer_qwi(wi,tmaps,umaps,fmaps,[])

umaps
tmaps

wi

fmaps

fmaps

(* only umaps are
necessary as input
for offering queue work
items to users *)

(* work item is first offerd to work queues
on the basis of tmaps, umaps and fmaps *)

(* a work item is complete
when every queue, to which it was offered,
has executed the work item *)

Fig. 4. Staffware - Work Distribution

selected
UWIIn

assigned
work items

QWI

offered queue
 work items

QWIs

[]

user map

UMaps

iUMaps

I/O

withdrawn offer

UWIOut

approved

UWI
Out

to offer
to work queues

QWI
I/O

rejected

UWIOut

to be offered

UWIOut

completed
queue work items

QWI
Out

completed
UWIIn

suspended

UWIIn

forwarded

UWIxWQ
In

selects

[elt(qwi,qwis)]

offers

completes

Suspend
 and
Forward

suspendandforward

Reject

[not(elt(qwi,qwis))]

(u,qwi)

qwi

del(qwi,qwis)

umaps
qwis

offer_uwi(qwi,umaps)

(u,qwi)

qwi

qwi::qwis qwis

offer_uwi(qwi,umaps)

umaps

qwi

qwi

(u,qwi)

qwis

(u,qwi)

(u,qwi)

(* every queue work item
is offered to members of the queue *)

(* withdraw all offers
for this queue work item *)

(* use umap to
offer qwi to
queue
members *)

(* a queue work item will be executed
only once, by one user/queue member *)

Fig. 5. Staffware - Offering

Resource Allocation. We have changed the allocation function offer to represent the allocation
algorithm in Staffware. Just like the Basic Model, Staffware searches for possible users based on
roles and groups. In addition to this, in Staffware users can be allocated by their user-names and
data fields in the process. In user maps we use the fields reserved for groups when we want to
specify the allocation for user-names. We do this by assuming that every user-name refers to a
group with only one member – the specified user. The second addition in Staffware refers to the
fact that resource allocation can be also done at “run-time” on the basis of data fields in task maps

(cf. Table 6). This kind of allocation is referred to as a dynamic work allocation: the allocation is
executed based on the current value of the field during the process execution. Staffware assumes
that the value of the assigned data field is a group name, a role name or a user name.

If the allocation refers to group names the work item is allocated to group work queues. In an
allocation that refers to user names or roles the work item is allocated to personal work queues.

Table 6. Staffware - Dynamic Work Allocation

color Field = string;
color Fields = list Field;
color FValue = string;
color FMap = product Field*FValue;
color FMaps = list FMap;
color TMap = product Task * Users * Roles * Groups * Fields;

Forward and Suspend. Staffware allows for forward and suspend, i.e., a user can put a work item
on hold (suspend) or forward it to another user. Forwarding and suspending of work items adds
two messages that are exchanged between Work Distribution and Work Lists modules in Staffware
model. Figures 4 and 5 show two new places – forward and suspend. These two new actions are
triggered in the Work List module by the user. Figure 6(a) shows that in the module Start Work
the user can choose to select or forward (to another work queue) the work item. Figure 6(b)
shows that in the module Stop Work the user can choose to complete or suspend the work item.
The Work Distribution module handles forwarding and suspending in the Offering to Users sub-
module. Figure 6(c) shows how: (1) in case of forwarding the work item is automatically cancelled

for the current work queue and offered to the new work queue, and (2) in case of suspending the
work item is cancelled for the current work queue and re-offered as a new work item.

work queue

WQ

iUser ++ iGroup

logged on

User

[]

I/O

in progress

UWI
Out

requested

UWI
In

select

UWI
In

forwarded

UWIxWQ
Out

ForwardStart Work
wqu

(u,qwi)

u

(u,qwi)

(u,qwi) (u,qwi)

((u,qwi),wq)

(u,qwi)

(* a work queue
is created
for every group
and for every user *)

(* the user can choose to execute or forward the work item *)

(a) Start Work

completed

UWI
Out

in progress

UWI
In

suspended

UWI
Out

logged on

User

[]

I/O

suspend

complete
(u,qwi)

(u,qwi)

(u,qwi)

(u,qwi)

u

u

(* the user can
choose to
complete
or suspend
the work item *)

(b) Stop Work

suspended

UWI
In

selected
work items

QWI
In

to offer to
work queues

QWI
Out

forwarded

UWIxWQ
In

to re offer

QWI

to cancel

QWI

re offer

suspendcancel

forward
qwi qwi

qwiqwi (u,qwi)

((u,(wi,wq)),wq1)

qwi

qwi

(wi,wq1)

(wi,wq)

(* when forwarding a "user work item":
1. cancel this "user work item" and 2. offer this work item to the specified user *)

(* when suspending a "user work item":
1. cancel this "user work item" and 2. offer it again like before *)

(c) Suspend and Forward

Fig. 6. Staffware - Forward and Suspend

FileNet Like Staffware, FileNet is a widely used traditional process-oriented workflow manage-
ment system. In this section we will describe the FileNet CPN model that we develop using the
Basic Model as a starting reference model.

Organization. The organizational model in FileNet does not allow for modelling roles. Table 7
shows which color sets are added to the CPN model to represent the two types of organizational
groups:

1. Administrators define work queues (color set WQ) and assign their members in the FileNet
system. A work queue is valid for every process (workflow) definition.

