
C O V E R F E A T U R E

0018-9162/06/$20.00 © 2006 IEEE40 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Real engineers use mathematics. Formal methods are the
mathematics of software engineering. Therefore, soft-
ware engineers should use formal methods.

Yet even with this elegant simplicity, most projects
hold formal methods at arm’s length unless they involve
the design and maintenance of critical systems.7 Some
formal techniques such as program assertions are rea-
sonably popular, but they represent only a tiny slice of
the vast formal methods pie.

Oddly, despite their spotty application, formal meth-
ods continue to appear in the trade literature.8 Appar-
ently, the software engineering community is not willing
to abandon formal methods, given the slight increase in
formal methods projects,9 but neither is it willing to
embrace them.

Perhaps revisiting our commandments might explain
this curious stalemate. Not all our colleagues agreed
with our final commandment choices, arguing that some
would not stand the test of time. Would a retrospective
prove that our colleagues were right?

I. Thou shalt choose an appropriate notation.

Notations are a frequent complaint … but the real prob-
lem is to understand the meaning and properties of the
symbols and how they may and may not be manipu-
lated, and to gain fluency in using them to express new
problems, solutions and proofs. Finally, you will culti-
vate an appreciation of mathematical elegance and style.

How have the formal methods commandments fared over the past decade? Are they still

valid in the current industrial setting, and have attitudes toward formal methods improved?

The authors revisit their 10 maxims to answer these questions.

Jonathan P. Bowen
London South Bank University

Michael G. Hinchey
NASA Software Engineering Laboratory

M ore than a decade ago, in “Ten Command-
ments of Formal Methods,” (Computer,
Apr. 1995, pp. 56-63), we offered practi-
cal guidelines for projects that sought to
use formal methods. Over the years, the

article, which was based on our knowledge of success-
ful industrial projects,1 has been widely cited and has
generated much positive feedback. However, despite this
apparent enthusiasm, formal methods use has not
greatly increased, and some of the same attitudes about
the infeasibility of adopting them persist.

In 1995, Bertrand Meyer stated that the advancement
of software requires a more mathematical approach.2

Likewise, formal methodists believe that introducing
greater rigor will improve the software development
process and yield software with better structure, greater
maintainability, and fewer errors.3

But while many acknowledge the existence of formal
methods and their continued application in software engi-
neering,4 the software engineering community as a whole
remains unconvinced of their usefulness. The myths and
misconceptions5,6 that surrounded formal methods when
we wrote our original article in large part still abound.

One misconception is the basic justification for formal
methods—that they are essential to avoid design flaws
because software is bad, unique, and discontinuous, and
testing is inadequate. Mike Holloway, a proponent of
formal methods at NASA, argues that the justification is
far simpler: Software engineers want to be real engineers.

Ten Commandments
of Formal Methods …
Ten Years Later

January 2006 41

By that time, the symbols will be
invisible; you will see straight
through them to what they
mean. — C.A.R. Hoare

Many blame the use of mathe-
matical notation for formal
methods’ slow uptake and
believe it inhibits industrial appli-
cation. The common view is that
mathematical expressions are
beyond normal comprehension.
In reality, the mathematics of for-
mal methods is based on nota-
tions and concepts that should be
familiar to anyone with a com-
puting background, such as set
theory and propositional and
predicate logics. Of course, cus-
tomers and end users would need
some training and explanation,
but the point is that formal meth-
ods notations are accessible or can be made that way.

But the first commandment addresses a larger issue
than user comprehension. “Appropriate” means that
the notation has to fit the system it is meant to describe,
which can be tricky because some systems are quite large
and complex. The more popular notations—B, Calculus
of Communicating Systems, Communicating Sequential
Processes, and Z, for example—apply to a wide range
of systems, but they are not inclusive.

Thus, larger applications often require a combination
of languages. Indeed, many argue that no single notation
will ever address all aspects of a complex system, imply-
ing that future systems will require combinations of
methods. Process algebras and logics will become par-
ticularly important as systems become more sophisti-
cated.

As Table 1 shows, the trend over the past decade
seems to support the augmenting of notations. The table
gives just a flavor of the myriad hybrid formal methods
that have emerged, strongly indicating the acceptance
of combining notations to address specific system
aspects. We see three categories of these combinations:

• Viewpoints. In this loose coupling, different nota-
tions present different system views, with each nota-
tion emphasizing a particular system aspect, such as
timing constraints.

