
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980 65 1

Towards Analyzing and Synthesizing Protocols
PII’RO ZAFIROPULO, COLIN H. WEST, HARRY RUDIN, MEMBER, IEEE. D. D. COWAN, MEMBER, IEEE,ANDDANIEL BRAND

(Invited Paper)

Abstraft--The production of error-& protomls or complex process
interactions is essential to reliable communications. This paper presents
techniques for both the detection of errors in prdoeols and for prevention
of errors in their design. The methods have been used suceesstully , t o detect
and correct errors in existing protomls. A technique based on a reach-
ability analysis is described which detects errors in a design. This
“perturbation technique” has been implemented and has s u d y
detected inconsistencies or errors in existing protocol designs including
both X.21 and X.25. The types of errors handled are state deadlocks,
unspecified receptions, nonexecutable interactions, and state ambiguities.
Th- errors are dsed and their effects considered. An interactive
design technique is then described that prevents design errors. The
technique is based on a set of production rules which guarantee that
complete reception capability is provided in the interacting processes.
These rules have been implemented in the form of a tracking algorithm that
prevents a designer from creating unspecified receptions and nonex-
ecutable interactions and monitors for the presence of state deadlocks and
ambiguities.

I. INTRODUCTION

T HE GROWING trends both to increase the sophistication
of functions implemented in information-handling systems

and to distribute these functions in different processes has
resulted in an enormous growth in complexity. This complexity
is particularly acute in the interactions or protocols which
specify how these processes are synchronized and communicate
with one another. However, formal methods are gradually
being introduced to describe these interactions [I] - [8].

The benefits of using such formal methods have already
proven to be substantial: the imprecise interpretation which
is characteristic of prose description has been eliminated,
formal proofs are now possible, and the door is opened to
techniques for computer-aided validation and computer-
supported synthesis or design of such interactions or protocols.
It is these last two areas, computed-aided validation of proto-
cols and computer-supported synthesis of protocols that this
paper examines. These have been the main lines of research
in protocols at the IBM Zurich Research Laboratory. This
work has been guided by two main objectives:

1) automation of these techniques using computers, and
2) primary concern with protocol “syntax,” i.e., the

logical structure of message exchange as opposed to their
“semantics” or intended function.

The first objective is to provide automated tools to lighten
the task of the designer while at the same time achieving a
thorough analysis in the face of great complexity. A concern

Manuscript received May 16, 1979; revised December 2, 1979.
The authors are with the IBM Zurich Research Laboratory, Rusch-

likon, Switzerland.

primarily with syntax also guarantees a widespread applica-
bility.

In the last years there has been a sharp increase in activity
in the. area of protocol investigation and the work of many
individuals should be referenced here. Instead, reference will
be made only to closely related work and to several survey
papers. Most convenient is the paper of Bochmann and
Sunshine [9] , while Sunshine [lo] and very recently Merlin
[l 11 have written excellent reviews. Protocols were ’ the
subject of a conference held in Liege early in 1978; the Pro-
ceedings provide an excellent overview of the field [121 .

Both our work in validation and in synthesis is based on
syntactical properties derived from notions of physical causality
and completeness [13, 141 . In the case of validation, a proto-
col is examined for these properties by means of a reach-
ability analysis similar to that of Sunshine [3] , Bochmann
[15] , and implemented in an automated validation system
[16, 171 . Hajek has also developed a validation system using
reachability analysis [181 .

In validating protocols, such as the CCITT X.21 and X.25
and data flow control from IBM’s SNA, we have found that
the designer(s) of a protocol do not usually foresee all the
syntactic properties of the design, in that the protocol may be
incomplete or logically inconsistent [19], [20], [8]. From
this experience we feel well justified in examining only the
limited aspect of protocol syntax. In theory, compared with
assertion-proving techniques we test for little; in practice these
few tests have turned out to be very effective.

An automated validation process is usually intended for a
protocol in an advanced state of development, while for a
protocol in the early stages of design, a synthesis technique
is preferable. This paper describes two methods of analyzing
protocol behavior, and both techniques can be used for
either validation or synthesis. The first method, the perturba-
tion technique, has already been implemented as an auto-
mated validation system which has had extensive use in
examining existing protocols. The second method based on a
set of production rules has been incorporated into an auto-
mated synthesis system. A protocol developed through the
use of these production rules will be free of the same errors
checked by the perturbation approach. To the authors’ knowl-
edge there has been nothing published in the area of auto-
mated protocol synthesis other than our own first attempt

The techniques of validation and synthesis and the tools
described in this paper have wide-spread applicability to the
entire field of cooperating processes since a protocol is a very
general concept. We quote the definition given by Merlin
[1 11 to indicate this generality: “Given a system of cooperating

P I .

0090-6778/80/0400-0651$00.75 0 1980 IEEE

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

652 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

processes such that the cooperation is done through the
exchange of messages, a protocol is the set of rules which
governs this exchange.” This statement implies that proto-
cols are not just concerned with the correct transfer of data,
but pervade all areas where interaction between processes
is inherent.

11. MODELING OF PROTOCOLS
A model with which to represent protocols and inter-

action examples is required; we employ a representation
similar to the one proposed by Bartlett et al. [22] and used
by Bochmann [151. Fig. 1 shows a simple access authoriza-
tion protocol in which each interacting process is modeled
by a finite-state graph, and the two initial states are identified
by states labeled 0.

The messages exchanged between the processes are repre-
sented by integers. Message transmission is represented by the
negative value of the corresponding integer, and message
reception by its positive value. For example, the message
ACCESS-REQUEST is represented by the integer 1, its genera-
tion is represented by traversal of the arc labeled -1 in
process A and its reception by traversal of the arc labeled
f l in process B. The integer representation is a notational
detail, but one that is compact and which lends itself to
numerical manipulation.

Messages are assumed to be exchanged between processes
over perfect FIFO channels. However, nonideal channels
(i.e,, ones which lose and distort messages) may be repre-
sented as additional processes (see Appendix I). Interactions
between more than two processes may also be represented.

111. TYPES OF DESIGN ERRORS

We make two basic assumptions about protocols and
interactions. First, we are not concerned with explicit time
constraints such as transmission and response delays, and
second, we assume the processes to be correctly initialized
(all in their zero or reset states) prior to the start of an inter-
action. Within this framework we can handle four potential
design errors, namely, state deadlocks, unspecified receptions;
nonexecutable interactions, and state ambiguities. Fig. 2
shows a two-process interaction example that exhibits all
these errors, each of which is explained separately in the
following sections. Although the form of these design errors
is syntactic, their successful resolution must consider their
semantic intent. Since we are not concerned with the semantics
or meaning of the interaction, messages in Fig. 2 are given no
descriptive identifiers. Other potential design errors can be
formulated; for example, channel overflow has been incorpor-
ated into the automated validation system [161.