2. Process modelers can define workflow groups (color set WG) in every process model. Thus,
a workflow group is valid only in the process (workflow) model in which it is defined. While
executing a task of a process definition, users have the possibility to change the structure of
workflow groups that are defined in that process. Workflow groups represent teams in FileNet.

Queues. Work queues and personal queues are two types of pools from which users can select
and execute work items. A work queue can have a number of members while a personal queue
has only one member. When a work item is offered to a queue one of the queue members can
select and execute the work item. Table 7 shows which color sets are added to the FileNet model
to represent queues. FileNet distributes work in two levels using queues. First, the work item is
offered to queues as a queue work item (color set QWI). Second, the queue work item is offered
to the members of the queue as a user work item (color set UWI).

Table 7. FileNet - “Queue” Color Sets

color Q = string;
color WQ = Q; (color WQs = list WQ;)
color WG = Q; (color WGs = list WG;)
color UMap = product User * WGs* WQs;
color QWI = product WI * Q;
color UWI = product User * QWI;

Figures 7 and 8 show that the model of the two-level work distribution in FileNet is similar to
the Staffware model. For more detailed description of this kind of distribution we refer the reader
to the Staffware description in Section 3.1.

rejected
UWIOut

approved
UWIOut

completed

UWIIn

user map

UMaps

iUMaps

user map
selected

UWIIn

 new
 work items

WI

iWI

to be offered
UWIOut

task map

TMaps

iTMaps

withdrawn offer
UWIOut

 completed
queue work items

QWI

to offer
to queues

QWI

offered
work items

WI

 closed
work items

WI

suspended

UWI
In

forwarded
UWIxQIn

offers to
queues

completes
work item

Offering
to Users

offering

wi

tmaps
umaps

wi

offer_qwi(wi,tmaps,umaps,[])

wi

offer_qwi(wi,tmaps,umaps,[])

umaps
tmaps

wi

(* only umaps are
necessary as input
for offering queue work
 items to users *)

(* work item is first offerd to queues
on the basis of tmaps and umaps *)

(* a work item is complete
when every queue, to which it was offered,
has executed the work item *)

Fig. 7. FileNet - Work Distribution

selected
UWIIn

assigned
work items

QWI

offered queue
 work items

QWIs

[]

withdrawn offer

UWIOut

approved
UWIOut

to offer
to queues

QWI
I/O

rejected
UWIOut

offer

UWIOut

completed
queue work items

QWIOut

completed
UWIIn

suspended

UWI
In

forwarded
UWIxQIn

user map

UMaps

iUMaps

user map

selects

[elt(qwi,qwis)]

offers

completes

Suspend and
Forward

suspendandforward

Reject

[not(elt(qwi,qwis))]

(u,qwi)

qwi

del(qwi,qwis)qwis

offer_uwi(qwi,umaps)

(u,qwi)

qwi

qwi::qwis
qwis

offer_uwi(qwi,umaps)

qwi

qwi
(u,qwi)

qwis

(u,qwi)

(u,qwi)

umaps

umaps

(* every queue work item
is offered to members of the queue *)

(* withdraw all offers
for this queue work item *)

(* use umap to
offer qwi to
queue
members *)

(* a queue work item will be executed only once,
by one user/queue member *)

Fig. 8. FileNet - Offering

Resource Allocation. FileNet allocates work using a work queue or a list of participants. Users
and workflow groups can be entries of a list of participants. In the FileNet model task maps are
defined as a combination of a task, a list of work groups, and a work queue (color TMap = product

Task * WGs * WQ;). It is necessary to highlight that, when defining the input value for a task
map, only work queue or a list of workflow groups should be initiated.

If the task is allocated to a work queue FileNet offers the work item to the work queue. If the
task is allocated to a list of participants then it is offered to personal queues of all users that are
listed as participants or are members in workflow groups that are listed. Allocation via participants
is introduced to support team work in FileNet, via so-called “process voting” [44].

Forward and Suspend. Users can forward and suspend work items while working with FileNet.
In the model of FileNet we use the same adjustments as in the Staffware model to implement
forwarding and suspension: modules Start Work and Stop Work are changed and sub-module
Suspend and Forward is added in the Work Distribution module. For detailed description we refer
the reader to Staffware description and Figure 6 in this section.

FLOWer FLOWer is a case handling system. Case handling systems differ in their perspective
from traditional process-oriented workflow management systems because they focus on the case,
instead of the process [3, 9]. The user is offered the whole case by offering all available work items
from the case and s(he) does not have to follow the predefined order of tasks in the process
definition. When modelling FLOWer, we upgraded the Basic Model in such a way that (1) it
supports case-handling distribution (instead of the process-oriented one), (2) it enables the complex
authorization and distribution specifications that FLOWer has, and (3) it enables users to execute,
open, skip and redo work items.

Authorization and Distribution Rights. When designing the process it is necessary to define
process-specific roles and to assign each role authorization rights for tasks in the process. The
authorization rights determine what users can do. Information about the authorization is stored
in task maps (i.e., color TMap = product Task * Role * CaseType). Distribution rights define
what users should do. These rights are used to model the organizational structure and to assign
authorization rights from the process definitions to users. Function profiles and work profiles define
distribution rights. Function profile is a set of authorization roles from different process definitions.
Work profiles assign function profile(s) to users and they can be used to structure organization
into groups, departments or units.

