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Abstraft--The production of error-& protomls or complex  process 
interactions is essential to reliable  communications. This paper  presents 
techniques for both  the  detection of errors in prdoeols and  for  prevention 
of errors in  their  design.  The  methods  have  been used suceesstully , t o  detect 
and correct errors in existing protomls. A technique based on a reach- 
ability analysis is described  which  detects  errors in a design. This 
“perturbation technique” has been  implemented  and  has s u d y  
detected inconsistencies or errors in existing  protocol  designs  including 
both X.21 and X.25. The  types of errors  handled are state  deadlocks, 
unspecified receptions,  nonexecutable  interactions,  and  state  ambiguities. 
Th- errors are dsed and  their  effects  considered. An interactive 
design technique is then  described  that  prevents  design  errors.  The 
technique is based  on a set of production rules which guarantee that 
complete reception capability is provided  in  the  interacting  processes. 
These rules have  been  implemented  in  the  form  of a tracking  algorithm  that 
prevents a designer from  creating unspecified receptions and nonex- 
ecutable interactions  and  monitors  for  the  presence of state  deadlocks  and 
ambiguities. 

I. INTRODUCTION 

T HE GROWING trends  both  to increase the  sophistication 
of functions  implemented  in  information-handling  systems 

and  to  distribute these  functions  in  different processes has 
resulted  in an  enormous  growth in  complexity.  This  complexity 
is particularly  acute in  the  interactions  or  protocols which 
specify how  these processes are  synchronized  and  communicate 
with  one  another.  However,  formal  methods  are  gradually 
being introduced to  describe  these  interactions [ I ]  - [8]. 

The benefits of using such  formal  methods have already 
proven to be  substantial: the imprecise interpretation  which 
is characteristic of prose  description  has  been  eliminated, 
formal  proofs  are  now possible, and  the  door is opened to  
techniques  for  computer-aided  validation  and  computer- 
supported synthesis  or design of  such  interactions  or  protocols. 
It is these  last two areas,  computed-aided  validation of  proto- 
cols and  computer-supported  synthesis of protocols  that  this 
paper  examines.  These have been  the main  lines of research 
in  protocols  at  the IBM Zurich  Research Laboratory. This 
work  has  been  guided  by  two  main  objectives: 

1) automation  of these  techniques using computers,  and 
2)  primary  concern with  protocol  “syntax,” i.e., the 

logical structure  of message exchange as opposed to  their 
“semantics” or  intended  function. 

The first  objective is to  provide automated  tools to  lighten 
the  task  of  the designer  while at  the same time achieving  a 
thorough analysis in the face of great  complexity. A concern 
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primarily with  syntax  also  guarantees  a  widespread  applica- 
bility. 

In the last  years there  has been  a  sharp  increase in activity 
in  the. area of protocol  investigation and  the  work  of  many 
individuals  should  be  referenced  here.  Instead,  reference will 
be  made  only to  closely  related  work and to several survey 
papers.  Most convenient is the paper of Bochmann and 
Sunshine [9] , while  Sunshine [ lo]  and very recently Merlin 
[ l  11 have written  excellent reviews. Protocols were ’ the 
subject of a  conference  held  in Liege early in 1978; the Pro- 
ceedings provide an  excellent overview of  the field [ 121 . 

Both  our  work in validation  and  in  synthesis is  based on 
syntactical  properties derived from  notions of physical causality 
and  completeness [ 13, 141 . In the case of validation,  a proto- 
col is examined  for  these  properties  by  means  of  a  reach- 
ability analysis  similar to  that of  Sunshine [3] ,  Bochmann 
[15] , and  implemented in an  automated validation  system 
[ 16, 171 . Hajek  has  also  developed  a  validation  system using 
reachability  analysis [ 181 . 

In validating  protocols,  such as the CCITT  X.21 and X.25 
and  data flow control  from IBM’s SNA, we  have found  that 
the designer(s) of a  protocol do  not usually foresee all the 
syntactic  properties of the design, in  that the protocol  may be 
incomplete  or logically inconsistent [19],  [20],  [8].  From 
this  experience we feel well justified  in  examining  only  the 
limited  aspect  of  protocol  syntax. In theory,  compared  with 
assertion-proving  techniques we test  for  little; in  practice  these 
few  tests have turned  out to be  very effective. 

An automated validation process  is  usually intended  for a 
protocol  in  an  advanced  state  of  development, while for  a 
protocol  in  the early  stages of design, a  synthesis  technique 
is preferable.  This  paper  describes two  methods  of analyzing 
protocol  behavior, and  both  techniques can be  used for 
either validation or synthesis. The first method,  the  perturba- 
tion  technique,  has  already  been  implemented as an auto- 
mated validation  system  which  has had extensive use in 
examining  existing  protocols.  The  second method based on a 
set  of  production rules  has  been  incorporated into  an  auto- 
mated synthesis  system. A protocol  developed  through the 
use of these  production  rules will be  free of  the same  errors 
checked  by the  perturbation  approach.  To  the  authors’ knowl- 
edge there  has  been  nothing  published  in  the  area  of  auto- 
mated  protocol  synthesis  other  than  our  own  first  attempt 

The  techniques  of  validation  and  synthesis  and  the  tools 
described in  this  paper have  wide-spread applicability to  the 
entire  field of cooperating processes  since a  protocol is a very 
general concept. We quote  the  definition given by Merlin 
[ 1 11 to  indicate  this  generality: “Given a  system  of  cooperating 
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processes such  that the  cooperation is done  through  the 
exchange  of messages, a  protocol is the  set  of rules which 
governs this  exchange.”  This statement implies that  proto- 
cols  are not  just  concerned with the  correct transfer of  data, 
but pervade all areas where  interaction  between processes 
is inherent. 

11. MODELING OF PROTOCOLS 
A model  with  which to represent  protocols  and  inter- 

action  examples is required; we employ  a  representation 
similar to  the  one proposed  by  Bartlett et al. [22]  and used 
by  Bochmann [ 151. Fig. 1 shows  a simple  access authoriza- 
tion  protocol in which each  interacting process  is modeled 
by a  finite-state  graph,  and  the  two  initial  states  are  identified 
by states  labeled 0. 

