
Open Source Integration Testing
Pierre Seguin

University of Ottawa
S.I.T.E, 800 King Edward Avenue

Ottawa, ON, Canada, K1N6N5
1-613-562-5800x2182

seguin_pierre@yahoo.ca

 Liam Peyton
University of Ottawa

S.I.T.E, 800 King Edward Avenue
Ottawa, ON, Canada, K1N6N5

1-613-562-5800x2122

lpeyton @site.uottawa.ca

Bernard Stepien
University of Ottawa

S.I.T.E, 800 King Edward Avenue
Ottawa, ON, Canada, K1N6N5

1-613-562-5800x2122

bernard@site.uottawa.ca

ABSTRACT

Large heterogeneous software systems that integrate open-

source components require a framework for integration testing

beyond what current open source unit testing tools can provide.

We present a test agent architecture for integration testing based

on TTCN-3 and HttpUnit. TTCN-3 is an open standard test

specification and implementation language developed by the

European Telecommunications Standards Institute. We report

our experiences with using TTCN-3 and discuss the current state

of the F/OSS stack for TTCN-3.

Keywords

F/OSS, TTCN-3, service-oriented architecture, integration

testing

1. INTRODUCTION
In enterprise environments, large software systems are deployed

onto distributed multi-processor, multi-server environments.

The architecture of such systems is complex, heterogeneous and

involves inter-process communication over a variety of

protocols. Increasingly, the underlying framework is a service-

oriented architecture in which core components are packaged as

reusable services shared between different systems and

applications. It is a challenge to test and maintain such software

systems in an efficient and reliable fashion in the face of change.

And this is true, whether the open source components used in

such systems are simple libraries (like log4j), individual web

services, or a major platform like a Linux OS or Tomcat

application server.

Testing tools designed to test individual components of a system

independently are widely used in the free/open source software

(F/OSS) community. For example, JUnit, HtmlUnit, HttpUnit

and ServletUnit, are widely used for Java-based web

applications. OpenSTA is another popular example. However,

large software systems cannot rely solely on unit testing. A

framework for integration testing is needed which can:

• Manage and encapsulate the complexity of large software

systems at differing levels of abstraction

• Coordinate and manage test scenarios that cut across a

component-based architecture

• Flexibly and efficiently deal with component interactions

that occur under high volume multi-user scenarios

In this paper, we present a test agent architecture for integration

testing using TTCN-3[3] based on its support for test agent

coordination, templates, set-based pattern matching, and test

specification at different levels of abstraction. TTCN-3 also has

a flexible adapter framework that allows one to leverage and

coordinate open source unit testing tools (HttpUnit in our case).

We report our experiences using TTCN-3 and discuss the

current state of the F/OSS stack for TTCN-3.

2. TEST AGENT ARCHITECTURE
The purpose of a test agent architecture is to mirror the

architecture of the system being tested in order to integrate and

coordinate test components that can run tests and monitor

behavior. A large heterogeneous software system can be

decomposed into individual web applications and the

components they use. In particular, we look at the testing of

large heterogeneous software systems based on a service

oriented architecture in which the components used by the web

applications are web services.

In ”black-box” unit testing, each web application and web

service is unit tested individually as a separate "black box" in

which only the inputs and outputs of the black box are tested.

Black box unit testing does not address the possible interactions

between web services especially under complex multi-user

scenarios. It is also problematic to maintain black box unit tests,

as different web services are upgraded or replaced.

Figure 1 - Test Agent Architecture

Figure 1 shows a “grey box” test agent architecture in which

tests are written that cut across the components of the system

and tests their interactions with each other. We refer to this as

"grey box" testing because we do not treat the overall system as

a black box, rather we treat it as a "grey" box in which we are

aware of all of its applications and web services and can monitor

and test the interactions between these components. Each

service test agent tests its web service by intercepting the

requests from the web application, and validating them before

passing the requests on to the web service. The test agent also

intercepts the responses from the service and verifies that they

are the expected responses before returning them to the web

application (which can be done in real time by using proxies or a

posteriori using log files from the related components). The

master test component is able to correlate precisely where faults

are occurring and it also stresses the overall system under the

actual combination (orchestration and choreography) of web

service calls that the system must support, testing the actual

responses that are returned by each service.