• Method integration. In a closer coupling, several nota-
tions (both formal and informal or semiformal) com-
bine with manual or automatic translation between
notations. The idea is to provide an underlying
semantics for the less formal notations, to enable well-
understood graphical (or other) presentations, and
to offer the benefits of formal verification.

• Integrated methods. In a tight coupling, multiple
notations combine within a single framework (such
as propositional logic) to give a uniform semantics
to each notation.

A decade ago, method integration was hot, and it
seemed that integrated methods would become equally
popular. Although we see progress in integrated meth-
ods,10 the viewpoints approach is the only one that
seems to have gained ground. Perhaps this is because of
industry’s reluctance to take up full formal proofs,
which the more tightly coupled approaches would sup-
port. But it could also be its general unwillingness to
become preoccupied with semantic details.

This unwillingness underlines another misconception—
in reality, an appropriate notation can hide unnecessary
detail and complexity, and this is a major benefit of for-
mal methods, not a liability. Developers are not only free
to concentrate on the essential issues, but they also gain
a richer understanding of the system to be developed.

Because formal specifications will often be signifi-
cantly shorter than their implementation, they are likely
to be more understandable. Some argue that a formal
specification must be significantly shorter, but we dis-
agree. The use of formal methods and formal specifica-
tion techniques can highlight problems or issues that
developers might not see at the coding level. In this case,
even a longer formal specification is valuable.

II. Thou shalt formalize but not overformalize.

Strange as it seems, no amount of learning can cure stu-
pidity, and formal education positively fortifies it. —
Stephen Vizinczey

Table 1. A sampling of hybrid formal methods since 1995.

Name Combines Advantage

CSP-OZ Z, CSP Combines Z and CSP
Object Z Z, object-oriented principles, Adds object orientation to Z

temporal logic
PiOz Object-Z, π-calculus Adds π-calculus-style dynamic communication

capabilities to Object-Z
Temporal B B, temporal logic Adds time to the B method
Timed CSP CSP, time Adds time to CSP
TLZ Z, TLA Adds temporal aspects plus fairness

constraints to Z specification
WSCCS CCS, probability Adds probabilistic constraints to CCS

specifications
ZCCS Z, CCS Combines CCS process algebra and

state-based aspects of Z

CCS: Calculus of Communicating Systems; CSP: Communicating Sequential Processes; OZ: Object-Z;

TLA: Temporal Logic of Actions; WSCCS: Weighted Synchronous CCS

42 Computer

In our original article, we advised projects to distin-
guish between using formal methods appropriately and
formalization just for the sake of it. In some areas, such
as user interface design, projects could apply formal
methods, but doing so might not be the best choice.

In fact, a prominent myth (and one we listed in “Seven
More Myths of Formal Methods,”5) is that formal meth-
ods people always use formal methods. In reality, many
highly publicized projects proclaimed as great formal
methods successes formalized only 10 percent or less of
the system.

Ten years ago, we noted the dearth of toolsets for
most formal methods. Not much has changed, al-
though Perfect Developer by Escher Technologies (www.
eschertech.com/products/) and Atelier-B from ClearSy
(www.atelierb.societe.com/contact_en.htm) are attempts
to develop such tools.

Escher Technologies has even partially applied Perfect
Developer to the tool’s own redevelopment (for all but the
graphical user interface), proving around 95 percent of
the approximately 130,000 verification conditions the

tool generated. For development
of simpler systems, it has been
used to achieve 100 percent
proof checking of the verification
conditions. Mistakes are often
found to be caused by under-
specification in practice. The
Spark toolset from Praxis High
Integrity Systems (www.praxis-
his.com/sparkada/) is another
example of applying an industrial
formal methods tool to itself.

The formal methods community seems to have taken
the warning not to overformalize somewhat to heart,
and there is now more widespread belief that it’s best to
use formal methods as needed, mainly for key product
parts. Cliff Jones introduced “formal methods light,”
which approximates Level 0 of the three formalization
levels in Table 2 (taken from our 1995 article).

Even Level 0 formality can accrue many benefits
because the importance of getting requirements right at
the outset cannot be overstated. Figure 1 shows a graph
of investment in the requirements phase of NASA pro-
jects and missions plotted against the cost of project
overruns. The obvious “demand curve” emphasizes that
getting requirements right has major payback later—or,
conversely, that not getting requirements right will come
back to haunt you.

The use of mathematically based approaches has great
potential to help eliminate errors early in the design
process. It is cheaper than trying to remove them in the
testing phase or, worse, after deployment. Consequently,
it is true that using formal methods in the initial stages
of the development process can help to improve the
quality of the later software, even if formal methods are
not used in subsequent phases of development.