The messages exchanged  between  the processes are  repre- 
sented by integers. Message transmission is represented by  the 
negative  value  of the  corresponding  integer,  and message 
reception  by  its positive  value. For  example,  the message 
ACCESS-REQUEST is represented by  the integer 1, its genera- 
tion is represented by traversal of the arc labeled -1 in 
process A and  its  reception  by traversal of  the  arc labeled 
f l  in process B. The  integer  representation is a  notational 
detail,  but  one  that is compact  and  which  lends  itself to 
numerical  manipulation. 

Messages  are assumed to be  exchanged  between processes 
over perfect FIFO channels. However, nonideal  channels 
(i.e,,  ones  which lose and  distort messages)  may  be repre- 
sented as additional processes  (see Appendix I). Interactions 
between  more  than  two processes may also be  represented. 

111. TYPES OF DESIGN ERRORS 

We make two basic assumptions about  protocols  and 
interactions.  First, we  are not  concerned  with explicit  time 
constraints  such as transmission and response  delays, and 
second, we  assume the processes to be correctly  initialized 
(all in their  zero  or  reset  states)  prior to  the  start of  an inter- 
action. Within this  framework we  can handle  four  potential 
design errors,  namely,  state  deadlocks,  unspecified  receptions; 
nonexecutable  interactions,  and  state  ambiguities. Fig. 2 
shows  a  two-process  interaction  example that  exhibits all 
these  errors,  each of which is explained  separately  in the 
following  sections.  Although the  form  of  these design errors 
is syntactic,  their successful resolution  must  consider  their 
semantic  intent.  Since we are not concerned  with  the semantics 
or  meaning of  the  interaction, messages in Fig. 2 are given no 
descriptive  identifiers. Other  potential design errors  can  be 
formulated;  for  example, channel  overflow  has  been  incorpor- 
ated  into  the  automated validation  system [ 161. 

A. State Deadlocks 

Different  types  of  deadlocks are definable  within the 
context  of process interactions  but we shall only  be  concerned 
with  state  deadlocks. We define:  a  state  deadlock  occurs 
when  each  and every  process has no alternative but  to remain 
indefinitely  in  the same  state.  Stated  differently,  a  state  dead- 
lock is present  when no transmissions  are possible from  the 
current  state  of each process and when no messages are  in 
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Fig. 1. Simple  access  authorization protocol. 
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Fig. 2. Two-process  interaction  example  containing  various  design  and 
potential  design  errors. 

transit, i.e., all channels  are empty. This type  of  deadlock 
occurs in the  interaction of Fig. 2  when P1 transmits mes- 
sage 1 at  the same time  that P2 transmits message 3 .  As a 
result both P1 and P2 enter  states  1  and  then 2 where they 
must  wait to receive  messages (no transmissions possible). 
As no  further messages  are in  transit,  the processes  have no 
alternative but  to wait indefinitely  in  these  states. 

State deadlocks usually represent  errors but  there are 
exceptions.  Protocols  may be  designed to terminate  in  states 
with no exit  when  their function is complete. We therefore 
consider  state  deadlocks as potential  errors  that  must be 
detected. Their  evaluation is then  a  matter  of semantics. 

B. Unspecified Receptions 

An unspecified  reception  occurs  when  a positive arc that 
can  be traversed is  missing, in other  words  when  a  reception 
that can take place is not specified  in the design. For  example, 
if in Fig. 2 P2 transmits message 3 ,  and P1 on receiving  mes- 
sage 3 transmits message 2 ,  then  state 1 of P2 will  receive 
message 2,  yet  this  reception is not specified in  the design. 

Unspecified receptions  are  harmful since in  the absence  of 
adequate recovery procedures,  occurrence  of  an  unspecified 
reception causes the respective  process to enter  an  unknown 
state via a  transition  not specified  in the design. As a  conse- 
quence,  the  occurrence  of  an unspecified  reception causes the 
subsequent  behavior  of  the  interaction to be  unpredictable. 

Protocols can  be protected  by  state-check  mechanisms 
[2] ,   [4] .  These  mechanisms  initiate recovery procedures 
when  states receive  messages which  they  are not designed to  
accept.  Unfortunately,  in  the case of  unspecified  receptions, 
recovery procedures can  adversely modify the  interaction 
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semantics as the occurrence of an unspecified  reception is P I  P I - P 2  

not caused by an operational  malfunction  yet is handled in STATE 

the  same  manner.  For  example, i f  a connection  setup  proto- sso 
col contains an unspecified reception and  such a reception 
occurs in every connection’  setup  attempt, then the ensuing 
recovery procedures will not fulfill the  intended  purpose, 
namely to set up a  connection. In order words, error recovery 

SYSTEM STAT€ CHANNEL 

(ss’ L;: si:, 1 

procedures  should not be  invoked unless the error for which 
they have been designed has  occurred. 

Thus,  unspecified  receptions are  design errors.  They are 
more  common  than  expected:  a  number of unspecified re- 
ceptions were identified  in  the CCITT X.21 interface version 
of 1976 [ 191 . These  were brought to the  attention of  CCITT 
and are reflected  in the  current X.21 working  papers. 

C. Nonexecutable  Interactions 

A  nonexecutable  interaction is present when a design 
includes message transmissions  and  receptions that  cannot 
occur  under  normal  operating  conditions.  A  nonexecutable 
interaction is equivalent to dead  code  in  a  computer  program 
and is illustrated  in Fig. 2. No normal  interaction  sequences 
can  cause state 2 of P2 to‘receive message 1 ,  hence  state 3 is 
not  entered  and message 4 cannot be  generated.  Consequently, 
state 3 of P1 cannot be  reached. 

The creation of nonexecutable  interactions  must  be  treated 
with  great  caution. If the designer erroneously believes that 
state 2 of P2 can  receive  message 1 during  normal  operation, 
then  the  nonexecutable  interaction  represents  a design error. 
On the  other  hand, if the designer’s intention is to create 
recovery actions to handle  abnormal  conditions,  and  he 
purposely  wants P2 to enter  state 3 if abnormal  (error) 
conditions cause state 2 to receive  message 1 ,  then  it does 
not represent  a design error. In order to distinguish between 
normal and  abnormal  conditions,  it is probably  good design 
practice to design and validate a  protocol  for  normal  opera- 
tion  before  adding recovery actions. 