A. State Deadlocks

Different types of deadlocks are definable within the
context of process interactions but we shall only be concerned
with state deadlocks. We define: a state deadlock occurs
when each and every process has no alternative but to remain
indefinitely in the same state. Stated differently, a state dead-
lock is present when no transmissions are possible from the
current state of each process and when no messages are in

A B
REOUESTING AUTHORIZING

PROCESS PROCESS

REFUSED ACCESS

Fig. 1. Simple access authorization protocol.

PROCESS
P !

PROCESS
P 2

Fig. 2. Two-process interaction example containing various design and
potential design errors.

transit, i.e., all channels are empty. This type of deadlock
occurs in the interaction of Fig. 2 when P1 transmits mes-
sage 1 at the same time that P2 transmits message 3 . As a
result both P1 and P2 enter states 1 and then 2 where they
must wait to receive messages (no transmissions possible).
As no further messages are in transit, the processes have no
alternative but to wait indefinitely in these states.

State deadlocks usually represent errors but there are
exceptions. Protocols may be designed to terminate in states
with no exit when their function is complete. We therefore
consider state deadlocks as potential errors that must be
detected. Their evaluation is then a matter of semantics.

B. Unspecified Receptions

An unspecified reception occurs when a positive arc that
can be traversed is missing, in other words when a reception
that can take place is not specified in the design. For example,
if in Fig. 2 P2 transmits message 3 , and P1 on receiving mes-
sage 3 transmits message 2 , then state 1 of P2 will receive
message 2, yet this reception is not specified in the design.

Unspecified receptions are harmful since in the absence of
adequate recovery procedures, occurrence of an unspecified
reception causes the respective process to enter an unknown
state via a transition not specified in the design. As a conse-
quence, the occurrence of an unspecified reception causes the
subsequent behavior of the interaction to be unpredictable.

Protocols can be protected by state-check mechanisms
[2] , [4] . These mechanisms initiate recovery procedures
when states receive messages which they are not designed to
accept. Unfortunately, in the case of unspecified receptions,
recovery procedures can adversely modify the interaction

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

ZAFIKOI’ULO e t a) . : A N A L Y Z I N G A N I) S Y N ’ I ‘ H E S I Z I N G I’KOTOCOLS 653

semantics as the occurrence of an unspecified reception is P I P I - P 2

not caused by an operational malfunction yet is handled in STATE

the same manner. For example, i f a connection setup proto- sso
col contains an unspecified reception and such a reception
occurs in every connection’ setup attempt, then the ensuing
recovery procedures will not fulfill the intended purpose,
namely to set up a connection. In order words, error recovery

SYSTEM STAT€ CHANNEL

(ss’ L;: si:, 1

procedures should not be invoked unless the error for which
they have been designed has occurred.

Thus, unspecified receptions are design errors. They are
more common than expected: a number of unspecified re-
ceptions were identified in the CCITT X.21 interface version
of 1976 [191 . These were brought to the attention of CCITT
and are reflected in the current X.21 working papers.

C. Nonexecutable Interactions

A nonexecutable interaction is present when a design
includes message transmissions and receptions that cannot
occur under normal operating conditions. A nonexecutable
interaction is equivalent to dead code in a computer program
and is illustrated in Fig. 2. No normal interaction sequences
can cause state 2 of P2 to‘receive message 1 , hence state 3 is
not entered and message 4 cannot be generated. Consequently,
state 3 of P1 cannot be reached.

The creation of nonexecutable interactions must be treated
with great caution. If the designer erroneously believes that
state 2 of P2 can receive message 1 during normal operation,
then the nonexecutable interaction represents a design error.
On the other hand, if the designer’s intention is to create
recovery actions to handle abnormal conditions, and he
purposely wants P2 to enter state 3 if abnormal (error)
conditions cause state 2 to receive message 1 , then it does
not represent a design error. In order to distinguish between
normal and abnormal conditions, it is probably good design
practice to design and validate a protocol for normal opera-
tion before adding recovery actions.

D. Stable-State Pairs and State Ambiguities
A stable-state pair (x , y) is said to exist when a state x in

one process and a state y in the other can be reached with
both channels empty. In such a case, states x and y coexist
until the next transmission occurs. Monitoring stable-state
pairs is useful for detecting loss of synchronization, i.e., the
presence of unintended stable-state pairs or the absence of
intended ones. A case of special interest is when ambiguity
occurs among stable states. A state ambiguity exists when a
state in one process can coexist stably with several different
states in the other process. Fig. 2 contains state ambiguities.
For example, if both processes are in their initial states (state
0), and P1 transmits messages 1 followed by 2 while P2 only
receives messages, then P1 reaches state 2 while P2 returns to
state 0. Thus, state 0 of P2 can coexist stably with both state
0 and state 2 of P1. State ambiguity is closely related to the
adjoint-state concept [151 : state ambiguity implies that the
cardinal number of the corresponding adjoint-state set is
greater than 1 .

State ambiguities do not necessarily represent errors but
they must be treated with caution. If, for example, the .de-

l
*ISSl9)

Fig. 3. Corresponding reachability tree for the example in Fig. 2.

signer’s intention was that state 0 of PI coexist stably solely
with state 0 of P 2 , then the identified state ambiguity does
represent an error. We therefore consider state ambiguities
as potential design errors that need monitoring. State ambi-
guities are detectable via an examination of syntax; their
evaluation is a matter of semantics.

IV. ANALYZING INTERACTIONS

In this section we describe techniques to detect the pres-
ence of design and potential design errors in an interaction or
protocol. Our first approach was based on an analysis of
dialogues of interaction between communicating processes
[1 3] , [2 3] , [2 4] . It was significantly improved and general-
ized in a method based on a technique of perturbation [161 .
This technique is a reachability analysis conceptually similar
to one proposed by Sunshine [3] . This perturbation method
has been programmed and has successfully detected errors
in protocols.

