
Seven More
Myths of
Formal
Methods

n 1990, Anthony Hall pub-
lished a seminal article that listed and

JONATHAN P. BOWEN, Oxford University
MICHAEL G . HINCHEY, University of Carnhdge

believe that formal methods are merely
an academic exercise - a form of men-

e New myths aboutformal
methods are gaining tacit
acceptance both outside and
inside the system-development
community. The authors address
and dispel these myths based on
their observations of industrial
prdects.

main one of the most contentious areas
of software-engineering practice.

In essence, a formal method is a
mathematically based technique for de-
scribing a system. Using formal meth-
ods, people can systematically specify,
develop, and verify a system. However,
as we show in the box on page 37, basic
definitions of formal methods and re-
lated terms are somewhat confused.

What is clear is that despite 2 5 years
of use, few people understand exactly

press” science journals, formal methods
are subjected to either deep criticism or,
worse, extreme hyperbole.

Many of Hall’s myths were - and we
believe to a certain extent still are -
propagated by the media. Fortunately,
today these myths are held more by the
public and the computer-science com-
munity at large than by system develop-
ers. It is our concern, however, that new
myths are being propagated, and more
alarmingly, are receiving a certain tacit

3 4 07407459/94/$04 Cl3 Q1 1994 IEEE J U L Y 1995

I + -
~

I

I
1

myths in the box on this page and, fol- j will likely provide more useful data.
lowing his lead, we address and dispel i Despite these difficulties, there have
seven new myths about formal methods. 1 been some very successful formal-meth-

I ods projects in which development time
was significantly reduced. The Inmos

MYTH 8

+ Formal metho& delry the da’efopment
process.

Several formal-methods projects have
run notoriously over schedule. However,
to assume this is a problem inherent in
formal methods is irrational. These pro-
jects were delayed not because formal-
methods specialists lacked ability, but be-
cause they lacked experience in determin-
ing how long development should take.

Estimating project cost is a major
headache for any development team. If
you follow the old adage, “estimate the
cost and then double it,” you’re still
likely to underestimate. Determining
development time is equally difficult (in
fact, the two areinevitably intertwined).
A number of models have been devel-
oped to cover cost- and development-
time estimation. Perhaps the most fa-
mous is Barry Boehm’s Cocomo model,’
which weights various factors according
to the organization’s history of system
development. Herein is the crux of the
problem.

Any successful model of cost- and de-
velopment-time estimation must be
based on historical information and de-
tails such as levels of experience and fa-
miliarity with the problem. Even with
traditional development methods, this
information is not always available.
Historical information about projects
that used formal development tech-
niques is likely to be even more scarce,
because we have not yet applied formal
methods to a sufficient number of pro-
jects. Surveys of formal development’*’
and highlights of successes, failures, hin-
drances, and so on, will eventually pro-
vide us with the information we require.

Many of the much-publicized formal-
methods projects have been in very spe-
cialized domains, producing data that is
of limited use. Future work with more
conventional developments and applica-
tions in domains such as process control

T800 floating-point unit chip, produced
using Z and the Occam Transformation
System, was finished 12 months ahead of
schedule, and the application of 2 (and
more recently B) to IBM’s CICS system
resulted in a 9 percent savings in devel-
opment costs.

+ Foimal methods lack tools.
Just as in the late 1970s and early

1980s, when CASE and computer-aided
structured-programming tools were seen
as a way to increase programmer pro-

ductivity and reduce “bugs,” tool support
is now seen as a way to increase produc-
tivity and accuracy in formal develop-
ment. Many projects place great empha-
sis on tool support.’ This is by no means
coincidental, but rather follows a trend
that we expect will result in integrated
workbenches to support formal specifi-
cation, just as CASE workbenches sup-
port system development using more
traditional structured methods.

Several formal methods incorporate
tool support within the method itself. In
this category are specification languages
with executable subsets (such as OBJ)
and formal methods that incorporate
theorem provers as a key component,
such as Larch (with the Larch Prover),
Nqthm (successor to the Boyer-Moore
prover), and higher order logic (sup-
ported by HOL and more recently, the

HALL’S MYTHS REVISITED

In 1990, Hall articulated and dispelled the following myths about formal

+ Myth 1 : F m l methodr can guarantee that software a perfkct.
+ Myth 2 : Fonnal methods are all abaut program prming.
+ Myth 3: Fonnal methd are mly usejklfbr safety-critzcaf ~stm.
+ Myth 4: Fonnal methodr require highly trained mathematicians.
+ Myth 5: F m l methodr increase the cost ofdevelopment.
+ Myth 6: Fonnal methodr are unacceptabfe to men.
+ Myth 7 : F m t methodr are not rued on real, large-scale software.
Myths that formal methods can guarantee perfect software and eliminate the

need for testing (Myth 1) are not only ludicrous, but can have serious ramifications
in system development if naive users of formal methods take them seriously.