3. ABSTRACTION WITH TTCN-3
TTCN-3 is an open standard test specification and

implementation language developed by the European

Telecommunications Standards Institute (ETSI). A common

approach to designing a large heterogeneous software system is

to decompose the system and describe its behavior at different

levels of abstraction. Similarly, a test specification language,

like TTCN-3 allows one to specify and reuse test cases at

different levels of abstraction. This allows one to define

functional tests in terms of the essential application logic and its

management of information independent of volatile

implementation and presentation details [6]. This enables test

specifications and implementation to be reused across different

levels of test activities [5] and different component projects.

TTCN-3 is based on the concept of sending a message to a

system under test and receiving a response that it will attempt to

match against a very flexibly structured template that serves as

an oracle to define the possible outcomes. The central concept

of the TTCN-3 testing language is a separation of concerns in

the architecture of a test framework at different levels of

abstraction. This separation of concerns is performed at two

different levels:

• First, TTCN-3 defines an Abstract Test Suite separate

from the concrete implementation of coding and

decoding of requests and responses and all related

communication with the system under test.

• Second, TTCN-3 presents an Abstract Test Suite as a

system behavior tree that displays sequences of

requests to and alternative responses from the system

under test. The switching of paths through that tree is

achieved via a template that is a combination of test

data and matching rules. Thus, the tree and templates

represent a separation of concerns between behavior

and conditions governing behavior.

A test case consists of a sequence of requests and responses

encoded as a system behavior tree and can be parameterized to

make it re-usable with different test data templates. A test case is

always declared to run on a specific test component and system

test component. Normal computations can be inserted anywhere

in the behavior tree.

Testing using TTCN-3 consists of four essential steps:

• First create data types for the different messages being

exchanged in the application.

• Second, create templates for both outgoing and

incoming messages content with potential complex

matching rules for the incoming messages.

• Third, use the defined templates to specify a

choreography of messages and set appropriate verdicts

for specific message sequences.

• Fourth, write an adapter to handle communication and

coding and decoding of messages and their

representation at the abstract level

TTCN-3’s main characteristic is to separate the abstract test

suite from lower level activities such as the communication

management and the coding and decoding of messages.

Therefore, the first three steps mentioned above are

implementation independent and can be reused. The fourth step

is done to connect the abstract test suite to a concrete

implementation. Our concrete implementation used Java and

HttpUnit for low level communication with the System under

Test (SUT) or Component under Test (CUT). Figure 2 shows

our TTCN-3 stack. Abstract test cases are defined at the top

level and are translated into concrete test cases by the selected

TTCN-3 compiler. The executable code is then linked to the test

adapter and codec. The codec is responsible for encoding and

decoding of requests and responses from the Test Adapter which

communicates with HTTPUnit to send messages to the SUT or

CUT. HTTP requests and responses are in the form of text that

needs to be decoded to obtain the relevant information for a test.

Figure 2 - Separation of Concerns

Currently our codecs are ‘hard coded’ for each expected

request/response. A more complete discussion on how we

approach codecs and adapters is presented in [6] where a

thorough study on using TTCN-3 for the unit testing of web-

applications and web-services is done. In summary, a traditional

programming language (Java) combined with the open source

unit testing tool for http testing, httpUnit, are used to implement

the adapters and codecs. httpUnit is flexible enough to handle

many types of http requests/responses. There are two important

types of test agents in our implementation. The ones that

emulate a user interacting with the SUT and the ones that stand

between the web-application and its underlying services. When

emulating a user agent httpUnit acts as a browser with the ability

to handle JavaScript, basic http authentication and cookies.

When acting as the service proxy httpUnit allows the messages

TTCN-3 Abstract test Suite

TTCN-3 Test Adapter and Codec

HttpUnit Framework

System or Component Under Test

to be parsed from text and be forwarded to their proper

recipients.

However there are drawbacks to the current approach. Each time

a new message type is needed to be coded/decoded or a message

structure is changed the codec must be created/edited by hand.

In a future iteration we will be implementing a generic codec for

the web-service request/response handling by relying on the

WSDL associated with services. In this way the tedious hard

coding of request/responses will be shortened by automatic

generation of templates and their associated codecs.

