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1. Introduction

The structure of a specification of a distributed system should reflect the specification’s

purpose. If the purpose is requirement capture, the processes in the specification may represent

theconstraints of the system. If the purpose is systems design, we may wish to emphasize the

abstractarchitectural components of the design. If the purpose is verification, the structure must

suit the preferences of the verification methods and tools. If the purpose is implementation, the

specification must exhibit a structure that corresponds to an efficient implementation, and must

reflect the architectural components in the implementation. For test case generation, the

specification should facilitate the extraction of relevant test cases with the available tools. It is

common to end up with several specifications during the study of a given system.

Vissers et al [VSVB91] wrote a fundamental paper on the subject ofspecification styles
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in the LOTOS language [BB87][LFH92]. In that paper, it was shown that LOTOS can adapt

itself to different expressive needs. Four basic styles were identified: constraint-oriented,

resource-oriented, state-oriented and monolithic. Subsequent papers have addressed the

question of transformations between styles [BFLL95][FMN95]. Over the years, our group has

investigated the matter of specification styles by using as examples various types of telephony

systems. We found application not only for the four basic styles[FaLS90] [FaLS91] [BL93]

[FL94], but also for others, which possibly could be considered as derived ones, such as the

status-oriented style [SL93].

From a user’s point of view, a telephone system’s architecture is a simple one. It has two

components: the user (which, if one prefers, is the handset), and the switching system, which

represents everything else. In some respect, the switching system’s architecture is of no concern

to the user, as long as it provides the required services according to expectations. From a

designer’s point of view, however, the switching system’s architecture is a central issue.

In this paper, we illustrate two different structural approaches for specifying a telephone

system: theresource-oriented style and theconstraint-oriented style. In the resource-oriented

style, the specification structure shows the architectural components of the design. By contrast,

in the constraint-oriented style, one focuses on the composition of the requirements, expressed

as behaviours. In this sense, one can say that the resource-oriented style is implementation-

oriented and the constraint-oriented one is requirement-oriented.

The paper assumes that the reader has already been exposed to LOTOS or has

familiarity with concepts such as process communication, synchronization, and composition

[Hoar85] [Miln89]. The LOTOS specifications presented are partial, e.g. we may omit

parameters, not consider all cases, etc., in order to keep the attention on the general structure.

Similarly, we did not use G-LOTOS [BNT94] in our graphical representation in order to avoid

the clutter of the details. We did, however, take inspiration from G-LOTOS.

2. The Resource-Oriented Specification Style

2.1  POTS: Plain Old Telephone Systems

 In the resource-oriented style, the specification structure follows the architecture of the

physical components of the system and it has an object-oriented flavor. Processes are similar to
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class templates in object-oriented terminology [CRS90][Rud92]. The system is represented by

two entities, theuser process and theswitching system, which we will take to have aclient role

and aserver role, respectively. Note, however, that both the user process and the switching

system are part of theswitch’s software, which implies that our reference touser is a reference

to a process inside the switch which acts on behalf of the user. So, the client entity, from which

a set of users can be instantiated, expresses the observable behaviour of the system, as seen

from the user. The server, of which a single instance exists for each switch, represents the

behaviour of the switching system. In LOTOS, we represent this high-level architecture by a

parallel composition between instances of phone users and a controller process, that handles the

end-to-end aspects of connection between users. The users themselves are mutually

independent, thus are described as processes in interleave with respect to each other. The

following specification fragment shows how to specifym user processes and a switching system

(note that an unbounded number of phones can be specified by using recursive interleave, this

will be shown later). Auser process, expressed by a LOTOS processPhone, communicates

with theswitching through gaten and with the user (outside world) through gateu.

( Phone [u, n] (1)
|||
...
|||
Phone [u, n] (m)

)
|[n]|
Switching [n]

In order to communicate, the users must place requests to the server. The server needs to

respond concurrently to requests from many different users. Every time the server receives a

request, it needs to create a new instance of a connection handler. A connection handler

template is defined as a LOTOS processConnection_Handlerwhich can handle one connection

at a time. The template is instantiated with data specific to the user who will be part of the

connection. TheConnection_Handler instantiation can be achieved also with a recursive

interleave mechanism, using a predefined action as a trigger. In this specification, theswitching

process usesdialtone as a trigger to create aConnection_Handler process. The execution of the

latter is interleaved with the one of process Switching, and possibly with other instances of

Connection_Handler.
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process Switching [n]:noexit :=
n ?Caller: Digits !dialtone;
( Connection_Handler[n](Caller)

|||
Switching [n]

)
endproc

Connection_Handler makes a request for a connection (conreq), then establishes a

connection betweenCaller andCalled.

process Connection_Handler [n] (Caller: Digits) :noexit :=
n !Caller !conreq ?Called: Digits;
Establish_Connection[n](Caller, Called)

endproc

Note the structure of the atomic action in the first line of processSwitching. This means

that this process is ready to synchronize on gaten (with processPhone). It is ready to do so (!)

on a constant which represents thedialtone signal, and at the same time, it expects to receive (?)

the number of theCaller, which is of sortDigits. Similarly, in the first line of process

Connection_Handler,the process is ready to synchronize on a signalconreq and only on a

specific (i.e. previously received)Caller number while expecting to receive the number of the

Called. Note that constants are in lower cases, variables have upper case initials. Clear

specifications require carefully planned action structures, which should be as uniform as

possible throughout.
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In the simplest model, the behaviour of a connection establisher consists in ringing the

called party and if this party answers the call, starting the voice exchange phase between the two

parties. After that, the server waits for a connection release event. This functionality can be

represented by the sequence of actions shown in Figure 1.

From an idle state, a caller (using phonei) interacts with thei user process by lifting the

handset, which we express asoffhook action. Next, user process i synchronizes with the

switching on thedialtone action➀. Sincedialtone is used as detection action, an instance of

Connection_Handler is created. Once theuser process collects the digits of the called party

through thedials action, theConnection_Handler synchronizes with the user process, on the

actionconreq②, to request the selection of a route for voice transmission. Next, if the called

POTS_System
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Connection Handler
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 Fig. 1. Establishing a connection between two users: useri calls userj.
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party (phonej) is idle, theswitching processrings ③ phonej, then if the called party answers,

the voice exchange phase between the two parties begins as indicated by thev_connect (for

voice connected) actions④ and⑤.