Although claims that formal methods are all about proving programs correct
(Myth 2) and are only useful in safety-critical systems (Myth 3) are untrue, they are
not quite so detrimental. A number of successful applications in non-safety-critical
domains have helped to clarify these points.

The derivation of many simple formal specifications of complex problems, and
the successful development of several formal-methods projects under budget have
sewed to c.llspel the myths that the application of formal methods requires highly
trained mathematicians (Myth 4) and increases development costs (Myth 5). The
successful pa1-ticipati011 of end users and other nonspecialists in system develop-
ment with formal methods has ruled out the myth that formal methods are --
ceptable to users (Myth 6). The successful appkation of formal methods to several
large-scale, complex systems - many of which have received much media atten-
tion - should put an end to beliefs that formal methods are not used on real
large-scale systems (Myth 7) .

methods,

PVS Prototype Verification System).
Many basic tools are widely available

today. For example, Z is supported by
ZTC, a PC- and Sun-based type-check-
ing system available via anonymous file-
transfer protocol for noncommercial
purposes, and by Fuzz, a commercial
type-checker that also runs under Unix
and DOS. More integrated packages
thatsupport typesetting and specification
integrity checking include
Log& Cambridge’s Form-
aliser (for Microsoft Win-
dows), Imperial Software
Technology‘s Zola (which
also incorporates a tactical
proof system), and York
Software Engineering’s
Cadiz (a tool suite for 2
that now supports the re-
finement to Ada code). The

specifications and refinement. These en-
vironments will also support specifica-
tion animation, proof of properties, and
proofs of correctness. Such toohts will
be integrated so that, like integrated pro-
gramming-support environments, they
will support both version control and
configuration management and devel-
opment by larger teams. They will also
facilitate more harmonious development

by addressing all of the de-

l NTEGRATI NG
FORMAL AND
STRUCTURED
METHODS CAN
OFFER FULL
CYCLE SUPPORT.

Mural system, developed
at University ofManchest-
er, supports the construction of VDM
specifications and refinements; using the
proof assistant, users can generate proof
obligations to verify the internal consis-
tency of specifications. FDR, from For-
mal Systems Europe, is a model- and re-
finement-checker for CSP (communicat
ing sequential processes). CRI (Computer
Resources International) produces an as-
sociated toolset for the Raise develop-
ment method @gorous Approach to In-
dustrial Software Engineering), which
is a more comprehensive successor to
VDM. Finally, ICL’s ProofPower uses
higher order logic to support specifica-
tion and verification in Z.

Perhaps motivated by the ProofPower
approach, much attention has been fo-
cused on tailoring various “generic” the-
orem provers for use with model-based
specification languages like 2. Although
an implementation in OBJ seems to be
too slow, success has been reported with
HOL and EVES, a toolset based on
Zermelo-Fraenkel set theory.

In the future, we expect more em-
phasis to be placed on integrated formal-
development support environments,
which are intended to support most for-
. mal-development stages, from initial
functional specifications through design

(I

36

velopment-process activities.
Such environments do not as
yet exist, but several toolkits
represent steps in the right
direction.
IFAD’s VDM-SL Toolbox
supports formal develop-
ment in VDM-SL and in-
cludes, as you might expect,
standard type checkers and ._
static semantics checkers.
Developers enter VDM-SL

specifications in ASCII. An interpreter
supports all of the executable constructs
of VDM-SL, allowing a form of anima-
tion and specification “testing.” The ex-
ecuted specifications can be debugged
using an integrated debugger, and testing
information is automatically generated.
Finally, a pretty-printer uses the ASCII
input to generate VDM-SL specifica-
tions in LaTex format.

The B-Toolkit, from B-Core, is a set
of integrated tools that augment Abrial’s
B-Method and the associated B-Tool for
formal software development by address-
ing industrial needs in the development
process. Many believe that B and the B-
Method represent the next generation of
formal methods; if this is true, then B and
similar toolkits will certainly form the
basis of future formal-development envi-
ronments.