Case Handling. Table 8 shows which color sets are used to model FLOWer as a case-handling
system. Every process definition in FLOWer is referred to as a case type. One case represents an in-
stance of a case type and is identified by the case identification (color set CaseID). Figures 9 and 10
show that FLOWer distributes work in two levels:

1. The case is distributed to users (color set UCase). Only one user can select and open the case
at one moment. Figure 9 shows that in the FLOWer Work Distribution module a case becomes
the object of distribution instead of a work item.

2. The selected case is opened for the user in the Case Distribution sub-module. Work items from
the case are offered to the user, based on the authorization and distribution rules. The user
can execute, open, skip and redo work items from the selected case. The Case Distribution

sub-module (cf. Figure 12) is described in the remainder of this section.

Table 8. FLOWer - Basic Color Sets

color CaseType = string;
color Tasks = list Task;
color Process = product CaseType * Tasks;
color CaseID = INT;
color Case = product CaseID* CaseType;
color WI = product Case * Task;
color UCase = product User * Case;

Open, Execute, Skip and Redo. Although in a case type tasks in the process definition have the
execution order that is suggested to the user, (s)he is not obliged to follow it. When working
with an open case in FLOWer, users can: (1) Execute the work item which is next in the process
definition; (2) Open for execution a work item that is still not ready for execution according to

rejected
 case

UCase
Out

approved
 case

OpenCase
Out

completed
 case

UCase
In

selected
 case

UCase
In

new
cases

Case

iCases

offer
case

UCase
Out

task map

TMaps

iTMaps

withdraw
case offer

UCase
Out

closed
cases

UCase

offered
cases

Cases

[]

assigned
 cases

UCases

[]

tprocess

Process

iProcess

skip

OpenCaseXUWI
In

execute

OpenCaseXUWI
In

redo
OpenCaseXUWIIn

case
in progress

OpenCase
Out

open
OpenCaseXUWIIn

function
 profile

FPs

iFPs

work
profile

WPs

iWPs

offers
case

selects
 case

[elt(((cid,ct)),cs)]

reject case

[not(elt(c,cs))]

completes
 case

case distribution

case distribution

uc

(u,c)

c

uc

(u,(cid,ct))

tmaps

(u,c)

tmaps

offerc(c,tmaps,fps,wps)

cs

cs

[(u,((cid,ct)))]^^ucs

cs

del(((cid,ct)),cs)

c::cs

ucs

ucs

del(uc,ucs)

fps

wps

fps

wps

opencase((cid,ct),ts,u,tmaps,fps,wps)

offerc(((cid,ct)),tmaps,fps,wps)
(ct,ts)

(* the whole case is offered to users
based on the tmaps, function profiles
and work profiles *)

(* when the user
has selected the case,
the case is opened
for the user *)

Fig. 9. FLOWer - Work Distribution

rejected
 case

UCase
In

completed
 case

UCase
Out

approved
 case

OpenCase
In

selected
 case

UCase
Out

offer case

UCase
In

withdraw
case offer

UCase
In

logged on

User

case
in progress

OpenCase
In

request case

UCase

skip

OpenCaseXUWI
Out

execute

OpenCaseXUWI
Out

redo

OpenCaseXUWI
Out

open

OpenCaseXUWI
Out

abort case

select case

select case

logon
and off

logon and off

stop case

stop case

start case

start case

action

action

ucuc

(* after selecting the case,
the user can work on the work items
from that case, or close the case*)

Fig. 10. FLOWer - Work Lists

the process definition; (3) Skip a work item by choosing not to execute the work item which is
next according to the process definition, or (4) Redo a work item by executing again a work item
which has already been executed. Figures 9 and 10 show that four new places are added to the
model to represent these four actions. In order to implement these possibilities in the FLOWer
model it is necessary store the information about the case state, i.e., about the work items that
are (1) waiting to be enabled, (2) active (i.e. they are enabled and can be executed), (3) finished

(executed), and (4) skipped. Thus, an open case (color OpenCase = product UCase*CaseState;)
stores information about the case state (color CaseState = product WIs*WIs*WIs*WIs) in four
lists of work items (waiting, active, finished and skipped).

Figure 11 shows the sub-module Action (in the FLOWer Work List module) where we model
how user performs the actions to execute, open, skip and redo work items. In FLOWer users can
choose work items on their own discretion but (due to the complexity of the model) we model this
selection as a random function. When the user wants to:

1. open an item s(he) selects a work item from the list of waiting items;

2. execute an item s(he) selects a work item from the list of active items;

3. skip an item s(he) selects a work item from the lists of waiting and active items;

4. redo an item s(he) selects a work item from the lists of finished and skipped items.

