
 1

Abstract
 Access control rules are currently
administered by highly qualified personnel.
Thus, the technical barrier that specialized access
control languages represent naturally prevents
the prime decision maker to effectively control
such access. The usability is even worse in the
case of access control applications targeting an
average consumer, where customers who are
casual users are expected to administer their own
rules, e.g. in case of financial services. XACML
is one of the most powerful access control
languages because it allows the definition of
complex conditions. In order to make XACML
usable in such applications, there is a need for
fully non-technical rule editors. We propose a
notation for XACML rules containing conditions
that is a combination of the usual tree properties
of logical expressions but with an accessible
natural language like format. Our early
experience indicates that such rules can be
grasped by non-technical users wishing to
develop and control rules for accessing their own
resources.

1. Motivation

The XACML (eXtensible Access Control
Markup Language) [1] access control language
(ACL) is naturally precise since it is based on an
XML schema that represents the grammar of a
given application. But this very property puts it
out of reach of non-technical, and especially
casual users. The main obstacles for a casual user
in using XACML are:

• Long XML tags
• Long and complex domain references
• Prefix notation for operations
• List oriented notation for conjunction

and disjunction operators

While it is practically impossible for a casual
user to start coding his rules with a text editor—
this would require full knowledge of XML and
XACML grammars—a first step toward solving
this problem could be to use an XML editor that
frees the user from this knowledge up to a

certain point, as the supplied XML Schema
enables the selection of appropriate tags in a
context-oriented way.

A number of such tools exist in different
syntaxes and formats, each trying to address a
specific technical problem. They can be
classified into two broad categories:

• Generic XML editors.
• Specialized application oriented XML

editors—where XACML belongs.

While all of these editors claim to be targeting
non-technical users, their documentation
indicates that they require at least a basic
knowledge of XML. In fact, one of the main
problems with the XACML notation is that it
requires some programming skill regardless of
the tools used.

Currently, there is a very limited set of XACML
tools. The UMU editor [2] was the first attempt
to have a general XACML editor. Others have
further refined the specialization. This is the case
of the visual Language hierarchy solution [4] that
exclusively targets RBAC [5] applications. .

Our new approach has been guided mostly by the
study of existing editors. There are a number of
open source and commercial XML and XACML
editors available that follow a number of basic
principles.

 2. Current principles in XML editors

XML editors are most often based on a tree
display principle of an XML document. The tree
display is most natural, mostly because an XML
document is hierarchical by definition.

XAMLPad [3] is the most commonly used open
source editor. It offers three different views of an
XML document: the XML plain text, the grid
and the table view. In addition to these views, a
document outline represented as a tree is also
available.

Let us imagine that we need to create a rule that
authorizes a purchase action if a specific

A non-technical user-oriented display
notation for XACML conditions

Bernard Stepien, Amy Felty, Stan Matwin
University of Ottawa – S.I.T.E., (bernard | afelty | stan)@site.uottawa.ca

 2

condition holds. Let us use a simple condition
that says that a purchase is permitted if the day is
Sunday and the merchandise purchased is food.
This condition would have a document outline as
shown in fig 1. Such an outline mainly shows the
name of the node and the value.

Fig. 1. Document outline of a simple condition

 The corresponding XML source view is shown
in fig 2. It can be interactively edited by
positioning the cursor in a region, which triggers
the appearance of a choice of actions. Examples
of actions include entering the value of a new
attribute if it is not already present, or appending
a new tag. The editor will automatically insert
the attribute or tag selected from a drop down
menu. Thus here, the interesting principle is that
although the user sees only plain text, the editor
provides features that waive the need for in-
depth knowledge of the data model (DTD or
Schema) and thus reduce the risk of errors such
as spelling mistakes of attribute names or
forgetting an attribute altogether. The source
view however allows the direct typing of tags
and attributes and a parser is triggered at every
save attempt and highlights errors.

Fig. 2. XML source of the condition shown in Fig. 1

The corresponding Grid view is shown in fig 3.
It corresponds to a horizontal tree where each
node indicates the tag names and their
corresponding attributes and also the related

DTD for the current element. Again, features
similar to those available in the source view are
also available. Here however, the presentation of
the data model could actually assist the user in
planning his next move.

Fig. 3. Grid view of the condition whose XML is in
Fig. 2

The table view shown in fig. 4 is just another
way to represent the tree of the grid view,
attempting to further reduce the programming
skills required of the user. Note also the attempt
to reduce the amount of information in the tree
by factoring out the name of the tag when there
are multiple occurrences of a tag as in this
example for the arguments of an operation.

Fig. 4. Table view of the tree shown in grid view in
Fig. 3

 3. Current principles in XACML editors

In order to understand the implications of writing
an XACML specification of the previous simple
example, we need to examine the representation
of the condition of this example in XACML.