III. Thou shalt estimate costs.

I think that God in creating Man somewhat overesti-
mated his ability. — Oscar Wilde

When asked what they’d charge a customer for a soft-
ware project, software engineers often joke, “As much
as we can possibly get away with.” Although that’s
meant to be humor, it reflects a certain mind-set that
carries over into estimating development costs, where
the strategy is often to make the best (usually highest)
estimate and then double it.

In the draft of our 1995 article, we had “guesstimate
costs” instead of “estimate,” a term we liked because a
hybrid of “guess” and “estimate,” more closely captures
the imprecision of the exercise. (It did not survive the
more precise art of copyediting, however.) Even with sev-
eral established models, among them Cocomo II, cost
estimation is far from a science. Development costs some-

0 5 10 15 20

200

160

80

40

0

120

Requirements cost/program cost (percent)

Ta
rg

et
 c

os
t o

ve
rr

un
 (p

er
ce

nt
)

Figure 1. Costs during the requirements phase of NASA projects
versus project overrun costs.The curve shows the savings of
getting requirements right and the price of getting them
wrong. Courtesy of W. Gruhl, NASA Comptroller’s office.

Table 2. Formalization levels.

Level Name Involves

0 Formal specification Using formal notation to specify requirements
only; no analysis or proof

1 Formal development/verification Proving properties and applying refinement
calculus

2 Machine-checked proofs Using a theorem prover or checker to prove
consistency and integrity

times grandly exceed estimates: The Darlington power
plant and Space Shuttle software had cost overruns that
were significantly more than anyone could have foreseen.
It was for that reason that we strongly advocated both
initial and continuous cost estimation—and we still do.

Research shows that organizations spend 33 percent
to 50 percent of their total cost of ownership (TCO)
preparing for or recovering from failures.11 Hardware
costs continue to fall, yet TCO continues to rise, and
system availability (and hence reliability) is taking a hit.
In this light, any cost estimates could be unrealistic,
understated, or even unrealistically understated.

However, we still firmly believe in having a cost esti-
mate as well as some idea of anticipated costs if a team
elects to forego formal methods. A cost estimate is essen-
tial for convincing the development communities—both
software and hardware—that formal methods can
indeed produce better systems for less.

IV. Thou shalt have a formal
methods guru on call.

An expert is a person who has made
all the mistakes that can be made in a
very narrow field. — Niels Bohr

Part of what we found in our ini-
tial research is that most successful
projects had regular access to a formal methods expert.
Many had several gurus to guide and lead the formal
development process and advise on complex aspects.
Occasionally, such experts were able to compensate for
the development team’s lack of experience in applying
formal methods.

But access to an expert outside the team is not enough
to ensure success. All team members must understand
the applicability of formal methods and contribute to
rather than inhibit their application. It is too easy for
team members, on either the management or technical
side, to prevent effective formalization.

Formal methods require the right mix of effort, exper-
tise, and knowledge. Although not every team member
needs the same formalization proficiency, at the very least,
all must appreciate what formal methods can achieve.

A formally verified program is only as good as its spec-
ification. If the specification does not describe what the
team truly wants, even a fully formally developed system
will be little more than useless. A team that doesn’t
understand formal methods has only a notion of what
they specified using a formal notation and is unclear
about how to refine the development process will almost
certainly sink the project. Perhaps this is why some quar-
ters are skeptical about the benefits of formal methods.

So we stand by this commandment, although if we
were writing the article today, we might tweak it a bit to
read, “Thou shalt have both a formal methods guru and

a domain expert from the outset.” Our experience with
industrial projects over the past decade has highlighted
the importance of having both kinds of experts early on.3

V. Thou shalt not abandon thy traditional
development methods.

A great many of those who ‘debunk’ traditional ...
values have in the background values of their own which
they believe to be immune from the debunking process.
— C.S. Lewis

The software engineering community persists in
embracing fads. Each new notation or technique seems
to have the unwritten guarantee of painless success. This
is a dangerous mind-set, particularly when the notational
flavor of the month becomes an additional source of
problems, not a magical solution. The Unified Modeling

Language, which has become ubiq-
uitous in industrial applications over
the past decade, is a case in point.
UML has some serious flaws, such
as its lack of formality and scant
guidance on applying the newer
graphical notations.