Each of the four actions the user performs changes the state of the open case. For example,
opening a work item transfers it to the state active (and, therefore, it is transferred to the list
of active items). Figure 12 shows that the Case Distribution module responses in different ways
(functions execute item, open item, skip item, and redo item) when each of the four actions is
performed. When an action is performed over a work item, the state of the work item changes,
as shown in Table 9. The four actions are listed in the column “action”. The column “work item
becomes” shows how the action changes state of the work item. It often happens that an action
performed on a selected work item also affects other items and this is described in the column
“side effects”.

case in progress

OpenCase
In

skip

OpenCaseXUWI
Out

logged on

User
I/O

redo

OpenCaseXUWI
Out

open

OpenCaseXUWI
Out

execute

OpenCaseXUWI
Out

execute

[not(a=[])]

open

[not(w=[])]

redo

[not((f^^s)=[])]

skip

[not(a^^w=[])]

((u,c),(w,a,f,s))

((u,c),(w,a,f,s))

(((u,c),(w,a,f,s)),select_random(a^^w))

((u,c),(w,a,f,s))

u

(((u,c),(w,a,f,s)),select_random(f^^s))

(((u,c),(w,a,f,s)),select_random(w))u

((((u,c),(w,a,f,s))),select_random(a))

((u,c),(w,a,f,s))

u

u

Fig. 11. FLOWer - Action

redo

OpenCaseXUWI
In

case in progress

OpenCase
Out

open

OpenCaseXUWI
In

execute

OpenCaseXUWI
In

skip

OpenCaseXUWI
In

tprocess

Process

iProcess

I/O

selected cases

UCases

[]

I/O

execute

[elt(uc,ucs)]

skip

[elt(uc,ucs)]

redo

[elt(uc,ucs)]

ignore

[not(elt(uc,ucs))]

open

[elt(uc,ucs)]

((uc,state),uwi)

(uc,(execute_item(uwi,state,ts)))

((uc,state),uwi)

((uc,state),uwi)

((uc,state),uwi)

(uc,state)

(ct,ts)

(uc,(skip_item(uwi,state,ts)))

((uc,state),uwi)ucs (uc,(redo_item(uwi,state,ts)))

(uc,(open_item(uwi,state,ts)))

ucs

ucs

ucs

ucs

((uc,state),uwi)

((uc,state),uwi)

((uc,state),uwi)

(ct,ts)

(ct,ts)

(ct,ts)

Fig. 12. FLOWer - Case Distribution

Table 9. FLOWer - The Four Actions

work item side
action becomes effects

open active Items from waiting that preceded become skipped.

execute finished The direct successors in waiting become active.

skip skipped Items from waiting that preceded become skipped. The direct successors
in waiting become active.

redo active Subsequent items from (skipped & finished) become waiting.

3.2 Resource Patterns

Instead of extending the Basic Model for more systems, we also looked at a more systematic way
of work distribution. As indicated, similar concepts are often named and presented differently
in different workflow management systems. Therefore, it is interesting to define these concepts
in a system-independent manner. We have used 43 documented resource patterns [49, 51]. These
patterns can be used as representative examples for analyzing, evaluating and comparing different
workflow management systems with respect to work distribution. Resource patterns are grouped
into a number of categories: creation patterns, push patterns, pull patterns, detour patterns, auto-

start patterns, visibility patterns, and multiple resource patterns. Each of these patterns can be
modeled in terms of a CPN model. We cannot elaborate on each of the patterns, but we will discuss
four to illustrate our work. None of the systems supports Pattern 16: Round Robin, Pattern 17:

Shortest Queue, Pattern 38: Piled Execution, and Pattern 39: Chained Execution. Patterns 16 and
17 are push patterns, i.e., they push work to a specific user. As auto-start patterns, patterns 38
and 39 enable the automatic start of the execution of the next work item once the previous has
been completed.

Round Robin and Shortest Queue. Round Robin and Shortest Queue push the work item to one
user of all users that qualify. Round Robin allocates work on a cyclic basis and Shortest Queue
to the user with the shortest queue. This implies that each user has a counter to: (1) count
the sequence of allocations in Round Robin and (2) count the number of pending work items in
Shortest Queue. As Figures 13 and 14 show, these two patterns are implemented in a similar way
in the Work Distribution Module. The required changes to the Basic Model are minimal. A counter
is introduced for each user (token in place available) and functions round robin and shortest queue

are used to select one user from the set of possible users based on these counters. Similarly, most
of the other patterns can be realized quite easily. The model for Shortest Queue has an additional
connection (two arcs) that updates the counter when a work item is completed to remove it from
the queue.

Piled and Chained Execution. Piled and Chained Execution are auto-start patterns, i.e., when
the user completes execution of current work item the next work item starts automatically. When

rejected

UWI
Out

approved

UWI
Out

completed

UWI
In

User map

UMaps

iUMaps

selected

UWI
In

new
work items

WI

iWI

to be offered

UWI
Out

Task map

TMaps

iTMaps

withdrawn offer

UWI
Out

closed
work items

WI

offered
work items

WIs

[]

assigned
work items

WI

to allocate
UWI

available

RRCounters

[]

RRA available
counter

INT

1

offers

[not(round_robin(offer(wi,tmaps,umaps),rrcs)=NoUWI)]

selects

[elt(wi,wis)]

reject

[not(elt(wi,wis))]

completes

allocate

(u,wi)

(u,wi)

(u,wi)

wi

umaps

wi

(u,wi)

tmaps

(u,wi)

offer(wi,tmaps,umaps)

umaps

tmaps

wis

wis

wi

wis

wi::wis

wi

round_robin(offer(wi,tmaps,umaps),rrcs)
(u,wi) (u,wi)

rrcs count + 1
count

rrcs

allocate(u,rrcs,count)

del(wi,wis)

(* round_robbin selects one
 from all the offers on the basis of couters *)

(* counts the allocations *)

Fig. 13. Push Patterns - Round Robin

working in Chained Execution, the next work item will be for the same case as the completed one
(the user works on different tasks for one case). Similarly, if the user works in Piled Execution
the next work item will be for the same task as the completed one (the user works on one task
for different cases). Figures 15 and 16 show how Piled and Chained Execution are implemented
similarly in the Stop Work sub-module. Users can choose to work in the normal mode or in the
auto-start mode (which is represented by the token in place special mode). The function select is
implemented to search for the next work item for the same: (1) task in Piled Execution and (2)
case in Chained Execution.

