
PC LOTOS
A hands-on LOTOS tutorial

Bernard Stepien

LOTOS (Language Of Temporal Ordering Specification) is an ISO standard
(ISO 8807) for the purpose of protocol specification. The language itself is based
on a limited set of operators to specify behaviours and on the Abstract Data Type
(ADT) language ACT ONE to specify data abstraction. LOTOS is taught in
various academic institutions around the world to an audience of both university
students and Industry. The motivation behind this hands-on tutorial came as a
result of teaching LOTOS to Industry for the Protocol Research Group of the
University of OTTAWA. Using the various LOTOS tools requires an in depth
knowledge of the language, and even small specifications including limited data
types can become a major hurdle to the first time user. This is an unfortunate
situation, because LOTOS in itself is a relatively simple language using few basic
operators. Consequently, the need for a tool that uses only a subset of the language
seemed to be a prime requirement for the widespread use of this language.

The need for such a subset is not new. Basic LOTOS (derived from CCS and
CSP) represent the “control” component of LOTOS. ACT ONE was added to this
kernel to gain the ability of specifying data abstraction.Unfortunately, the use of
basic LOTOS is very limited because there are no protocols without data. Also,
many aspects of LOTOS, for example the concept of reusability of processes,
representing addresses, etc., cannot be demonstrated without some elementary
data.

Another consideration in the development of this subset of LOTOS was the
lack of tools for unsophisticated platforms. Most of the currently available tools
can be operated only on workstations requiring large amounts of memory.

A PC based LOTOS tool allows exposure of LOTOS to a much wider
audience.

There is a good selection of tutorials available in the literature, but their use by
novices is sometimes limited by the lack of opportunity for hands-on experience.
This tutorial is very simple and comes with a good selection of examples that
can be run with the PCLOTOS tool setting a platform for more adventurous
exploration of this language.

Finally, a substantial motivation for the development of the PC LOTOS tool
was to have a tool to work on LOTOS specifications while travelling. As a
matter of fact, most of the development of PCLOTOS was achieved on a laptop

iii

computer on a sailboat sailing between Gibraltar and the Azores in the middle
of the Atlantic ocean.

Copyright 1991, Bernard Stepien International
The following tutorial is accompanied by with a diskette. Two backup copies

of this diskette containing the PCLOTOS software along with the example files
are permitted. Copies for different machines are authorized only if there will be
no more than one user at a time. The use of this software on multi-user networks
is not authorized. To obtain a licence contact Bernard Stepien at (613) 733–3196
in Canada.

iv

Contents
a

. iii

PART I PCLOTOS DOCUMENTATION 1

Chapter 1 PCLOTOS OPERATION 3

Section 1.1 system start-up . 3

Topic 1.1.1 editing a specification 3

Topic 1.1.2 list of example files . 5

Topic 1.1.3 executing a specification 7

Chapter 2 BASIC LOTOS . 9

Section 2.1 sequence operator: action prefix ";" 10

Section 2.2 non deterministic choice operator "[]" 11

Section 2.3 Parallelism or concurrency 15

Topic 2.3.1 independence: interleave operator "|||" 15

Topic 2.3.2 parallel composition synchronization operator “||” . 20

Topic 2.3.3 mixed synchronization and interleave operator:
“|[...]|” . 22

Topic 2.3.4 the internal event “i” 24

Section 2.4 disable operator: “[>” 25

Section 2.5 enable operator: “>>” 26

Section 2.6 resolving non determinism 30

Chapter 3 LOTOS AND DATA 31

Section 3.1 action denotation . 31

Section 3.2 parallelism and data 33

Topic 3.2.1 synchronization and deadlock 34

Topic 3.2.2 synchronization and value passing 35

Section 3.3 conditions on data . 37

Topic 3.3.1 guards "[...] -> . 37

Topic 3.3.2 Predicates in actions 38

v

Chapter 4 STRUCTURING IN LOTOS 41
Section 4.1 process definition . 41
Section 4.2 recursion . 47
Section 4.3 Special note on relabelling 51
Section 4.4 ADVANCED EXAMPLES 53

Topic 4.4.1 Database representation in LOTOS 53
Topic 4.4.2 Finite state machine representation in LOTOS . . 58
Topic 4.4.3 The constraint oriented specification style 60
Topic 4.4.4 Busy location representation in LOTOS 62

Chapter 5 SPREADING YOUR WINGS 65
Section 5.1 PC LOTOS syntax . 65
Section 5.2 Debugging your specification 67

Topic 5.2.1 most common bugs 67
Chapter 6 Moving to International Standard LOTOS 71

Section 6.1 Available LOTOS tools 71
Topic 6.1.1 The University of Ottawa LOTOS Toolkit 71

Section 6.2 upload / download between PC LOTOS and IS
LOTOS. 73

Bibliography . 74
Index . 75

vi

PART I
PCLOTOS DOCUMENTATION

1

Chapter 1 PCLOTOS OPERATION
a

Copy the PCLOTOS system diskette on your hard drive or make a duplicate
copy on a floppy diskette. Store your original diskette safely away and work
exclusively on your copy.

Section 1.1 system start-up

type PCLOTOS
The following popup menu will appear

EDIT A LOTOS SPECIFICATION
EXECUTE A LOTOS SPECIFICATION
EXIT
Using the arrows, move the green cursor bar to the appropriate selection and

press <enter> to activate your selection

1.1.1 editing a specification
Editing an already existing LOTOS specification
A directory of LOTOS specification files will appear. Files containing

examples corresponding to the ones described in this documentation have been
provided to avoid retyping.

Pick one of the files using the arrows and page up/down and press enter to
load.

Creating a new specification
when the directory of specifications appears, press Escape and a skeleton

specification will appear. You are now in an editor that has the same functions as
the turbo Pascal or turbo Prolog editors. As a reminder, all the editing functions
are similar to Wordstar functions.

Editor functions:
arrows: move up or down or left or right one character.

CTRL-T : delete word

CTRL-Y : delete line

copy block:

3

CTRL-K/B : begin block

CTRL-K/K : end block

CTRL-K/C : paste block at current cursor location

CTRL-K/V : move block at current cursor location

F7 : import text from another ASCII file. The imported text will be inserted at
the current cursor location. A new window will appear prompting for a file name.
Enter the file name. A new window containing the beginning of the imported file
will appear. Browse through it using the same above described editor functions.
The F7 key is used again to delimit the start and the end of the selected block
of text to import.

ESC: terminate editing and compile.

Error messages will appear if relevant. If your specification is syntactically
correct, you will be returned to the main menu.

4

1.1.2 list of example files
This hands-on tutorial features a number of ready to use examples to explain

various LOTOS operators and concepts. All the examples listed in this tutorial
are available on your PCLOTOS system diskette and should be copied on your
work disk. To use them, follow this sequence of actions:

— select “editing a LOTOS specification” from the main menu

— select one of the files from the popup menu.

— once you see a specification, press Escape to trigger its compilation. A
file name prompt will appear. To re-save your specification in the same file, press
enter or enter a new file name if you want to preserve the original file.

— select “LOTOS specification execution” from the main menu

— select the same file name from the popup menu.

— select a process name from the process popup menu.

— after execution of an action or display of a behaviour, press <enter> to
continue execution.

FILE

LEX1_1.L : action_prefix example

LEX1_2.L : non deterministic choice example

LEX1_3.L : independent parallelisms example (interleave operator)

LEX1_4.L : dependent parallelisms example (synchronization operator)

LEX1_5.L : mixed parallelisms example (interleave and synchronization)

LEX1_6.L : disable operator example

LEX1_7.L : enable with successful termination example

LEX1_8.L : enable with unsuccessful termination example

LEX1_9.L : resolving non determinism example

LEX2_1.L : usage of data example

LEX2_2.L : data and deadlock in parallelism example

LEX2_3.L : value passing in parallelism example

LEX2_4.L: guard operator example

LEX2_5.L : predicates in resolving non determinism example

LEX3_1.L : process definitions example

LEX3_2.L : telephone process recursion example

5

LEX3_3.L: transport service recursion example

LEX3_4.L: relabelling vs substitution of gates example

LEX4_1.L: using abstract data types to represent databases

LEX4_2.L: State oriented specification example

LEX4_3.L: Constraint oriented specification example

LEX4_4.L: Busy state representation example

6

1.1.3 executing a specification
PCLOTOS has been organized as a learning tool. It will show you all

the possible paths of actions that you can obtain from a LOTOS specification
by building an execution tree showing all the alternatives that your behaviour
expression can generate.

behaviour expression: is a state in which the system is at a given time.

There are two screens:

the LOTOS execution tree screen:
shows the alternate sequences of actions step by step. When this screen

appears, you can look at it until you decide to either proceed to the next available
action by pressing<enter> or look at the behaviour screen by pressing theright
arrow key. The tree is produced with a depth first order.

the LOTOS behaviour expression screen:
It shows two different kinds of behaviours:

- the LOTOS behaviour that has produced the action that appeared in the
LOTOS execution tree screen.

- the LOTOS behaviour expression that results from the execution of an action.

The system pauses after displaying each type of behaviour expressions. Press
<enter> to proceed, or press theleft arrow to view the execution tree screen.

Interrupting an execution: press the<ESC>key when looking at the execution
tree screen only.