Fortunately, the UML community
has recognized the need to address
the first flaw. Formal methods

research has spent some time considering formalization
in the context of UML, which has led to the formation
of the precise UML (pUML) group. There is also work
at the University of Southampton on the tool-based inte-
gration of the B-Method, a formal approach, and UML.
Such improvements are likely to show up in future UML
developments.

Another caveat to using UML is that it essentially stan-
dardizes several existing and emerging graphical nota-
tions for system specification. Many of these notations
have been around since the 1970s, with only slight vari-
ations in their representation, but a wide variety of new
graphical notations have recently joined the list. Some of
these are there for good reason; others, because they had
support from particular quarters. Unfortunately, UML
tends to deemphasize the particular development
method, so although it provides a range of notations, it
gives no guidance for what notations fit best with which
system types, which notations conflict when combined,
and which notations are good complements.

To be fair, most formal methods and most formal
approaches to software or hardware development also
fail to address development’s methodological aspects.
Because they have a specification notation and a rea-
soning mechanism, formal methods are truly formal.
However, they are not truly methodical because they
don’t offer defined ordered steps and guidance for
moving between them. Recent formal approaches like

January 2006 43

Access to an expert
outside the team

is not enough
to ensure success.

44 Computer

Formal methods demand quality documentation,
some of which can be automated, but someone must
fully explain formal specifications so that they are under-
standable to both nonspecialists and those working on
the specification after its initial development. Someone
must also record the reasons for various specification,
design, and decomposition decisions as a courtesy to
future developers.

In addition to the benefits of abstraction, clarification,
and disambiguation, which accrue from the use of for-

mal methods at Level 0 in Table 2,
using formal methods at the formal
specification level provides invalu-
able documentation. Experience has
shown that quality documentation
can greatly assist future system main-
tenance. In fact, several collaborative
European projects have involved the
documentation of legacy systems or
reverse engineering.

All development involves iteration, and documenta-
tion must reflect that. Often, when engineers change the
system implementation, they neither record that change
nor update the related documentation. True formal
development would use formal methods to help avoid
such inconsistencies since the formal specification is part
of the documentation.

Properly documenting decisions during the formal
specification process is also important, which is why we
have always advocated augmenting formal specifications
with natural language narrative. A proper paper trail is
critical. Without it, the organization loses the benefits of
abstraction and might even lose useful information.

VII. Thou shalt not compromise
thy quality standards.

If people knew how hard I worked to get my mastery,
it wouldn’t seem so wonderful at all. — Michelangelo
Buonarroti

According to the National Institute of Standards &
Technology, 2002 losses from poor software quality
amounted to more than $60 billion (www.mel.nist.gov/
msid/sima/sw_testing_rpt.pdf). Software quality is still
a huge issue that no one has yet addressed adequately.
The ISO 9000 quality standards have been in force since
1994, and ISO even revised them in 2000, yet poor soft-
ware quality still plagues users. Standards could be cru-
cial in changing this destructive trend.

Standards are also critical in high-integrity areas like
safety- and security-critical applications. For example,
the IEC 61508-3 International Standard on Software
Requirements for Safety-Related Systems covers soft-
ware design, development, and verification. Obviously,
formal methods can be part of this process, but most

the B-Method have addressed this issue to some
extent.

Object-oriented techniques are also popular, and
research has produced OO extensions to formalisms,
such as Object-Z for the Z notation. Formal methods
tools, such as Perfect Developer, also target OO devel-
opment. Software engineers who develop systems with
languages such as Java might find such a tool attractive.

Other research at NASA Goddard Space Flight
Center12 is addressing how to increase formality in
model-based development and in
requirements-based programming.
The latter approach aims to trans-
form requirements into executable
code systematically and has many of
automatic programming’s advan-
tages, while avoiding its major defi-
ciency of specifying a solution rather
than the problem to be solved.

VI. Thou shalt document sufficiently.

I have always tried to hide my own efforts and wished
my works to have the lightness and joyousness of a
springtime which never lets anyone suspect the labours
it cost. — Henri Matisse

Matisse was a master of abstraction. While most artists
prepared rough preliminary drawings for their works
and then added detail, Matisse took the opposite
approach, making his preliminary drawings extremely
detailed. After he had finished working, he would have
his assistant photograph what he had done so that he
had a record of his decisions and the work he had com-
pleted. The next morning he would destroy the work,
undoing most (sometimes all) of what he had added the
previous day. Consequently, Matisse’s final works are
often highly abstract, with few lines, but all of what’s
there is essential to the representation. Perhaps the most
compelling example of this is the 1935 edition of James
Joyce’s Ulysses, which Matisse illustrated without even
having read it (using Homer’s Odyssey as a basis instead).