D. Stable-State Pairs and State Ambiguities 
A  stable-state pair ( x ,   y )  is said to exist  when  a  state x in 

one process and  a  state y in the  other can  be reached  with 
both channels empty. In such  a case, states x and y coexist 
until the  next  transmission  occurs.  Monitoring  stable-state 
pairs is useful for  detecting loss of synchronization, i.e., the 
presence of  unintended  stable-state pairs or  the absence of 
intended  ones.  A case  of  special interest is when ambiguity 
occurs  among  stable  states.  A  state  ambiguity  exists  when  a 
state  in  one process  can coexist  stably  with several different 
states  in  the  other process. Fig. 2 contains  state  ambiguities. 
For  example, if both processes are in their  initial  states  (state 
0), and P1 transmits messages 1 followed  by 2 while P2 only 
receives  messages, then P1 reaches state 2 while P2 returns to 
state 0. Thus,  state 0 of P2 can coexist  stably  with both  state 
0 and  state 2 of P1. State ambiguity is closely related to  the 
adjoint-state  concept [ 151 : state  ambiguity implies that  the 
cardinal  number of the corresponding  adjoint-state  set is 
greater  than 1 .  

State ambiguities do  not necessarily represent  errors but 
they  must  be  treated  with  caution.  If,  for  example,  the .de- 
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Fig. 3. Corresponding  reachability  tree  for  the  example  in  Fig. 2. 

signer’s intention was that  state 0 of PI coexist  stably solely 
with  state 0 of P 2 ,  then  the  identified  state  ambiguity  does 
represent an error. We therefore  consider  state ambiguities 
as potential design errors  that  need  monitoring.  State ambi- 
guities are detectable via  an examination of syntax; their 
evaluation is a  matter  of semantics. 

IV. ANALYZING INTERACTIONS 

In this  section we  describe techniques to detect  the pres- 
ence  of design and  potential design errors  in  an  interaction  or 
protocol.  Our  first  approach was  based on  an analysis  of 
dialogues  of interaction  between  communicating processes 
[ 1 3 ] ,   [ 2 3 ] ,   [ 2 4 ] .  It was  significantly improved and general- 
ized  in  a method based on  a  technique of perturbation [ 161 . 
This  technique is a  reachability analysis conceptually similar 
to one  proposed by Sunshine [ 3 ] .  This  perturbation  method 
has  been  programmed  and  has successfully detected  errors 
in  protocols. 

A. The Perturbation Analysis 

We describe the  perturbation  method by analyzing in 
Fig. 3, the example of Fig. 2. A  system  state  consisting  of  a 
two-dimensional  array is defined  where the elements on  the 
main  diagonal represent the individual process states  (element 
1 ,  1 is state  of P1 and so on)  and  each  off-diagonal  element 
i, k represents the message content of the  communication 
medium  from process Pi to process Pk. Fig. 2 represents  a 
two-process  interaction;  hence  the  system  states SS in Fig. 3 
are 2 X 2 arrays. 

One  begins by defining SSO which  is the  initial  system 
state.  It consists of  both processes in SO (state 0) and  both 
channels empty (represented  by E ) .  SSO is then  “perturbed” 
into all  possible  successor states reachable by  executing  a 
single transition in one of the individual  processes P I ,  P2 (in 
Fig. 2). Thus,  either SS1 is entered  by PI transmitting message 
1 (P1 enters S1 and places 1 in channel P1 + P2) or SS2 is 
entered  by P2 transmitting message 3 (P2 enters S1 and 
places 3 in  channel P2 + Pl) .  
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The procedure  continues  by  perturbing  each of these  new 
system  states in turn.  Thus considering SS2, either SS3 is 
entered  by PI receiving  message 3 (P1 takes 3 from  channel 
PI -+ P2 and  enters SI) or SS4 is entered by P1 transmitting 
message 1 (PI enters S1 and places 1 in  channel PI -+ P2). 
The procedure  continues  until no new system  states are 
created,  thus indicating that all reachable  system  states have 
been  determined. Asterisks in the ensuing  reachability  tree 
indicate  system  states  that have been previously generated 
by perturbation  of earlier  states. 

The  method has the  .attractive  property  that  it  creates  the 
reachability  tree  for  any  n-process  interaction  by simply 
defining the system  states as n X n arrays. For  example,  the 
system  states  for  a  three-process  interaction are 3 x 3 arrays, 
each  consisting  of  three process states  and six channels Some 
of  which  may remain empty. Certain  types of interactions can 
cause unbounded  growth  in  the  number  of messages in  transit 
(see Section VI). In  order to contain  such  unlimited  growth, 
bounds are  set on  the channel-storage  capacity. These bounds 
make it possible to detect when  a  prescribed  channel-storage 
capacity is exceeded. 

B. Error Detection via Analysis 
Deadlocks are identified  in  a  ieachability  tree  by  system 

states  with all channels  empty (E in Fig. 3) and no departing 
transitions.  For  example,  the  deadlock  described  in  Section 
111-A (P1 and P2 in S2) is identified  by SS7. Such  system 
states  represent  deadlocks because there  are no  further re- 
ceptions (all channels empty)  and no possible further  trans- 
missions (no  departing  transitions). 

Unspecified  receptions are identified  by  system  states 
with no departing  transition to absorb  the  next  output  from 
one  of  the channels. For  example,  the  unspecified  reception 
discussed in Section 111-B (message 2 cannot be received in 
S1 of P2) is identified  by SS5 where the  next  S1 +- S2 channel 
output is  message 2,  yet  there is no transition out of SS5 to 
absorb  that message. 

Stable-state pairs (tuples  for  many-process  interactions) 
are  identified  in  the  reachability  tree  by  system  states having 
all channels empty.  State ambiguities are identified  by  a 
particular process state  appearing  in  a  plurality  of  such  system 
states.  For  example,  the  state  ambiguity discussed in  Section 
111-D is identified  by  state SO of process P2 appearing  in  both 
system  states SSO and  SS22. Fig. 3 identifies  other  ambiguities, 
for  example, SS3, SS24  represent  an  ambiguity  with respect 
to SI ofP2. 

Nonexecutable  interactions  are  identified as state transi- 
tions  present in the design that are  absent  in  the reachability 
tree.  For  example, P2 in Fig. 2  contains  a -4 arc  which 
never appears  in  the  tree  of Fig. 3 .  