MYTH 10

+ Formal methods replace traditional
engineering design methods.

One of the major criticisms of formal
methods is that they are not so much “me-
thods” as formal systems. Although they
provide support for a formal notation (for-

mal specification language), and some
form of deductive apparatus (proof sys-
tem), they fail to support many of the
methodological aspects of the more tradi-
tional structured-development methods.

In the context of an engineering dis-
cipline, a method describes how a process
is to be conducted. In the context of sys-
tem engineering, a method consists of an
underlying development model; a lan-
guage or languages; defined, ordered
steps; and guidance for applying these in
a coherent manner.6

Many so-called formal methods do
not address all of these issues. Although
they support some of the design princi-
ples of more traditional methods - such
as top-down design and stepwise refine-
ment - they place little emphasis on the
underlying development model and pro-
vide little guidance as to how develop-
ment should proceed. Structured-devel-
opment methods, using a model such as
Boehm‘s spiral model, on the other hand,
generally support all stages of the system
life cycle from requirements elicitation
through postimplementation mainte-
nance. In general, these underlying mod-
els recognize the iterative nature of sys-
tem development. However, many
formal development methods assume
that specification is followed by design
and then by implementation, in strict se-
quence. This is an unrealistic view of de-
velopment - every developer of com-
plex systems must revisit both the
requirements and the specification a t
much later stages in development.

Although Hall disputes the myths
that formal methods are unacceptable to
users and require significant mathemat-
ical ability, more traditional design me-
thods excel at requirements elicitation and
interaction with users. They offer nota-
tions that can be understood by nonspe-
cialists and serve as the basis for a contract.

Traditional structured methods are
severely limited because they offer few
ways to reason about the validity of a
specification or whether certain re-
quirements are mutually exclusive. The
former is often only discovered after im-
plementation; the latter, during imple-
mentation. Formal methods, of course,

J U L Y 1995

allow the possibility of reasoning about
requirements, their completeness, and
their interactions.

Indeed, instead of formal methods re-
placing traditional engineering-design
methods, a major area for research is the
integration of structured and formal
methods. Such an integration leads to a
“true” development method that fully
supports the software life cycle and al-
lows developers to use more formal tech-
niques in the specification and design
phases, supporting refinement to exe-
cutable code and proof-of properties.
The result is that two views ofthe system
are presented, letting developers con-
centrate on aspects that interest them.

Some people suggest that this inte-
grated approach lets structured design
serve as a basis for insights into the formal
specification. This idea is clearly contro-
versial. Opponents argue that an ap-
proach that allows a structured design to
guide formal-specification development
severely restricts levels of abstraction and
goes against many principles of formal-
specification techniques. Proponents of
integration argue that the approach is
easier for users unskilled in formal-spec-
ification techniques, that it aids in size and
complexity management, and that it prp-
vides a way to structure specifications.

Approaches to method integration
vary from running structured and formal
methods in parallel, to formally specify-
ing transformations from structured-
method notations to formal-specification
languages.

Much success has been reported using
the former technique. The problem,
however, is that because the two meth-
ods are being addressed by different per-
sonnel, the likelihood that benefits will
be highlighted is low. In many cases, the
two development teams do not ade-
quately interact. For example, there is a
project underway at British Aerospace
using traditional and formal develop-
ment methods in parallel. The two de-
velopment teams are not permitted to
communicate, and the formal approach
will be subject to the same standards re-
views, which are certified against I S 0
9000. The project’s aim is to investigate

how formal methods might better fit into
current development practices.

More integrated approaches to in-
tegration include the translation of
SSADhl (Structured Systems Analysis
and Design Methodology) into Z as part
of the S A Z project; the integration of
Yourdon Modern Structured Analysis
and Z in a more formalized manner, and
the integration of various structured no-
tations with VDM and CSP. Although
these approaches may have great poten-
tial, unlike the parallel approach they
have yet to be applied to realistic systems.

MYTH 11

+ Foinzal method only apply to sofiwaare.
Formal methods can be applied

equally well to hardware design and soft-
ware development. Indeed, this is one of
the motivations of the HOL theorem
prover that was used to verify parts of the
Viper microprocessor. Other theorem-
proving systems that have been applied
to hardware verification include the
Boyer-Moore, Esterel, Nuprl, ZOBJ,
Occam Transformation System, and
Veritas proof tools. Model checking is
also important in checking hardware de-
signs if the state space is small enough
(and techniques like Binary Decision
Diagrams handle an impressive number
of states). Perhaps the most convincing
and complete hardware-verification ex-
ercise is Computational Logic’s FM9001
microprocessor, which has been verified
down to a gate-level netlist representa-
tion using the Boyer-Moore theorem
prover. (A netlist is a list of component
gates and their interactions.)