The following behaviour expression shows the state of a system where user 1 is

attempting to call user 3 and user 2 is attempting to call user 4:

( Phone [u, n] (1)
|||
Phone [u, n] (2)
|||
Phone [u, n] (3)
|||
Phone [u, n] (4)

)
|[n]|
( Establish_Connection[n](1,3)

|||
Establish_Connection[n](2,4)
|||
Switching [n]

)

Each of the four users is allowed to execute its specified behaviour independently of the

other three users. However, the ordering of actions between two users (e.g., 1 and 3) is

determined by their corresponding processes for establishing the connection (e.g.,

Establish_Connection[n] (1, 3)).

The mechanism for specifying busy state is explained in Section 2.6.2. The busy phone

goes into a process that continually offers the actionbusyand is unable to synchronize on

actions implying idle state, such asring. We refer to [SL93] for a detailed discussion of this

point.

Note that what we show in this paper is still a very idealized picture of the system

architecture. In real systems, components will be distributed, channels will be interposed, and

there won’t be the direct communication between components implied by the |[n]| operator. The

specification of channels, as well as of other implementation details, is the object of further

refinements [BFLL95] [FMN95] and won’t be given in this paper.



- 7 -

2.2 Specification of Features

 A feature is intended to be available to users, consequently we can expect that some

new sequences of operations will be available in the client specification, which needs to match

corresponding sequences on the server side. Thus, a feature cannot always be represented by a

single black box that can be inserted at some specific location in the specification of a phone

system. Rather, it is a combination of distributed behaviours and resources that are combined to

realize the desired behaviour. Therefore, we need to characterize the principles governing such

distribution, to avoid scattering and lack of structure, identifying:

• Aspects dealing with basic types of functionalities;

• Aspects dealing with the activation of features; and

• Aspects dealing with implementation issues.

First, from the point of view of functionality, there are two basic kinds of features:

Features that extend the system with a new type of service, which we calltechnological features

and features that restrict some behaviour of the existing system or of some other existing

services, which we termpolicy features.

The second aspect deals with the activation of features: features can be passive or active.

A passive feature will get activated by the system in a background mode, without any action

from the user.Call answer or voice mail are passive because once subscribed to, they get

activated by events that are not under the subscriber’s control. An active feature is a feature that

needs some action of the user in order to get activated. For example, thethree-way calling

feature will be activated only if the subscriber is part of an already established connection and

decides to add another party to a conversation. Mixed features combine the two characteristics.

For example, thecall waiting feature is of a mixed kind because it responds passively to

incoming calls while the subscriber is engaged in another call, but the subscriber decides if she

wants to answer by performing a flash-hook action.

Finally, implementation issues deal with the efficient mapping of feature behaviours

onto physical system resources. We have already mentioned that the refinements required to

reach a real implementation architecture are beyond the scope of this paper.
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2.3 Specifying Features in LOTOS

To specify features in LOTOS, we must find appropriate LOTOS constructs that express

the intended behaviour and, at the same time, allow the structuring of the specification for

clarity and future modifications. First, we present atomic LOTOS concepts appropriate for

feature specification, and then we discuss some stylistic considerations on how to piece these

atomic concepts together to obtain a readable specification.

A feature will usually be specified as an alternative or optional sequence of operations to

some other behaviour. In LOTOS there are three operators that can be used for such a purpose,

the interleave, the non-deterministic choice, and the disable operator.

• The interleave operator ||| is used when a feature is available concurrently with some

other behaviour either to a user or to the switch. This allows both the original

behaviour and the added feature to co-exist, with no side effects.

• The non-deterministic choice operator [] is used whenever a feature is a potential

replacement of another behaviour.

• The disable operator [> is used whenever a feature is intended to take over from

another established behaviour.

LOTOS guards ([E]->), which can be used in combination with any behaviour

expression, are well suited to portray the restriction functionality of policy features. In this case

the features are composed of both a behaviour and some control data. Guard constructs can also

be used to turn a feature’s behaviour expressionon or off to reflect the fact that a user did or did

not subscribe. The following two examples summarize the above described design principles for

technological and policy features.

A user’s behaviour having subscribed to thecall waiting and three way calling

technological features may be represented using interleave constructs, because these features

are available concurrently to the user while in thetalk state:

u !Caller !offhook;
n !Caller !dialtone;
n !Caller !dials ?Called: digits;
...
( Talk [u, n] (Caller, Called)
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|||
Call_Waiting [u, n](Caller)
|||
Three_Way_Calling [u, n](Caller)

)

 The processesCall_Waiting and Three_Way_Calling are defined as recursive

processes, with the necessary logic to ensure that only one instance of the feature is active at a

time, and that each feature can be activated more than once during the lifetime of the same call.

For example, if three way calling is activated by a userA, while talking toB, to form a

conference call betweenA, B, andC, then userA cannot activate a second instance of this

feature until the current instance is de-activated. However, once de-activated, userA may form

another conference call betweenA, B, andD.

Our next example illustrates the specification of a policy feature such asOriginate Call

Screening (OCS). It portrays the fact that a switch has two operational ways to process a

connection request depending on the data presented by theOCS feature that is passed as

parameters in theconreq action. In this case the choice operator [] is used to indicate that the

two alternatives are mutually exclusive and that the guard expressions will determine which

branch is chosen.

n !Caller !conreq !Called ?Scr_List: Screen_List;
(

[Called NotIn Scr_List] ->
n !Called !ring;
...

[]
[Called IsIn Scr_List] ->

n !Caller !Called !refuse_req;
...

)

2.4 The Resource-oriented Control Mechanism

Control is achieved in LOTOS via two basic mechanisms, synchronization on actions

and guards that evaluate abstract data types.