V. SYNTHESIZING  INTERACTIONS 
An alternative to testing an existing design for  errors is to 

create  from  the  outset a design devoid  of the  errors considered 
here. In this  section we shall describe  a  mechanism  (or tool) 
which is  used interactively by a designer to create  a  protocol 
or  interaction.  The  tool prevents the  occurrence  of unspecified 
receptions  and  immediately  notifies  the designer of  the pres- 

ence of state  deadlocks  and  ambiguities.  This immediate 
response  has the advantage that  at this  point  in  time,  the 
designer  has the most insight into  the resolution of the design 
problem.  The tool is based on  three  production rules which 
create only  those arcs needed to prevent unspecified  recep- 
tions. A tracking  algorithm then specifies where and  when to 
apply the rules. Both  tracking  algorithm  and  production  rules 
have been automated using a novel programming method 
called data-directed design [ 2 5 ] ,  [26]. The rules are  based 
on a  study  of  the cause-and-effect  relationships that  occur 
when two  entities  exchange messages. They are currently 
limited to two-process  interactions. 

A .  Production  Rules 
Three rules governing the derivation of two-process inter- 

actions are described  in  this  section  and  proofs  for  their 
necessity and sufficiency are given in  Appendix 11. These 
rules are a  modification of  an earlier version which was 
developed [21]  but was found to be  incomplete.  The rela- 
tive simplicity  of the rules rests on  the  fact  that  they are 
designed to produce  tree-structured graphs. Section V-B 
shows how  interactions can be  constructed  from  such graphs. 
We now explain the rules. 

The  first  rule  specifies all receptions  of  a message  whose 
transmission  directly  succeeds the  reception of a previous 
message. Consider Fig. 4(a)  where P2 upon receiving  mes- 
sage x transmits message e. If P1 transmits no  further mes- 
sages before receiving e, then  it receives e in the  state  entered 
upon  transmitting x. Hence,  a +e arc is appended to -x in 
PI. On the  other  hand,  if  P1  transmits y before e is received, 
then e is  received after y is transmitted. Hence a +e must 
be  appended to -y. We append +e, instead to  note  the 
fact  that in  this case  messages e ,  y occur  concurrently,  or 
collide.  Two messages are said to collide  when  neither is 
received before  the  other is transmitted. As we shall see, 
identifying collisions  via subscripts is  necessary for Rule 3. 
The subscript refers to all collisions. Thus, as shown  in Fig. 
4(a) if z is  also transmitted  before e is received, then we 
append to -z. We now  formulate  the first  rule using 
the generalized  example in Fig.  4(b) where -s represents 
a  transmission  sequence. 

Rule 1: If -e is appended to +x P2 then: 
a)  append +e to -x ; 
b) append +es to every  negative arc  sequence --s 

attached to -x. 

Part a) specifies collisionless receptions whereas part b) spec- 
ifies all receptions  associated  with collisions. 

The  second rule specifies all receptions  of  a message  whose 
transmission  directly  succeeds the transmission  of  a previous 
message.  Consider Fig. 5(a) where P2 transmits e directly 
after  transmitting x. Therefore, P1 can receive e directly  after 
X. Hence, +e is appended to +x in P I .  If P1 transmits y 
before receiving x, then  not only do y and x collide but y 
and e also collide.  Then e is  received after +xy and we append 
+e, to +x,. Finally, if P1 transmits z after traversing +x, 
but  before receiving e, then e is  received after z is transmitted. 
In this case e collides with  both y and z, hence +ey,= must  be 
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(b) 
Fig. 4. Derivation of production Rule 1. 
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P f  P 2  
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(b) 
Fig. 5. Derivation of production Rule 2. 

appended to  -z. Similar circumstances hold  true if P1 trans- 
mits z'. We now  formulate  the  second rule using the general- 
ized  example  shown  in Fig. 5(b) where --s and -s' represent 
transmission  sequences. 

Rule 2: If -e is appended to  -x then: 
a) to  every +x and +x, append +e and +e,, respectively; 
b) to every  negative arc  sequence --sf attached t o  +x or 

+xs append +e,, and +e,,;, respectively. 

A third  production rule is  necessary  because new cause- 
and-effect  mechanisms  come into play  when  a negative arc is 
appended to a  subscripted  reception.  Consider Fig.  6(a) 

PROCESS  PROCESS 
PI P2 

(b) 
Fig. 6 .  Derivation of production Rule 3. 

where P2 transmits e directly  after receiving +w,, i.e., after 
receiving a w that collides with  an x. Message e is the  next 
P2 transmission  after x. Therefore, .P1 receives e directly 
after x. But w is  received before e is transmitted,  hence P1 
can only receive e after  transmitting w. Therefore, P1 can 
only receive e after it both transmits w and receives x. Hence, 
+e must  be  appended to +x,. The arc +e is not  indexed 
because, as shown  in Fig.  6(a), no collisions  are associated 
with  its transmission. If on  the  other.  hand, P1 transmits y 
before receiving x, then x collides with  both w and J', whereas 
e collides only withy. Hence, +e, is appended to  +xw,,. 

Finaily, the mechanism of  the  third  reception case +e,,! 
is identical to  that  of +e,,, in Fig. 5(a). We now  formulate 
the  third rule using the generalized example  in Fig. 6(b) 
where --s and --SI represent  transmission  sequences  and 
" ..." stands  for  an  arbitrary message sequence. 

Rule 3: If -e is appended to  +u...,, in P 2 ,  then  within 
the  tree  with  root -u: 

a)  append +e to  +u ...," and +e, to every +x..",,; 
b) to  every  negative arc  sequence --s' attached to  

+u ..., or +u ..., ",, append +e,' or +e,,,;, respectively. 

Part  b)  of  Rule 3 describes the same specification  mechanism 
as part  b)  of  Rule 2 .  

A few notational  conventions  simplify  application of  the 
production rules. For example,  entering  the  initial  states via 
a  fictitious message exchange  as  shown in Fig. 7 enables Rules 
1 or 2 to specify  reception  arcs  appended to  initial  states. 
Furthermore, to generate only exercisable  sequences, the rules 
require that every negative arc  within  one  process  be  uniquely 
specified. The ensuing  problem  of  representing  different 
transmission  instances of a  same message is solved as follows. 
The first  transmission of a message 8 is represented by -8, 
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Fig. 7. Example  showing  minor  notational extensions. 

the  second  transmission is represented  by -8.1 and so on 
(see Fig. 7). The  eleventh  occurrence  would  be specified as 
8.10  and  would  be  considered  different  from  8.1. 