Inmos provides two examples of real-
world industrial use. The T800 trans-
puter floating-point unit has been veri-
fied by starting with a formalized Z
specification of the IEEE floating-point
standard. The Occam Transformation
System was then used to transform a
high-level program to the low-level mi-
crocode by means of proven algebraic
laws. More recently, parts of the new
T9000 transputer pipeline architecture
have been formalized using CSP and

DEFINING FORMAL METHODS ,

’ ‘I
Highly publicized accounts of I

formal-methods application to a I I
number of well-known systems, j / I such as the Sizewell-B nuclear
power plant in the UK, IBM’s I

‘ I

CICS system, and the most recent
Airbus aircraft, have helped bring
the industrial application of for-
mal methods to a wider audience.

However, even basic terms
such as “formal specification” are
still likely to be confusing. For
example, the following alternative
definitions are given in a glossary
issued by the IEEE:

approved in accordance with
established standards.

2. A specification written in a
formal notation, often for use in
proof of correctness.

Although the latter is accepted
in the formal-methods communi-
ty, the former may have more
widespread acceptance in industri-
al circles. A search of the abbrevi-
ation CSP in an online acronym
database cited “Commercial Sub-
routine Package,” “CompuCom
Speed Protocol,” and “Control
Switching Point,” but not “Com-
municating Sequential Processes”
-which would be the likely
choice of people working with
formal methods. Finally, a search
for VDM did reveal the term
Vienna Development Method, but
also “Virtual DOS Machine” and
“Virtual Device Metafile“ which
may or may not be desirable bed-
fellows!

Besides ambiguity in the basic
terminology, the formal notations
themselves can be confusingto
practitioners not trained in their
use, and as a result the uninitiated
might find it easier to ignore
them than to investigate further.

1. A specification written and

~ -. I

37 I E E E S O F T W A R E

FORMAL METHODS RESOURCES

separate compilation. For example, a mi-
croprocessor could be compiled into
hardware by describing the micropro-
cessor as an interpreter written in a high-
level language. Additions and changes to

' There are several
electronic distribution lists
on formal methods and
related topics, including

o Z Forum (zforum-
reques@comlab.ox.ac.uk),

+ VDM Forum
(vdm-forum-request9
mailbase.ac.uk),

(larch-interest-request@
src.dec.com), and

+ OBJ Forum
(0 bjforum-request@comla b.
ox.ac.uk).

2 Forum has spawned
comp.specification.z, an
electronic newsgroup that
is read regularly by about
30,000 people worldwide. A
newsgroup devoted to speci-
fication in general, comp.
specification, regularly gen-
erates discussions on formal
methods, as well as the more
traditional structured meth-
ods, object-oriented design,
and so on, as does the comp.
sotiware-eng newsgroup.

A retendy established
mailing list at University of
Idaho (fod-methods-re-
que.st@n.uidaho.edu) ad-
dresses formal methods
in general, rather than any
specific notation, and a new
mading l im by the 2
User Group addressCS edu-
c a t i d issues (zugeis-re-
q u d d b . o x . a c . u k) . In
addition, the newsletter

o Larch Interest Group

of the IEEE Technical Seg-
ment Committee on the
Engineering of Complex
Computer Systems (ieee-
tsc-eccs-request8cl.cam.ac.
uk) addresses issues related
to formal methods and for-
mal-methods education.

There are also anon-
ymous FTP archives for Z
(including an online and reg-
ularly revised comprehensive
bibliography). The global
World Wide Web electronic
hypertext system, which is
rapidly becoming very popu-
lar, also provides support for
formal methods. A useful
starting point is http://www.
comlab.ox.ac.uWarchive/
formal-methods.htm1 which
provides pointers to other
electronic archives concern-
ed with formal methods and
lets you download tools such
as HOL and PVS.

P d d d s . The pmceed-
ings of the Formal Methods
Europe symposiums (and
their predecessors, the VDM
symposium) arc available in

in Computer scicnn series,
w& thefmceedhgs of the
Refinement Workshops and
the last five 2 User Meetings

inger-Verlag's Wwksbops an
Cornpatkg series. Both of
these series contain the pm-

S*-V-SM Nota

have been p u b w in Spr-

ceedings of many other in-
teresting colloquiums, work-
shops, and conferences on
formal methods.