In an attempt to combine abstract documentation with
concrete programs, Donald Knuth introduced the idea
of literate programming. Using this style, programmers
connect code fragments to relevant documentation in a
way that justifies coding (and hence design) decisions.
Literate programming would seem to be an excellent fit
with the use of formal methods, since it could also asso-
ciate code with the relevant formal specification frag-
ments, as well as the requirements that drive those
fragments. However, industry did not act on that asso-
ciation. Instead, attempts to build literate programming
tools led to the development of extreme programming
(XP), which provides little documentation and empha-
sizes product development and frequent releases.

Someone must record
the reasons for various

specification, design, and
decomposition decisions.

standards merely suggest that a project could use such
methods—they don’t mandate use. The onus is on the
developer to demonstrate that using formal methods
makes sense and is worthwhile.

Safety and security standards continue to drive formal
methods use at the highest levels of integrity, and this
trend is likely to continue. In the UK, for example, the
two-part Defence Standard 00-55 from the Ministry of
Defence, which regulates defense contracts, has a man-
date in the “Requirements” section of part 1 (italics are
ours): “Assurance that the required
safety integrity has been achieved is
provided by the use of formal meth-
ods in conjunction with dynamic test-
ing and static analysis.” The standard
also mandates formal methods use
for safety-related software: “The
methods used in the SRS develop-
ment process shall include …: a) for-
mal methods of software specifica-
tion and design; …” Finally, the “Guidance” section in
part 2 mentions formal methods in many places and
includes an explicit section under “Required Methods.”

However, even standards that mandate formal meth-
ods use are not enough to ensure quality. Formal meth-
ods practitioners must also adhere to quality standards
in the development processes—not only standards for
various specification notations (such as Z), but also stan-
dards that reflect best practice in software development.
Following such standards is the best way to ensure cor-
rectness, regardless of whether someone deems that soft-
ware critical. Formal methods are meant to complement
existing quality standards, not supplant them.

Standards documentation itself can use formality, as
does the documentation for Prolog, and even formal
notations can have associated standards—there are ISO
standards for LOTOS, VDM, and Z, for example. ISO
approved the Z standard in 2002 after nearly a decade
of production. Progress was slow and painstaking in
part because much effort centered on formalizing a
revised version of Z notation. On the other hand, the
process did reveal some semantic inconsistencies, so at
least in that context it was a success. Regardless of view-
point, there are lessons for any future efforts to produce
a formal method standard.

VIII. Thou shalt not be dogmatic.

… And I am unanimous in that! — Mollie Sugden, a.k.a.
Mrs. Slocombe, in “Are You Being Served?” BBC TV
(1972–1985)

Perhaps one of the worst misconceptions about for-
mal methods is that they can guarantee correctness.5

They can certainly offer greater confidence that an orga-
nization has correctly developed the software or hard-

ware, but that’s all. In fact, it is absurd to speak of cor-
rectness without referring to the system specification.5 If
the organization has not built the right system (valida-
tion), no amount of building the system right (verifica-
tion) can overcome that error. In an investigation of
failed safety-critical systems, one study found nearly
1,100 deaths attributable to computer error.13 Many of
these errors stemmed from poor or no specifications,
not an incorrect implementation.

The danger for many projects is the analysis-specifi-
cation gap—the space between what
is in the procurer’s mind (real-world
entities) and the writing of the spec-
ification (notation software profes-
sionals choose, either formal or
informal). Formal methods—with
only a few exceptions—offer very lit-
tle or no methodological support to
close this gap.

The solution for some is to use less-
formal methods or formal methods augmented with
methods that offer greater development support. The
argument is that such adaptations would be more intu-
itive to users.

Model-based development aims to address this by
placing great emphasis on getting an appropriate model
of reality. Likewise, requirements-based programming
is attempting to fully integrate requirements in the devel-
opment process. Both these approaches reduce the
analysis-specification gap by ensuring that what is spec-
ified (and ultimately implemented) is a true reflection of
real-world requirements.

IX. Thou shalt test, test, and test again.

I believe the hard part of building software to be the
specification, design and testing of this conceptual con-
struct, not the labor of representing it and testing the
fidelity of the representation. — Frederick P. Brooks Jr.