7

Chapter 2 BASIC LOTOS
a

LOTOS is based on an algebra. It has operators that perform operations on
actions or behaviour expressions to express the ordering of events in time.

syntax:

a LOTOS specification is composed of:

the specification name, parameters and functionality

the key word "behaviour"

a LOTOS behaviour expression

the key word "endspec"

This is the basic skeleton that will appear in the editor when attempting to
create a new specification.

specification [<gate-list>]:noexit
behaviour
....
endspec

9

Section 2.1 sequence operator: action prefix ";"

This is the most basic LOTOS operator depicting the fact that the event on
the left side of the operator will precede in time all other events involved in the
behaviour expression on the right side of the operator.

NOTE: do not confuse this sequence operator ";" with a statement delimiter
like in PASCAL or PLI for example. There is no such thing as statements in
LOTOS.

The following specification is contained in file "LEX1_1.L" on the PCLOTOS
system diskette and should be on your working disk.

specification action_prefix_ex[wake_up,
breakfast,work,lunch,work,

relax,dinner,tv,sleep]
:noexit

behaviour
wake_up ; breakfast ; work ; lunch ;
work ; relax ; dinner ; tv ; sleep ; stop

endspec

This example is self explanatory.

REMARK: note the list of actions between square brackets after the specifi-
cation name "action_prefix_ex". If you modify this specification by adding more
actions, do not forget to include them in the action declaration list also called
"gate-list" by LOTOS experts.

You can execute this specification and see a relative linear execution tree.

wake_up ;
| breakfast ;
| | work ;
| | | lunch ;
| | | | work ;
| | | | | relax ;
| | | | | | dinner ;
| | | | | | | tv ;
| | | | | | | | sleep

10

Section 2.2 non deterministic choice operator "[]"

This is an operator that depicts a choice between two behaviour expressions.
It is non deterministic because the system itself cannot decide which path it
will follow. The environment can however decide which way it will go. When
executing the specification with PCLOTOS, the user is playing the role of the
environment.

Important note: When selecting one of the two alternative behaviour ex-
pressions offered by the choice operator, you will be committed to the branch
that has been chosen. Consequently, only the remaining events or actions of the
selected branch are considered as next possible actions. You no longer can switch
to the other branch. It has the same function as a railroad switch.

example 1.2 is showing two alternatives of someone’s personal life:

- a typical work day sequence of events

- a typical holiday sequence of events with some further choice of how to
spend that holiday.

The following specification is contained in file "LEX1_2.L" on the PCLOTOS
system diskette and should be on your working disk.

specification choice_ex[wake_up,breakfast,work,lunch,
work, relax,dinner,tv,sleep,

golf,brunch,tennis,movie]:noexit
behaviour

wake_up ; breakfast ; work ; lunch ;
work ; relax ; dinner ; tv ; sleep ; stop
[]
wake_up ; brunch ;
(

golf ; movie ; sleep ; stop
[]
tennis ; tv ; sleep ; stop

)
endspec

Execution tree

11

The execution tree shows all possible paths of actions one can draw from the
above specification. We can expect two main branches with further sub-branches
for the second branch.

This tree is obtained using the PCLOTOS interpreter, which shows both the
tree in the making and the various states or behaviour expressions resulting from
the execution of an action.

wake_up
| breakfast
| | work
| | | lunch
| | | | work
| | | | | relax
| | | | | | dinner
| | | | | | | tv
| | | | | | | | sleep
wake_up
| brunch
| | golf
| | | movie
| | | | sleep
| | tennis
| | | tv
| | | | sleep

The vertical lines help to understand the various alternatives. First we have
an alternative between a wake up for a week day and a wake up for a holiday.
The week day branch is composed of a linear sequence of actions typical of a
routine work day. The holiday branch is more diversified and one can see a
vertical alignment for golf and tennis meaning that these are alternate activities.

One can also see that if one plays tennis, the specification dictates that he
should watch television as the next action, preventing him from going to a movie.
This illustrates the concept of commitment to a branch that is the characteristic
of the non deterministic choice operator.

This commitment can be easily observed on the resulting behaviour expression
following the execution of an action. For example if one picks a holiday wake up,

12

the week day branch will disappear from the resulting behaviour expression. This
is easily understandable, because if one decides he is in a holiday, he definitely
is not in a work day. (This, before cellular phones and laptop computers were
invented!)

The following behaviours can be observed in the behaviours window when
executing the above specification. You can switch back and forth between the
execution tree window and the behaviour window using the left and right arrow.
press <enter> to proceed to the next available action

resulting behaviour:
performed action: wake_up ---->

brunch ;
(golf ; movie ; sleep ; stop

[]
tennis ; tv ; sleep ; stop
)

--
infering behaviour: (extracting the next possible action from

the above resulting behaviour)

brunch ;
(golf ; movie ; sleep ; stop

[]
tennis ; tv ; sleep ; stop
)

==
resulting behaviour:
performed action: brunch ---->

(golf ; movie ; sleep ; stop
[]

tennis ; tv ; sleep ; stop
)

--
infering behaviour:

(golf ; movie ; sleep ; stop
[]

tennis ; tv ; sleep ; stop

13

)
==
resulting behaviour:
performed action: golf ---->

movie ; sleep ; stop
--
infering behaviour:

movie ; sleep ; stop

at this point there is only a linear sequence of actions left for the evening
program.

14

Section 2.3 Parallelism or concurrency

One of the most important difference between a traditional computer lan-
guage and the specification language LOTOS is that LOTOS can handle parallel
processing much more easily.

There are three types of parallelism:

- independent parallelism

- dependent parallelism

- mixed parallelism

2.3.1 independence: interleave operator "|||"
This is the case where two processes evolve independently from each other.

This means that each process can perform actions in any order relative to each
other.

This also means that after executing an action from one process the next
possible action could be any action from both processes in parallel.

john’s
behavior

mary’s
behavior

The following example shows John and Mary doing a cash withdrawal at a
banking station where there are two cash dispensers. It is clear that they can
perform the required sequence of actions in any order relative to each other.

The following specification is contained in file "LEX1_3.l" on the PCLOTOS
system diskette and should be on your working disk.

15

specification interleave_ex [john_arrives,
john_inserts_card,
john_gets_cash,
mary_arrives,
mary_inserts_card,
mary_gets_cash]:noexit

behaviour
john_arrives ; john_inserts_card ;
john_gets_cash ; stop

|||
mary_arrives ; mary_inserts_card ;
mary_gets_cash ; stop

endspec

The execution tree resulting from this specification is quite large because it
is composed of all the combinations of interleaving John and Mary’s actions.

john_arrives
| john_inserts_card
| | john_gets_cash
| | | mary_arrives
| | | | mary_inserts_card
| | | | | mary_gets_cash
| | mary_arrives
| | | john_gets_cash
| | | | mary_inserts_card
| | | | | mary_gets_cash
| | | mary_inserts_card
| | | | john_gets_cash
| | | | | mary_gets_cash
| | | | mary_gets_cash
| | | | | john_gets_cash
| mary_arrives
| | john_inserts_card
| | | john_gets_cash
| | | | mary_inserts_card
| | | | | mary_gets_cash

16

| | | mary_inserts_card
| | | | john_gets_cash
| | | | | mary_gets_cash
| | | | mary_gets_cash
| | | | | john_gets_cash
| | mary_inserts_card
| | | john_inserts_card
| | | | john_gets_cash
| | | | | mary_gets_cash
| | | | mary_gets_cash
| | | | | john_gets_cash
| | | mary_gets_cash
| | | | john_inserts_card
| | | | | john_gets_cash
mary_arrives
| john_arrives
| | john_inserts_card
| | | john_gets_cash
| | | | mary_inserts_card
| | | | | mary_gets_cash
| | | mary_inserts_card
| | | | john_gets_cash
| | | | | mary_gets_cash
| | | | mary_gets_cash
| | | | | john_gets_cash
| | mary_inserts_card
| | | john_inserts_card
| | | | john_gets_cash
| | | | | mary_gets_cash
| | | | mary_gets_cash
| | | | | john_gets_cash
| | | mary_gets_cash
| | | | john_inserts_card
| | | | | john_gets_cash
| mary_inserts_card
| | john_arrives

17

| | | john_inserts_card
| | | | john_gets_cash
| | | | | mary_gets_cash
| | | | mary_gets_cash
| | | | | john_gets_cash
| | | mary_gets_cash
| | | | john_inserts_card
| | | | | john_gets_cash
| | mary_gets_cash
| | | john_arrives
| | | | john_inserts_card
| | | | | john_gets_cash

The following excerpt of the resulting behaviour window shows that while
John performs his actions, Mary’s actions are still available. Note that we have
used the option to show only the first action of a sequence of action options. This
option is used to show which actions are available as the next possible actions
only. It hides all actions that will be available only after one of the next possible
actions have been executed. It is a very handy feature when executing large
specifications.

inferring behaviour:
john_arrives ;

|||
mary_arrives ;

==
resulting behaviour:
performed action: john_arrives ---->

john_inserts_card ;
|||

mary_arrives ;
--
infering behaviour:

john_inserts_card ;
|||

mary_arrives ;

18

==
resulting behaviour:
performed action: john_inserts_card ---->

john_gets_cash ;
|||

mary_arrives ;
--
infering behaviour:

john_gets_cash ;
|||

mary_arrives ;
etc ...