..Uthough papers on for-
mal methods are becoming
well-established a t a number
of US conferences, there is
as yet no regular conference
in the US devoted to formal
methods. The Workshop on
Industrial-Strength Formal
Specification Techniques
may represent a step in that
direction (see the report on
pp. 106-107). Although for-
mal methods are gaining
momentum in the US, the
main journals and publica-
tions devoted to formal meth-
ods are based in Europe -
and in the UK, specifically.

These include Formal
Aspects of Computing, Formal
Method in System Design
and the FACS Eumpe
newsletter run by Formal
Methods Europe and the
British Computer Society's
Special Interest Group on
Formal Aspects of Com-
puting Science, among oth-
ers. Tbe Computer3ournal,
Sofmare Engineering
Journal, and Information
and Sof;huarc Technology
regularly publish articles
on or related to formal
methods, and have run or
plan to run special issues
on the subject

As fiar as we hiow, there
are no LS journals devoted
specifically to formal meth-
ods, although some of the
highly respected journals,
such as IEEE Transactions
on Sofmare Engineering and
Journal oj'tbc ACM, and pop-
ular periodicals, such as
Compnter, IEEE Sojhare,
and Commirnications o f the
ACM, regularly publish rele-
vant articles. IEEE TSE, C m -
puter, and IEEE Softu?are co-
ordinated successful special
issues on formal methods in
1990. In January 1994, an
IEEE Software special issue
on safety-critical systems de-
voted considerable attention
to formal methods, as has a
newly launched journal,
High Integrity Systems.

COWSOS. Popular Z courses
are run by Logica Cambridge,
Praxis, Formal Systems (Eu-
rope), and Oxford University
Computing Laboratory.
About 70 percent of all in-
dustrially based formal-
methods courses focus on
the 2 notation. Formal Sys-
tems also runs a CSP course
and a CSP with 2 course, both
of which have been given in
the US as well as the UK.
IFAD in Denmark offers an
industrially based formal-
methods course using VDM
and \Tk%I++.

checked for correctness. (A collection of
papers by experts in the field covers
these applications in more detail.8)

A more recent approach to hardware
development is hardware compilation.
This allows a high-level program to be
compiled directly into a netlist of sim-
ple components and their interconnec-
tions. If required, Field Programmable
Gate Arrays allows this to be done en-
tirely as a software process, since these
devices let the circuit be configured ac-
cording to the static RAM contents
within the chip (this route is particularly

useful for rapid prototyping).
In the future, such an approach could

compilation process itself correct. In this i make provably correct hardware/soft-

of-correctness required.
It is also possible to prove that the I

ware codesign-powble. X unified proof
framework would f,icilitate the explo-
ration of design trade-offs and interac-
tions between hardw.ire and software in
a formal manner.

MYTH 12

+ Fol-mal ?iiethoLh rfi-e irnnecessa?y.
At some point o r .inother, most of us

3 a- J U L Y 1995

http://www

have heard the argument that formal
methods are not required. This is untrue.
Although there are occasions in which
formal methods are in a sense “overkill,”
in other situations they are very desir-
able. In fact, the use of formal methods is
recommended in any system where cor-
rectness is of concern. This clearly ap-
plies to safety- and security-critical sys-
tems, but it also applies to systems in
which you need (or want) to ensure that
the system will avoid the catastrophic
consequences of a failure.

Sometimes formal methods are not
only desirable, but required. Many stan-
dards bodies have not only used formal
specification languages in making their
own standards unambiguous, but have
mandated or strongly recommended the
use of formal methods in certain classes
of applications?JO

The International Electrotechnical
Commission specifically mentions tem-
poral logic and several foimal methods
(CCS, CSP, HOL, LOTOS, OBJ, VDM,
and 2) in the development of safety-crit-
ical systems. The European Space Agen-
cy suggests that VDM or 2, augmented
with natural-language descriptions,
should be used to specify safety-critical
system requirements. It also advocates
proof-of-correctness, a review process,
and the use of a formal proof before test-
ing. The UK Ministry of Defence draft
Interim Defence Standards 00-55 and
00-56 mandate the extensive use of for-
mal methods. The draft standard 00-55
sets forth guidelines and requirements
that include the use of a formal notation
in the specification of safety-critical com-
ponents and an analysis of such compo-
nents for consistency and completeness.
All safety-critical software must also be
validated and verified; this includes for-
mal proofs and rigorous (but informal)
correctness proofs, as well as more con-
ventional static and dynamic analysis.
The draft standard 00-56 deals with the
classification and hazard analysis of the
software and electronic components of
defense equipment, and also mandates
the use of formal methods.