4 Related Work

Since the early nineties workflow technology has matured [26] and several textbooks have been pub-
lished, e.g., [5, 20, 30, 37, 41]. During this period many languages for modelling workflows have been
proposed, i.e., languages ranging from generic Petri-net-based languages to tailor-made domain-
specific languages. The Workflow Management Coalition (WfMC) has tried to standardize work-
flow languages since 1994 but failed to do so [25]. XPDL, the language proposed by the WfMC,
has semantic problems [2] and is rarely used. In a way BPEL [11] succeeded in doing what the
WfMC was aiming at. However, both BPEL and XPDL focus on the control-flow rather than the
resource perspective.

Despite the central role that resources play in workflow management systems, there is a surpris-
ingly small body of research into resource and organizational modelling in the workflow context
[1, 35]. In early work, Bussler and Jablonski [15] identified a number of shortcomings of work-
flow management systems when modelling organizational and policy issues. In subsequent work
[30], they presented one of the first broad attempts to model the various perspectives of workflow
management systems in an integrated manner including detailed consideration of the organiza-
tional/resource view.

One line of research into resource modelling and enactment in a workflow context has focused
on the characterization of resource managers that can manage organizational resources and enforce
resource policies. In [19], the design of a resource manager is presented for a workflow management
system. This work includes a high level resource model together with proposals for resource defini-
tion, query and policy languages. Similarly, in [36], an abstract resource model is presented in the

approved

UWI
Out

completed

UWI
In

User map

UMaps

iUMaps

selected

UWI
In

new
work items

WI

iWI

to be offered

UWI
Out

Task map

TMaps

iTMaps

closed
work items

WI

offered
work items

WIs

[]

assigned
work items

WI

to allocate
UWI

available

SQCounters

[]

SQ available

withdrawn offer

UWI
Out

rejected

UWI
Out

offers

[not(shortest_queue(offer(wi,tmaps,umaps),sqcs)=NoUWI)]

selects

[elt(wi,wis)]

complets

allocate

reject

[not(elt(wi,wis))]

(u,wi)

(u,wi)

wi

umaps

wi

(u,wi)

tmaps

umaps

tmaps

wis

wi

del(wi,wis)

wi::wis

wi

shortest_queue(offer(wi,tmaps,umaps),sqcs)
(u,wi) (u,wi)

sqcs

sqcs

allocate(u,sqcs,1)

sqcs

allocate(u,sqcs,(~1))
offer(wi,tmaps,umaps)

(u,wi)

(u,wi)wis

wis

(* shortest_queue selects one
 from all the offers on the basis of couters *)

(* when the work item is completed,
remove it from the users’ queue *)

Text

Fig. 14. Push Patterns - Shortest Queue

logged on

User

[]

I/O
in progress

UWI
In

completed

UWI
Out

 active
work items

UWIs

[]

I/O

request

UWI
Out

select

UWI
Out

special
 mode

Users

[]

I/O

ready
UWI

complete

complete
 special

u

(u,wi)

(u,(c,a))

uwis

if elt(u,us) andalso
not(select(u,a,uwis) = NoUWI)
then 1‘select(u,a,uwis) else nil

if elt(u,us) andalso
not(select(u,a,uwis) = NoUWI)
then 1‘select(u,a,uwis) else nil

us

(u,wi)

(u,(c,a))

(* users can
choose
to be in the
"auto-start"
mode*)

(* check if there are
available work items
for the same task *)

(* automatically start the next
work item for the same task*)

(* function "select" picks
the next work item
with the task "t" *)

(* task is the auto-start criteria
(u,(c,t)) -> (u,(c,a)) *)

Fig. 15. Piled Execution - Stop Work

logged on

User

[]

I/O
in progress

UWI
In

completed

UWI
Out

active
work items

UWIs

[]

I/O

request

UWI
Out

select

UWI
Out

special
 mode

Users

[]

I/O

ready
UWI

complete

complete
 special

u

(u,wi)

(u,(a,t))

uwis

if elt(u,us) andalso
not(select(u,a,uwis) = NoUWI)
then 1‘select(u,a,uwis) else nil

if elt(u,us) andalso
not(select(u,a,uwis) = NoUWI)
then 1‘select(u,a,uwis) else nil

us

(u,wi)

(u,(a,t))

(* check if there are
available work items
for the same case *)

(* users can
 choose
to be in the
"auto-start"
mode*)

(* automatically start the next
work item for the same case*)

(* case is the auto-start criteria
(u,(c,t)) -> (u,(a,t)) *)

(* function "select" picks
the next work item
for the case "a" *)

Fig. 16. Chained Execution - Stop Work

context of a workflow management system although the focus is more on the efficient management
of resources in a workflow context than the specific ways in which work is allocated to them. In
[29], a proposal is presented for handling resource policies in a workflow context. Three types of
policy – qualification, requirement and substitution – are described together with a means for
efficiently implementing them when allocating resources to activities.

Another area of investigation has been into ensuring that only appropriate users are selected
to execute a given work item. The RBAC (Role-Based Access Control) model [23] presents an ap-
proach for doing this. RBAC models are effective but they tend to focus on security considerations
and neglect other organizational aspects such as resource availability.