4. COMPONENT INTERACTIONS AND

MULTI-USER SCENARIOS
There are some significant implementation challenges associated

with this test agent architecture, especially if the application test

agent is simulating many users making multiple simultaneous

requests. TTCN-3’s powerful set-based pattern matching

mechanisms combined with the concept of parallel test

components can help address these.

Two important examples of implementation challenges are:

• Caching: Previous responses from an underlying

service may be cached so that identical requests to the

web application may not result in the same requests to

underlying services, even when performed on behalf

of different users.

• Correlation Gap: The sequencing and interleaving of

requests and responses may vary significantly making

it difficult to correlate service requests and responses

to the particular user request of the web application.

4.1 Caching
Web applications that consume services often cache responses

from services for future use. This usually happens when the

response is known to be valid across a certain time interval or

for a user’s session. It is important that the caching mechanism

should be well documented by the designers of the web

application since caching will be based on assumptions of how

the service behaves. In order to test caching, we need to verify

that a (non-event) has occurred. If a request to a service that

should be cached does not occur then the test can pass, and if it

does occur, the test should fail. This requires three mechanisms:

• A mechanism for representing a caching mechanism

• A mechanism for representing the non-event detection

• A mechanism to distinguish messages that are subject

to caching from others that never can be cached

because they contain only one time user data such as

invoice content.

To handle caching in TTCN-3, the service test agent must check

if the cached event occurs, and if it does, set the verdict to fail.

This requires a TTCN-3 implementation to represent a caching

mechanism and detect a non-event. Our approach is to store

received messages into a set of cached messages ("var

cachedRequests" below) and verify that a subsequent message

does not belong to that set. The function “isnotCached” below

checks if the current request “matches” any of the requests

cached so far.

function isNotCached(RequestType theRequest)

runs on ServiceAgentType return boolean {

var integer i;

for(i:=0; i < nbRequests; i:=i+1) {

 if(match(theRequest, cachedRequests[i])) {

 return false;

}

}

setverdict(fail)

}

In TTCN-3 the cache checking is considerably simplified using

the TTCN-3 matching mechanism potentially saving

considerable coding and debugging effort.

4.2 Correlation Gap
The correlation gap is a temporal ordering problem. A web

application may place its requests to the service in a different

order than what was received from the users. Similarly, services

may return responses in a different order from the order in

which it receives requests. Figure 3 shows an interaction

diagram of two users (simulated by the application test agent)

interacting with a web application. Request 1 is submitted first

by User1 however Request2 from User2 is fulfilled first by the

web application. The interleaving of requests and responses

makes it so that requests cannot simply be correlated by their

order of arrival/departure from the test agents. Ideally there

would be unique IDs associated with requests associating them

with particular users. However, when services are not under

control of the development team this will often not be the case.

Therefore, in the general case of web applications, simple end to

end tracking does not work.

Figure 3 – Correlation Gap for Multi-user Requests

To handle the correlation gap, we must use sets of

requests/responses to handle the verification of messages

agnostic of arrival time. For each service request received, the

service test agent performs two kinds of checking:

• It checks if such a message was expected for a specific

test campaign, if yes, then forwards it to the service.

• It enforces the expected response from the service and

if successful forwards the service response to the web

application.

In TTCN-3, to handle the correlation gap, the master test

component tells the service test agent what requests to expect

User1

Request 1

User2 Web

Application

Service

Test Agent
Web

Service

Request 2

Response 2

request 2B
request 2B

response 2B

response 1A
response 1A

request 1A
request 1A

response 2B

Response 1

but not in which order. This is handled in a template represented

as a set of messages. Using the powerful set matching

mechanisms in TTCN-3 we can verify that the proper set of

messages has been received without worrying about the order of

their reception.

Two considerations need to be addressed:

• Check if a request arriving at the service test agent

was expected for a given test case.

• Check if all requests expected for a given test case

have actually been received by the test service agent.

The first consideration is actually addressed in our architecture

since the expected service requests are represented as a set.

The second consideration consists in updating a set of received

messages as the messages arrive at the service. Once the test is

completed, a final match of the expected versus received sets of

messages suffice to conclude that the test has passed or failed.