Largely because of formal methods research in the
1960s (before the community had even coined the term),
most programs include assertions. The intent of asser-
tions was to prove programs correct, and, at that time,
most people believed this was all that formal methods
were supposed to do.5 Now, testers use assertions to
check if a program’s state is correct during runtime.
Promising research, centered on the Java Modeling
Language, is attempting to broaden the use of assertions
to include formal verification as well.

Perhaps some day, a verifying compiler, such as the
one Tony Hoare proposed, will be able to verify asser-
tions at compile-time rather than at runtime, eliminat-
ing the need to use assertions in testing. A current
computer science Grand Challenge proposes the devel-
opment of such a compiler over the long term.

January 2006 45

Even standards that
mandate formal methods

use are not enough
to ensure quality.

46 Computer

For the near term, the use of formal methods to
improve testing has much potential. A formal specifica-
tion can aid automatic test-case generation, but the time
required to produce a formal specification could be far
greater than the time saved at the testing stage. In the
UK, researchers are using the Fortest (Formal Methods
and Testing) network as a framework (www.fortest.org.
uk) to investigate the tradeoffs.

Formal methods also have potential use in clarifying
test criteria. The MC/DC (Modified Condition/Decision
Coverage) is a criterion in many safety-related applica-
tions and standards recommendations, such as the
RTCA/DO-178B, Software Considerations in Airborne
Systems and Equipment Certification. The criterion is
normally defined informally, but the Centre for Applied
Formal Methods at London South Bank University has
investigated its meaning formally using Z notation and
has developed an even stricter criterion.

Although we see formal methods making some
inroads into software testing, application is challenging
because software is unique in many ways:

• Even very short programs can be complex and dif-
ficult to understand.

• Software does not deteriorate with age. In fact, it
improves over time because engineers discover and
correct latent errors, but the same error correction
can introduce defects.

• Changes in software that appear to be inconsequen-
tial can result in significant and unexpected problems
in seemingly unrelated parts of the code.

• Unlike hardware, software cannot give forewarnings
of failure. Many latent errors in software might not be
visible until long after the organization has deployed
the software.

• Software lends itself to quick and easy changes.

The last characteristic does not translate into quick
and easy error location and correction. Rather, organi-
zations must use a structured, well-documented devel-
opment approach to ensure comprehensive validation.

We would never claim that formal methods can or even
should eliminate testing. Quite the contrary: The use of
formal methods can reduce the likelihood of certain
errors or help detect them, but formal methods must
partner with appropriate testing.

X. Thou shalt reuse.

The biggest difference between time and space is that
you can’t reuse time. — Merrick Furst

Traditionally, organizations have encouraged reuse as
a way to reduce costs and boost quality. The idea is to
then spend more time improving the quality of compo-
nents targeted for reuse. Both OO and component-based
paradigms exploit the idea of reuse.

Theoretically, formal methods can and should aid in
promoting software reuse. One inhibitor to the uptake
of software reuse is the inability to identify suitable com-
ponents in a library and to develop libraries of compo-
nents that are large enough to give a reasonable return,
yet small enough to be broadly reusable.

For some time, practitioners have recognized that they
can make searching more effective by having formal
specifications of components or at the very least of their
pre- and postconditions. (Preconditions specify when to
apply the component; postconditions describe the results
of using it.) Supplying such conditions lets the compo-
nent remain a black box, which in turn means that the
component is much larger and therefore could have a
more significant payoff in reuse.

There are significant returns in applying reuse at the
formal specification level. Formal specifications are typ-
ically shorter than the equivalent implementation in a
programming language. Figure 2 provides a compari-
son of the potential size explosion as development pro-
ceeds from specification to hardware implementation.
It is obviously easier to search for larger components,
while simultaneously getting a sufficient return. Along
the same lines, formal specifications could help identify
reusable design patterns.

25 lines of informal requirements

250 lines of (formal) specification

2,500 lines of design description

25,000 lines of high-level program code

250,000 machine instructions of object code

2,500,000 transistors in hardware

Figure 2.The size explosion as development progresses (numbers are hypothetical).

Another way formal specifications can
support reuse is in generating implementa-
tions on various platforms. This approach
essentially reuses the effort expended at ear-
lier development stages and thereby reduces
overall cost. The literature reports the suc-
cessful application of formal specification
techniques to developing software product
lines—systems (or products) that have only
slight variations. Moreover, formal methods
generally result in a cleaner architecture,
making a system more efficient and more
easily maintainable.

Reusing and porting software is not with-
out pitfalls, however. Ariane 5 is a prime
example. Its developers assumed that they
could reuse the launch software from Ariane
4. Their assumption resulted in a rocket loss
within seconds of launch.