Several researchers have developed meta-models, i.e., object models describing the relation
between workflow concepts, which include work allocation aspects, cf. [8, 40–42, 48]. However,

these meta-models tend to focus on the structural description of resource properties and typically
do not describe the dynamics aspects of work distribution.

Flexibility has been a research topic in workflow literature since the late nineties [4, 7, 9, 10,
16, 22, 28, 33, 45, 47, 56]. Flexibility triggers all kinds of interesting research questions, e.g., if a
process changes how this should influence the running cases? [7]. Examples of qualitative analysis
of flexibility of workflow management system can be found in [13] and [27]. One way of allowing
for more flexibility is to use the case handling concept as defined in [3, 9]. FLOWer [12, 43] can be
seen as a reference implementation of the case handling concept. Therefore, its resource perspective
was modeled in this paper. Besides FLOWer there are few other case handling tools: E.C.H.O.
(Electronic Case-Handling for Offices), a predecessor of FLOWer, the Staffware Case Handler [53]
and the COSA Activity Manager [52], both based on the generic solution of BPi [14], Vectus [38,
39], and the open-source system con:cern (http://con-cern.org/).

The work reported in this paper can be seen as an extension of the workflow patterns initiative

(cf. www.workflowpatterns.com). Besides a variety of control-flow [6] and data [50] patterns, 43
resource patterns [49, 51] have been defined. This paper complements the resource patterns [49,
51] by providing executable models for work distribution mechanisms.

5 Discussion

Workflow management systems should provide flexible work distribution mechanisms for users.
This will increase the work satisfaction of users and improve their ability to deal with unpredictable
situations at work. Therefore, work distribution is investigated as the functionality provided for the
user – workflow management systems are tested in laboratories [49, 51] or observed (in empirical
research) in companies [13]. This kind of research observes systems externally and provides insights
into what systems do. Analysis of the systems form an internal perspective can explain how

systems provide for different work distribution mechanisms. Due to the complexity of workflow
management systems as software products, internal analysis starts with developing a model of the
system. Unlike statical models (e.g., UML models), dynamical models (e.g., CPN models) provide
for interactive investigation of work distribution as a dynamic feature. CPN models can be used
for the investigation of both what systems do and how they do it.

Workflow management systems often provide for different features or use different naming for
the same features. Investigation of work distribution requires analysis, evaluation and comparison
of models of several systems. In order for models of different systems to be comparable, it is
necessary to start with developing a common framework – a reference model. We have developed
the Basic Model as a reference model for work distribution mechanisms in workflow management
system. The models of Staffware, FileNet, FLOWer and resource patterns are comparable because
all models are developed as upgrades of a reference model (the Basic Model).

The model of a workflow system is structured into two modules (sub-models). The Work
Distribution module represents the core of the system which is often called the “workflow engine”.
The Work Lists module represents the so-called “work list handler” of a workflow system and
it serves as an interface between the workflow engine and users. The interface between the two
modules (i.e., the messages that are exchanged between them) should contain as little information
as possible about the way work items are managed in modules. The Work Lists module should
abstract form the way the work items are created, allocated and offered in the Work Distribution
module. The reverse also holds: how work items are actually processed by users is implemented in
the Work Lists module. Once a proper interface is defined, it is easy to implement various ways of
work distribution by adding/removing simple features in either one of the modules. For example,
push patterns (Round Robin and Shortest Queue) are implemented in the Work Distribution
module and auto-start resource patterns (Chained and Piled Execution) in the Work Lists module.

The flexibility of a work distribution mechanism determines what users can do with work items.
In the Basic Module the user follows a fixed predefined path by only executing work items. Users of
Staffware and FileNet models have the freedom to forward and suspend work. In FLOWer, as the
most flexible system, users have four possibilities: execute, open, skip and redo work. Our models

show that a more complex model work distribution adds messages between the Work Distribution
and Work Lists modules. These new messages correspond to new actions (operations) that users
can do.

Both the system-based and the patterns-based CPN models showed that one of the core el-
ements of work distribution is the “allocation algorithm”. This algorithm includes the “rules”
for work distribution. It is implemented in the Work Distribution module as the function offer,
which allocates work based on (1) new work items, (2) process definition, and the (3) organiza-
tional model. This function should be analyzed further in order to discover an advanced allocation
algorithm, which should be more configurable and less system-dependent.

Every system has its own method of modelling organizational structure. Staffware models
groups and roles. In FileNet the organizational model includes groups of users and teams, but
does not model roles. FLOWer groups users based on a hierarchy of roles, function profiles and
work profiles. Thus, each of the system offers a unique predefined type of the organizational
structure. Since every allocation mechanism uses elements of the organizational model, limitations
of the organizational model can have a negative impact on the work distribution in the system.
For example, because in Staffware one role can be assigned to only one user, it is not be possible
to offer a work item to a set of “call center operator”-s.

Each of the three models of workflow systems distributes work using two hierarchy levels.
Staffware and FileNet use two levels of work distribution: queue work items are first distributed to
work queues, and then work items are distributed within each of the work queues. The FLOWer
model starts with the case distribution and then distributes work items of the whole case. Although
all three systems distribute work at two levels, they have unique distribution algorithms (the set of
allocation rules implemented in the function offer) and objects of distribution (work items, queue
work items, cases).