A. The Perturbation Analysis

We describe the perturbation method by analyzing in
Fig. 3, the example of Fig. 2. A system state consisting of a
two-dimensional array is defined where the elements on the
main diagonal represent the individual process states (element
1 , 1 is state of P1 and so on) and each off-diagonal element
i, k represents the message content of the communication
medium from process Pi to process Pk. Fig. 2 represents a
two-process interaction; hence the system states SS in Fig. 3
are 2 X 2 arrays.

One begins by defining SSO which is the initial system
state. It consists of both processes in SO (state 0) and both
channels empty (represented by E) . SSO is then “perturbed”
into all possible successor states reachable by executing a
single transition in one of the individual processes P I , P2 (in
Fig. 2). Thus, either SS1 is entered by PI transmitting message
1 (P1 enters S1 and places 1 in channel P1 + P2) or SS2 is
entered by P2 transmitting message 3 (P2 enters S1 and
places 3 in channel P2 + Pl) .

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

654 IEEE TRANSACTIONS O N COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

The procedure continues by perturbing each of these new
system states in turn. Thus considering SS2, either SS3 is
entered by PI receiving message 3 (P1 takes 3 from channel
PI -+ P2 and enters SI) or SS4 is entered by P1 transmitting
message 1 (PI enters S1 and places 1 in channel PI -+ P2).
The procedure continues until no new system states are
created, thus indicating that all reachable system states have
been determined. Asterisks in the ensuing reachability tree
indicate system states that have been previously generated
by perturbation of earlier states.

The method has the .attractive property that it creates the
reachability tree for any n-process interaction by simply
defining the system states as n X n arrays. For example, the
system states for a three-process interaction are 3 x 3 arrays,
each consisting of three process states and six channels Some
of which may remain empty. Certain types of interactions can
cause unbounded growth in the number of messages in transit
(see Section VI). In order to contain such unlimited growth,
bounds are set on the channel-storage capacity. These bounds
make it possible to detect when a prescribed channel-storage
capacity is exceeded.

B. Error Detection via Analysis
Deadlocks are identified in a ieachability tree by system

states with all channels empty (E in Fig. 3) and no departing
transitions. For example, the deadlock described in Section
111-A (P1 and P2 in S2) is identified by SS7. Such system
states represent deadlocks because there are no further re-
ceptions (all channels empty) and no possible further trans-
missions (no departing transitions).

Unspecified receptions are identified by system states
with no departing transition to absorb the next output from
one of the channels. For example, the unspecified reception
discussed in Section 111-B (message 2 cannot be received in
S1 of P2) is identified by SS5 where the next S1 +- S2 channel
output is message 2, yet there is no transition out of SS5 to
absorb that message.

Stable-state pairs (tuples for many-process interactions)
are identified in the reachability tree by system states having
all channels empty. State ambiguities are identified by a
particular process state appearing in a plurality of such system
states. For example, the state ambiguity discussed in Section
111-D is identified by state SO of process P2 appearing in both
system states SSO and SS22. Fig. 3 identifies other ambiguities,
for example, SS3, SS24 represent an ambiguity with respect
to SI ofP2.

Nonexecutable interactions are identified as state transi-
tions present in the design that are absent in the reachability
tree. For example, P2 in Fig. 2 contains a -4 arc which
never appears in the tree of Fig. 3 .

V. SYNTHESIZING INTERACTIONS
An alternative to testing an existing design for errors is to

create from the outset a design devoid of the errors considered
here. In this section we shall describe a mechanism (or tool)
which is used interactively by a designer to create a protocol
or interaction. The tool prevents the occurrence of unspecified
receptions and immediately notifies the designer of the pres-

ence of state deadlocks and ambiguities. This immediate
response has the advantage that at this point in time, the
designer has the most insight into the resolution of the design
problem. The tool is based on three production rules which
create only those arcs needed to prevent unspecified recep-
tions. A tracking algorithm then specifies where and when to
apply the rules. Both tracking algorithm and production rules
have been automated using a novel programming method
called data-directed design [2 5] , [26]. The rules are based
on a study of the cause-and-effect relationships that occur
when two entities exchange messages. They are currently
limited to two-process interactions.

A . Production Rules
Three rules governing the derivation of two-process inter-

actions are described in this section and proofs for their
necessity and sufficiency are given in Appendix 11. These
rules are a modification of an earlier version which was
developed [21] but was found to be incomplete. The rela-
tive simplicity of the rules rests on the fact that they are
designed to produce tree-structured graphs. Section V-B
shows how interactions can be constructed from such graphs.
We now explain the rules.

The first rule specifies all receptions of a message whose
transmission directly succeeds the reception of a previous
message. Consider Fig. 4(a) where P2 upon receiving mes-
sage x transmits message e. If P1 transmits no further mes-
sages before receiving e, then it receives e in the state entered
upon transmitting x. Hence, a +e arc is appended to -x in
PI. On the other hand, if P1 transmits y before e is received,
then e is received after y is transmitted. Hence a +e must
be appended to -y. We append +e, instead to note the
fact that in this case messages e , y occur concurrently, or
collide. Two messages are said to collide when neither is
received before the other is transmitted. As we shall see,
identifying collisions via subscripts is necessary for Rule 3.
The subscript refers to all collisions. Thus, as shown in Fig.
4(a) if z is also transmitted before e is received, then we
append to -z. We now formulate the first rule using
the generalized example in Fig. 4(b) where -s represents
a transmission sequence.

Rule 1: If -e is appended to +x P2 then:
a) append +e to -x ;
b) append +es to every negative arc sequence --s

attached to -x.

Part a) specifies collisionless receptions whereas part b) spec-
ifies all receptions associated with collisions.

The second rule specifies all receptions of a message whose
transmission directly succeeds the transmission of a previous
message. Consider Fig. 5(a) where P2 transmits e directly
after transmitting x. Therefore, P1 can receive e directly after
X. Hence, +e is appended to +x in P I . If P1 transmits y
before receiving x, then not only do y and x collide but y
and e also collide. Then e is received after +xy and we append
+e, to +x,. Finally, if P1 transmits z after traversing +x,
but before receiving e, then e is received after z is transmitted.
In this case e collides with both y and z, hence +ey,= must be

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

ZAFIROPULO e t al.: ANALYZING AND SYNTHESIZING PROTOCOLS 655

(b)
Fig. 4. Derivation of production Rule 1.

PROCESS PROCESS
P f P 2

*

(b)
Fig. 5. Derivation of production Rule 2.

appended to -z. Similar circumstances hold true if P1 trans-
mits z'. We now formulate the second rule using the general-
ized example shown in Fig. 5(b) where --s and -s' represent
transmission sequences.