.+FLOORING 

B. On  Using the Rules ib) 

We require  an  algorithm  that  specifies  where  and  when to 
apply  the rules. The  algorithm is based on an incremental 
design approach  requesting designer intervention  whenever 
semantic-dictated  decisions are needed.  The designer creates 
state diagrams, but in order to describe  the  algorithm, we 
will consider  tree  structures. Consider the design portrayed 
in  Fig.  8(a). The  algorithm begins by  automatically  creating 
the fictitious message exchange (-a, +n), which  initializes 
both processes,  It  then  requests  a first design action. The 
designer complies  and  creates  the  transmission  of message 1 
in PI by  specifying Pl,(O)-(-l)+(l) where P1 is the process 
considered, 0 is the  departure  state,  1  the  entry  state  and -1, 
the message transmitted.  The  algorithm  then  invokes Rule 2 
(-1 is appended to -n) which  creates P2,(0)-(+1)+(?) and 
requests  the designer to specify  the  entry  state identified by 
(?). He specifies  this as state 2 .  The  algorithm again requests 
the  next designer action  which is P2,(0)-(-3)+(1). This new 
arc is appended to  a reception,  hence  Rule 1 is invoked  and 
creates  the arcs P1,(0)-(+3).+(?) and  P1,( 1)-(+3 )-+(?). The 
designer then specifies the  entry  states as 1  and  2, respectively. 
This  specification causes the  node  representing  state  1 to ap- 
pear twice. We are building  trees,  and  tree  nodes have at  most. 
one  entry arc,  hence  state  names  may  appear  more  than  once. 

Creating  arc -3 in P2 causes arcs -3 and  +1 to have a 
common origin,  namely state 0. Hence,  it is possible for 
P2 to receive  message 1  after  transmitting message 3. This 
reception  can be specified by reapplying  Rule 1 to arc -1. 
But a  much  simpler  method is to duplicate  arc +1, append 
it  to arc -3 and  index  it  accordingly.  Indexing is necessary, 
for  this arc can only  be  traversed if  messages 1,  3 collide. 
We call this  reception-replication.  The  algorithm  automati- 
cally  executes  reception-replication,  thereby  creating  the 
arc P2,(1)-(+13)+(?) with  the designer then  specifying 
“?” to be  state 2. 

The  next designer action is to create  the  transmission 
P1,(1)-(-2)+(2).  At this  point  the  tree  structure P1 con- 
tains two  copies  of  state 1. Hence,  the  algorithm  appends 
a  second  transmission P1,(1)-(-2.1)+(2) to  the  second 
copy  of  state  1 (in general, if state i transmits message e ,  
then arc -e is appended to  the first  created  node i ,  arc -e.l 

Fig. 8. Synthesis  design  example.  Thickly  lined  arcs  in  (a)  are ex- 
plicitly  discussed in the text. 

to  the  second  created  node i ,  etc.  and  the rules are  applied 
in the  creation  sequence).  The  algorithm  then  invokes Rule 2 
for arc -2 and  Rule 1 for  arc -2.1. This  creates  reception 
arcs in E. One  such  arc is  P2,(2)-(+2)+(?). The designer 
specifies its  entry  state as 0 (“?” set to 0). He thereby  creates 
a cycle which  enables P2 to retransmit message 3.  The  algorithm 
takes care of  this  by  automatically  ,appending  an  arc  -3.1 to 
the arc  +2 and invoking Rule 2  which in turn  creates  further 
receptions,  and so on. In this  way the  algorithm  adds arcs to 
the trees.  This tree  growth  would  continue  indefinitely  if  it 
were not  for  a  termination  mechanism  that halts the  growth 
when the  configuration  of Fig. 8(a) is reached.  The designer 
could  then  enter  a  further message transmission if he so 
wished. The  above-mentioned  termination  mechanism is an 
important  part of the  algorithm  and is described in Section 

It is worth  noting  that  when  the  algorithm  creates  a dupli- 
cate arc  such as +3.2  (duplicate  of +3 because 4-3 and  +3.2 
have same departure  state) in P1,  then  its  entry  state  must  be 
equal to  that  of  the original arc +3  and  hence, no designer 
intervention  is  needed. 

When the designer is finished, the  algorithm  collapses  the 
tree  structures  by using a  “flooring”  operation to obtain 
the finite-state  graphs of the  actual  interaction,  shown in 
Fig. 8(b).  The  flooring operation  drops all decimal  fractions 
from message numbers  and  merges  identical  states  and  arcs 
in  each  tree.  It is important to  note  that  the  algorithm masks 
the  complexity  of  the  tree  structures  from  the designer by 
displaying all arc  identifiers without  decimal  fractions  and  by 
not  displaying  duplicate arcs. The designer therefore need 
not even realize that  the  algorithm uses trees as internal 
representation.  The  reader will note  that  the  interaction we 
have just designed (Fig. 8) is very similar to  that of Fig. 2. 
In fact,  it is the same interaction devoid of  unspecified re- 
ceptions  and  of  nonexecutable  interactions.  The  monitoring 
of  deadlocks  and  ambiguities  during  the  synthesis process is 
discussed in the  next section. 

V-D. 
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C ErrorPrevention via Synthesis 

The  algorithm  together  with the production rules specify 
those  and  only  those positive  arcs that  must  be  created to  
prevent  unspecified  receptions.  Hence, it is not possible to  
create  nonexecutable  interactions (see Section 111-C). 

Every time  an arc  pair (-e;  +e),  (+e,; +ye) or (+e...,,; 
+Y...,~) is created  the  corresponding  entry  states (i, k)  rep- 
resent  a  stable-state  pair.  Hence,  stable-state  pair  monitoring 
is quite easy. A state  deadlock (see Section 111-A) is present 
if for  such  a  pair  neither  state  has  a negative departing  arc. 
The algorithm  monitors state  deadlocks  by  testing f&&the 
absence of negative departing  arcs  in  every  created  stable 
state pair. 

State ambiguities (see Section 111-D) can  be  monitored  in 
the following  way. Every time a  new  stable-state  pair (i, k) 
is created, it is stored  in  a  list. If the list already  contains  a 
pair (i, x) or (x, k) ,  then a state  ambiguity  is  identified. 

D. Termination 

As mentioned  in  .Section V-B, the design rules  could be 
applied  continually,  defining  infinite  trees.  It is necessary to 
stop  the  growth  at a point  when  continuation  cannot reveal 
any  new  information  about  the  protocol. This  section  pre- 
sents  a  method  for  termination. 