In the resource oriented style, interactions occur between two behaviour expressions,

one that allows interleaved behaviours, the other that allows nondeterministic choices that are

resolved by the interleaved actions of the first behaviour as it goes through its various states.
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Let us illustrate this concept with an example. Figure 2 shows a user process (phone)

which supports a feature. The behaviour of the feature is expressed by the sequence:B1 := (f; g;

...). The behaviour of basic call is expressed by the sequence:B2 := (a; b; c; ...). However, the

requirements of this feature dictate that it can be activated only after basic call has executed its

first actiona. The resulting specification of the phone is then expressed as:Phone := a; (B3 |||

B1), whereB3 := (b; c; ...). A given phone may at any time be subject of requests (feature

activation) from an unlimited number of other phones via the network and more precisely

connection handler instances. In figure 2 we have represented two such instances of connection

handlers performing requests on a single instance of a phone. The basic call sequence of the

phone starts by synchronizing with the first connection handler that offers actiona, as shown by

➀. After this, this connection handler and the phone can continue the basic call sequence②,

however at any point another connection handler can start a feature sequence, which can

continue in parallel with the basic call sequence➂. Many features can be specified using these

principles. Guards involving simple abstract data types can be used to turn featureson or off

depending on the subscriber’s choices, as well as to manage the invocation of features

behaviours.

This approach applies to policy features as well. The main difference is that policy

features will include appropriate guards to enforce the policy. There will be a side that is

deterministic, driven by guards, and another side that is not. The synchronization mechanism

between the two sides resolves the non-determinism and enforces the policy globally.
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The specification has to be decomposed into processes that represent individual

components of the system and then these components need to be decomposed further by classes

of reusable functionalities. The design of the user behaviour specification follows a different

pattern from the design of a switching behaviour. This is due to the fact that a switching

mechanism is basically a server (or more precisely an agent) that receives requests from many

clients that are the users. We will look at the separate architectures of these two main

components.

2.5 Structural Considerations for the Client

In the basic call model, a user can play two mutually exclusive roles: a call initiator or a

call responder. This is represented naturally by a nondeterministic choice construct:

User := Call_Initiator  [] Call_Responder

[]

|||

Connection_Handler 1

Phonea b c

a

b c

f g

Switching

 Fig. 2.     Synchronization paths in the resource oriented style
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 Within these roles, both categories of features (i.e., technological and policy) are

represented by a mix of interleave and non deterministic choice constructs that are composed

with other behaviours.

2.5.1 Feature Activation

 As mentioned, the activation of a feature is controlled either through synchronization

with actions of a user or as passive response to signals from the switching process. Guard

constructs are used only to reflect feature subscription status that will turn feature behaviour

expressionson or off depending on the choices of the subscriber that are represented by values

of formal parameters. But here we need to stress the fact that guarding a feature’s behaviour is

not enough since some features have the additional side effect of restricting other behaviours.

For example, integratingcall waiting into a basic call system requires the suppression of busy

signals in some states, such as thetalking state.

u !Caller !offhook;
( Call_Establishment [u, n](Caller)

|||
( [ CallWaiting eq on ]-> Call_Waiting [u, n](Caller)

|||
[ CallWaiting eq off ]-> Busy_Signal [u, n](Caller)

)
)

2.5.2 Interleave Constructs

 Interleave constructs are used when a feature’s behaviour can be activated at any point

in the basic call sequence, as a concurrent alternative. This means that a feature such ascall

forward on busy or call answer is offered at any point in time without distracting the current

active behaviour.

u !Caller !offhook;
(

n !Caller !dialtone;
n !Caller !dials ?Called: Digits;
...
|||
Call_Forward[u, n](Caller, ForwardNumber)
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)
where

process Call_Forward[u, n](Caller, AnotherNumber: Digits): noexit :=
n !Caller !detect_forward;
Establish_New_Connection [u, n](Caller, AnotherNumber)

endproc

 In the above behaviour expression the call forward behaviour is executed in parallel

with the behaviour for establishing a call, say fromA to B. Assuming thatA forwards its calls to

D, theForward_Call process may be activated, to forward calls fromC to D, whenC attempts

to call A, while the call fromA to B continues. Both passive and active features can be

represented with this construct. The forward call shown above is of a passive nature, but the

three way calling feature that we call active could be represented using the same type of

construct.

2.5.3 Choice Construct

 Choice constructs can be used deterministically when two behaviours are mutually

exclusive or nondeterministically when the resolution of non-determinism resides in the

environment which in this case is the server side.

...
n !Caller !conreq ?Called: Digits ?Scr_List:ScreenList;
(

[Called NotIn Scr_List]->
n !Called !ring;
...

[]
[Called IsIn Scr_List]->

n !Caller !Called !Refuse_Connection;
...

)
In the above example (showing the server side) the choice between actionring and

refuse_connection will be determined by the server’s evaluation of the connection request using

the screening list that the client has passed to the server. The client side doesn’t use guard

constructs in this case because it is not in control of the decision to resolve the non-determinism.
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2.6 Structural Considerations for the Server

The server responds to requests from clients using a given set of operations that satisfy

them. Each instance ofconnection handler handles one request at a time. For example, if a user

is already connected and decides to set up a three way call, the third party is requested via

anotherconnection request. This one is handled by the server which creates another instance of

a connection handler. The server is designed in a monolithic style with choices to handle the

two main situations that arise due to the presence of features, i.e. the various kinds of requests

and the processing of the requests. On the server side there are no specific blocks of actions that

correspond to specific features. There are only resources that can be invoked by features

described on the client side. These resources are similar to SIBs (Service Independent Blocks)

in Intelligent Networks [DV92][Th94].

Operations that correspond to features are inserted as nondeterministic alternatives

among the steps of theConnection_Handler process described for the basic call model. For

example, the call forward feature is specified as an alternative to thering or busy operations.

Here we need to restructure the original behaviour expression of theConnection_Handler

because a new processAttempt_Call has emerged from the introduction of a new operation that

handles the call forward feature.

process Connection_Handler[n]: noexit :=
n ?Caller: Digits !conreq ?Called: Digits;
Attempt_Connect [n](Caller, Called)

where
process Attempt_Connect[n](Caller, Called: Digits):noexit:=

n !Called !ring;
Connect_parties...

[]
n !Called !busy;
...