Rule 2: If -e is appended to -x then:
a) to every +x and +x, append +e and +e,, respectively;
b) to every negative arc sequence --sf attached t o +x or

+xs append +e,, and +e,,;, respectively.

A third production rule is necessary because new cause-
and-effect mechanisms come into play when a negative arc is
appended to a subscripted reception. Consider Fig. 6(a)

PROCESS PROCESS
PI P2

(b)
Fig. 6 . Derivation of production Rule 3.

where P2 transmits e directly after receiving +w,, i.e., after
receiving a w that collides with an x. Message e is the next
P2 transmission after x. Therefore, .P1 receives e directly
after x. But w is received before e is transmitted, hence P1
can only receive e after transmitting w. Therefore, P1 can
only receive e after it both transmits w and receives x. Hence,
+e must be appended to +x,. The arc +e is not indexed
because, as shown in Fig. 6(a), no collisions are associated
with its transmission. If on the other. hand, P1 transmits y
before receiving x, then x collides with both w and J', whereas
e collides only withy. Hence, +e, is appended to +xw,,.

Finaily, the mechanism of the third reception case +e,,!
is identical to that of +e,,, in Fig. 5(a). We now formulate
the third rule using the generalized example in Fig. 6(b)
where --s and --SI represent transmission sequences and
" ..." stands for an arbitrary message sequence.

Rule 3: If -e is appended to +u...,, in P 2 , then within
the tree with root -u:

a) append +e to +u ...," and +e, to every +x..",,;
b) to every negative arc sequence --s' attached to

+u ..., or +u ..., ",, append +e,' or +e,,,;, respectively.

Part b) of Rule 3 describes the same specification mechanism
as part b) of Rule 2 .

A few notational conventions simplify application of the
production rules. For example, entering the initial states via
a fictitious message exchange as shown in Fig. 7 enables Rules
1 or 2 to specify reception arcs appended to initial states.
Furthermore, to generate only exercisable sequences, the rules
require that every negative arc within one process be uniquely
specified. The ensuing problem of representing different
transmission instances of a same message is solved as follows.
The first transmission of a message 8 is represented by -8,

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

656 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

PROCESS PROCESS PROCESS P t . PROCESS P 2

Fig. 7. Example showing minor notational extensions.

the second transmission is represented by -8.1 and so on
(see Fig. 7). The eleventh occurrence would be specified as
8.10 and would be considered different from 8.1.

.+FLOORING

B. On Using the Rules ib)

We require an algorithm that specifies where and when to
apply the rules. The algorithm is based on an incremental
design approach requesting designer intervention whenever
semantic-dictated decisions are needed. The designer creates
state diagrams, but in order to describe the algorithm, we
will consider tree structures. Consider the design portrayed
in Fig. 8(a). The algorithm begins by automatically creating
the fictitious message exchange (-a, +n), which initializes
both processes, It then requests a first design action. The
designer complies and creates the transmission of message 1
in PI by specifying Pl,(O)-(-l)+(l) where P1 is the process
considered, 0 is the departure state, 1 the entry state and -1,
the message transmitted. The algorithm then invokes Rule 2
(-1 is appended to -n) which creates P2,(0)-(+1)+(?) and
requests the designer to specify the entry state identified by
(?). He specifies this as state 2 . The algorithm again requests
the next designer action which is P2,(0)-(-3)+(1). This new
arc is appended to a reception, hence Rule 1 is invoked and
creates the arcs P1,(0)-(+3).+(?) and P1,(1)-(+3)-+(?). The
designer then specifies the entry states as 1 and 2, respectively.
This specification causes the node representing state 1 to ap-
pear twice. We are building trees, and tree nodes have at most.
one entry arc, hence state names may appear more than once.

Creating arc -3 in P2 causes arcs -3 and +1 to have a
common origin, namely state 0. Hence, it is possible for
P2 to receive message 1 after transmitting message 3. This
reception can be specified by reapplying Rule 1 to arc -1.
But a much simpler method is to duplicate arc +1, append
it to arc -3 and index it accordingly. Indexing is necessary,
for this arc can only be traversed if messages 1, 3 collide.
We call this reception-replication. The algorithm automati-
cally executes reception-replication, thereby creating the
arc P2,(1)-(+13)+(?) with the designer then specifying
“?” to be state 2.

The next designer action is to create the transmission
P1,(1)-(-2)+(2). At this point the tree structure P1 con-
tains two copies of state 1. Hence, the algorithm appends
a second transmission P1,(1)-(-2.1)+(2) to the second
copy of state 1 (in general, if state i transmits message e ,
then arc -e is appended to the first created node i , arc -e.l

Fig. 8. Synthesis design example. Thickly lined arcs in (a) are ex-
plicitly discussed in the text.

to the second created node i , etc. and the rules are applied
in the creation sequence). The algorithm then invokes Rule 2
for arc -2 and Rule 1 for arc -2.1. This creates reception
arcs in E. One such arc is P2,(2)-(+2)+(?). The designer
specifies its entry state as 0 (“?” set to 0). He thereby creates
a cycle which enables P2 to retransmit message 3. The algorithm
takes care of this by automatically ,appending an arc -3.1 to
the arc +2 and invoking Rule 2 which in turn creates further
receptions, and so on. In this way the algorithm adds arcs to
the trees. This tree growth would continue indefinitely if it
were not for a termination mechanism that halts the growth
when the configuration of Fig. 8(a) is reached. The designer
could then enter a further message transmission if he so
wished. The above-mentioned termination mechanism is an
important part of the algorithm and is described in Section

It is worth noting that when the algorithm creates a dupli-
cate arc such as +3.2 (duplicate of +3 because 4-3 and +3.2
have same departure state) in P1, then its entry state must be
equal to that of the original arc +3 and hence, no designer
intervention is needed.

When the designer is finished, the algorithm collapses the
tree structures by using a “flooring” operation to obtain
the finite-state graphs of the actual interaction, shown in
Fig. 8(b). The flooring operation drops all decimal fractions
from message numbers and merges identical states and arcs
in each tree. It is important to note that the algorithm masks
the complexity of the tree structures from the designer by
displaying all arc identifiers without decimal fractions and by
not displaying duplicate arcs. The designer therefore need
not even realize that the algorithm uses trees as internal
representation. The reader will note that the interaction we
have just designed (Fig. 8) is very similar to that of Fig. 2.
In fact, it is the same interaction devoid of unspecified re-
ceptions and of nonexecutable interactions. The monitoring
of deadlocks and ambiguities during the synthesis process is
discussed in the next section.