 3

<Condition
FunctionId="urn:oasis:names:tc:xacml:1.0:
function:and">
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-equal">
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-one-and-only">
 <SubjectAttributeDesignator
AttributeId="Merchandise"
DataType="http://www.w3.org/2001/XMLSchem
a#string" />
 </Apply>
 <AttributeValue
DataType=” http://www.w3.org/2001/XMLSchem
a#string ”

>food</AttributeValue>
 </Apply>
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-equal">
 <Apply
FunctionId="urn:oasis:names:tc:xacml:1.0:
function:string-one-and-only">
 <SubjectAttributeDesignator
AttributeId="DayOfTheWeek"
DataType="http://www.w3.org/2001/XMLSchem
a#string" />
 </Apply>
 <AttributeValue
DataType=” http://www.w3.org/2001/XMLSchem
a#string ”

>Monday</AttributeValue>
 </Apply>
</Condition>

The first XACML editor, developed by
University of Murcia [2] is shown in fig 5. It is
based on two complementary views, one for the
document outline and one for the attribute values
and some local overviews.

The first problem this editor has addressed is
omitting the need to type the domain names.
Functions are merely selected from lists along
with their domains.

Conditions are constructed by clicking on a node
of the tree and selecting an operator from a list.
Again, while this editor reduces XACML coding
efforts considerably, it requires a strong expertise
both in XML and XACML.

Fig. 5. UMU editor representation of the condition

This editor is not easily usable by a non-
technical user, mostly because this kind of user
will not know the XACML condition grammar.
Also the resulting tree is again reorganizing the
terms of a condition in a way that is not mapped
directly on to the corresponding natural language
statement of the condition. For example the and
operator is located at the top of the tree hierarchy
instead of being in the middle.

One principle is important in both general
purpose and specialized editors presented so far.
All editors provide the capability to hide or
expand portions of the tree in their various views
except the source view. This feature allows the
user to focus on a portion of the tree and thus
avoids the cluttering that naturally results from
the presentation of large amounts of information.
This feature has, however, an important side
effect. It prevents the user from having an
overview of the entire condition he is trying to
assemble. This makes the reasoning about the
logic of the expression being built very difficult
and could lead to errors.

4. Our proposed notation

First, we came to the conclusion that a full non-
technical representation of XACML is not really
possible, mostly because XACML is a strongly
typed language. Typing is not a concept that the
casual user can grasp beyond the basic types, like
numeric or alpha-numeric. Effectively, the
nuances of data storage considerations that
further divide numeric types into various levels
of precision such as integer, float, double, etc.
can only be knowingly manipulated by technical
users. However, the actual display of a XACML
condition has no real barrier of this kind, and can
be considered user-friendly.

 4

Consequently, we propose a separation of
concerns between the data typing definitions that
should remain in the hands of knowledgeable IT
technicians, and the policy editing including its
logical expression construction that can be
delegated to the non-technical user.

This approach is appropriate mostly because an
access control application is available within a
context where there is an infrastructure
organized by the provider of the service. This
infrastructure naturally includes the definition of
variables along with their types and potential
allowed values. For example, an eStore will
define what products it will sell along with the
necessary parameters such as product identifiers
or codes, unit types to express their quantities
ordered, etc.

Data typing is thus relegated to another
document that we also decided to structure using
XML, where variables used in a given
application are defined along with their data
types and potential lists of allowed values.

Our notation is based on the following basic
principles:

• Stay as close as possible to the user’s
natural language by avoiding any
technical terminology for operators and
maintaining the overall structure of a
natural language.

• Offer an implicit structuring by
organizing the natural language into a
tree.

• Organize the tree so as to make it
consistent with the natural language
statement of the condition by using an
infix representation for conjunction and
disjunction operators.

• Maintain XACML’s natural non-binary
nature of conjunction and disjunction
operators but eliminate its original list
representation.

• Use a different, yet still casual
terminology for conjunction and
disjunction operators depending on their
position in the tree hierarchy.

• Ensure a full graphical overview of the
expression being built at all times
regardless of its complexity. This
implies no capability to collapse
portions of the tree.

Thus, our notation is very close to a natural
language statement of the condition. It is actually
an improvement over it, as it shows the logical
structure of the condition. This will prove very
important when building complex expressions
requiring the concept of operator precedence. A
casual user should not have to be concerned with
representing operator precedence.

Our previous example augmented with an
additional conjunction would be represented in
our notation as follows:

 DayOftheWeek is Monday
and
 Merchandise is Food
and
 BalanceOfAccount over 500

The simple example above has a very shallow
depth. Two additional techniques can be used to
express more complex conditions:

• Allowing multiple values for a given
variable.