Canada’s Atomic, Energy Control
Board has commissioned, in conjunction

. ’

with David Parnas a t McMaster Uni-
versity, a proposed standard for software
in the safety systems of nuclear-power
stations. Ontario Hydro has developed a
number of standards and procedures
within the framework set by AECB, and
more procedures are under develop-
ment. Standards and proce-
dures developed by Cana-
dian licensees mandate the
use of formal methods and,
together with 00-55, are
among the farthest reaching
at the moment.

Whether or not you be-
lieve that formal methods
are necessary in system de-
velopment, you cannot deny

cilitates briefer and more elegant speci-
fications, but it can also make reasoning
more difficult. LOTOS was standardized
in 1989, and the International Organi-
zation for Standardization has proposed
draft standards for both 2 and VDM.9
These standards set forth sound con-

structs and their associated
formal semantics, making it
easier to read other people’s STANDARDS .- . ,

specifications (assuming, of
ARE POINTLESS course, that they conform to
IF THEY DON’T the standards).

Obviously, a standard is
REFLECT TH E pointless ifit does not reflect

OPlNlO
ACTIVE

that they are indeed required
in certain classes of applica-
tions and are likely to be required more
often in the future.’

MYTH 13

Formal methods are not supported.
Once upon a time (as all good stories

start) formal development might have
been a solitary activity, a lone struggle.
Today, however, support for formal me-
thods is indisputable. If media attention
is anything to go by, interest in formal
methods has grown phenomenally, albeit
from a small base. Along with object ori-
entation, formal methods have quickly
become great buzzwords in the com-
puter industry. Long gone are the days
when lone researchers worked on devel-
oping appropriate notations and calculi.
The development of more popular for-
mal methods owes much to the contribu-
tions of many people beyond the method
originators. In many cases, researchers
and practitioners extended the languages
to support their particular needs, adding
useful (though sometimes unsound) op-
erators and data structures and extending
the languages with module structures and
object-oriented concepts.

There is a certain trade-off between
the expressiveness of a language and the
levels of abstraction that i t supports.
Making a language more expressive fa-

4s OF
JSERS.

;he opinions of active users
and the developments that
have evolved in formal meth-
ods. There are now several
outlets for practitioners to

discuss draft standards and to seek advice
and solutions to problems and difficulties
from other practitioners. Chief among
these outlets are various distribution lists,
books, periodicals, and conferences. We
list some examples of each in the box on
page 38.

Formal methods (in particular Z ,
VDM, CSP, and CCS) are taught in
most UK undergraduate computer-sci-
ence courses. Although still quite un-
common in the US, a recent NSF-spon-
sored workshop sought to establish a
curriculum for teaching formal methods
in US undergraduate programs. W e
hope this will become a regular event,
and will help to establish formal rneth-
ods as a regular component of US uni-
versity curricula. A number of industri-
ally based courses are also available, and
in general can be tailored to the client or-
ganization’s needs.

MYTH 14

+ Formal-methods people always use
formal methods.

There is widespread belief that pro-
ponents of formal methods apply them
in all aspects of system development.
This could not be further from the truth.
Even the most fervent supporters of for-
mal methods recognize that other ap-

I E E E S O F T W A R E 39

proaches are sometimes better.
In user-interface design, for example,

it is very difficult for the developer to de-
termine, and thus formalize, the exact re-
quirements of human-computer inter-
action at the outset of a project. In many
cases, the user interface must be config-
urable, with various color combinations
highlighting certain conditions (such as
red to denote an undesirable situation).
The great difficulty, however, is in de-
termining how the user interface should
look and feel. The appropriateness of a
particular interface is a subjective matter
and not really amenable to formal inves-
tigation. Although there have been sev-
eral (somewhat successful) approaches to
formal specification in user interfaces,”
in general conformance testing here falls
in the domain of informal reasoning.