19

2.3.2 parallel composition synchronization operator “||”

This operator means that the two processes in parallel have to agree on each
single action they can perform. The sequence of actions must be identical in
both processes.

In example 1.4 — file “LEX1_4.L” we can observe the behaviour of a user in
parallel to a cash dispenser. In the first alternative, they follow the same sequence
of actions. In the second alternative, the customer attempts to enter the amount
before entering its P.I.N., and deadlock ensues.

specification synchronization_ex [inserts_card ,
enter_PIN , enter_amount ,
press_green_button]:noexit

behaviour
(

inserts_card ; enter_PIN ; enter_amount ;
press_green_button ; stop

||
inserts_card ; enter_PIN ; enter_amount ;
press_green_button ; stop

)
[]

(
inserts_card ; enter_amount ; enter_PIN ;
press_green_button ; stop

||
inserts_card ; enter_PIN ; enter_amount ;
press_green_button ; stop

)
endspec

The resulting execution tree will clearly show the deadlock of the second
alternative:
inserts_card
| enter_PIN
| | enter_amount
| | | press_green_button
inserts_card <---- Deadlock, no further actions

20

On the behaviour window we can observe how an action is executed simul-
taneously in both parallel processes:

==
resulting behaviour:
performed action: inserts_card ---->

enter_PIN ; enter_amount ; press_green_button ;
stop

|[inserts_card,enter_PIN,enter_amount,
press_green_button]|

enter_PIN ; enter_amount ; press_green_button ;
stop

==
resulting behaviour:
performed action: enter_PIN ---->

enter_amount ; press_green_button ; stop
|[inserts_card,enter_PIN,enter_amount,

press_green_button]|
enter_amount ; press_green_button ; stop

==
resulting behaviour:
performed action: enter_amount ---->

press_green_button ; stop
|[inserts_card,enter_PIN,enter_amount,

press_green_button]|
press_green_button ; stop

==
resulting behaviour:
performed action: press_green_button ---->

stop
|[inserts_card,enter_PIN,enter_amount,

press_green_button]|
stop

21

2.3.3 mixed synchronization and interleave operator: “|[...]|”

This operator is used more frequently, because processes do not always agree
with each other. They perform various actions independently and at times they
rendezvous to exchange information, etc...

The common actions on which both processes must be synchronous are
indicated in a list between the parallel bars.

Example 1.5 — file “LEX1_5.L”, shows the behaviour of John and Mary,
who wake up and work in the morning independently and decide to go to lunch
together and work together in the afternoon. They then go home independently.

specification mixed_parallelism [john_wake_up,
john_works,john_goes_home,
mary_wake_up,mary_works,
mary_goes_home,
lunch_together,
work_together]:noexit

behaviour
john_wake_up ; john_works ; lunch_together ;
work_together ; john_goes_home ; stop

|[lunch_together,work_together]|
mary_wake_up ; mary_works ; lunch_together ;
work_together ; mary_goes_home ; stop

endspec

This is the resulting execution tree for the above specification. It shows the
various alternatives resulting from the interleaveaving of John and Mary’s inde-
pendent actions before they get together for lunch and the subsequent alternatives
once they have lunched and worked together.
john_wake_up
| john_works
| | mary_wake_up
| | | mary_works
| | | | lunch_together
| | | | | work_together
| | | | | | john_goes_home
| | | | | | | mary_goes_home

22

| | | | | | mary_goes_home
| | | | | | | john_goes_home
| mary_wake_up
| | john_works
| | | mary_works
| | | | lunch_together
| | | | | work_together
| | | | | | john_goes_home
| | | | | | | mary_goes_home
| | | | | | mary_goes_home
| | | | | | | john_goes_home
| | mary_works
| | | john_works
| | | | lunch_together
| | | | | work_together
| | | | | | john_goes_home
| | | | | | | mrygoes_home
| | | | | | mary_goes_home
| | | | | | | john_goes_home
mary_wake_up
| john_wake_up
| | john_works
| | | mary_works
| | | | lunch_together
| | | | | work_together
| | | | | | john_goes_home
| | | | | | | mary_goes_home
| | | | | | mary_goes_home
| | | | | | | john_goes_home
| | mary_works
| | | john_works
| | | | lunch_together
| | | | | work_together
| | | | | | john_goes_home
| | | | | | | mary_goes_home
| | | | | | mary_goes_home

23

| | | | | | | john_goes_home
| mary_works
| | john_wake_up
| | | john_works
| | | | lunch_together
| | | | | work_together
| | | | | | john_goes_home
| | | | | | | mary_goes_home
| | | | | | mary_goes_home
| | | | | | | john_goes_home

2.3.4 the internal event “i”
In LOTOS, an action is always the result of an interaction between one or

more processes. Sometimes, one needs to specify that an unspecified internal
action should occur before further interactions can occur. This internal action has
no effect on the rest of the behaviour. In LOTOS terminology we say that it does
not have to synchronize. It is represented merely by the letter“i” .

The following example is correct and will execute entirely:

a ; i ; b ; c ; stop
||
a ; b ; i ; c ; stop
will produce the valid sequence of events:a –> i —> b –> i —> c
The observable sequence, however, is a —> b —> c, in the sense that action

i should be considered invisible outside of the system being specified.

24

Section 2.4 disable operator: “[>”

The disable operator indicates interruption of a process.It is useful to specify
events such as interruption of service, common in telecommunication applications.
This interruption can occur at any point of the disabled process. The hang-up
action is an obvious example of a telephone specification.

The following specification is contained in file "LEX1_6.L" on the PCLOTOS
system diskette and should be on your working disk.

specification disable_ex [off_hook,tone,dial,
connect,talk, hang_up]:noexit

behaviour
off_hook ;

(
tone ; dial ; connect ; talk ; stop

[> hang_up ; stop
)

endspec

Note the scope of the hang-up action. The brackets prevent a hang-up from
occuring before an off-hook has been executed. The following execution tree
shows that there is the alternative of hanging up the phone for each action after
an off_hook action.

off_hook
| tone
| | dial
| | | connect
| | | | talk
| | | | | hang_up
| | | | hang_up
| | | hang_up
| | hang_up
| hang_up

25

Section 2.5 enable operator: “>>”

LOTOS behaviours expression resemble trees. When there are alternatives,
one is committed to the alternative. The enable operator allows to merge back
to a common path after alternatives.

example:

wake_up ;

(work ; lunch ; ...

[]

go_fishing ; lunch ; ...

)

requires to define twice the sequence “lunch ; ... “.

Using the enable operator, this can be reduced to:

wake_up ; (work ; exit [] go_fishing ; exit) >> lunch ; ...

Note the word “EXIT ” which meanssuccessful terminationin LOTOS.

example 1.7 — file “LEX1_7.L” shows an alternative morning program
between work and golf that both can lead to lunch with some further alternative
to work or play tennis in the afternoon that can also lead to relaxing for the rest
of the day.

specification enable_ex[wake_up,breakfast,
work,lunch,work,relax,dinner,
sleep,golf,tennis]:noexit

behaviour
wake_up ;
breakfast ;
(work ; exit [] golf ; exit)

>>
lunch ;
(work ; exit [] tennis ; exit)

>>
relax ; dinner ; sleep ; stop

endspec

The execution tree of the above specification shows the various alternative
paths of actions:

26

wake_up
| breakfast
| | work
| | | exit
| | | | lunch
| | | | | work
| | | | | | exit
| | | | | | | relax
| | | | | | | | dinner
| | | | | | | | | sleep
| | | | | tennis
| | | | | | exit
| | | | | | | relax
| | | | | | | | dinner
| | | | | | | | | sleep
| | golf
| | | exit
| | | | lunch
| | | | | work
| | | | | | exit
| | | | | | | relax
| | | | | | | | dinner
| | | | | | | | | sleep
| | | | | tennis
| | | | | | exit
| | | | | | | relax
| | | | | | | | dinner
| | | | | | | | | sleep

27

Unsuccessful termination
In the next example, there is a choice between working and skiing in the

morning, with the unfortunate event of breaking a leg which ruins the rest of the
day. This is a case of unsuccessful termination preventing further actions despite
the enable operator.

The following specification is contained in file "LEX1_8.L" on the PCLOTOS
system diskette and should be on your working disk.

specification enable_ex[wake_up,breakfast,
work,lunch,work,relax,dinner,
break_a_leg,sleep,ski,golf,

tennis]:noexit
behaviour

wake_up ;
breakfast ;
(work ; exit

[]
ski ; break_a_leg ; stop

)
>>

lunch ;
(work ; exit [] tennis ; exit)

>>
relax ; dinner ; sleep ;

stop
endspec

28

The execution tree of this specification is reduced compared to the previous
tree that did not include an unsuccessful termination:
wake_up
| breakfast
| | work
| | | exit
| | | | lunch
| | | | | work
| | | | | | exit
| | | | | | | relax
| | | | | | | | dinner
| | | | | | | | | sleep
| | | | | tennis
| | | | | | exit
| | | | | | | relax
| | | | | | | | dinner
| | | | | | | | | sleep
| | ski
| | | break_a_leg <---- unsuccessful termination

29

Section 2.6 resolving non determinism

The non deterministic choice operator provides alternatives that the system
cannot resolve by itself. The environment will determine which path the behaviour
will follow. If such a behaviour is in parallel with another process, that process
may dictate the path to follow.