V-D.

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

ZAFIROPULO e t al .: ANALYZING AND SYNTHESIZING PROTOCOLS 657

C ErrorPrevention via Synthesis

The algorithm together with the production rules specify
those and only those positive arcs that must be created to
prevent unspecified receptions. Hence, it is not possible to
create nonexecutable interactions (see Section 111-C).

Every time an arc pair (-e; +e), (+e,; +ye) or (+e...,,;
+Y...,~) is created the corresponding entry states (i, k) rep-
resent a stable-state pair. Hence, stable-state pair monitoring
is quite easy. A state deadlock (see Section 111-A) is present
if for such a pair neither state has a negative departing arc.
The algorithm monitors state deadlocks by testing f&&the
absence of negative departing arcs in every created stable
state pair.

State ambiguities (see Section 111-D) can be monitored in
the following way. Every time a new stable-state pair (i, k)
is created, it is stored in a list. If the list already contains a
pair (i, x) or (x, k) , then a state ambiguity is identified.

D. Termination

As mentioned in .Section V-B, the design rules could be
applied continually, defining infinite trees. It is necessary to
stop the growth at a point when continuation cannot reveal
any new information about the protocol. This section pre-
sents a method for termination.

Termination is achieved by deleting negative arc copies.
When the algorithm creates a new tree node, it tests whether
certain repetition criteria are fulfilled. If they are, the node
is marked “dead.” Dead nodes are a form of duplicate nodes.
They are treated differently in that a transmission arc as well
as its corresponding reception arcs are deleted if they all
turn out to be appended below dead nodes. Thus, in the
example of Fig. 8, the whole process is complete because all
further arcs are deleted.

We now describe the criteria that define a node dead.
Consider the situation where the algorithm specifies an arc
+e with entry node i. This node i is marked “dead” if there
already exists an arc +e’ with entry node i’, where e, e‘ repre-
sent the same message, the nodes i, i!. represent the same state
and i’ has no dead-node predecessors. For example, in process
P1 of Fig. 8(a), the entry node i of arc +3.2 is dead. This is
so as P1 already contains an arc +3 with entry node it where
i, it represent the same state 0, 3.2 and 3 the same message
and it has no dead predecessors. Similarly, if the algorithm
specifies an arc +e, with entry node k, then k is marked dead
if there already exists an arc +e’,’ with entry node k’ where
in addition to the above requirements being fulfilled, s and
s‘ represent the same message sequence. For example, in
process P1 of Fig. 8(a), the entry node k of arc +3.21 .1 , 2 .2

is dead. This is so because P1 already has an arc +31 , 2 with
entry node kt where (1.1, 2.2), (1, 2) represent ‘the same
message sequence, k and kt the same state, 3.2 and 3 the
same message, and k‘ has no dead-node predecessors.

Appendix I11 shows that this method is valid, i.e., it will
not cause any receptions to be missed in the graph. It also
shows that it will terminate the growth of the trees for any
protocol where both channels are bounded. The unbounded-
channel case is discussed in the next section.

PROCESS PROCESS
P I P 2

+ J F+3 + J +2$ +! + 2

- 2

Fig. 9. Interaction exhibiting unbounded-channel growth. Indexing
not shown.

VI. THE UNBOUNDED CHANNEL

In this section we consider interactions that can lead to
unbounded growth in the number of messages transmitted
by one process but not yet received by the other. One example
of .such an interaction is shown in Fig. 9. P2 can transmit
message 3 after every message reception. Assume P2 does
this and that at the same time P1 transmits messages 1 and 2
with sufficient speed so that it receives all messages in state
2. Then for every message P1 receives, it transmits two mes-
sages. Hence the number of messages in transit, i.e., in the
P1 to P2 channel grows without bound. This is a generic
example from which more complicated ones can be derived.
Another type of interaction that can lead to unbounded-
channel growth are transmission cycles. Such a cycle would be
present if in P1 of Fig. 9, arc -2 were modified so as to
enter state 0. P1 would then contain a transmission cycle
-1, -2.

The perturbation method (Section IV-A) sets bounds on
the maximum channel capacity. Hence, a perturbation analysis
will always terminate when interactions exhibiting unbounded-
channel growth are considered. The same holds true for the
synthesis case when one sets upper bounds on the index
sequences and on the number of consecutive transmissions.
The consequence of these termination mechanisms is that
interactions. exhibiting unbounded channel growth may not
be fully analyzable or synthesizable. This limitation is by no
means unique to our termination mechanisms. It is a neces-
sary property of all termination mechanisms, as will be proven
in a forthcoming paper. Consequently, we can improve termi-
nation mechanisms to cover more and more practical proto-
cols, but we must always be prepared for protocols that can
never be completely analyzed or synthesized.

It is interesting to consider design criteria that guarantee
unbounded-channel capacity and hence, guarantee complete
analysis and synthesis. One such criterion is that every cycle
in an interacting process that contains one or more trans-
mission arcs must also contain at .least one collisionless re-
ception. This limits the channel capacity because when a
collisionless reception occurs, the transmitting channel of the
receiving process is empty. Hence, the transmitting channel
is emptied every time a message generation cycle is traversed,
thereby causing the channel capacity to be bounded.

VII. CONCLUSIONS
Two approaches to improving protocol correctness have been

described. The first, perturbation, is implemented as a method
for validating an existing protocol, while the second is a set

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

of production rules applied in a stepwise interactive manner
to synthesize a “correct” design. The underlying principles
of both approaches are equivalent in that the production
rules could be used for validation purposes and the perturba-
tion method could be used for synthesis purposes. Both
approaches require limits on the channel content when han-
dling protocols or interactions that exhibit unbounded-channel
growth. ?his limitation can be transformed, for example,
into design criteria which when fulfilled prevent unbounded-
channel growth. But some form of limitation is a necessary
condition for there is no solution to the general problem of
reception specification.