[]
n !Caller !detect_forward ?AnotherNumber: Digits;
Attempt_Call [n](Caller, AnotherNumber)

endproc
endproc
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2.6.1 Feature Policy Data Passing Considerations

Policy features use data bases to help the server decide on the operations to execute in

order to provide their functionalities. These data bases are represented by abstract data types,

and are not shown in this paper. There will be different kinds of request handling actions where

we will find the usual value of the terminating number but with some critical data that represent

the conditions that trigger policy features. In fact, the switching process is strictly an execution

device that by itself does not know about the user’s subscribed features unless it is told. The user

process is where the knowledge resides and this knowledge has to be passed on to the switch

when making a connection request or when being solicited by a switch, depending on whether

the user is in an active or passive state (caller or responder). For example, in the case of

Originate Call Screening feature, the switch needs to receive the screening list in the connection

request, while in the case of aTerminating Call Screening, the switch needs to receive the

screening list from the called user to decide whether it will establish the connection or refuse it.

Consequently, the connection handler will have to contain some non-deterministic choices of

requesting data, depending on the type of request to be handled:

process Connection_Handler[n]: noexit :=
n ?Caller: Digits !conreq ?Called: Digits;
Establish_Connection[n](Caller, Called, NoData)
[]
n !Caller !conreq ?Called: Digits ?PolicyData: PolicyType;
Establish_Connection[n](Caller, Called, PolicyData)

endproc

2.6.2 Feature Control and Busy State

 In the case of the server, control is achieved by both synchronization and evaluation of

guard expressions. The processEstablish_Connection will be composed mainly of choices

between behaviours that are resolved either by the evaluation of the feature policy data received

in the request, or by the state in which the client is because of its activated features. For

example, the decision to actually complete a connection by ringing the requested party may be

taken on the basis of originate call screening data received by the switch. In this case, guard
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constructs are necessary:

[Called  NotIn Scr_List] -> n !Called !ring; ...
[]
[Called IsIn Scr_List] -> n !Caller !Called !refuse_req; ...

Another example illustrates the case of a decision taken in the switch on the basis of the state of
the called party, that can be either free, leading to aring, orbusy:

( n !Called !ring ; ...
[]
n !Called !busy ; ...

)

This is resolved by the called party, which is represented as follows:

n ! Called ! ring;
(

u ! Called ! answer;
n ! Called ! voice_connect;
Talking[u]

|||

n ! Called ! busy ; Busy_signal[n](Called)
 )

WhereBusy_signal is a process that does nothing but offerbusyrecursively. After there

has been synchronization between client and server onring, another connection attempt by

another instance of the switch can only synchronize on thebusy action that is in interleave with

the normal connection path of the client.

As can be seen in the two above examples, the control of a feature can be internal or

external. The internal control results from the evaluation of guard expressions, while the

external control results from synchronization with actions of the client.

2.7 Control via Client-Server Interactions

In the two previous sections we have considered the structure of the two main

components separately. Now we need to demonstrate how they interact to achieve the

functionality of a given feature. We will look at two examples illustrating respectively the
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technological and the policy feature cases. These are illustrations of the principles shown in

Figure 2.

2.7.1 Example of Technology Features: Call forward

From a user’s point of view, we distinguish betweenCall Forward Always (CFA) and

Call Forward on Busy (CFB). The first feature allows a user to forward all his/her incoming

calls to a second (predetermined) number; the second one forwards incoming calls only if the

user is busy. From a structural point of view, bothCFA andCFB can be designed to make use of

a single resource represented by aCall_Forward process, whose functionality is to establish a

connection between two users: the one to whom the call is originally directed and the one to

whom the call is forwarded. However, the different instances of this process need to be guarded

appropriately in order to reflect the user’s subscription choices. Figure 3 shows the structure of a

phone which is designed to support bothCFA and CFB, although a user may not want to

activate both of them at the same time. Since a phone can play the roles of call initiator or call

responder, then we must make provisions to support bothCFA andCFB for each of the roles. A

Phone i

[]

Call Initiator

dialtone

[]

|||

Establish_Connection

Call_Forward

Call_Forward

detect_forward Call_Forward

 Fig. 3.     Structure of a phone design supporting Call Forward

Call Responder
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structure of a well designed phone must consider the following cases:

2.7.1.1 Support for the CFA

This is shown as case 3 in Figure 3. It is expressed as a third alternative to thecall

initiator andcall responderroles. This alternative is guarded by adetect_forward condition,

which indicates whether or not the feature is activated. If it is, this alternative is chosen

regardless of whether the user is idle or busy. Note that processCall_Forward is recursive,

meaning that a forwarded phone offers continuously theforward signal. This is all process

Call_Forward does. As shown below, the actual forwarding is done by the switch.

2.7.1.2 Support for the CFB in a call initiator role

In a call initiator role, a phone becomes busy as soon as userA sends anoffhook signal

to the switch (i.e.,A picks up the handset) and receives adialtone. This suggests that,

structurally, theCall_Forward process must be placed within thecall initiator alternative, and

behaviourally, its execution is triggered by thedialtone action, as soon as another user callsA.

This is shown as case 1 in the figure. Also, note that theCall_Forward process may execute in

parallel with theEstablish_Connection process (Call_Forward |||Establish_Connection), which

means that (1) a call directed toA, during any stage of the call processing phases afterA has

become busy, is forwarded to another predetermined number, and (2) userA proceeds with its

normal call processing behaviour.

2.7.1.3 Support for the CFB in a call responder role

In a call responder role, a phone (B) becomes busy as soon as a connection path (circuit)

is reserved for communication between the calling userA and the called userB. This suggests

that, structurally, theCall_Forward process must be placed within thecall responder

alternative, and behaviourally, its execution is triggered by thering action, as soon as another

user callsB. This is shown as case 2 in the figure. Again, note that theCall_Forward process

may execute in parallel with theRespond_to_Call process (Call_Forward |||Respond_to_Call),

which means that (1) a call directed toB, during any stage of the call processing phases afterB

has become busy, is forwarded to another predetermined number, and (2)B proceeds with its

normal call processing behaviour.
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2.7.1.4 A Call Scenario in the Context of Call Forward

Figure 4 shows the invocation of the different instances of theCall_Forward process in

the context of a typical call from userA to userB. We assume that both phones (A andB) are

instances of the template phone of Figure 3. Also, we assume thatA is the caller andB is the

called. In addition, we assume thatA andB are in idle state and have activatedCFB, but not

CFA. UserA starts the call scenario by sending anoffhook signal to the switch (not shown in the

Figure). The switch marksA’s state as busy and sends adialtone to A, as shown by the

synchronization point➀. After a connection request (conreq action in the Figure) by the switch

and the selection of a communication path, the switch sends aring to userB. This is shown by

② in the figure. Now, suppose that whileB is ringing, a third userC (not shown in the Figure)

attempts to callB. Once the connection handler forC detects thatB is busy and thatB has

activatedCFB, synchronization occurs between the actiondetect_forward (executing in the

context of theC connection handler) and same action in processCall_Forward in the behaviour

(Call_Forward ||| Respond_to_Call) of B, as shown by➂. C’s connection handler will then

take over the execution to establish a connection with the user to whom the call is forwarded.