The following specification is contained in file "LEX1_9.L" on the PCLOTOS
system diskette and should be on your working disk.

In the following example of an interaction between a phone process and a
controller, we can see that the controller will force the dial_number action to be
executed and no ring will then occur for this call initiator phone, because the
controller side does not offer a ring action.

specification telephone [off_hook,tone,dial_number,
ring,answer,connect,talk

]:noexit
behaviour
(

off_hook ; tone ; dial_number ; connect ;
talk ; stop
[]
ring ; answer ; connect ; talk ; stop

)
|[dial_number,ring,connect]|

dial_number ; connect ; stop
endspec

The only possible path for this specification is:

off_hook
| tone
| | dial_number
| | | connect
| | | | talk

30

Chapter 3 LOTOS AND DATA
a

Data are handled in ISO LOTOS by a complex Abstract Data Type (ADT)
definition language called ACT ONE.

ACT One is a very powerful language, but it may present difficulties for
novices.

Therefore, In this PC version of LOTOS we have chosen to relieve the user
of the Abstract Data Type burden that is unnecessary to understand the “process”
part of LOTOS.

Data are consequently considered asplain character string information.

Section 3.1 action denotation

an action or event in LOTOS is composed of two main components:

- an interaction point between two processes

- value offers

example:

controller ! 236-4563 ! ring

is an event that occurs at the interaction point named “controller”, and provides
the phone number and the ring as values.

Data in LOTOS are used for three main purposes:

- as identifiers of entities that communicate via the same interaction point.

- as indication of the type of event that is occurring (primitives)

- finally as data in the traditional senseof input / output.

there are two symbols to indicate the type of offer:

! : means that the value is offered (similar to the output concept)

? : means that the value is requested (similar to the input concept) this
symbol is used only in connection with a variable name.

The following example shows how the simple phone system can be rewritten
using data. Most actions are merely providing phone number identification and
type of action through data, and the dial action is requesting a Called Number to
be supplied by the environment, in this case the user.

31

The following specification is contained in file "LEX2_1.L" on the PCLOTOS
system diskette and should be on your working disk.

specification data_ex [phone,controller]:noexit
behaviour

phone ! 5641234 ! off_hook ;
(

phone ! 5641234 ! tone ;
controller ! 5641234 ! dial ? Called_Number ;
controller ! 5641234 ! connect ! Called_Number ;
phone ! 5641234 ! talk ;
phone ! Called_Number ! talk ;
stop

[> phone ! 5641234 ! hang_up ; stop
)

endspec

32

Section 3.2 parallelism and data

Here LOTOS is different from the traditional concept of input / output of
traditional computer languages.

When two processes communicate, they are interested in two aspects:

- to agree on a common action before proceeding further.

- to exchange information (value passing)

agreement synchronization:

restaurant ! lunch ; work ; ...

|[restaurant]|

restaurant ! lunch ; gohome ; ...

value passing synchronization:

teller ! john ! hand_over ! 500.00 ; ...

|[teller]|

teller ? Customer ! hand_over ? Amount ;

bank ! Customer ! credit ! Amount ; ...

teller ! john ! hand_over ! 500.00 ;

|[teller]|

teller ? Customer ! hand_over ? Amount ;

 bank ! Customer ! credit ! Amount ;

DATA FLOW

33

In this example, an action occurs between a customer and a bank at an
interaction point called "teller". The customer provides his or her identity and
the amount of money, while the bank is requesting the identity and the amount
of money before it can proceed and credit the customer’s account.

Customer and Money are variables that will contain the value "john" and
500.00 after synchronization.

In the LOTOS world, a variable is referred to as a value declaration. The scope
of such a variable is different from what it would be in traditional programming
languages, because of the temporal ordering aspect. A variable holds a value for
anything that follows that action. Consequently, variables having the same name
and occurring in alternate or parallel behaviours do not interfere with each other.

Example:

g1 ? X ; g2 ! X ; stop
[]
g3 ? X ; g4 ! X ; stop

the value contained in X will be different at interaction point g2 than at g4
because the two behaviours cannot mix.

3.2.1 synchronization and deadlock
example 2.2

deadlock is achieved in two ways:

- non matching points of interaction.

- non matching values.
In the following example, john went to the airport (matching interaction point

between john and the transportation industry), but the only way to go to Paris
was via train while john wanted to go by plane (mismatch on data).

The following specification is contained in file "LEX2_2.L" on the PCLOTOS
system diskette and should be on your working disk.

specification data_ex [john,airport,paris]:noexit
behaviour
john ! taxi ;
(

airport ! plane ; paris ! dinner ; stop

34

|[airport]|
airport ! train ; paris ! dinner ; stop

)
endspec

3.2.2 synchronization and value passing
Using the classic telephone example we can observe some interesting exam-

ples of value passing.

First the phone interacts with the user to determine what is the calling number
via action off_hook, then the user interacts with the phone again to determine the
called party number. The phone line then interacts with the controller to provide
a connection request between a calling and a called number.

The controller will then interact with another phone, the responding phone,
by ringing that phone number, etc...

The following specification is contained in file "LEX2_3.L" on the PCLOTOS
system diskette and should be on your working disk.

specification telephone [phone, controller]:noexit
behaviour
(

phone ! off_hook ? Calling_Num ;
phone ! Calling_Num ! dial_number ? Called_Num;
controller ! Calling_Num ! con_req ! Called_Num ;
controller ! Calling_Num ! connect ;
phone ! Calling_Num ! talk ; stop
|||
controller ? Respond_Num ! ring ;
phone ! Respond_Num ! answer ;
controller ? Respond_Num ! connect ;
phone ! Respond_Num ! talk ; stop

)
|[controller]|

controller ? Origin_Num ! con_req
? Destination_Num ;

controller ! Destination_Num ! ring ;

35

controller ! Destination_Num ! connect ;
controller ! Origin_Num ! connect ; stop

endspec

This is the execution tree of such a specification. Note the question marks
“?” followed by a value “222” meaning that a value has been provided by the
environment (here the user).

phone ! off_hook ? 111
| phone ! 111 ! dial_number ? 222
| | controller ! 111 ! con_req ! 222
| | | controller ! 222 ! ring
| | | | phone ! 222 ! answer
| | | | | controller ! 222 ! connect
| | | | | | controller ! 111 ! connect
| | | | | | | phone ! 111 ! talk
| | | | | | | | phone ! 222 ! talk
| | | | | | | phone ! 222 ! talk
| | | | | | | | phone ! 111 ! talk
| | | | | | phone ! 222 ! talk
| | | | | | | controller ! 111 ! connect
| | | | | | | | phone ! 111 ! talk

36

Section 3.3 conditions on data

Like any other language, LOTOS provides the capability to decide on the
next course of action with decisions. However, LOTOS departs from traditional
programming languages in the way such decisions can be made.

3.3.1 guards "[...] ->
A guard is very similar to an IF statement. It is however different in its

scope. A guard precisely guards the entry of a subsequent behaviour. There is
however no ELSE concept.

The above telephone example could be rewritten using a guard. The controller
process could query a signal, and if the detected signal is a connection request,
it then will proceed in ringing the called party number.

example 2.4 — file “LEX2_4.L

specification telephone [phone, controller]:noexit
behaviour

(
phone ! off_hook ? Calling_Num ;
phone ! Calling_Num ! dial_number ? Called_Num;
controller ! Calling_Num ! con_req ! Called_Num;
controller ! Calling_Num ! connect ;
phone ! Calling_Num ! talk ; stop

|||
controller ? Respond_Num ! ring ;
phone ! Respond_Num ! answer ;
controller ? Respond_Num ! connect ;
phone ! Respond_Num ! talk ; stop

)
|[controller]|

controller ? Origin_Num ? Signal ? Destin_Num ;
[Signal eq con_req] ->

controller ! Destin_Num ! ring ;
controller ! Destin_Num ! connect ;
controller ! Origin_Num ! connect;
stop

endspec

37

3.3.2 Predicates in actions
The action denotation that we presented above had a missing element: the

predicate. The predicate is a condition on data that will enter the free variables
of this action.

For example, if John is a vegetarian, an action specifying his behaviour in a
restaurant may look like this:

restaurant ! John ? FOOD [FOOD eq vegetables] ; ...

The main function of predicates is in conjunction with synchronization in
parallel behaviour. It is another device to resolve non deterministic choices. This
is an example of a specification depicting John choosing restaurants:

(

restaurant ! chinese ? Customer ! vegetables ; stop
[]

restaurant ! fast_food ? Customer ! hamburger ; stop

[]
restaurant ! italian ? Customer ! spaghetti ; stop

)
||

restaurant ? TYPE ! john ? FOOD [FOOD eq vegetables] ; go_home
; stop

The evaluation of the predicate on the free variable FOOD in John’s action
will determine that the only TYPE of restaurant john will choose is Chinese.
Note that the three restaurant actions will synchronize with john’s action. In this
case we have a bilateral value passing. Variable TYPE will receive the values
describing the type of restaurant, Customer will always be passed the value john,
and FOOD will be passed the various types of food. The only tuple for which
the synchronization will succeed is however the one for which the predicate on
FOOD is satisfied.

The following specification is contained in file "LEX2_5.L" on the PCLOTOS
system diskette and should be on your working disk.