In ‘the case of validation, a thorough analysis of the CCITT
X.21 circuit-switched network interface specification has
already been published [191 . Some of the results of applying
the perturbation technique to the data-flow-control portion
of IBM’s SNA network architecture are discussed in [8] . ’

The validation procedure has also been applied to the
packet-level portion of the CCITT X.25 packet-switched net-
work interface specification. The results, which were inde-
pendently discovered by Belsnes and Lynnkg [27], were
submitted by IBM to study group VI1 of the ‘CCITT [20].
The reader interested in X.25 may wish to examine the issue
of Computer Communication Review devoted to this topic
[28]. In the definition of X.25, it was found that a collision
of the DCE-CLEAR-INDICATION -message coming from the
network could collide with the DTE-CALL-REQUEST coming
from the terminal.. According to the specification, the net-
work was to’identify this collision as a “local procedure error”
even though such a cogision is allowed by the saine protocol
specification. Thus, the “procedure-error’’ indication became
ambiguous, being used both for the identification of natural
collisions and actual protocol violations. The repair to this
anomaly was also validated by the same method [2 0] . The
correction has since been. accepted by the CCITT study group
VII’s Rapporteurs’ group.

An experiment was also performed using the protocol
synthesis package to try to duplicate the same X.25 level-3
specification. During the redesign of this portion of the proto-
col (for the error-free channel), the synthesis package de-
manded that the receptions resulting from the previously
mentioned collision be resolved as soon as the developing
design makes them possible. Terminating these receptions as
recommended [20] leads to the successful complete design.

Our work and that of others in protocol specification and
validation has only examined one aspect of a large and im-
portant area which perhaps should be called “interaction
science.” Work of others on such topics as concurrent pro-
gramming is exploring this science from a different viewpoint.
Many of the problems inherent in distributed processing will
be resolved as this science develops.

APPENDIX I

FURTHER CONSIDERATIQNS ABOUT THE MODEL

The representation described in Section I1 can be used to
model both nonideal communication channels and interactions
betw.een more than two processes [161. This is illustrated by

PROCESS PROCESS
P!

PROCESS
P2 P 3

CORRECT ERRONEOUS
RECEPTION RECEPTION

Fig. 10. Interaction example demonstrating how to model many
process interactions and how. to include communication channels
that can lose and distort messages.

PROCESS PROCESS
PI P 2

,

Fig. 11. Derivation of sufficiency proof for Rule 2.

the very simple three-process interaction shown in Fig. 10.
Process PI transmits message x to process ~ 2 , ‘ ~ 2 models‘a
nonideal channel from P1 t o P 3 , and P3 receives messages
from P2. Message x’ (generated by P2) represents a corruption
by the channel” of message x, and the arc with identifier 0
repre’sents a nonevent, i.e., a state transition that generates
no messages. P2 is initially in state 0. On receiving message
x from P1 it enters state 1 and can’proceed in one of three
ways: either it faithfully retransmits x to P3 by transmitting
x or it corrupts ‘x by transmitting x’ to P3 or it ‘loses x by
traversing arc 0: Thus, P3 can either receive message x or a
corrupted version x ‘ or no message at all.

APPENDIX I1

SUFFICIENCY AND NECESSITY PROOFS FOR THE
PRODUCTION RULES

We present arguments which demonstrate that the pro-
duction rules, derived in Section V-A; are both necessary and
sufficient.. We say that the rules are sufficient if they create
enough arcs to prevent unspecified receptions and that they are
necessary if every created arc is needed to prevent unspecified
receptions. The proofs assume that arc replication (Section
V-B) is replaced by repeated application of the rules. We begin
with the sufficiency proof and consider Fig. 1 1.

1) Assume the rules insufficient and let e be the first
message that manifests this; i.e., .there exists a state c of
P1 that can receive e yet this reception i s not specified by the
rules.

2) Consider first the case that -e is appended to a negative
arc -x, i.e., that Rule 2 causes this unspecified reception.
Later, we will consider -e appended to reception arcs,

3) By virtue of 2) and the fact that FIFO channels are
assumed, message x is always received before message e.

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

ZAFIROPULO e t al .: ANALYZING AND SYNTHESIZING PROTOCOLS 659

PROCESS PROCESS
P 1 P 2

/
/

/

Fig. 12. Derivation of necessity proof for Rule 2.

4) Hence, state c must be below a reception of x; let b
be the entry state of that reception.

5) The path from b to c must contain at least one positive
reception arc, say arc +n... because otherwise Rule 2 would
specify the reception of e in state c.

6) Since P1 would receive message n after x and before
e, P2 must traverse -x followed by -n followed by -e.

7) But this contradicts our initial assumption that -x then
-e be consecutively traversed.

8) Hence, there is no reception of message e in P1 not
specified by Rule 2.

We outline the rest of the proof. The above derivation
(steps 2-8) is repeated for the case where arc -e is appended
to an arc +x, i.e., where Rule 1 causes the insufficiency.
It is then repeated for the case where arc -e is appended to
an arc +xs, i.e., where Rule 3 causes the insufficiency. Since
we obtain a contradiction with the assumptions of steps 1
and 2 in all three cases, the rules are sufficient. We now prove
with the help of Fig. 12 that the rules are necessary.

1) Assume that the rules overspecify and that e is the first
message that manifests this, i.e., there exists a state c in P1
that cannot receive message e yet the rules specify this re-
ception.

2) Consider first the case that -e is appended to a negative
arc -x, i.e., that Rule 2 causes this overspecification. Later,
we will consider -e appended to reception arcs.

3) By ,virtue of 2) and the fact that FIFO channels are
assumed, message x is always received before message e .

4) Hence, state c must be below a reception of x; let b
be the entry state of that reception.

5) P1 enters state b on receiving x, hence state b can
receive e , and Rule 2 specifies a reception of e in state b.

6) c # b because otherwise e could be received in state
c and the assumptions of 1) would be contradicted.

7) Since c # b and Rule 2 specifies reception of message
e by state c, there must be a negative-arc sequence connecting
state b to c.

8) The entry state of any negative-arc sequence attached
to state b can also receive message e (no time constraints
assumed).

9) By virtue of 7), state c is the entry state of such a
negative-arc sequence, hence state c can receive message e.

10) But this contradicts our initial assumption that state
c cannot receive e , hence all receptions of e specified by
Rule 2 are occurrable.

We outline the rest of the proof. The above derivation
(steps 2-10) is repeated for the case where arc -e is appended
to an arc +x, i.e., where Rule 1 causes the overspecification.
It is ..tl&n repeated for the case where arc -e is appended to
an arc +xs, i.e., where Rule 3 causes the overspecification.
Consequently, all receptions of e specified by the rules can
occur. Hence, the rules are necessary.