Other scenarios can be easily constructed by making different assumptions about users’

states and activation of features.

2.7.1.5 Server design

The design of the server is considerably simpler. First of all, the call forward detection

action is an alternative to the ring operation. Then if a call forward has been detected, the switch

merely attempts to establish a new call using the new number received from the client to which

the call is forwarded. This results in creating a new instance of processAttempt_connect with

the forward number as a formal parameter. There is no need to distinguish between CFA or CFB

since the result is the same. Note that thedetect_forward action in the new instance of process

Attempt_connect could apply to the new number in case this one also has activated its call

forward feature. This process is truly reusable.
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 Fig. 4.     Structure of a phone design, which support Call Forward Busy
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2.7.2 Example of Policy Features: Originating Call Screening

Originating Call Screening is a feature which allows a subscriber to prevent outgoing

calls to be made to a predefined set of numbers. It is an interesting example of the policy

features class. First, the policy data is located in the client entity. When a request for this feature

Switching System

conreq
[]

refuse_connect

Attempt_Connect

Connection_Handler

pass screening list

Called IsIn Scr_List

Phone i

[]

Caller Initiator

_

Call Responder

conreq

connect

refuseCon

talk

[]

[]

Caller Initiator

Call Responder

[]

(phone B)

Abandon_Connection

dialtone conreq

connect Talking

➀

dialtone

Called NotIn Scr_List

②

refuse_connect Abandon_Connection

Phone A

||

|||

ring connect

 Fig. 5.     Originate Call Screening Example

❶ ❷

ring

❸ case 1

case 2

...

Respond_to_Call
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is made to the switch, it will include the screening list in the data passed to the switching

process. Using this data, the switch will evaluate the request of the client and choose only one of

the two alternatives of ringing the requested number, or sending back a connection refusal to the

client. Here nondeterminism is resolved essentially by guard constructs. The client itself is

ready to synchronize on either theconnect or the refuse_connect action depending on what

becomes available on the server side. However in order to synchronize on theconnectoperation

with the originating client, the switch first needs to synchronize on thering operation of the

terminating client. Here the guards are used to enforce a policy, rather than to signal availability

of the feature.

Let us trace two typical call scenarios, cases 1 and 2 in Figure 5, fromA to B in the

context ofOCS.

Assuming thatA is the call initiator, and thatB is not in the screening list ofA, when a

connection request (conreq) is made, the list of numbers to be screened is passed from the phone

process to the switch❶. Assuming that the called numberB is idle, aring is sent from the

switch to userB ❷. Finally, the voice exchange phase begins as shown by❸.

Now let assume thatB is in the screening list ofA, shown as case 2 in the Figure. As

soon as a connection request is made➀, the switching system will refuse the connection②, and

proceeds to abandon the call and release the system resources.

3. The Constraint-oriented Specification Style

3.1 POTS again

Many of the specification concepts we have seen for resource-oriented style also apply

to resource-oriented style, however there is a change in perspective. While in the resource-

oriented style processes play the role of physical system components, in the constraint-oriented

style they express logical constraints that must be satisfied by the system

[Boch80][ISO88b][TrVs95][VSVB91]. The parallel composition operators acquire a logical

meaning in this style. For example, the expression P1 || P2 || P3 means that every action in the

system must be the result of synchronization, or ‘agreement’ of all three processes (as well as of

the environment) on that action. In other words, it means that the requirements or ‘constraints’

of all three processes must be simultaneously satisfied by the environment. The expression P1 |||

P2 ||| P3 means instead that each action must satisfy the constraints of at least one of the three
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processes. As we have just implied, there are no hidden gates in a constraint-oriented LOTOS

specification, all gates are external and all actions of all processes require participation of the

environment. Thus, specifications written in this style describe externally observable behaviour

only.

Using this perspective, we identified three types of constraints for a POTS specification

[FaLS91]:

(1)   Local constraintsare used to enforce the appropriate sequences of events at each

telephone, and are different according to whether the telephone is aCaller or a Called. For

example, on the caller side,dials must proceedtalk. Therefore local constraints are represented

by processesCaller and Called and an instance of each of these is associated with each

telephone existing in the system. Because these two processes are independent of each other,

they are composed by the interleaving operator|||. Typical behaviours are shown in Figure 7.

(2) End-to-Endconstraints are related to each connection, and enforce the appropriate

sequence of actions between telephones in a connection. For example, ringing at theCalled

must necessarily follow dialling at theCaller. ProcessController enforces these constraints.

Because they must apply to bothCaller andCalled,we have the structure(Caller ||| Called) ||

Controller.Thus the controller must participate in every action of theCaller, as well as in every

action of theCalled, separately. Figure 6 shows an instance of this structure. Its behaviour is

shown in Figure 8. Each such structure constitutes aconnection. An arbitrary number of

connections is created by recursive interleaving in a processSystemConnections, see below.

(3) Global constraints are system-wide constraints. In our specification we identified

one main such constraint, which is the fact that at any time, a number is used at most once. This

constraint is enforced by the processGlobalConstraints. Because global constraints must be

satisfied simultaneously over the whole system, represented by processSystemConnections,we

have the structureSystemConnections || GlobalConstraints.