38

specification going_out [restaurant,theatre]:noexit
behaviour
(

(
restaurant ! chinese ? Customer ! vegetables ;
exit

[]
restaurant ! fast_food ? Customer ! hamburger ;
exit

[]
restaurant ! italian ? Customer ! spaghetti ;
exit

)
>>

(
theatre ! rambo ? customer ! violence ; stop

[]
theatre ! hair ? customer ! sixties ; stop

[]
theatre ! splash ? customer ! romantic ; stop
)

)
||
restaurant ? TYPE ! john ? FOOD

[FOOD eq vegetables] ;
theatre ? MOVIE ! john ? STYLE

[STYLE ne violence] ;
stop

endspec

39

The above specification will produce the following tree where we observe
only one choice of restaurant but two alternatives for movies.

restaurant ! chinese ! john ! vegetables
| exit
| | theatre ! hair ! john ! sixties
| | theatre ! splash ! john ! romantic

40

Chapter 4 STRUCTURING IN LOTOS
a

Section 4.1 process definition

behaviour expressions can be broken down in processes following top down
design principles.

Processes are generic and reusable in two ways:

- reusable interaction points: relabelling

- formal parameters to pass values.
This is a good example of reusability:

deliver[paris,rome](bread)
where

process deliver[point_a,point_b](Item) :noexit:=
point_a ! pick_up ! Item ;
point_b ! drop_off ! Item ;
stop

endproc

the above instantiation will generate the sequence:

paris ! pick_up ! bread —> rome ! drop_off ! bread
For example a telephone system can be broken down into two top level

components: Phones and a controller. Phones will then be broken down in
individual instances of phones that each have a number. Finally a phone process
can be broken down into two roles: the call initiator role and the call responder
role.

Phone will have a formal parameter containing it’s identification number that
will be associated to all its actions.

The following specification is contained in file "LEX3_1.L" on the PCLOTOS
system diskette and should be on your working disk.

41

specification telephone[network,user]:noexit
behaviour

(
phone[network,user](111)

|||
phone[network,user](222)

)
|[network]|

controller[network]
where

process phone[n,u](NUM):noexit:=
call_initiator_phone[n,u](NUM)
[]
call_responder_phone[n,u](NUM)

endproc
process call_initiator_phone[n,u](NUM):

noexit:=
u ! NUM ! offhook;
u ! NUM ! dial ? CDNUM ;
n ! NUM ! conreq ! CDNUM ;
n ! NUM ! connect;
u ! NUM ! talk;
stop

endproc
process call_responder_phone[n,u](NUM):

noexit:=
n ! NUM ! ring;
u ! NUM ! answer;
n ! NUM ! connect;
u ! NUM ! talk;
stop

endproc
process controller[n] :noexit:=

n ? NUM ! conreq ? CDNUM ;
n ! CDNUM ! ring ;
n ! CDNUM ! answer ;

42

n ! NUM ! connect ;
stop

endproc
endspec

Note the difference in interaction point names. At the highest level we use
the names “network” and “user”, while in the process definitions we use the
names “n” and “u”. During execution, LOTOS willre-label the process definition
interaction point names according to the names present in the instantiation of these
processes. Consequently gate“n” will be re-labelled“network” and gate“u”
will be re-labelled“user” .

43

The execution tree for this structured specification is larger because we have
two phones (number 111 and 222) that are in parallel and independent from
each other. Consequently for each action of phone 111, there could be an action
of phone 222. This sometimes results in incomplete branches. For instance,
if phone 222 gets off_hook before the controller rings it, the ring action is no
longer available, and a deadlock for that branch occurs. This deadlock in essence
represents that the contacted number is busy.

user ! 111 ! offhook
| user ! 111 ! dial ? 222
| | network ! 111 ! conreq ! 222
| | | network ! 222 ! ring
| | | | user ! 222 ! answer
| | | | | network ! 222 ! connect
| | | | | | network ! 111 ! connect
| | | | | | | user ! 111 ! talk
| | | | | | | | user ! 222 ! talk
| | | | | | | user ! 222 ! talk
| | | | | | | | user ! 111 ! talk
| | | | | | user ! 222 ! talk
| | | | | | | network ! 111 ! connect
| | | | | | | | user ! 111 ! talk
| | | user ! 222 ! offhook
| | | | user ! 222 ! dial ? 111
| | user ! 222 ! offhook
| | | network ! 111 ! conreq ! 222
| | | | user ! 222 ! dial ? 111
| | | user ! 222 ! dial ? 111
| | | | network ! 111 ! conreq ! 222
| | | | network ! 222 ! conreq ! 111
| user ! 222 ! offhook
| | user ! 111 ! dial ? 222
| | | network ! 111 ! conreq ! 222
| | | | user ! 222 ! dial ? 111
| | | user ! 222 ! dial ? 111
| | | | network ! 111 ! conreq ! 222
| | | | network ! 222 ! conreq ! 111

44

| | user ! 222 ! dial ? 111
| | | network ! 222 ! conreq ! 111
| | | | user ! 111 ! dial ? 222
| | | user ! 111 ! dial ? 222
| | | | network ! 111 ! conreq ! 222
| | | | network ! 222 ! conreq ! 111
user ! 222 ! offhook
etc ...

The following shows the various resulting behaviours after execution of some
actions:

--
infering behaviour:

n ! 111 ! connect ;
|||

phone[n,u](222)
|[n]|

n ! 222 ! ring ;
==
resulting behaviour:
performed action : n ! 222 ! ring ---->

n ! 111 ! connect ;
|||

n ! 222 ! answer ;
|[n]|

n ! 222 ! answer ;
--
infering behaviour:

n ! 111 ! connect ;
|||

n ! 222 ! answer ;
|[n]|

n ! 222 ! answer ;
==
resulting behaviour:
performed action : n ! 222 ! answer ---->

45

n ! 111 ! connect ;
|||

n ! 222 ! connect ;
|[n]|

n ! 222 ! connect ;
--
infering behaviour:

n ! 111 ! connect ;
|||

n ! 222 ! connect ;
|[n]|

n ! 222 ! connect ;
==
resulting behaviour:
performed action : n ! 222 ! connect ---->

n ! 111 ! connect ;
|||

u ! 222 ! talk ;
|[n]|

n ! 111 ! connect ;
--
infering behaviour:

n ! 111 ! connect ;
|||

u ! 222 ! talk ;
|[n]|

n ! 111 ! connect ;
==
resulting behaviour:
performed action : n ! 111 ! connect ---->

u ! 111 ! talk ;
|||

u ! 222 ! talk ;
|[n]|

stop

46

Section 4.2 recursion

LOTOS provides for tail recursion only.

The following simple example of the transport protocol provides a never
ending transport service:

It is found on your work disk under the name“LEX3_3.L” , and it shows two
typical recursions of the transport service. Thedata_transfer process is recursive
and can only be left through thetermination_phaseprocess. When a termination
occurs, its successful termination is represented by an exit, enabling it to further
recurse to a new instance of the processconnection_phase.

specification transport [t]:noexit
behaviour

connection_phase[t]
>>

(data_transfer[t] [> termination_phase[t])
>> connection_phase[t]

where
process connection_phase [t] :exit :=

initiator_role[t]
[]

responder_role[t]
endproc
process initiator_role [t]:exit:=

t ! conreq ;
(

t ! tconconf ; exit
[]
termination_phase[t]

)
endproc
process responder_role [t]:exit:=

t ! tcon_ind ;
(

t ! tcon_resp ; exit
[]

47

termination_phase[t]
)

endproc
process data_transfer [t]:noexit:=

t ! data_req ; data_transfer[t]
[]
t ! data_ind ; data_transfer[t]

endproc
process termination_phase [t]:exit:=

t ! discon_req ; exit
[]
t ! discon_ind ; exit

endproc
endspec

There are two kinds of recursion in the above specification:

— direct recursion as in the process data_transfer.

— indirect recursion as in the behaviour of the specification itself where the
activation of the termination phase enables a new connection to be started

The following is an example of an execution tree that can be obtained from
the above specification.

WARNING: since the tree is generated depth first, you have to intervene to
stop endless recursion on one specific branch of the tree.

press the’ESC’ key whenever you are in the tree window and you want to
prune the execution of the specific branch you are exploring.

The message “!!! pruned” will follow the last action in the branch whenever
you press the“ESC” key.

t ! conreq
| t ! tconconf
| | exit
| | | t ! data_req
| | | | t ! data_req
| | | | | t ! data_req !!! pruned
| | | | | t ! data_ind

48

| | | | | | t ! data_req
| | | | | | | t ! data_req !!! pruned
| | | | | | | t ! data_ind !!! pruned
| | | | | | | t ! discon_req !!! pruned
| | | | | | | t ! discon_ind !!! pruned
| | | | | | t ! data_ind
| | | | | | | t ! data_req !!! pruned
| | | | | | | t ! data_ind !!! pruned
| | | | | | | t ! discon_req !!! pruned
| | | | | | | t ! discon_ind !!! pruned
| | | | | | t ! discon_req etc ...
| | | | | | t ! discon_ind
| | | | | t ! discon_req
| | | | | t ! discon_ind
| | | | t ! data_ind
| | | | | t ! data_req
| | | | | | t ! data_req
| | | | | | | t ! data_req
| | | | | | | t ! data_ind
| | | | | | | t ! discon_req
| | | | | | | t ! discon_ind
| | | | | | t ! data_ind
| | | | | | t ! discon_req
| | | | | | t ! discon_ind
| | | | | t ! data_ind
| | | | | t ! discon_req
| | | | | t ! discon_ind
| | | | t ! discon_req
| | | | t ! discon_ind
| | | t ! data_ind
| | | t ! discon_req
| | | t ! discon_ind
| t ! discon_req
| t ! discon_ind
t ! tcon_ind
| t ! tcon_resp

49

| | exit
| | | t ! data_req
| | | | t ! data_req
| | | | t ! data_ind
| | | | t ! discon_req
| | | | t ! discon_ind
| | | t ! data_ind
| | | t ! discon_req
| | | t ! discon_ind
| t ! discon_req
| t ! discon_ind

As an exercise, you can attempt to transform example LEX3_1.L into a
recursive telephone. The complete example can be found in file LEX3_2.L.