APPENDIX I11

OUTLINE OF PROOF FOR THE TERMINATION
ALGORITHM

We have to prove two facts about ignoring some arcs as
described in Section V-D:

1)' that it will not cause any arcs to be missed in the proto-
col, and

2) that it will terminate the building of the trees, provided
the channels cannot grow without bounds.

The proofs will only be outlined due to space limitations.
For the first point consider a situation when a reception
+e, is added to a tree with entry node i, and assume that the
node i is declared dead because of a previous reception +e','
with entry node i'. Let the entry nodes of the transmission
arcs -e and -e' be j and j ' , respectively. Consider two exe-
cutions: one brings the two processes into nodes i and j , the
other into nodes i' and j ' . There is no way to distinguish
between these two executions because the nodes i and i'
represent the same process state, j and j' represent the same
process state, and the contents of the two channels are also
the same (namely, one channel is empty, the other contains
the messages represented by the sequences s and s'). There-
fore, no matter how the execution from i, j continues, there
must be an equivalent execution where the processes are in
states i' and j ' , respectively. From this, one can prove that
for every arc that could possibly be generated (if the design
rules were allowed to run forever), there is an equivalent arc
attached to an equivalent node generated under the limita-
tions of Section V-D.

To show termination, we will show that no infinite branch
can be generated in either tree. For the sake of argument
assume an infinite branch. First, this infinite branch must
contain an infinite number of receptions, for otherwise there
would exist a cycle consisting of transmissions only (see
Section VI), contradicting our assumption of bounded chan-
nels. Secondly, this infinite branch must contain a dead node
because there must be a message whose reception is repeated
infinitely often along the branch, but there is only a finite
number of nonequivalent combinations of channel contents
and entry node. Thus, every branch is either finite or contains
a dead node. Therefore, there is only a finite number of trans-
missions that are both transmitted and received above dead
nodes. Keeping a finite number of transmission arcs keeps
the trees finite.

ACKNOWLEDGMENT

The authors would like to thank the referees for their
helpful and detailed comments.

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

660 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980

REFERENCES
J. Postel, “A graph model analysis of computer communication
protocols,” Univ California, Los Angeles. Rep. UCLA-ENG-74 I ,
Jan. 1974
T. Piatkowski, “Finite-state architecture,” Syst. Develop. Div. (now
Syst. Commun. Div.), Research Triangle Park, NC, ISM Tech. Rep.
TR-29.0133. A u ~ . 1975. -
C. A. Sunshine, “Interprocess communication protocols for computer
networks,” Ph.D. dissertation, Dep. Comput. Sci., Stanford Univ.
Stanford, CA, 1975.
IBM Corp., “Systems network architecture format and protocol ref-
erence manual: Architectural logic,” Pub. SC30-3 112-1, File S370-30,
1976.
J. Hajek, “Automatically verified data transferprotocols.” in Proc. Inr.
Conf. Comput. Commun.. Kyoto, Japan, Sept. 1978, pp. 749-756.
G. V. Bochmann, “A general transition model for protocols and
services,” this issue, pp. 643-650.
A. Danthine, “Protocol representation: finite state architecture,” this
issue, pp. 632-643.
G. D. Schultz, D. B. Rose, C. H. West, and J. P. Gray, “Executable,
description and validation of SNA,” this issue, pp: 661-677.’
G. V. Bochmann and C. A. Sunshine, “Formal methods in com-
munication protocol design,” this issue,,pp. 624-63 I .
C. A. Sunshine, “Survey of protocol definition and verification

Belgium, Feb. 1978.
techniques,” in Proc. Cornput. Network Protocols Symp., Lizge,

P. M. Merlin, “Specification and validation of protocols,” IEEETrans.
Commun., vol. COM-27,pp. 1761-1680. Nov. 1979.
A. Danthine, Ed., in Proc. Comput. NetworkProtocolsSymp., Licge,
Belgium, Feb. 1978, see also special issue on Computer Network
Protocols, Comput. Networks, vol. 2, Sept. Oct. 1978.
P. Zafiropulo, “Protocol validation by duologue-matrix analysis,” IEEE
Tram. Commun.. vol. COM-26, pp. 1187-1 194, Aug. 1978.
P. Zafiropulo, “Protocol validation by duologue-matrix analysis,” IBM
Res. Rep. RZ 8 16, Feb. 1977.
G. V. Bochmann, “Finite state description of communication pro-
tocols,” in Proc. Comput. Network Protocols Symp.. LiCge, Belgium,
Feb. 1978.
C. H. West, “General technique for communications protocol valid-
ation,” IBM J . Res. Develop., vol. 22, pp. 393404, July 1978.

Res. Rep. RZ817, Feb. 1977.
J. Hajek, “Protocols verified by APPROVER,” ACM SIGCOMM

C. H. West and P. Zafiropulo, “Automated validation of a com-
Comput. Commun. Rev., vol. 9, Jan. 1979.

munications protocol: The CCIlT X.2 I recommendation,” IBM J . Res.
Develop., vol. 22, pp. 60-71, Jan. 1978.
IBM Europe, “Technical improvements to C C m recommendation
X.25,” submission to Study Group VII, Oct. 1978.
IP. zafiropu~o, “Design rules for producing logically complete two-

Conf. Comput. Software and Applications, Chicago, IL, pp. 680-685,
process interactions and communications protocols,” in Proc. 2nd Inr.

Nov. 1978.
K. A. Bartlett, R. A. Scantelbury, and P. T. Wilkinson, “A note on

Comput. Mach., vol. 12, pp. 2260-2261, May 1969.
reliable full-duplex transmission over half-duplex links,” Commun. Ass.

C. H. West, “An automated technique of communications protocol
validation,” IEEE Trans. Commun.,, vol. COM-26, pp. 1271-1275,
Aug. 1978.
H. Rudin, C. H. West, and P. Zafiropulo, “Automated protocol
validation: One chain of development,” in Proc. Comput. Network
ProrocolsSymp.. LiZge, Belgium, Feb. 1978.
D. D. Cowan andC. J. P. Lucena, “Some thoughts on the construction of
programs-A data-directed approach,” in Proc. 3rd Jerusalem Conf.
Inform. Technol.. Jerusalem, Israel, Aug. 1978.
D. D. Cowan, J. W. Graham, 1. W. Welch, and C. J. P. Lucena, “A
data-directed approach to program construction,” Sofrware Practice and
Experience, to be published.
D. Belsnes and E. Lynning, “Some problems with the X.25 packet level
protocol,”ACMSIGCOMMComput. Commun. Rev., vol. 7, pp. 41-5 I ,
Oct. 1977.
A. A. McKenzie, Ed., Comput. Commun. Rev., vol. 7, Ass. Comput.
Mach. Special Interest Group on DataCommunications, Oct. 1977.