The Therac-25 incidents are arguably the
most significant failure of software assurance
in a medical or biological application.
Therac-25 was a dual-mode linear accelera-
tor that could deliver either photons at 25
MeV or electrons at various energy levels. It
was based on Therac-20, which in turn was
based on the single-mode Therac-6. The
Therac-20 included hardware interlocks for
safety, but in Therac-25 these interlocks were
software-based. Despite several Therac-25
machines operating, reportedly correctly, for
up to four years at various US installations,
in six separate incidents the device administered lethal
doses of radiation to patients.

Subsequent investigations of both Therac-20 and
Therac-25 revealed a software error that caused the
machines to act erratically. Students at a radiology
school had creatively set parameters that caused the
Therac-20 machines to shut down after blowing fuses
and breakers. The failures were bothersome, but cer-
tainly not life-threatening. However, when the same
error perpetuated to Therac-25, which did not have
mechanical interlocks, the problem became fatal. If the
developers of Therac-25 had fully checked the software
using formal methods, possibly, they might have real-
ized the significance of this error.

T en years later, we are surprised to find that the orig-
inal formal methods commandments are still valid.
The use of formal methods is not as prevalent as we

had hoped, but we are more certain that formal
approaches will always have a niche in computer-based
systems development, especially when correct function-
ing is critical.14 As the “Looking Ahead” sidebar
describes, the next 10 years should see some significant

progress in integrating formal methods and traditional
development practices.

Like any approach, formal methods work best when
applied judiciously. It makes the most sense to use them
for the software that performs critical operations, but
any application should be part of sound engineering
judgment that considers both technical feasibility and
economics. For such efforts, well-trained personnel of
the highest quality will always be needed.

The rewards can be considerable with the right com-
bination of knowledge and expertise, but formal meth-
ods are not a panacea. Some, especially those in
academia, have oversold formalism’s ability. Given that
people must apply formal methods, they will never be
completely reliable. The logical models must relate to
the real world in an informal leap of faith both at the
high-level requirements or specification end and at the
low-level digital hardware end (which requires belief in
Maxwell’s equations, for example).

More effort must be devoted to evaluating the effec-
tiveness of formal methods in software development and
maintenance. Hopefully, we have raised issues that oth-
ers will find worth exploring. Because of the somewhat
tarnished reputation of formal methods, largely due to

January 2006 47

Looking Ahead
Industrial-strength tools for formal methods have always been lack-

ing. A few exist—notably,Atelier-B and Perfect Developer—but the
demand for a range of compatible tools is growing. In the next 10 years,
tool support for formal methods will become critical. Some collabora-
tive efforts that are headed in this direction include

• CZT Community Z Tools initiative (czt.sourceforge.net);
• European Rodin Project, an open development environment for

complex systems based on B# (/rodin-b-sharp.sourceforge.net);
• development of the B-Method,which includes a free version (www.

b4free.com); and
• Higher Order Logic (HOL) 4 theorem prover (hol.sourceforge.net).

Hopefully, such tool advances will make formal methods easier to jus-
tify and use in an industrial context.

Online documentation is also becoming increasingly important.The
Virtual Library formal methods Web site (vl.fmnet.info), established
more than a decade ago, continues to be a central resource for formal
methods information. More recently,Wikipedia, an online encyclope-
dia,has included increasingly useful information on formal methods and
related topics.This could be the path for a repository of collaboratively
maintained online information.Another path is the effort of the UK
Grand Challenge 6 Committee on Dependable Software Evolution,
which is planning a verified software repository through the recently
funded VSR-net network.Those who want real software to challenge
their tools can deposit examples of formally verified software and asso-
ciated tools for general use.

48 Computer

misunderstandings and inappropriate use, a demon-
stration of how and where formal methods are effective
would be well worth the effort.

There are continuing success stories in the industrial
use of formal methods,7 and the approach remains in the
eye of the press.8 Studies will help practitioners under-
stand how to ensure that the introduction of formal
methods has a positive impact on the software develop-
ment and maintenance process by reducing overall costs.