There are many other areas in which,
although possible, formalization is im-
practical because of resources, time, or
money. Most successful formal-methods
projects involve the application of for-
mal methods to critical portions of sys-
tem development. Only rarely are for-
mal methods alone applied to all aspects
of system development. Even within
IBM’s-CICS project -which is often
cited as a major successful application of
formal methods - only about one-tenth
of the entire system was actually sub-
jected to formal techniques (although
this still involved hundreds of thousands

of lines of code and thousands of pages
of specifications). Clearly (with appro-
priate apologies to Einstein), system de-
velopment should be as formal as neces-
sary, but not more formal.

Formal methods have been used to
develop a number of support tools for
conventional development methods,
such as the SSADM CASE tool de-
scribed by Hall. Formal methods have
also been used to help redevelop a re-
verse engineering and analysis toolset for
Cobol at Lloyd’s Register. Both of these
projects used 2, which was also used in
defining reusable software architectures
and greatly simplified the decomposition
of function into components and the
protocols of interaction between com-
ponents.

To the best of our knowledge, how-
ever, formal methods have not been used
extensively to develop the formal-meth-
ods support tools described in Myth 9.
Exceptions to this are the VDM-SL
Toolbox and the addition of a formally
developed proof checker to HOL.

ow can the technology-transfer pro- H cess from formal-methods research
to practice be facilitated? T o start with,
more real links between industry and
academia are required, and the success-
ful use of formal methods must be bet-
ter publicized. We have edited a forth-

coming collection of papers’ that will
play its part by describing the use of for-
mal methods at an industrially useful
scale.

More research is required to further
develop the use of formal methods. For
example, ProCoS, the ESPRIT basic re-
search project on provably correct sys-
tems, is investigating theoretical under-
pinnings and techniques to allow the
formal development of systems in a uni-
fied framework - from requirements to
specification, program, and hardware.
In addition, a ProCoS Working Group
of 24 industrial and academic partners
has been established. Joint meetings be-
tween the project and working groups
over the next three years allows a free
flow of ideas. The hope is that some of
these ideas will be used in a more indus-
trially oriented collaborative project in
the future.

Formal methods are not a panacea,
but one approach among many that can
help to improve system reliability.
However, to quote from a BBC radio in-
terview with Bev Littlewood of the
Centre for Software Reliability a t City
University in London,

“ . . . ifyou want to build systems with
ultra-high reliability which provide very
complex functionality and you want a
guarantee that they are going t o work
with this very high reliability . . . + “. . .you can’t do it!”

ACKNOWLEDGMENTS
We thank Anthony Hall for inspiring this article by authoring the

“Seven Myths of Formal Methods.” Jonathan Bowen is funded by UK
Engineerkg and Physical Sciences Research Council (EPSRC) grant
GIUJl5 186. Mike Hinchey is funded by ICL.

REFERENCES
1. J.A. Hall, “Seven Myths of Formal Methods,” IEEE SofNlare, Sept. 1990,

pp 11-19.
2. W.W. Gibbs, “Software’s Chronic Crisis,” Sn‘ent$cAmerican, Sept. 1994,

pp. 86-95.
3. B.W. Boehm, Sofnvare Engineering Economics, Prentice-Hall, Englewood

Cliffs, NJ., 1981.
4. S.L. Gerhan, D. Craigen, and T. Ralston, “Experience with Formal

Methods in Critical Systems,” IEEESofruaare, Jan. 1994, pp. 21-28.
. 5. Appltcatim ofFomalMerhodr, M.G. Hinchey and J.P. Bowen, eds.,

Fall 1995, Prentice-Hall, Hemel Hempstead, UK, to appear; http://www.
comlab.ox.ac.uk./archive/formal-methods/aiin-book.htmL

6. Methodlntegratim: Conceptrand Case Studies, K. Kronlof, ed., John Wiley
& Sons, NewYork, 1993.

7. L.T. Semmens, R.B. France, and T.W.G. Docker, “Integrating Structured
Analysis and Formal Specification Techniques,” The Computer?., Dec.
1992, pp. 600-610.

8. Mechanized Reasoning and Hardware Design, C.A.R. Hoare and M.J.C.
Gordon, eds., Prentice-Hall, Englewood Cliffs, N.J., 1992.

9. J.P. Bowen, “Formal Methods in Safety-Critical Standards,” Proc. 1993
So@are Engineering Standards Sjmp.) IEEE CS Press, Los Alamitos,
Calif., 1993, pp. 168-177.

10. J.P. Bowen and V. Stavridou, “Safety-Critical Systems, Formal Methods
and Standards,” SofNlare EngineeringJ., July 1993, pp. 189-209.