In Figure 6, local constraints are expressed byA and B, end-to-end constraints are

expressed byC1, while global constraints are implied. LOTOS gates (represented by dark

squares) are used to structure the specification according to the three different phases of a

telephone communication: connection, talking, and disconnection. The reader unfamiliar with

process algebra should note that lines denote shared gates, and not busses. Assuming thatA

plays a caller’s role andB plays a called role, then for the connection phase, processC1
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synchronizes with eitherA or B to exchange signalling information such theoffhook and

dialtone signals; this type of synchronization is achieved through the gatepotsg. Once the

connection is established, the voice exchange phase is achieved through a three-way

communication betweenA, B, andC1. This synchronization is represented by the LOTOS gate

potst

potsh

potsg potsg☎ ☎A B

potsh

C1

 Fig. 6.     Structure of a POTS connection.
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 Fig. 7. Behaviour ofCaller andCalled with respect toController
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potst (which expresses the talk phase in a connection). Finally, the hang up phase is expressed

by the LOTOS gatepotsh (which expresses the hang up phase in a connection), whereC1 has a

two-way synchronization with eitherA or B. By restricting the synchronization to two-way

communication, we allow for the independent hang up from eitherA or B. As an example,

synchronization betweenA andC1 may occur onpotsg only if A in not busy. In fact, taking the

global constraints into consideration, the above synchronizations become three-way (for the

gatespotsg andpotsh) and four-way (forpotst). Figures 7 and  8 show the relevant behaviour

trees.

We now provide the details of the general structure already introduced above. The basic

structure of a constraint oriented description of a telephone system is illustrated in Figure 9.

potsg !offhook (A)

pots!getstone (A)

potsg !dials (A, B)

potsg !ringsfrom (B, A)

potsg !ringsback (A, B)

potsg !answer (B, A)

potst !talks (A, B)

• potsh !hangsup(A)

•

•

•

•

•

•

•

•

••
potsh !hangsup (B) potsh !hangsup (A)

•potsg!busysignal(A)

• potsh !hangsup(A)

• potsh !hangsup(A)

• potsh !hangsup(A)

• potsh !hangsup(A)

• potsh !hangsup(A) potsh !hangsup(B)

•potsh !hangsup(A)

C1

 Fig. 8. Behaviour ofController with respect to Caller andCalled
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The top-level behaviour is composed of two processes,SystemConnectionsand

GlobalConstraints. Stated informally, we want to create as many connections as desired

provided that neither the calling nor the called number is already in use. GlobalConstraints,

which we will describe later, enforces global constraints by keeping track of free and busy

numbers and synchronizing withSystemConnections to exchange values:

SystemConnections[potsg, potsh, potst]

 ||

GlobalConstraints [potsg, potsh, potst](BusySet)

The parameter to the Global Constraints process is the set of busy numbers, which is

empty at the beginning.

Process SystemConnections is composed of two processes:SingleConnection

interleaved with SystemConnections itself. This creates the desired effect of being able to have

an arbitrary number of connections existing simultaneously. At the initiation of a connection,

the identity of the called party is unknown but its template behaviour is ready to be instantiated.

processSystemConnections [potsg, potsh, potst] :noexit :=

(

SingleConnection [potsg, potsh, potst]

SystemConnections

GlobalConstraints

||

|||

oper x Pred

[]

[]

...

enforcing
constraints

SingleConnectioni

|||
Called

||

Controller

...

Caller

...

SingleConnectionj

|||
Called

||

Controller

...

Caller

...

SingleConnectionn

|||
Called

||

Controller

...

Caller

...

constraint x

oper z Pred

constraint z

 Fig. 9.  Abstract view of a POTS connection
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|||

 i; SystemConnections[ potsg, potsh, potst]

)

endproc

The processSingleConnection is viewed as the composition of three processes:Caller,

Called andController. The conceptual notion of modeling the call initiator (Caller) side and the

call responder (Called) side by two interleaved processes is quite natural; it reflects the

distributed nature of the system, in that local constraints apply to separate portions of behaviour.

Caller andCalled exchange information by synchronization with theController.

processSingleConnection [potsg, potsh, potst] :exit :=
( (

CallerHandler [ potsg, potsh, potst]
 |[potst]|
CalledHandler[potsg, potsh, potst]

)
 ||
Controller [potsg, potsh, potst]

 )
endproc

3.2 The Constraint-oriented Control Mechanism

As in the resource-oriented style, control is achieved not only by the temporal ordering

of the actions of the constraint processes, but also via predicates attached to actions. Predicates

involve the evaluation of abstract data types, which mimic data structures which are maintained

to record the states of phones. They are consulted for each operation occurring in the system to

determine if an action is available or visible, thus allowing or disallowing potential

synchronizations which cause triggering of behaviours. The processGlobalConstraints

manipulates the data structures of the specification. It synchronizes withSystemConnections in

order to update the list of busy numbers. The mechanics of updates are best described with

respect to the data structure itself.

Our first data structureEngagedSet is a set of pairs which records the engaged pairs,

where two users are engaged if the called user is the ringing state. The caller is inserted in the
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EngagedSet when an offhook is executed. The use ofEngagedSet is illustrated in Figure 10.

 If several callers execute thedials event while attempting to call the same number, only

one of them will succeed to make theCalled ring.   Therefore, we must remember which

numbers have executed theRings event so that they may not ring again for another caller. To do

so, we define a second data structureBusySet. If the Called is not busy, theRingsevent is

executed and the associated phone number is added to the setBusySet. If the called number is

busy then the caller must receive a busy signal and theBusySet is not modified. Figure 11
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 Fig. 10.     Selectingoffhook requires consultation ofEngSet(engaged set)
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presents a diagrammatic view of the use of this data structure.

Additional details about a complete POTS specification in LOTOS are given in

[FLS91].

3.3 Specification of Features in the Constraint-oriented Style

With some simplification, we define a feature as an extension of the functionality of an

existing telephone system. In general, a feature extends either the calling side or the called side,

or both. To extend a system with a new functionality, we first decide on therole of the feature,
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which can be derived from its informal description. The integration of the feature’s behaviour

into the system is accomplished by making the appropriate modifications to the user on which

the feature is to be activated, as well as to its controller.Thus, in the constraint-oriented style,

features are themselves constraints. In the most basic terms, if one adds a featureF to a POTS

systemA (playing a caller or called role), the local constraints of the combined system will be

specified asA |[L]| F, for some set of gates L, thus allowing a pleasing modularity. Of course,

the processes representing the other constraints may also need to be modified in order to

properly synchronize withF.

Two examples are provided to illustrate the two basic categories of features, the

technological and policy features.

3.4 Technological Feature: Three Way Calling

The three way calling feature (Twc) is specified as an instance of the connection entity.