Models of resource patterns [49, 51] show that push patterns (Round Robin and Shortest
Queue) can be implemented “on top of” the pull mechanism, as a filter. Once the pull mech-
anism determines the set of allocated users, the “push” allocation function extracts only one user
from this set. Auto-start patterns turned out to be remarkable straightforward to model, triggering
the question why this is not supported by systems like Staffware and FileNet (FLOWer supports
the Chained Execution in a limited form).

6 Conclusions

This paper focused on the resource perspective, i.e., the way workflow management systems dis-
tribute work based on the structure of the organization and capabilities/qualifications of people.
To understand work distribution, we used the CPN language and CPN Tools to model and analyze
different work distribution mechanisms. To serve as a reference model, we provided a model that
can be seen as the “greatest common denominator” of existing workflow management systems. This
model was upgraded for models of three workflow management systems – Staffware, FileNet, and
FLOWer. Although the reference model already captures many of the resource patterns, we also
modelled four more advanced patterns by extending the reference model. In contrast to existing
research that mainly uses static models (e.g., UML class diagrams), we focused on the dynamics
of work distribution. Our experiences revealed that it is relatively easy to model and analyze the
workflow systems and resource patterns using CPN Tools. This suggests that CPN language and
the basic CPN model are a good basis for future research. We plan to test completely new ways
of work distribution using the approach presented in this paper. The goal is to design and imple-
ment distribution mechanisms that overcome the limitations of existing systems. An important
ingredient will be to use insights from socio-technical design [13, 17, 21, 55] as mentioned in the
introduction.

References

1. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards exposed. IEEE
Intelligent Systems, 18(1):72–76, 2003.

2. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models, Systems
and Standards for Workflow Management. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures
on Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 1–65.
Springer-Verlag, Berlin, 2004.

3. W.M.P. van der Aalst and P.J.S. Berens. Beyond Workflow Management: Product-Driven Case Han-
dling. In S. Ellis, T. Rodden, and I. Zigurs, editors, International ACM SIGGROUP Conference on
Supporting Group Work (GROUP 2001), pages 42–51. ACM Press, New York, 2001.

4. W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Management: Models,
Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 2000.

5. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems.
MIT press, Cambridge, MA, 2002.

6. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow Patterns.
Distributed and Parallel Databases, 14(1):5–51, 2003.

7. W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identification of Issues and
Solutions. International Journal of Computer Systems, Science, and Engineering, 15(5):267–276, 2000.

8. W.M.P. van der Aalst and A. Kumar. Team-Enabled Workflow Management Systems. Data and
Knowledge Engineering, 38(3):335–363, 2001.

9. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New Paradigm for Business
Process Support. Data and Knowledge Engineering, 53(2):129–162, 2005.

10. A. Agostini and G. De Michelis. Improving Flexibility of Workflow Management Systems. In W.M.P.
van der Aalst, J. Desel, and A. Oberweis, editors, Business Process Management: Models, Techniques,
and Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pages 218–234. Springer-
Verlag, Berlin, 2000.

11. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business Process Execution Language for Web Services,
Version 1.1. Standards proposal by BEA Systems, International Business Machines Corporation, and
Microsoft Corporation, 2003.

12. Pallas Athena. Case Handling with FLOWer: Beyond workflow. Pallas Athena BV, Apeldoorn, The
Netherlands, 2002.

13. J. Bowers, G. Button, and W. Sharrock. Workflow From Within and Without: Technology and Co-
operative Work on the Print Industry Shopfloor. In The Fourth European Conference on Computer-
Supported Cooperative Work (ECSCW 95), pages 51–66, Stockholm, September 1995. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands.

14. BPi. Activity Manager: Standard Program - Standard Forms (Version 1.2). Workflow Management
Solutions, Oosterbeek, The Netherlands, 2002.

15. C. Bussler and S. Jablonski. Policy Resolution for Workflow Management Systems. In Proceedings
of the 28th Hawaii International Conference on System Sciences, page 831. IEEE Computer Society,
1995.

16. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. In Proceedings of ER ’96, pages
438–455, Cottubus, Germany, Oct 1996.

17. L. U. de Sitter, J. F. den Hertog, and B. Dankbaar. From complex organiations with simple jobs to
simple organizations wiht complex jobs. Human Relations, 510(5):497–534, 1997.

18. B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P. van
der Aalst. The ProM framework: A New Era in Process Mining Tool Support. In G. Ciardo and
P. Darondeau, editors, Application and Theory of Petri Nets 2005, Lecture Notes in Computer Science,
pages 444–454. Springer-Verlag, Berlin, 2005.

19. W. Du and M.C. Shan. Enterprise Workflow Resource Management. In Ninth International Workshop
on Research Issues on Data Engineering: Information Technology for Virtual Enterprises (RIDE-
VE’99), pages 108–115, Sydney, Australia, 1999. IEEE Computer Society Press.

20. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Information Systems.
Wiley & Sons, 2005.

21. F.M. van Eijnatten and A.H. van der Zwaan. The Dutch IOR approach to organisation design. An
alternative to business process re-engineering? Human Relations, 51(3):289–318, 1998.

22. C.A. Ellis and K. Keddara. A Workflow Change Is a Workflow. In W.M.P. van der Aalst, J. Desel,
and A. Oberweis, editors, Business Process Management: Models, Techniques, and Empirical Studies,
volume 1806 of Lecture Notes in Computer Science, pages 201–217. Springer-Verlag, Berlin, 2000.