11. A. Dix, Forma[Methodrfor Interactive Systm, Academic Press, San Diego,
Calif., 1991.

4 0 J U L Y 1995

http://www

Jonathan Bowen is a senior researcher at the
Oxford University Computing Laboratory. He
has worked in the field of computing in both
industry and academia since 1977. H e currently
manages the ESPRIT ProCoS-WG Working
Group of 24 European parmers and is working in
the area of provably correct hardwarelsoftware
codesign. His interests include formal specifica-
tion, 2, provably correct compilation, rapid pro-
totyping using logic programming, decompila-
tion, hardware compilation, safety-critical sys-

tems, and online museums.
Bowen received an MA in engineering science from Oxford Univer-

sity. He won the 1994 IEE Charles Babbage Premium award. He chairs
the 2 User Group, is conference chair for the ZUM'95 international
conference of Z users, and is a member of the IEEE Computer Society,
ACM, and Euromicro.

Mike Hinchey is a researcher with the Univer-
sity of Cambridge Computer Laboratory and a
professor in the Real-Time Computing Labora-
tory a t New Jersey Institute of Technology. His
research interests include formal specification,
formal methods, real-time systems, concurrency,
method integration, CASE, and visual program-
ming and environments. He has published widely
on various aspects of software engineering and is
the author or editor of several books on software
development with formal methods.

Hinckey received a BSc in computer science from University of
Limerick, Ireland, an MSc in computation from Oxford University,
and a PhD in computer science from University of Cambridge. He is
treasurer of the Z User Group, program chair for the ZUM'95 interna-
tional conference of Z users, and editor of the newsletter of the IEEE
Computer Society's Technical Segment Committee on Engineering of
Complex Computer Systems. H e is a member of the IEEE, ACM, AMs,
and an associate fellow of the Institute of Mathematics.

Address questions about this article to Bowen at Oxford University
Computing Laboratory, Wolfson Buildmg, Parlcs Rd., oldord OX1 3QD, UK;
Jo~than.Bowen@comlab.ox.ac.uk;http://uaw.comlab.ox.ac.uk/ou~~ple/
jonathan.bowen.htm1 or to Hinchey at University of Cambridge Computer
Laboratory, New Museums. Site, Pembroke St., Cambridge CB23QG, UK;
Mike.Hinchey@cl.cam.ac.uk; http://www.cl.cam.ac.uk/users/mghlOOl/

I E E E S O F T W A R E

Fifth

European
SOFTWARE

ENGINEERING S e p t e m b e r 25-28

Tutorials:
" Domain Analysis for Reuse: A Practical Approach"
Ruben PRIETO D I M (Fairfax, USA)
"Software Amhitecture and Iterative Development
Process''
Philippe KRUCHTEN (Vancouver, CANADA)
"Software Design and Implementation

with C++ Components"
Mehdi JAZAYERI, Georg TRAUSMUTH
(Wien, AUSTRIA)
"An Introduction to Computer Security"

Richard KEMMECREF (Santa Barbara, USA)
"The Role of Formal Specifications in Software Test"
Hans-Martin HOERCHER (Kiel, GERMANY)

Keynote Speakers:
"Why Object-Oriented Databases are needed"
F. BANCLHON (FRANCE)
"Why Object-Oriented Databases are not needed"
B. MEYER (USA)
"A Personal Commitment to Software Quality"
W. " R E Y (USA)

Panel:
"Trends in Open Distributed Platforms"
Chair: G. LEON (SPAIN)

29 Papers

Sitges is a big tourist resort on the mediten-anean coast
36 Km SW Barcelona. Please register a.s.a.p.. Early
registered delegates pay less and could get better
accommodation. September is peak season in Sitges.

Executive chair:
Pere BOTELLA (Barcelona, SPAIN)
Program chair:
Wilhelm S C H m (Padehorn, GERMANY)
Tutorial chair:
Gregor Engels (Leiden, THE NETHERLANDS)
For further information:
http://www-fib.upc. es/Congressos/ESEC95 .html

or contact the Local '4rrangements chair:
Victor Obach
P1. Lesseps, 3 1 Ent. 2a.; E-08023 BARCELONA
TeK +34-3-415.41.41; Fax: +34-3-415.55.56
E-Mail: difiisa@ibm.net

Organized by
The ESEC Steering Committee
Hosted by
AT1 with the support of CEPIS

http://www.cl.cam.ac.uk/users/mghlOOl
http://www-fib.upc
mailto:difiisa@ibm.net