When a user adds a third party to a call, another connection entity is instantiated. The

mechanism for achieving a three way communication in the context of a POTS connection is the

following.

Figure 12 shows the static structure of the POTS connection (a) and of theTwc

Connection (b). TheTwc structure of (b) is very similar to the POTS structure of (a), except for

the calling side of the connection which now represents the local constraints of theTwc feature.

From the analysis of the informal description of the feature, we deduce thatTwc has a

calling role, meaning that the first action of the feature requires synchronization with the caller.

Before we give the complete behaviour of the extended specification, let us identify the

potsg

Twcg

potsh

☎C

twct

twclink

C2
Twc(A)

potst

potsh

potsg potsg☎ ☎A B

potsh

C1

(a) POTS connection (b) TWC connection

 Fig. 12.     Structure of a POTS and TWC connections in isolation



- 31 -

local and end-to-end constraints, which express the formal specification ofTwc, in isolation.

To define the constraints on this feature we analyse the sequence of actions that can be

exchanged between the feature and its environment, namely the switching system and

subscriberA. A behavioural representation of the feature is shown in Figure 13. Assuming that

the feature executes in a context whereA is talking toB, A starts the feature with aflashhook

signal, then continues in a similar fashion as in POTS, until a talking state betweenA andC is

reached. After the firstflashhook, A may cancel the invocation ofTwc, by sending a second

flashhook before the talking state is reached. If the feature is cancelled, it returns to its initial

state; the nextflashhook from the initial state invokes a new instance. If the talking state

betweenA andC is reached, the feature allows for another flashhook, which permits the system

to re-activate the connection betweenA and B while maintainingA andC in a talking state.

The structural integration of the subcomponents (i.e., POTS andTwc) is shown in

Figure 14. However, the structure of the connections is only part of the solution for providing

the three way calling feature in the POTS context. The other part is the integration of the two

structures so that the desired behaviour is achieved. If we assume thatA has a calling role and

both B andC have a called role, then the two processesA andTwc(A) must have a common

synchronization point which allows userA, while in a talking state, to flash the hook and

•
twclink !flashhook (A) (* B onhold *)

•
twcg !getstone (A)

•
twcg !dials (A, C)

•
potsg !rings (C, A)

•
twcg !ringsback (A, C)

•
potsg !answer (C, A)

•

•
twclink !flashhook (A)

twct !talks (A, C)

twct !talks (A, B, C)

twclink !flashhook (A)

 Fig. 13.      Simplified LTS of the three way calling feature

( A is talking toB)
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transfer control to the Twc feature. This is done by identifying thepotsh gate of processA with

gatetwclink of processTwc(A), by using the LOTOS gate relabeling feature. The behaviour of

the resulting structure is shown in Figure 15. Note that we have abstracted from LOTOS gates in

the figure. For example, theflashhook signal results from synchronization of the two sub-

connections and the global constraints process with the user on gateTwcLink but this gate is not

shown in the figure.

Note that the Twc behaviour of Figure 13 is integrated in that of Figure 15, although the

arrow back to initial state is not shown.

☎

potst

potsh

potsgpotsg ☎☎ AB

potsg

Twcg

potsh

☎C

C1

twct

twclink

C2
Twc(A)

Subconnection 2

Subconnection 1

 Fig. 14.     Integration ofTwc into POTS: Top level structure
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Thus, the integration of this feature into POTS requires the specifications of the

following two subconnections:

• Subconnection 1 := (Pots(A) |[potst]|Pots(B)) ||C1

• Subconnection 2 := (Twc(A) |[twct]| Pots(C)) ||C2

As mentioned, each subconnection has the same general structure as a single POTS

connection. This is illustrated in Figure 16. However some adaptations are necessary. We need

to modify the calling side of a POTSConnection process so that it communicates with the

processTwcConnection, whose behaviour is expressed by subconnection 2. We also need to

respecify the corresponding behaviour of thePOTSController(C1) and theTwcController(C2)

processes so that they relate to each other, and we need to compose the two subconnections so

•
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•

•
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•
dials (A, B)

rings (B, A)

•

•
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• answer (B, A)
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•
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•
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•
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•

 Fig. 15.     LTSs ofTwc in the context of POTS.
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that they synchronize on their common actions. Synchronization between the subconnections

occurs on gateTwcLink, which is used for exchanging the signalsflashhook andhangsup which

occur onA.

Finally, each modification of the local or end-to-end constraints requires a modification

of the global constraints to support the additional behaviour. In addition to theBusyList and

EngagedList that we described previously, three additional lists are required to maintain the

global view of the system, in the presence ofTwc:.

SystemConnections

GlobalConstraints

||
[]

[]

...

|[TwcLink]|

|||
Called

||

PotsController
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TwcConnection

flashhook
flashhook

talk

|||

TwcList TwcUsers HoldPairs

Ring
oper i Pred

constraint i

flashhook Pred

constraint n

consulting
data structures

(sub-connection 1)

(sub-connection 2)

 Fig. 16.     Abstract representation of three way calling feature
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• TwcList: A list of single elements, where each element is aTwc subscriber; this is a

static list. A user can execute a flash hook signal only if he/she is in this list.

• TwcUsers: The list of users who have activated the feature. This is a subset of

TwcList.A user (A) is inserted in this list when synchronization occurs on the first

flash hook signal. IfA reaches a talking state withC, the second flash hook has no

effect on the list. IfA abandons the call beforeC rings, or ifC does not answer, the

secondflashhook has the effect of removingA from the list. If C rings, A is

removed from the list when the thirdflashhook occurs, or whenA hangs up.

• HoldPairs: List of pairs (A, B), where A has putB on hold, by way of theflashhook.

If the secondflashhook occurs before the talking state is reached, the pair is used to

identify the user to which a ring reminder is to be sent. If it occurs after, the pair is

removed from the list.

3.5 Policy Feature: Originating Call Screening

This feature has a caller role, yielding the structure shown in Figure 17. It imposes

further constraints on the caller side with respect to the POTS connection. One such constraint

allows a called partyB to ring forA only if B is not in theScr_Listof A. So, after thedials(A,

B) action in the LTS, the system now offers a new alternative, the actionrefuse(A,B), to

indicate that a connection fromA to B is not possible ifB is in theScr_List. If A dials a user

who is not in the list, then the system’s behaviour is reduced to that of a normal POTS call.