Termination is  achieved by deleting negative arc  copies. 
When the algorithm  creates  a  new tree  node, it tests  whether 
certain  repetition  criteria  are  fulfilled. If they  are,  the  node 
is marked  “dead.” Dead nodes  are  a  form of duplicate  nodes. 
They  are  treated  differently in that a  transmission  arc as well 
as  its  corresponding  reception  arcs  are  deleted if they all 
turn  out to be  appended below  dead  nodes.  Thus,  in the 
example  of Fig. 8, the whole  process is complete because all 
further arcs  are  deleted. 

We now  describe the criteria that  define a node  dead. 
Consider the  situation where the algorithm specifies an arc 
+e with  entry  node i. This node i is marked “dead” if  there 
already  exists  an  arc +e’ with  entry  node i’, where e,  e‘ repre- 
sent the same message, the nodes i, i!. represent the same state 
and i’ has no dead-node  predecessors. For  example,  in  process 
P1 of Fig. 8(a), the  entry  node i of  arc +3.2 is dead.  This is 
so as P1 already  contains  an  arc +3 with  entry  node it where 
i, it represent the same state 0,  3.2 and 3 the same message 
and it has no dead  predecessors.  Similarly, if the algorithm 
specifies an arc +e, with  entry  node k, then k is marked  dead 
if there already  exists an arc +e’,’ with  entry  node k’ where 
in  addition to the above  requirements  being  fulfilled, s and 
s‘ represent the same  message sequence. For  example,  in 
process P1  of Fig. 8(a), the  entry  node k of arc +3.21 .1 ,  2 .2  

is dead.  This is so because P1 already  has  an  arc +31 , 2  with 
entry  node kt where (1.1, 2.2), (1, 2) represent ‘the same 
message sequence, k and kt the same state, 3.2 and 3 the 
same message, and k‘ has no dead-node  predecessors. 

Appendix I11 shows that  this  method is valid, i.e., it will 
not cause  any  receptions to be missed in  the graph. It also 
shows that  it will terminate the growth of  the  trees  for  any 
protocol  where both channels are bounded.  The  unbounded- 
channel case is discussed in  the  next  section. 

PROCESS  PROCESS 
P I  P 2  

+ J  F+3 + J  +2$ +! + 2  

- 2  

Fig. 9. Interaction  exhibiting  unbounded-channel  growth.  Indexing 
not shown. 

VI.  THE UNBOUNDED CHANNEL 

In  this  section  we  consider  interactions  that  can  lead to 
unbounded  growth in the  number  of messages transmitted 
by  one process but  not  yet received by  the  other.  One example 
of  .such  an  interaction is shown  in Fig. 9. P2 can  transmit 
message 3 after every  message reception. Assume P2 does 
this  and  that  at  the same time P1 transmits messages 1 and 2 
with sufficient speed so that it receives all messages in  state 
2. Then  for every message P1 receives, it  transmits  two mes- 
sages. Hence the  number  of messages in  transit, i.e., in  the 
P1 to P2 channel grows without  bound. This is a generic 
example  from  which  more  complicated  ones  can  be  derived. 
Another  type  of  interaction  that  can lead to unbounded- 
channel  growth  are  transmission  cycles.  Such  a  cycle  would be 
present if in P1 of Fig. 9, arc -2 were  modified so as to 
enter  state 0. P1 would  then  contain a  transmission  cycle 
-1, -2. 

The  perturbation  method (Section IV-A) sets bounds on 
the maximum  channel  capacity.  Hence,  a  perturbation analysis 
will always terminate  when  interactions  exhibiting  unbounded- 
channel  growth  are  considered.  The  same  holds  true  for the 
synthesis case when  one  sets  upper  bounds on the index 
sequences  and on the number of consecutive  transmissions. 
The  consequence  of  these  termination  mechanisms is that 
interactions.  exhibiting  unbounded  channel  growth  may  not 
be fully  analyzable or synthesizable.  This  limitation is by no 
means  unique to  our termination  mechanisms. It is a neces- 
sary property of all  termination  mechanisms,  as will be proven 
in a  forthcoming  paper.  Consequently,  we  can  improve  termi- 
nation mechanisms to cover more  and  more practical proto- 
cols, but  we  must always be prepared for  protocols  that  can 
never be completely  analyzed  or  synthesized. 

It is interesting to consider design criteria that  guarantee 
unbounded-channel  capacity  and  hence,  guarantee  complete 
analysis and synthesis.  One  such  criterion is that every cycle 
in  an  interacting  process  that  contains  one  or  more  trans- 
mission arcs  must  also contain  at .least one collisionless re- 
ception. This  limits the  channel  capacity because  when  a 
collisionless reception  occurs, the transmitting  channel of the 
receiving process is empty. Hence, the transmitting  channel 
is emptied every time a message generation  cycle is traversed, 
thereby  causing the channel  capacity to be  bounded. 

VII. CONCLUSIONS 
Two  approaches to improving protocol  correctness have been 

described. The  first,  perturbation, is implemented  as  a  method 
for  validating an  existing  protocol,  while the second is a set 
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of  production rules applied in a  stepwise  interactive  manner 
to synthesize  a  “correct” design. The  underlying principles 
of both approaches are equivalent in that  the  production 
rules could  be used for  validation  purposes  and  the  perturba- 
tion  method  could be  used for  synthesis purposes. Both 
approaches  require  limits on the  channel  content  when  han- 
dling protocols  or  interactions  that  exhibit  unbounded-channel 
growth. ?his limitation  can be transformed,  for  example, 
into design criteria  which  when  fulfilled  prevent unbounded- 
channel  growth.  But  some  form  of  limitation is a necessary 
condition  for  there is no solution to the general problem  of 
reception  specification. 