50

Section 4.3 Special note on relabelling

Do not confuse relabelling with substitution. While the example provided
above would tend to make you think that relabelling is a mere substitution of gate
names (interaction points), this is strictly due to the nature of the example.

The following example is a notorious case illustrating this difference:

consider the following process definition and then let’s try to instantiate it
in various ways:

process P [left,middle,right]:noexit :=
left ; middle ; stop

|[middle]|
middle ; right ; stop

endproc

the following instance of this process will produce a sequence mapping the
left, middle, right expected sequence.

instance of P:

P[paris,berlin,moscow]

sequence:

paris —> berlin —> moscow

One should note that the results are identical to the ones that would have been
achieved with substitution instead of relabelling.

The next instance of P depicts the fact that someone will start in paris, come
back to paris, and then go to berlin. This is a very frequent example of finite
state machine.

P[paris,paris,berlin]
using relabelling will produce the sequence:

paris —> paris —> berlin
however, usingsubstitution this same instance of P will produce:

paris —> berlin
The difference is due to the fact that LOTOS will first generate the sequence

left —> middle —> right and then re-label each action by the instantiated values
paris, paris again and berlin.

substitution would behave as if we had rewritten the process P as follows:

substituted process P[paris,paris,berlin]:noexit:= (* wrong *)

51

paris; paris ; stop

|[paris]|

paris ; berlin

endproc

One can easily see that the action “Paris” can synchronize onlyonce, pro-
ducing the resulting behaviour:

paris ; stop

|[paris]|

berlin ; stop

that can only produce a “berlin” action leaving the remaining “paris” action
pending.

The following example is in file “LEX3_4.L” and illustrates the above con-
cepts.

specification relabel_ex
[paris,berlin,moskva]:noexit

behaviour
P_relabel [paris,berlin,moskva]
[]
P_relabel [paris,paris,berlin]
[]
P_substitute [paris,paris,berlin]

where
process P_relabel[left,middle,right] :noexit:=

left ; middle ; stop
|[middle]|

middle ; right ; stop
endproc
process P_substitute[paris,paris,berlin] :noexit:=

paris ; paris ; stop
|[paris]|
paris ; berlin ; stop

endproc
endspec

52

The three different choices in the behaviour expression will produce the
following tree, that shows three sub trees (most left starts).

paris <----- FIRST SUBTREE
| berlin
| | moskva
paris <----- SECOND SUBTREE
| paris
| | berlin
paris <----- THIRD SUBTREE
| berlin

Section 4.4 ADVANCED EXAMPLES

In this section, we will present some examples that will mainly illustrate some
stylistic issues among the LOTOS users community and some introduction on the
usefullness of abstract data types which have been left out of this PC version
of LOTOS.

4.4.1 Database representation in LOTOS
This example shows how to perform the traditional database operations of

validating the sign-on of a user and performing insertions of new users and
deletions of existing ones.

First of all, the actual database is represented as a set of user-ids. The
representation of this set has to be formalized in order to enable the compiler
to recognize that it is a set, but also to enable operations to be performed on this
set. This will give us an oportunity to present some abstract data type concepts.

Abstract Data Types are composed of two parts:

— operator definitions.

— equations that give the computation rules for each operator.

There are two kinds of operators:

— constructors and selectors.

Constructors are used to build data. In our case, we want to build a collection
of user-ids. First, one must start with an empty set represented by the terminal

53

symbol “{} ”. The empty set is the basic constructor also called the seed. A new
set can be constructed by inserting a new user-id into this empty set such as:

Insert(bernard,{}) is a new set.

We can further insert new users by using the same constructor “Insert” that
is defined generically as Insert(element,set) as follows:

Insert(mary,Insert(bernard,{})) and so on...

Destructors can be defined in a very similar way as Remove(element,set):

Remove(bernard,Insert(mary,Insert(bernard,{}))).

We now have to define selectors that will manipulate a set. We have built-in
two such selectors, one to verify the existence of an element in a set and its
opposite that verifies its non-existence. These are the constructors and selectors
that we will use in our database example.

The syntax of these two selectors is:

IsIn(element,set)and NotIn(element,set).

For example, one may query the database by stating:

IsIn(bernard,Remove(bernard,Insert(mary,Insert(bernard,{})))) ? and get as a
reply False.

The reverse example should generate true:

NotIn(bernard,Remove(bernard,Insert(mary,Insert(bernard,{})))) ?

The equations that would produce such results are quite simple:

IsIn(X,{}) = False; states that X is never in an empty set.

IsIn(X,Insert(X,Y)) = True; states that an element X is in a set if that element
has been inserted in that set.

Finally, the above rule may not succeed immediatly if the Insert constructor
for that element is not the first element of the set. A set in this abstract data
type system is comparable to a list where there is no direct access to elements.
The following equation enables to examine each elements of the set by stating
that if the element is not in the current Insert constructor, keep looking in the
remaining set:

IsIn(X,Insert(Y,Z)) = IsIn(X,Z);

From a practical point of view, these equations have been built-in in this
version of PCLOTOS. The syntax of the constructors is the only aspect to
remember for their use in the database example.

54

Using sets to picture database operations

The database interface is specified as an instance of an interface process that
has two interaction points, one with the users and one with the database itself.
The database itself is represented as a formal parameter of the interface process.
Operations to the database can be performed with one instance of the interface
process. New operations require a new instance of the interface process. This can
be implemented using the tail recursion to the interface process. The resulting
modified database is then passed on to the formal parameter of the new instance
of the interface process.

The interface process is composed of three nondeterministic choices corre-
sponding to the three types of operations we are specifying: query an existing
user, insert and delete users.

The first action “dbase ! USERS” of the query section consists in displaying
the set of current users to help understand the mechanism involved. The query
prompt is represented by the “user ? QUERY_USER” action. The next set of
actions are guarded actions. Each guard actually performs the database query .
The guard “[QUERY_USER IsIn USERS] —> ” will allow the message “user
is authorized” to be displayed by the database system. The other choice uses the
NotIn selector to display the “user not found” message. In this case we continue
the processing by asking the user if he wants to continue. In the affirmative, we
recurse to another instance of the interface process.

Adding a new user consists merely in prompting the user for a new user-id
and then recursing to another instance of the interface process by modifying its
formal parameter by inserting the new user-id in the current set of user-ids.

Deleting an existing user-id is very similar to the above insertion behavior.
The only difference is in the modification of the formal parameter of the interface
process. The remove destructor is used to indicate that the user-id has been
deleted.

specification database_interface
[user,dbase]:noexit

/* example the database is represented
by a set of users in the interface
process formal parameters */

/* example LEX4_1.L */
behaviour

55

interface[user,dbase]
(Insert(john,Insert(mary,{})))

where
process interface [user,dbase](USERS):noexit:=

/* database query functions */
dbase ! USERS ; user ? QUERY_USER ;
(

[QUERY_USER IsIn USERS]->
dbase ! "user is authorized" ;

interface[user,dbase](USERS)
[]
(

[QUERY_USER NotIn USERS]->
dbase ! "user not found" ;

user ! "continue ?" ? ANSWER ;
(

[ANSWER eq yes]->
interface[user,dbase](USERS)

[]
[ANSWER eq no]-> stop

)
)

)
[]
/* add a new user to the data base */
user ! new_user ? NEW_USER ;
interface[user,dbase]

(Insert(NEW_USER,USERS)
[]
/* delete an existing user from the

data base */
user ! delete_user ? DEL_USER;
interface[user,dbase]

(Remove(DEL_USER,USERS)
endproc

endspec

56

The database example execution tree.

This execution tree has been achieved by pruning the original infinite tree
that would exist due to the recursion to the interface process. Pruning is achieved
using the ESC key at the appropriate step.

execution tree: database_interface
dbase ! insert(john, insert(mary, {}))
| user ! mary
| | dbase ! user is authorized
| | | dbase ! insert(john,

insert(mary, {}))
| | | | user ! bernard
| | | | | dbase ! user not found
| | | | | | user ! continue ? ! yes
| | | | | | | dbase !

insert(john, insert(mary, {}))
| | | | | | | user !

new_user ! bernard
| | | | | | | | dbase !

insert(bernard, insert(john, insert(mary, {})))
| | | | | | | | | user ! bernard
| | | | | | | | | |

dbase ! user is authorized
| | | | | | | | | | |

dbase ! insert(bernard,
insert(john, insert(mary, {})))

| | | | | | | | | | | user ! new_ u
| | | | | | | | | | | user ! dele t
| | | | | | | | | | | | dbase !

insert(john, insert(mary, {}))))
| | | | | | | | | | | | | user
| | | | | | | | | | | | | | d
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |

57

insert(bernard,
insert(john, insert(mary, {}))))

4.4.2 Finite state machine representation in LOTOS

Finite state machines are extensively used in protocol design and testing.
They are very easily represented in LOTOS using a single recursive process that
is composed of nondeterministic choices of state transitions that are guarded by
state identification guards. States are passed on via a formal parameter of the
recursive state machine process. Each transition leads into a recursion where the
formal parameter is set to the new state.