This feature can be naturally specified by adding theScr_Listto the data structures of

the global constraints process. Consequently we need to add another formal parameter to the

GlobalConstraints process, modify the predicates associated with thering action and add

☎ ☎BA C1

Scr_List = {B}

 Fig. 17.     Structure of the specification which integratesOcs into POTS
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another action to indicate that a refusal has occurred. The new data structure is somewhat

different from theBusy or EngagedSet data structures because it is set once for all and is not

updated via events as we have seen before. On theSingleConnection side we need also to add a

choice construct to indicate that a connection can be refused.

In Figure 18 we observe how the nondeterministic choices of theCalled and the

Controller processes are resolved with the evaluation of the predicates of thering andrefuse

GlobalConstraints

ring ?C C NotIn Scr_List

[]

[]

...

Data
Structure
Scr_List

SingleConnection

||

Controller

offhook ?N

dialtone !N

...

||
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Called C

ring?C

answer

...

[]
refuse

...

refuse ?C C IsIn Scr_List

depending on
evaluation of
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[]
refuse

...
connect

set at
initialisation
time

 Fig. 18.     Originating Call Screening Feature
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operations in the global constraints process. The nature of these predicates makes the associated

operations mutually exclusive.

4. Comparison of the Resource and Constraint oriented specification styles

The two specification styles we have presented have each its own applications and

advantages. The LOTOSPHERE software development methodology [BvdLV] suggests a

specific role for each specification style in a software development trajectory. The constraint-

oriented style is closer to the requirements level, while the resource-oriented style is closer to

the implementation level. Our results support this view.

4.1 General Structure

The resource-oriented style allows a structuring of the specification that can be

visualized easily in terms of action sequences. The features are strongly associated to states in

both the client and the server. Control code of features can easily be located in relation to the

basic call model.

The constraint-oriented approach allows the designer to define the system as a black box

which interacts with its environment via a well defined set of primitives. From this perspective,

the structure is appealing. Once the observable global behaviour is captured, the black box can

be decomposed into several types of constraints which help the designer to achieve a clear

separation of concerns. Local constraints localize design issues so that both the caller entity and

the called entity are expressed in terms of their allowed sequences independent of each other.

End-to-end constraints allow the designer to establish a certain dependency between the local

constraints so that only valid sequences are selected. Finally, the global constraints allow the

designer to impose constraints reflecting the global behaviour of the system. The features

themselves become added constraints. They play a local role, but may require changes in end-

to-end and global constraints.

4.2 Control Mechanism

In the resource-oriented approach, the control mechanism involves at most two entities

at a time.
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In the constraint-oriented style, control is expressed incrementally at several levels, three

in our example. Processes representing local, end-to-end, and global constraints must

synchronize together. The advantage of the control mechanism in the constraint-oriented

approach is that restrictions on the set of valid system sequences are incremental. In other

words, the designer starts with the set of all potentially valid sequences for each component, and

restrictions on the set of all possible shuffles of these are imposed at different levels, which

makes the design more manageable. The drawback of this approach is that at the global

constraint level, the data management becomes complex, because at that level all constraints

become composed.

4.3 Incrementality

In constraint-oriented style, an added feature is simply an added constraint.

Unfortunately, however, adding features in this style is more difficult than doing so in resource-

oriented style. Because of the fact that it is not allowed to hide actions in the constraint-oriented

style, changes to several processes are usually required in order to take into account the new

actions belonging to added features. In resource-oriented style, the hiding mechanism makes it

easier to add processes locally, without affecting other existing processes.

4.4 Practical considerations

The constraint-oriented style is rather conceptual, and requires a good level of expertise

and sophistication of the user. The use of the LOTOS process synchronization mechanism, as

well as the use of abstract data types, are much more sophisticated in this style. In addition, the

style is very implementation-independent, and it appears to be more conducive to thinking in

terms of abstract requirements. The structure is not an implementation structure, rather it is a

requirement structure.

On the other hand, the resource-oriented style can be learned quickly and is much more

implementation-oriented.

It is not by chance that our discussion of the constraint-oriented style was dominated by

high-level processes, while our discussion of the resource-oriented style was dominated by low-

level action sequences.

It should not be surprising that resource-oriented specifications tend to be much longer

than constraint-oriented ones, especially if an attempt is made to describe distribution to a
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greater extent than we did in this paper. The description of distributed components, and of

processes representing channels, with the related mechanics, can be quite lengthy. The

difference between the two styles becomes much more obvious, since all these details have no

place in the constraint-oriented style.

5. Conclusions and Research Directions

For conventional telephony systems, the typical time requirements for introducing a new

feature to the market was reported to be in the range of three years [Mart88]. Ideally, this should

be in the 2-3 months range.

Several conceptual frameworks are being proposed to shorten this development time.

Formal techniques have a place because they allow logical modeling, prototyping, and

validation of features at the design stage. Possible problems, such as feature interaction, can be

detected at this stage.

This paper presents and contrasts two structural paradigms for formally specifying

telephone systems and their features. The two paradigms view the systems from different

perspectives, and highlight different aspects of interest at the initial stages of the system

development process. These approaches have been successfully used to extend POTS with a

number of features [B91][BL93][SL94][SL95][Faci95] such as Call Waiting, Call Forward on

Busy, Call Forward Always, Automatic Recall, Automatic Callback, Originating and

Terminating Call Screening, Distinctive Ringing, Calling Number Delivery, and Unlisted

Numbers.

The subject of feature interactions was not addressed in this paper. Afeature interaction

is defined as the interference of the functionality of one telephone feature with the functionality

of another telephone feature, meaning that the invocation of the first feature modifies the

functionality of another active feature, or even prevents its functionality altogether. This

problem has become a major obstacle for the extension of telephone systems with new services.

There is a considerable body of literature on the subject. Some references are [BDCG89][BL93]

[CGLN94] [SL94] [Fits95] [SL95] [Faci95] and [FaLo96].

The Intelligent Network model [DV92][Th94] provides architectural solutions for rapid

feature introduction. We are studying specification structures corresponding to the various

aspects of this model. Our initial results, which include a method for feature interaction
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detection, are reported in [Kam96].
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