In  ‘the case of validation, a  thorough analysis of  the CCITT 
X.21 circuit-switched  network  interface  specification has 
already  been  published [ 191 . Some  of the results  of  applying 
the  perturbation  technique to  the data-flow-control  portion 
of IBM’s SNA network  architecture are discussed in [8] . ’ 

The  validation  procedure  has also been  applied to  the 
packet-level  portion of  the CCITT X.25 packet-switched  net- 
work  interface  specification.  The  results,  which  were  inde- 
pendently discovered by Belsnes and Lynnkg [27], were 
submitted  by IBM to  study group VI1 of  the  ‘CCITT [20]. 
The  reader  interested in X.25 may  wish to examine  the issue 
of Computer  Communication Review devoted to this topic 
[28]. In  the  definition  of X.25, it was found  that  a collision 
of  the DCE-CLEAR-INDICATION -message coming  from  the 
network  could  collide  with  the DTE-CALL-REQUEST coming 
from  the  terminal..  According to  the specification, the  net- 
work  was  to’identify  this collision as a  “local  procedure  error” 
even though  such  a  cogision is allowed by  the  saine  protocol 
specification.  Thus, the  “procedure-error’’  indication  became 
ambiguous,  being used both  for  the  identification  of  natural 
collisions  and actual  protocol violations. The repair to this 
anomaly was also validated by  the same method [ 2 0 ] .  The 
correction  has since been.  accepted  by  the CCITT study  group 
VII’s Rapporteurs’  group. 

An experiment was also performed using the  protocol 
synthesis  package to  try  to duplicate  the same X.25 level-3 
specification.  During the redesign of  this portion  of  the  proto- 
col  (for the error-free  channel), the  synthesis package de- 
manded  that  the  receptions resulting  from the previously 
mentioned  collision be  resolved  as soon as the  developing 
design makes  them  possible.  Terminating  these  receptions as 
recommended [20] leads to  the successful complete design. 

Our  work  and  that  of  others  in  protocol  specification  and 
validation  has  only  examined  one  aspect  of  a large and  im- 
portant area which  perhaps  should be called “interaction 
science.” Work of  others on such  topics as concurrent  pro- 
gramming is exploring  this  science  from  a  different  viewpoint. 
Many of  the  problems  inherent in distributed processing will 
be resolved as this  science develops. 

APPENDIX I 

FURTHER CONSIDERATIQNS ABOUT THE MODEL 

The  representation  described in Section I1 can be used to 
model both nonideal  communication  channels  and  interactions 
betw.een more  than  two processes [ 161. This is illustrated by 

PROCESS PROCESS 
P! 

PROCESS 
P2 P 3  

CORRECT ERRONEOUS 
RECEPTION RECEPTION 

Fig. 10. Interaction  example  demonstrating how to model  many 
process  interactions  and how. to include  communication  channels 
that  can lose and  distort  messages. 

PROCESS PROCESS 
PI P 2  

, 

Fig. 11. Derivation of sufficiency proof  for  Rule 2. 

the very simple three-process  interaction  shown  in Fig. 10. 
Process PI transmits message x to process ~ 2 ,  ‘ ~ 2  models‘a 
nonideal  channel  from P1 t o  P 3 ,  and P3 receives  messages 
from P2. Message x’ (generated by P2) represents  a  corruption 
by  the  channel” of message x, and  the arc  with  identifier 0 
repre’sents a  nonevent, i.e., a  state transition that  generates 
no messages. P2 is initially  in state 0. On receiving message 
x from P1 it  enters  state 1 and  can’proceed in  one  of  three 
ways:  either it faithfully  retransmits x to P3 by  transmitting 
x or it corrupts ‘x  by  transmitting x’ to P3 or  it ‘loses x by 
traversing arc 0: Thus, P3 can either receive message x or  a 
corrupted version x ‘  or no message at all. 

APPENDIX I1 

SUFFICIENCY AND NECESSITY PROOFS  FOR  THE 
PRODUCTION  RULES 

We present  arguments  which  demonstrate  that  the  pro- 
duction rules, derived in  Section V-A; are both necessary and 
sufficient.. We say that  the rules are sufficient if they  create 
enough arcs to prevent unspecified receptions  and  that  they are 
necessary if every created  arc is needed to prevent unspecified 
receptions.  The  proofs  assume  that  arc  replication  (Section 
V-B)  is replaced by  repeated  application  of  the rules. We begin 
with  the  sufficiency  proof  and  consider Fig. 1 1. 

1) Assume the rules insufficient  and let e be  the first 
message that  manifests this; i.e., .there exists a  state c of 
P1 that can receive e yet  this  reception i s  not specified by  the 
rules. 

2) Consider  first  the case that -e is appended to  a negative 
arc -x, i.e., that Rule 2 causes this  unspecified  reception. 
Later, we will consider -e appended to reception  arcs, 

3) By virtue of 2) and  the fact that  FIFO  channels are 
assumed, message x is always received before message e. 
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Fig. 12. Derivation of necessity proof for Rule 2. 

4) Hence,  state c must  be  below  a  reception  of x; let b 
be  the  entry  state  of  that  reception. 

5) The  path  from b to  c must  contain  at least one positive 
reception  arc, say arc +n... because  otherwise  Rule 2 would 
specify the  reception  of e in  state c. 

6) Since P1 would receive message n after x and  before 
e, P2 must  traverse -x followed by -n followed by -e. 

7) But this  contradicts  our  initial  assumption  that -x then 
-e be consecutively  traversed. 

8) Hence,  there is no reception  of message e in P1 not 
specified by Rule 2. 

We outline  the rest of  the  proof.  The above  derivation 
(steps 2-8) is repeated  for the case where  arc -e is appended 
to an  arc +x, i.e., where  Rule 1 causes the insufficiency. 
It is then repeated  for the case where  arc -e is appended to  
an  arc +xs, i.e., where  Rule 3 causes the insufficiency.  Since 
we obtain  a  contradiction  with  the  assumptions of steps 1 
and 2 in  all  three  cases, the rules  are  sufficient. We now  prove 
with  the  help of Fig. 12 that  the rules  are  necessary. 

1) Assume that  the rules  overspecify and  that e is the first 
message that manifests  this, i.e., there exists  a state c in P1 
that  cannot receive message e yet  the rules  specify  this  re- 
ception. 

2) Consider  first the case that -e is appended to a negative 
arc -x, i.e., that Rule 2 causes  this  overspecification.  Later, 
we will  consider -e appended to  reception  arcs. 

3) By ,virtue of 2) and the  fact  that  FIFO channels  are 
assumed, message x is always received before message e .  

4) Hence,  state c must  be below  a  reception  of x; let b 
be  the  entry  state  of  that  reception. 

5) P1 enters  state b on receiving x, hence state b can 
receive e ,  and Rule 2 specifies  a  reception of e in  state b. 

6) c # b because  otherwise e could  be received in  state 
c and  the assumptions  of 1) would  be  contradicted. 