23. D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed NIST Standard
for Role-Based Access Control. ACM Transactions on Information and System Security, 4(3):224–274,
2001.

24. FileNET. FileNet Business Process Manager 3.0. FileNET Corporation, Costa Mesa, CA, USA, June
2004.

25. L. Fischer, editor. Workflow Handbook 2003, Workflow Management Coalition. Future Strategies,
Lighthouse Point, Florida, 2003.

26. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure. Distributed and Parallel Databases, 3:119–153,
1995.

27. R.E. Grinter. Workflow Systems: Occasions for Success and Failure. Computer Supported Cooperative
Work, 9(2):189–214, 2000.

28. T. Herrmann, M. Hoffmann, K.U. Loser, and K. Moysich. Semistructured models are surprisingly
useful for user-centered design. In G. De Michelis, A. Giboin, L. Karsenty, and R. Dieng, editors,
Designing Cooperative Systems (Coop 2000), pages 159–174. IOS Press, Amsterdam, 2000.

29. Y.N. Huang and M.C. Shan. Policies in a Resource Manager of Workflow Systems: Modeling, En-
forcement and Management. Technical Report HP Tech. Report, HPL-98-156, Palo Alto, CA, USA,
1999. Accessed at http://www.hpl.hp.com/techreports/98/HPL-98-156.pdf on 20 March 2005.

30. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and Imple-
mentation. International Thomson Computer Press, London, UK, 1996.

31. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1.
EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1997.

32. K. Jensen and G. Rozenberg, editors. High-level Petri Nets: Theory and Application. Springer-Verlag,
Berlin, 1991.

33. M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems, volume 9 of Special
issue of the journal of Computer Supported Cooperative Work, 2000.

34. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to Coloured Petri Nets.
International Journal on Software Tools for Technology Transfer, 2(2):98–132, 1998.

35. A. Kumar, W.M.P. van der Aalst, and H.M.W. Verbeek. Dynamic Work Distribution in Workflow
Management Systems: How to Balance Quality and Performance? Journal of Management Information
Systems, 18(3):157–193, 2002.

36. B.S. Lerner, A.G. Ninan, L.J. Osterweil, and R.M. Podorozhny. Modeling and Managing Re-
source Utilization in Process, Workflow, and Activity Coordination. Technical Report UM-CS-
2000-058, Department of Computer Science, University of Massachusetts, August 2000. Accessed
at http://laser.cs.umass.edu/publications/?category=PROC on 20 March 2005.

37. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall PTR,
Upper Saddle River, New Jersey, USA, 1999.

38. London Bridge Group. Vectus Application Developer’s Guide. London Bridge Group, Wellesbourne,
Warwick, UK, 2001.

39. London Bridge Group. Vectus Technical Architecture. London Bridge Group, Wellesbourne, Warwick,
UK, 2001.

40. M. Zur Muehlen. Evaluation of Workflow management Systems Using Meta Models. In Proceedings
of the 32nd Hawaii International Conference on System Sciences - HICSS’99, pages 1–11, 1999.

41. M. Zur Muehlen. Workflow-based Process Controlling: Foundation, Design and Application of
workflow-driven Process Information Systems. Logos, Berlin, 2004.

42. M. zur Muhlen. Organizational Management in Workflow Applications Issues and Perspectives.
Information Technology and Management, 5(3–4):271–291, July-October 2004.

43. Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Netherlands, 2002.
44. M. Pesic and W.M.P. van der Aalst. Modeling Work Distribution Mechanisms using Colored Petri

Nets. BETA Working Paper Series, WP 146, Eindhoven University of Technology, Eindhoven, 2005.
45. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow without Loosing

Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.
46. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin, 1998.
47. S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic Changes in Workflow

Systems: A Survey. Data and Knowledge Engineering, 50(1):9–34, 2004.
48. M. Rosemann and M. Zur Muehlen. Evaluation of Workflow Management Systems - a Meta Model

Approach. Australian Journal of Information Systems, 6(1):103–116, 1998.
49. N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow Resource Patterns:

Identification, Representation and Tool Support. In O. Pastor and J. Falcao e Cunha, editors, Pro-
ceedings of the 17th Conference on Advanced Information Systems Engineering (CAiSE’05) , volume
3520 of Lecture Notes in Computer Science, pages 216–232. Springer-Verlag, Berlin, 2005.

50. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow Data Patterns.
QUT Technical report, FIT-TR-2004-01, Queensland University of Technology, Brisbane, 2004.

51. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow Resource Patterns.
BETA Working Paper Series, WP 127, Eindhoven University of Technology, Eindhoven, 2004.

52. Software-Ley. COSA Activity Manager. Software-Ley GmbH, Pullheim, Germany, 2002.
53. Staffware. Staffware Case Handler – White Paper. Staffware PLC, Berkshire, UK, 2000.
54. Staffware. Using the Staffware Process Client. Staffware, plc, Berkshire, United Kingdom, May 2002.
55. F. M. van Eijnatten. The Paradigm that Changed the Work Place. Van Gorcum, Assen, The Nether-

lands, 1993.
56. M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in a Workflow Man-

agement System. In R. Sprague, editor, Proceedings of the Thirty-Fourth Annual Hawaii International
Conference on System Science (HICSS-34). IEEE Computer Society Press, Los Alamitos, California,
2001.