While the update of the received messages could be

implemented easily in any programming language, the

verification of completeness of the received set of messages is

specified in a very concise and expressive way in TTCN-3 using

the match operator as follows:

if(match(expectedRequests, receivedRequests)) {

 setverdict(pass);

}

else {

 setverdict(fail);

};

5. FUTURE DIRECTIONS
In this paper we have demonstrated how TTCN-3 used in a test

agent architecture can be a valuable tool for integration testing

large software systems. However more work is needed to

support this within the open source community.

First, an open source integration framework based on TTCN-3

would make adaptation of integration testing more widely

available. The TRex and iTTCP projects are partially working

towards this goal within the context of the Eclipse framework

but generic open source TTCN-3 codecs and adapter layers

specifically for open source components is needed as well.

Second, the packaging of open source components as web

services intended to fit within a service oriented architecture

would both facilitate their inclusion in large scale software

systems, from both a development and integration testing

perspective. Service oriented architectures are becoming the

norm for large software systems. They allow heterogeneous

components to be more easily integrated with each other in the

scalable distributed environments of today’s enterprises. For

open source components to be available for integration into

these systems it is important to supply web service interfaces to

make them more attractive as alternatives to COTS components.

For example, packaging a component such as JFreeReport as a

web-service would make it more appealing to use in these

systems and enable standardized test frameworks.

Third, the integration testing framework described in this paper

is not limited to web services. It can be applied to integration

testing of other types of components and protocols (like RMI,

JDBS, JMS etc.) by supplying the proper codecs and adapters to

the TTCN-3 stack. In addition, the test agent architecture, can be

adapted to do passive integration testing of components based

on processing and analysis of log files (generated using a utility

like Log4J) as a validation of system behavior.

A fourth avenue of research is in the data collection and

representation aspects of TTCN-3 test verdicts. Currently, when

TTCN-3 tests are run the information is viewable in a simple

table format within their respective development environments

(Telelogic TAU, TestingTech, Danet and OpenTTCN).

However, this information can be improved in multiple ways in

the open source tools:

• A more intuitive visualization of test results.

• A standardized data model to persistently store test

results.

• An analysis tool which can report on and data mine

past test results.

The final avenue of research we suggest is integration with

model-based approaches for describing large software systems.

Other research has attempted to address testing of large scale

software systems by using model-based testing where test scripts

are generated from models. This was done in the AGEDIS case

studies [2] where HTTPUnit and HTMLUnit scripts were

generated from UML models. In [1] User Requirements

Notation (URN), an ITU standard for requirements modeling in

telecommunications was used to test web applications. And in

[7] evaluations done with JML-JUnit used JUnit scripts

generated from JML models of Java classes. A similar approach

could be taken to generate TTCN-3 specifications from models.

6. REFERENCES

[1] D. Amyot, J-F Roy, M. Weiss, UCM-Driven Testing of

Web Applications. SDL Forum 2005

[2] Craggs I., Sardis M., and Heuillard T. AGEDIS Case

Studies: Model-based Testing in Industry. Proc. 1st

European Conf. on Model Driven Softw. Eng. (Nuremberg,

Germany, Dec. 2003), imbus AG, 106—117

[3] ETSI ES 201 873-1, “The Testing and Test Control

Notation version 3, Part1: TTCN-3 Core notation, V2.1.1”,

June 2005

[4] iTTCP TTCN-3 Compiler, http://ittcp.wiki.sourceforge.net,

last retrieved: 2007/8/15

[5] R. L. Probert, Pulei Xiong, Bernard Stepien, “Life-cycle

E-Commerce Testing with OO-TTCN-3”, FORTE'04

Workshops proceedings, September 2004

[6] B. Stepien, L.Peyton, P.Xiong, “Framework Testing of

Web Applications using TTCN-3”, to appear in

International Journal on Software Tools for Technology

Transfer, Springer-Verlag,Berlin,Germany

[7] R.P.Tan, S.H. Edwards, Experiences Evaluating the

Effectiveness of JML-JUnit Testing, ACM SIGSOFT

Software Engineering Notes, September 2004 Volume 29

Number 5

[8] TRex – the TTCN-3 Refactoring and Metrics Tool,

http://www.trex.informatik.uni-goettingen.de/, last

retrieved: 2007/8/15