For example, the transport service represented by a state machine will start
with an instance of the transport process with the valueidle in its formal parameter.
This will allow the first choice of action[STATE eq idle]-> t ! conreq to be
fired. It then recurses with another instance of process transport with the value
requested in its formal parameter. This will in turn enable to fire the second
choice action[STATE eq requested]-> t ! tcon_ind and so on.

Finite state machines are easy to understand but they have some annoying
side effects. First it is difficult to depict concurrency, but also it can obscure
the original intentions of the specifier. The following specification of a transport
service using a state machine shows an awkward way to specify disconnection.
The guard is long and does not enable the reader to relate this condition with
their associated disabled behaviors.

specification state_transport [t]:noexit
/* example LEYX4_2.L */
behaviour

transport[t](idle)
where

process transport [t](STATE):noexit:=
[STATE eq idle]- > t ! conreq ;

transport[t](requested)
[]

[STATE eq requested]- > t ! tcon_ind ;
transport[t](indicated)

[]

58

[STATE eq indicated]- > t ! tcon_resp ;
transport[t](responded)

[]
[STATE eq responded]- > t ! tconconf ;

data_transfer[t]
[]

[STATE eq requested or
STATE eq indicated or
STATE eq responded]->

(
t ! discon_req ; stop

[]
t ! discon_ind ; stop

)
endproc
process data_transfer [t]:noexit:=

t ! data_req ; data_transfer[t]
[]
t ! data_ind ; data_transfer[t]

endproc
endspec

Execution tree of the state oriented transport service

execution tree: state_transport
t ! conreq
| t ! tcon_ind
| | t ! tcon_resp
| | | t ! tconconf
| | | | t ! data_req
| | | | | t ! data_req
| | | | | t ! data_ind
| | | | | | t ! data_req
| | | | | | t ! data_ind
| | | | t ! data_ind

59

4.4.3 The constraint oriented specification style
One may specify protocols by just using the sequence and the choice operators.

This would in essence represent a symbolic tree of possible sequences of actions.
This however would first generate a useless redondancy of action sequences but
further more totally obscure the underlying structures of the specification. The
constraint oriented style is the most natural way to specify concurrency without
redondancy and as a benefit allow clarity in the specification.

The transport service is used as an example to illustrate the constraint oriented
style. It is very similar in structure to the telephone example presented earlier. It is
composed of two basic processes: the station process that represents the behavior
of a communicating entity and the network process that represents the end-to-end
behavior of a connection. The station process has been further decomposed to
represent the two possible behaviors or roles of connection initiator or responder.

There are two interaction points:

t: is the interaction point with the upper service layer.

n: is the interaction point with the network.

The data transfer and termination process are similar to the previous mono-
lithic transport service example.

specification constraint_transport [t]:noexit
/* example LEX4_3.L */
behaviour

(
station[t](address1)

|||
station[t](address2)

)
||
network[t]

where
process station [t](ADDRESS):noexit:=

initiator_role[t](ADDRESS)
|||
responder_role[t](ADDRESS)

endproc

60

process network [t]:noexit:=
t ? INIT_ADDRESS ! conreq ? RESP_ADDRESS ;
t ! RESP_ADDRESS ! tcon_ind ;
t ! RESP_ADDRESS ! tcon_resp ;
t ! INIT_ADDRESS ! tconconf ;
stop

endproc
process initiator_role [t](ADDRESS):exit:=

t ! ADDRESS ! conreq ? CALLED_ADDRESS ;
(

t ! ADDRESS ! tconconf ; exit
[]
termination_phase[t](ADDRESS)

) endproc
process responder_role [t](ADDRESS):exit:=

t ! ADDRESS ! tcon_ind ;
(

t ! ADDRESS ! tcon_resp ; exit
[]
termination_phase[t](ADDRESS)

)
endproc
process data_transfer [t](ADDRESS):noexit:=

t ! ADDRESS ! data_req ;
data_transfer[t](ADDRESS)
[]
t ! ADDRESS ! data_ind ;
data_transfer[t](ADDRESS)

endproc
process termination_phase [t](ADDRESS):exit:=

t ! ADDRESS ! discon_req ; stop
[]
t ! ADDRESS ! discon_ind ; stop

endproc
endspec

61

4.4.4 Busy location representation in LOTOS

There are different ways to verify if a communicating entity is busy. The first
one consists in using some database where the state of the communicating entity
is stored. One needs to query that database to obtain its state and using a guard
proceed to the appropriate behavior branch.

Another way uses the synchronization properties of LOTOS. The communica-
tion with another entity is accomplished via synchronization on common actions.
When a communicating entity is busy, this means that it usually cannot synchro-
nize on an initial action of a communication sequence. This busy entity can
however indicate to any new potential communication requesting party that it
is busy. This can easely be represented with the interleave operator “|||” in the
following structure:

trigger_action ;
(normal_sequence ||| busy_sequence)

The following specification is similar to the previous specification of the
constraint oriented style of the transport service but it is augmented with the busy
sequences.

specification busy_transport [t]:noexit
/* example LEX4_4.L */

behaviour
(

station[t](address1)
|||

station[t](address2)
)

||
network[t]

where
process station [t](ADDRESS):noexit:=

initiator_role[t](ADDRESS)
|||
responder_role[t](ADDRESS)

endproc
process network [t]:noexit:=

62

t ? INIT_ADDRESS ! conreq ? RESP_ADDRESS ;
t ! RESP_ADDRESS ! tcon_ind ;
(

t ! RESP_ADDRESS ! tcon_resp ;
t ! INIT_ADDRESS ! tconconf ; stop
[]
t ! RESP_ADDRESS ! busy ; stop

)
endproc
process initiator_role [t](ADDRESS):exit:=

t ! ADDRESS ! conreq ? CALLED_ADDRESS;
(

(
t ! ADDRESS ! tconconf ; exit
[]
termination_phase[t](ADDRESS)

)
|||

t ! ADDRESS ! busy ; stop
)

endproc
process responder_role [t](ADDRESS):exit:=

t ! ADDRESS ! tcon_ind ;
(

(
t ! ADDRESS ! tcon_resp ; exit
[]
termination_phase[t](ADDRESS)

)
|||

t ! ADDRESS ! busy ; stop
)

endproc
process data_transfer [t](ADDRESS):noexit:=

t ! ADDRESS ! data_req ;
data_transfer[t](ADDRESS)

63

[]
t ! ADDRESS ! data_ind ;
data_transfer[t](ADDRESS)

endproc
process termination_phase [t](ADDRESS):exit:=

t ! ADDRESS ! discon_req ; stop
[]
t ! ADDRESS ! discon_ind ; stop

endproc
endspec

64

Chapter 5 SPREADING YOUR WINGS
a

Writing your own LOTOS specification

Section 5.1 PC LOTOS syntax

PC LOTOS is asubset of the ISO international standard. It It is different
in two ways:

- there are no Abstract Data Types (ADTs). Data is considered as a character
string.

- there are a few operators missing. (hide, distributed choice operators,
accept in, and the functionality of the exit operator is zero only).

A LOTOS specification has the following main skeleton:

specification <specification name> [<interaction points list>] (<formal
parameters list>) : < functionality>

behaviour
< behaviour expression >

where (* if there are process declarations *)

< process declaration >
endspec

A process declaration has the form:

process <process name> [interaction point list] (formal parameters list)
: <functionality> :=

<behaviour expression>
endproc

a behaviour expression is:

operators acting on action denotations and process instantiations.

This is the syntax for each operator:

using the following symbols:

a : action denotation

B : behaviour expression

E : Boolean expression

65

operator syntax:
a ; B : action denotation

B1 [] B2 : non-deterministic choice operator

B1 ||| B2 : parallel interleave operator

B1 || B2 : strict synchronization parallel operator

B1 |[g1,...,g2]| B2: mixed synchronization and interleave parallel operator

B1 [> B2 : disable operator

B1 >> B2 : enable operator

[E] -> B : guard operator

i : the internal event (does not have to synchronize)

stop : inaction (can be only found after an action prefix operator and as the
last action of a sequence.

exit : is a behaviour expression and means successful termination

process instantiation:

<process name> [actual interaction points list](actual formal parameters
values)

example: if process P1 was declared as

processP1[g1,g2](X,Y):exit:=
...
endproc

a process instantiation would look like:

P1[network,user](2345,"active")
action denotation:
gate <offer-list> <predicates>

an offer-list is none or many offers.

an offer is:

! <value or variable>
? <variable identifier>
example: network ! 1234 ? Called_number

66

Section 5.2 Debugging your specification

5.2.1 most common bugs

- undeclared gates (interaction points) and relabelling surprises

gates used in a behaviour expression must belong to the interaction point list
declared in its corresponding process or specification declaration.

example:

specification test1 [transport,network] :noexit

behaviour

P1 [transport,network]

where

process P1 [g1,g2]:noexit:=

P2 [g1] [] P3[g2]

endproc

process P2[a]:noexit:=

a ! tconreq ; stop

endproc

process P3[a]:noexit:=

a ! nconind ; stop

endproc

endspec

This specification will not compile and the error message : undeclared gate
"usr" will be displayed because the instantiation of P1 in the main behaviour is
wrong. Only the gate "user" should have been used.