- “Computer-aided validation of communications protocols,” IBM

*

Colin H. West received the B.S. degree in physics in
1960 and the Ph.D. degree in elementary particle
physics in 1965, both from Imperial College,
London, England.

He joined the IBM Zurich Laboratory in 1971 and
has worked on laboratory automation, computer
graphics. communications, and computer networks.
He is currently working on the further development
of communications protocol validation. From 1961
to 1966 he was a visiting Scientist at the European
organization for Nuclear Research (CERN) in

Geneva, Switzerland, and subsequently held postdoctoral positions in the
Department of Physics and in the Moore School of Electrical Engineering of the
University of Pennsylvania Philadelphia. He has received an IBM Outstanding
Innovation Award for his work on the automated validation of communications
protocols.

Dr. West is a member of the American Physical Society.

*

HanyRudin(S’55-M’62)receivedtheB.E.,M.E.,
and D. Eng. degrees from Yale University, New
Haven, C T , in 1958, 1960, and 1964, respectively.

From I96 I to 1964 he served as Instructor in Elec-
trical Engineering at Yale. In 1964 he joined Bell
Telephone Laboratories where he worked in the area
of data communications, mainly on automatic equal-
ization techniques. He has been with the IBM Zurich
Research Laboratory, Riischlikon, Switzerland
since 1968, where he has worked on computer com-
munications systems. Here his activities first cen-

tered on traffic theoretic aspects of imformation flow in computer networks,
particularly on the problems of dynamic multiplexing, network dimensioning,
routing, and flow control. Recently his activities have been on the formal
specification of the protocols which define interprocess interaction in computer
communication systems, particularly with their automatic verification and com-
puter-supported design.

Dr. Rudin is an Editor of the IEEE TRANSACTIONS ON COMMUNICATIONS.
a correspondent for IEEE COMMUNICATIONS MAGAZINE, and active on a
number of IEEE Communications Society committees.

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-28, NO. 4, APRIL 1980 66 1

D. D. Cowan (S’58-M’60) was born in Toronto, Ont.,
Canada, in March 1938. He received the B.A.Sc.
degree in engineering physics from the University of
Toronto in 1960 and the M.Sc. and Ph.D. degrees in
applied mathematics from the University of Waterloo
in 1961 and 1965, respectively.

He has been on the faculty of theUnVersity of
Waterloo since 1962 and was the Chairman of the
Computer Science Department from 1967 to 1972
and Associate Dean of the Faculty of Mathematics
from 1974 to 1978. He is currently a Professor of

Computer Science. He is also involved with a number of programs of
cooperation between Computer Science Departments in South America and the
University of Waterloo.

His research interests include computer communications, programming con3
sttucts and methods, and software engineering. He spent the academic year
1978-1979 at the IBM Zurich Research Laboratory,,Riischlikon, Switzerland,
where he participated in the research work reported in this paper.

Dr. Cowan is a member of the Association for Computing Machinery and the
IEEE Computer Society.

*

Dr. Brand is a memb I

Daniel Brand was born in Prague, Czechoslovakia,
in 1949. He received the Ph.D. degree in computer
science from the University of Toronto, Toronto,
Ont., Canada, in 1976.

Since then he has been working at the IBM Thomas
J. Watson Research Center, Yorktown Heights, NY,
as a member of the microprogram verification group.
He is currently spending one year at the IBM Zurich
Research Laboratory, Ruschlikon, Switzerland. His
research interests include software reliability, pro-
tocol verification, and automatic theorem proving.

‘of the Association for Computing Machinery.

Executable Description and Validation of SNA
GARY D. SCHULTZ, DAVID B . ROSE, C. H. WEST, AND JAMES P. GRAY

(Invited Paper)

Abstract-The definition of IBM’s Systems Network Architecture (SNA)
has evolved into a specification of a node in the form of a meta-
implementation using formal, state-oriented descriptive techniques. This
evolution is traced here, and the different formal techniques are described.
The culmination of this process has been the development of a PL/I-based
programming language, Format and Protocol Language (FAPL), as a
descriptive tool. Using FAPL, the architects now define SNA by a
programmed meta-implementation of a node.

In this form, it is precise, readily accessible to the implementing product
designers and programmers, and structurally close to the implementations.
The essential features of the meta-implementation and of FAPL are
described, along with the implications and advantages of describing the
architecture in an executable form. One major benefit, already being
realized, is the capability to test the logical consistency and completeness of
the executable description itself. The current status of the validation of the
executable description and sample results obtained are described.

I. INTRODUCTION

T HE 1960’s and early 1970’s were the design heyday and
proving ground for operating systems within single com-

puters and across tightly coupled ones. Today we are experi-

Manuscript received May 7, 1979; revised January 28, 1980.
G. D. Schultz, D. B. Rose, and J. P. Gray are with the IBM Corpora-

C. H. West is with the IBM Zurich Research Laboratory, Ruschlikon,
tion, Research Triangle Park, NC 27709.

Switzerland.

encing a new design era for coordinating data processing
distributed over ensembles of cooperating processors, con-
figured into networks.

Software engineering for operating systems developed
layered structuring of systems, top-down design, structured
programming, disciplined synchronization (e.g., semaphores)
for cooperating processes, and research into proof-of-program-
correctness methods. Today’s era of network architectures,
which are specifications of the message formats and inter-
action protocols for services provided within networks, has
had the need for additional design innovations for the changed
system context of loosely coupled system components,
disparate processor architectures, and widely dispersed groups
of people implementing a common network architecture.

This paper focuses on the evolving specification of IBM’s
Systems Network Architecture (SNA) and the formal tech-
niques developed to design, describe, and test it. A survey of
the flourishing literature on other formal techniques, developed
independently of those described here, is outside the scope
of this paper. We refer the reader to Sunshine’s extensive
survey [l] and other papers in this issue for discussions of
parallel advances.

The next section presents a brief overview of SNA. Section
I11 discusses the evolution of the architectural description of
SNA into a state-oriented meta-implementation, and the

0090-6778/80/0400-0661$00.75 0 1980 IEEE

Authorized licensed use limited to: University of Ottawa. Downloaded on February 3, 2010 at 14:10 from IEEE Xplore. Restrictions apply.