7) Since c # b and  Rule 2 specifies  reception  of message 
e by  state c, there  must  be  a  negative-arc  sequence  connecting 
state b to c. 

8) The  entry  state of any negative-arc  sequence  attached 
to  state b can also receive message e (no time  constraints 
assumed). 

9) By virtue of 7), state c is the  entry  state  of  such  a 
negative-arc  sequence,  hence state c can receive message e.  

10) But  this  contradicts  our  initial  assumption  that  state 
c cannot receive e ,  hence all receptions  of e specified by 
Rule 2 are  occurrable. 

We outline  the rest of the  proof.  The above  derivation 
(steps 2-10) is repeated  for the case where  arc -e is appended 
to an  arc +x, i.e., where  Rule 1 causes the overspecification. 
It is ..tl&n repeated  for the case where  arc -e is appended to  
an arc +xs, i.e., where  Rule 3 causes the overspecification. 
Consequently, all receptions of e specified  by the rules  can 
occur.  Hence, the rules  are  necessary. 

APPENDIX I11 

OUTLINE OF PROOF  FOR  THE TERMINATION 
ALGORITHM 

We have to  prove two  facts  about ignoring  some  arcs  as 
described  in  Section V-D: 

1)' that  it will not cause any arcs to  be missed in  the  proto- 
col,  and 

2) that  it will terminate the building  of the  trees, provided 
the channels cannot grow without  bounds. 

The proofs will only be  outlined  due  to space  limitations. 
For the first  point  consider  a  situation  when  a  reception 
+e, is added to  a  tree  with  entry node i, and assume that  the 
node i is declared  dead  because  of  a  previous  reception +e',' 
with  entry  node i'. Let the  entry nodes of the transmission 
arcs -e and -e' be j and j ' ,  respectively.  Consider two  exe- 
cutions:  one  brings the  two processes into nodes i and j ,  the 
other  into nodes i' and j ' .  There is no way to distinguish 
between these two  executions because the nodes i and i' 
represent the same process state, j and j' represent the same 
process state,  and  the  contents  of  the  two channels  are also 
the same  (namely, one channel is empty,  the  other  contains 
the messages represented by  the sequences s and s'). There- 
fore, no matter  how  the  execution  from i, j continues,  there 
must  be an equivalent  execution  where the processes  are  in 
states i' and j ' ,  respectively. From  this,  one  can  prove  that 
for every arc that could  possibly be generated (if the design 
rules  were  allowed to  run  forever),  there is an equivalent  arc 
attached to  an equivalent  node  generated  under the  limita- 
tions  of  Section V-D. 

To show  termination,  we  will  show  that no infinite  branch 
can  be  generated  in  either  tree.  For the sake  of  argument 
assume an infinite  branch.  First,  this  infinite  branch  must 
contain  an  infinite  number of  receptions,  for  otherwise  there 
would  exist  a  cycle  consisting of transmissions  only (see 
Section  VI),  contradicting  our  assumption of bounded chan- 
nels.  Secondly,  this  infinite  branch  must  contain  a  dead  node 
because there must  be  a message whose  reception is repeated 
infinitely often along the  branch,  but  there is only  a  finite 
number  of nonequivalent  combinations  of  channel contents 
and entry  node.  Thus, every branch is either  finite  or  contains 
a  dead  node.  Therefore,  there is only  a  finite  number  of  trans- 
missions that are both  transmitted and received above  dead 
nodes.  Keeping  a  finite  number  of  transmission  arcs  keeps 
the  trees  finite. 
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Executable  Description  and  Validation of SNA 
GARY D. SCHULTZ, DAVID B .  ROSE, C. H. WEST, AND JAMES P. GRAY 

(Invited  Paper) 

Abstract-The definition of IBM’s Systems  Network  Architecture  (SNA) 
has  evolved  into  a  specification  of  a  node in  the  form  of  a  meta- 
implementation  using  formal,  state-oriented  descriptive  techniques.  This 
evolution is traced  here,  and  the  different  formal  techniques  are  described. 
The culmination  of  this  process  has been the  development  of  a  PL/I-based 
programming  language,  Format  and  Protocol  Language  (FAPL), as a 
descriptive  tool.  Using  FAPL,  the  architects now define SNA by  a 
programmed  meta-implementation  of  a  node. 

In  this  form,  it is precise,  readily  accessible  to  the  implementing product 
designers  and  programmers,  and  structurally  close  to  the  implementations. 
The essential  features  of  the  meta-implementation  and  of FAPL are 
described,  along  with  the  implications  and  advantages  of  describing the 
architecture in an executable  form.  One  major  benefit,  already being 
realized, is the  capability  to  test  the  logical  consistency  and  completeness  of 
the  executable  description itself. The  current  status  of  the  validation  of  the 
executable  description  and  sample  results  obtained  are  described. 

I. INTRODUCTION 

T HE  1960’s and early  1970’s were the design heyday  and 
proving ground  for  operating  systems  within single com- 

puters  and  across  tightly  coupled  ones.  Today we are  experi- 
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encing  a new design era for coordinating data processing 
distributed over ensembles of  cooperating processors, con- 
figured into  networks. 

Software  engineering  for  operating  systems  developed 
layered  structuring  of  systems,  top-down design, structured 
programming,  disciplined  synchronization (e.g., semaphores) 
for  cooperating processes, and research into  proof-of-program- 
correctness  methods.  Today’s  era of network  architectures, 
which are specifications of  the message formats  and  inter- 
action  protocols  for services provided  within  networks,  has 
had  the  need  for  additional design innovations  for  the changed 
system context  of loosely  coupled  system  components, 
disparate  processor  architectures, and widely  dispersed groups 
of  people  implementing  a  common  network  architecture. 

This paper  focuses on  the evolving specification of IBM’s 
Systems  Network  Architecture (SNA) and  the  formal  tech- 
niques  developed to  design,  describe, and  test  it. A survey of 
the flourishing  literature on  other formal  techniques,  developed 
independently  of  those  described  here, is outside  the scope 
of  this  paper. We refer the reader to  Sunshine’s extensive 
survey [l ] and  other papers in this issue for discussions of 
parallel advances. 

The next  section presents  a  brief overview of SNA. Section 
I11 discusses the  evolution of the  architectural  description  of 
SNA into a  state-oriented  meta-implementation,  and  the 
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