This is the only bug this specification will show. However further execution of
this specification will acquaint you with the art of relabelling. P2 and P3 are both
using an interaction point "a". However, after execution these two interaction
points will be re-labelled differently.

the interaction point“a” of process P2 will be re-labelled "transport" while
the interaction point“a” of process P3 will be re-labelled "network".

This is of course an extreme case that we do not advise you to use.

- wrong number of gates or formal parameters in process instantiation.

67

if you declare a process P[a,b,c](X,Y,Z) and you instantiate it somewhere in
your specification as P[f,g]("aaa","bbb") you will get a "wrong number of gates"
and "wrong number of formal parameters" message.

- unbalanced parentheses.

The same rules as in traditional programming languages apply.

- undeclared process message

As the result of a spelling mistake in a process name, or you forgot to define
a process. If you wish to declare your process at a later time while testing your
specification, you can do so as long as you specify at least a "stop" or an "exit"
behaviour.

- data is string in PCLOTOS

if you are using non atomic data such as octet representation similar to the
standard library, enclose your data in double quotes.

g ! "Octet(1,1,1,1,0,0,0,0)" ; stop

or in a more compact version: g ! 11110000 ; stop which is allowed in PC
LOTOS only and not in IS LOTOS.

- free variable representation difference with International Standard
LOTOS (IS):

Since there are no abstract data types in PC LOTOS, there is no type
declaration in action denotations when a "?" is present, or in formal parameters
in process declarations.

For those unaware of the official IS LOTOS syntax, there is nothing to worry
about.

consequently PC LOTOS correct action denotations look like:

g ! 1234 ? X ! ack ? Y ; ...

and process declarations:

process P1[g,h,e](A,B,C):noexit:=

.....

endproc

WARNING: This of course brings up an interesting point: how do we
differentiate values from free variables in PC LOTOS?

In full IS LOTOS, this is resolved using abstract data type declarations. A
value can be used only if declared. The compiler will produce an error message

68

in case a value is not declared. As a matter of fact the compiler will produce a
somewhat puzzling error message, because it will think that the value you have
entered is a free variable. Free variables can be used as long they are declared
upstream in a behaviour expression.

example:

g ? X ; g ! X ; stop
is syntacticallycorrect because "X" has been declared before it has been used.

This is why in LOTOS one refers tovalue declaration for the query symbol"?" .

g ! Y ; g ! "aaa" ; stop
is syntactically incorrect because the free variable "Y" has never been

declared. However PC LOTOS will think that the “Y” variable is the value
“Y” (string value), because there is no ADT definition to find out its real nature.

The above two examples are PC LOTOS syntax examples. The correct IS
LOTOS syntax would have been:

g ? X:type_t ; g ! X ; stop

and no difference for the second example except for an error message:

g ! Y ; g ! "aaa" ; stop

In PC LOTOS there is no logical mechanism to differentiate a value from
a free variable. We however advise the reader to comply with a self-disciplined
rule of using upper case letters for variables and lower case letters for values. It
will make the specification easier to read as well. It will not however resolve the
syntax error of an undeclared free variable, and your upper case identifier will
still be considered as a plain data value. It will however help you debug your
specification. This of course shows the usefulness of Abstract Data types, which
will be the subject of an upcoming tutorial.

- local definitions are not permitted in PCLOTOS.
there can be only one"where" keyword immediately following the main

behaviour expression. This is a significant difference from IS LOTOS. This
means thatno "where" keywords should exist within a process declaration.
In PCLOTOS we have deliberately chosen the rule to declare each process
independently from each other. This is a choice derived from experience with
working with large specifications.

69

Chapter 6 Moving to International
Standard LOTOS
a

The main goal of this tutorial was to allow the reader to become familiar
with LOTOS basic operators and concepts with hands-on experience. A second
goal was to provide the full LOTOS expert with an "out of the lab" tool to be
used while travelling or for demonstration purpose at sites not equipped with the
necessary environment for IS LOTOS.

Section 6.1 Available LOTOS tools

Serious LOTOS specifications can only be achieved with full IS LOTOS.
There are a number of tools available from various research centres. Among
them are:

ISLA : University of Ottawa, Canada in both TTY and Xwindows versions
including Graphic Lotos.

HIPPO: Twente University, based on the CORNELL synthesizer

LOLA : University of Madrid.

most of these tools work on VAX and/or SUN workstations.

6.1.1 The University of Ottawa LOTOS Toolkit
The University of Ottawa has developed a toolkit which takes a LOTOS

specification as input, checks its static semantics, and executes the specification to
produce the next possible actions as output. Full standard LOTOS is supported,
and specifications of thousands of lines have been executed. The toolkit can
be used in either of two modes: (1) step-by-step mode (interpretation) and (2)
symbolic tree generation mode. In mode (1) the user is prompted, at each step,
with the next possible actions. The user chooses the next action to be executed
and, if the action involves a choice of data, the user is required to provide it.
Used in this way, the specification may be considered as a running prototype of
the entity specified. In mode (2) the user may generate a tree of all possible
actions from any point. However, variable values are represented by expressions
that may involve other variables.

A brief description of some of the features available to the user follows:

71

1. Alternative execution paths (Back):This command allows the user to go
back (up the tree) and select another branch for execution. The user may select
to go up one level only or many levels, up to the root of the tree.

2. Setting checkpoints: The set of execution paths of a specification is
represented as a tree. For medium and large specifications, it is a very time-
consuming task to travel, in the step-by-step mode, the various branches of the
tree. Several sessions are usually necessary. It is also impractical to start the
execution from the beginning for every testing session. The interpreter provides
a way around this problem. The user travels the tree, say from the root R, up to
some node, say N, and then invokes the checkpoint setting command to save the
current behaviour expression. In the next testing session, testing continues from
the behaviour expression saved for node N. Several checkpoints can be saved.

3. Composing behaviour expressions:This command allows the user to
compose behaviour expressions. For example, a tester behaviour expression can
be composed with another behaviour expression under test.

4. Value expression evaluation:This command allows the user to evaluate
any given value expression, without interfering with the execution of the current
behaviour expression.

5. Complex predicates:In the case of complex predicates, sets of tuples of
value expressions can be submitted for evaluation. The interpreter will determine
which tuples are true for the given predicates.

6. Shorthands for constants:shorthands for long and commonly used value
expressions can be defined.

Hardware and Software Requirements

The current toolkit, which requires only a tty terminal, runs on UNIX 4.0
and later versions under SUN 3 and SUN 4. Normally, the object code only is
released.

You can acquire the toolkit by the following means:

o SCSI Cassette tapes;

o 1/2 in. Magnetic tapes (density 6250)

o Exabyte tapes (8 mm.)

o Electronic mail.

Upgrades and Improvements

72

The development team is currently working on a graphical version of the
toolkit which runs in the XWindow system environment. A DEC station version
is also being planned. No date for release has been set yet.

Technical Assistance
If you require technical information on the system, please contact:

Dr. Luigi Logrippo

University of Ottawa,

Protocols Research Group,

Department of Computer Science

Ottawa, Ontario, Canada K1N 6N5

E-Mail: lmlsl@uottawa.bitnet

Tel.: (613) 564 - 5450 Fax: (613) 564 - 9486

Section 6.2 upload / download between PC
LOTOS and IS LOTOS.

You certainly can do that, but you have to remember that PCLOTOS is a
subset of IS LOTOS. Consequently you can expect numerous syntax errors both
ways. As a reminder, remove any type reference when going from IS LOTOS
to PCLOTOS

73

Bibliography

74

Index
a

A

abstract data type. 31

abstract data types 69

action denotation 31, 38, 65, 66, 68

action denotations 68

B

behaviour expression
7, 9–13, 41, 53, 65–67, 69

busy state 6

C

choice operator 11, 12, 30, 65, 66

constraint oriented 6

D

data . . . iii, 31, 33, 34, 37, 65, 68, 69, 71

databases 6

deadlock 5, 20, 34, 44

debugging 67

disable operator. 5, 25, 66

E

enable operator 26, 28, 66

esc 4, 7, 48

example files 5

execution tree 7,
10–13, 16, 20, 22, 25, 26, 29, 36, 44, 48

F

formal parameters 41,65–68

G

guards . 37

I
import . 4

interaction point 43

interaction points 41, 51,65–67

interleave 5, 15, 22, 66

internal event 24, 66

L
local definitions 69

M
matching 34

N
non determinism 5, 30

P
parallelism 5, 15, 33

predicates 5, 38, 66, 72

process 15, 30, 37

process definition. 5, 41, 43, 51

R
recursion 5, 6, 47, 48

relabelling 6, 41, 51, 67

S
sequence operator 10

state oriented 6

structuring 41

substitution 6, 51

synchronization . . 5, 20, 22, 33–35, 38, 66

syntax . 65

V
value 31, 34, 36, 41, 51, 66, 68, 69

value passing 5, 33, 35, 38

variables 34, 38, 68, 69

75