Above all, formal methodists must have patience.
Sculptor Théophile Gautier once said, “L’ouvre sort
plus belle, d’une forme au travail rebelled vers,” which
translates roughly to “The work is more beautiful from
a material that resists the process.” If that is true, then
formal methods use will eventually emerge in near-per-
fect form. ■

Acknowledgments
We are grateful to our many colleagues and friends

who provided us with valuable feedback and reactions
to our original article. We also acknowledge the contri-
butions of the formal methods community as a whole
and thank them for providing us with material on which
to base the original commandments. In particular, we
thank David Atkinson, Jin Son Dong, Cliff Jones,
Tiziana Margaria, Jim Rash, Chris Rouff, Roy Sterritt,
and Bernhard Steffen for their input.

Special thanks go to Tiziana Margaria and Mieke
Massink, co-chairs of FMICS 2005, and George
Eleftherakis, chair of SEEFM 2005, for inviting earlier
conference presentations of this material, in the former
case rather aptly to coincide with the 10th anniversary
of FMICS. Thanks also to Scott Hamilton for encour-
aging us to revisit the commandments 10 years after the
original paper.

References
1. M.G. Hinchey and J.P. Bowen, eds., Applications of Formal

Methods, Prentice Hall Int’l Series in Computer Science, 1995.
2. D. Power et al., “Where Is Software Headed? A Virtual

Roundtable,” Computer, Aug. 1995, pp. 20-32.
3. M.G. Hinchey, “Confessions of a Formal Methodist,” Proc.

7th Australian Workshop on Safety-Critical Systems and Soft-

ware (SCS 02), P. Lindsay, ed., Conferences in Research and
Practice in Information Technology, vol. 15, Australian Com-
puter Soc., 2002, pp.17-20.

4. K.-K. Lau and R. Banach, eds., Formal Methods and Software
Eng., LNCS 3785, Springer-Verlag, 2005.

5. J.P. Bowen and M.G. Hinchey, “Seven More Myths of For-
mal Methods,” IEEE Software, July/Aug. 1995, pp. 34-41.

6. J.A. Hall, “Seven Myths of Formal Methods,” IEEE Software,
Sept./Oct. 1990, pp. 11-19.

7. P.E. Ross, “The Exterminators,” IEEE Spectrum, Sept. 2005,
pp. 36-41.

8. R. Sharpe, “Formal Methods Start to Add Up Again,” Com-
puting, Jan. 2004; www.computing.co.uk/features/1151896.

9. M.G. Hinchey and J.P. Bowen, eds., Industrial-Strength For-
mal Methods in Practice, FACIT Series, Springer-Verlag, 1999.

10. J.M.T. Romijn, G.P. Smith, and J.C. van de Pol, eds., Inte-
grated Formal Methods, LNCS 3771, Springer-Verlag, 2005.

11. D.A. Patterson et al., Recovery-Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies, tech.
report, UCB//CSD-02-1175, Computer Science Dept., Univ.
of Calif. Berkeley, 2002.

12. M.G. Hinchey, J.L. Rash, and C.A. Rouff, “Requirements to
Design to Code: Towards a Fully Formal Approach to Auto-
matic Code Generation,” NASA tech. monograph TM-2005-
212774, NASA Goddard Space Flight Center, 2005.

13. D. MacKenzie, Mechanizing Proof: Computing, Risk, and
Trust, MIT Press, 2001.

14. J.P. Bowen and M.G. Hinchey, “Ten Commandments Revis-
ited: A Ten-Year Perspective on the Industrial Application of
Formal Methods,” Proc. 10th Workshop on Formal Methods
for Industrial Critical Systems (FMICS 2005), ACM Press,
2005, pp. 8-16.

Jonathan P. Bowen is a professor of computing at London
South Bank University’s Institute for Computing Research.
His research interests include software engineering in gen-
eral and formal methods in particular. Bowen received an
MA in engineering science from Oxford University. He is a
member of the ACM and the IEEE and a Fellow of the
British Computer Society and the Royal Society of Arts.
Contact him at www.jpbowen.com or jonathan.bowen@
lsbu.ac.uk.

Michael G. Hinchey is director of the NASA Software Engi-
neering Laboratory at NASA Goddard Space Flight Cen-
ter and affiliate professor at Loyola College in Maryland.
His research interests include software engineering in gen-
eral and formal methods, particularly their application to
complex autonomous, autonomic, and biologically inspired
systems. Hinchey received a PhD in computer science from
the University of Cambridge. He is a Fellow of the British
Computer Society, the IEE, the Institute of Engineers of
Australia, and the Institute of Mathematics and Its Appli-
cations and a senior member of the IEEE. Contact him at
sel.gsfc.nasa.gov or michael.g.hinchey@nasa.gov.

Not a member?

Jo in on l i ne today !

www.computer.org/join