• Allowing sub-constraints on a value for
a variable

The first principle is illustrated in the next
example where the condition is extended to two
different days of the week and to two different
kinds of merchandises:

 DayOftheWeek is one of Monday, Friday
and
 Merchandise is one of Food, Travel
and
 BalanceOfAccount over 500

The second principle is illustrated by introducing
sub-constraints on values by saying that travel is
allowed only on Friday and food purchases only
on Monday or Tuesday. Here, the conjunction
operator and has been represented by the
provided that terminology that is more natural
since it is in the context of a disjunction.

Merchandise is one of
 Food
 provided that DayOfTheWeek is one of
 Monday, Tuesday
 Travel
 provided that DayOfTheWeek is Friday
and
 BalanceOfAccount over 500

The above expression corresponds to the
following plain natural language representation:

 5

“It is permitted to purchase food on a Monday or
a Tuesday or travel on a Friday provided that the
balance of the account is over 500”.

As we can see from this example, the order of
the sub-constraint in the pure natural language
version is strictly the same as in our notation.
The only difference is the graphical structuring
of the tree appearance. It helps clarify the rule in
its natural language form, where putting various
sub-constraints in their appropriate context
requires mental effort from the user.

Another advantage of the tree notation we are
proposing is that it avoids the ambiguity of the
scope of the disjunction operators. In the natural
language representation above it is hard to
understand the exact scope of the or operator that
applies to food or travel because of the presence
of the other disjunction about Monday or
Tuesday. In our tree like notation this ambiguity
disappears entirely. It is a well known fact that
this kind of scoping problem is the prime source
of ambiguities in interpreting statements in
natural language.

5. Our notation in the context of an editor

We have developed a XACML editor as a series
of interfaces in which our notation is used in all
cases where an expression is required such as in
target subjects, resources and action
specifications, and in the conditions of rules.

Our XACML editor reads a configuration file
which specifies the names, data type and
potentially allowed values from an XML file as
in the following example:

<Variable name="DayOfTheWeek"

 type="String">
 <Values>
 <Value name="Monday"/>
 <Value name="Tuesday"/>
 <Value name="Wednesday"/>
 <Value name="Thursday"/>
 <Value name="Friday"/>
 <Value name="Saturday"/>
 <Value name="Sunday"/>
 </Values>
</Variable>

The XACML policy interface allows the user to
create or modify a policy. The rule interface
allows creating or modifying a rule and
especially its condition as shown on fig 6.

Fig. 6. Our XACML policy interface

A modification is achieved by first double
clicking a word in a condition and then invoking
the requested modification by clicking one of the
tool bar buttons, which allow operations such as
modifying a value, adding, modifying or deleting
a constraint or inserting an additional value. The
insertion or modification of a value is achieved
via a value selection interface show in figure 7.
In fig. 6, clicking the value food is sufficient to
obtain all the possible values of the Merchandise
variable. The internal representation, which is a
tree that is mapped exactly onto the XACML
structure, enables the editor to determine which
variable a clicked value corresponds to, and thus
provide the appropriate value selection interface.
A value node is a leaf of an operation node such
as string_equal. Walking the tree to the parent of
the value and then descending from the parent to
the leaf that contains the variable makes this
process possible. Once the appropriate selection
is done in the value selection interface of fig 7,
the resulting tree is redrawn along with all the
internal references to type definitions.

 6

Fig. 7. Policy value modification using our editor

6. Our notation beyond XACML

While our efforts have concentrated on XACML,
we have applied the same principles to other
access control languages such as Cisco IOS [6].
This has been made particularly easy by the
architecture of our editor, where the internal
representation of a policy is independent of the
XACML language itself. Our internal
representation, however, provides the structure
of XACML, but without reference to its tag
names or types. Thus the XACML language
structure is used as a common denominator for
handling all other Access Control languages. Our
editor has a policy connector component that can
handle an unlimited number of languages
provided that parsers for these languages are
built. Another benefit of this language
independent internal representation is that the
editor can be used to translate one language into
another language. This requires adding the
appropriate code generators that all operate on
the language agnostic internal representation.
The following example shows a Cisco IOS rule
and its corresponding representation in our
notation. The variable names are defined by the
translator as they are not part of the original
syntax of Cisco IOS.

access-list 101 deny tcp host
148.22.33.44 host 192.168.0.0 eq 3500

is displayed in our notation as follows:

 protocol is tcp
and
 srcIP is 148.22.33.44
and
 dstIP is 192.168.0.0
and
 dstPort is 3500

7. Conclusion

 XACML editors can be an effective and
highly desirable tool, assisting non-technical
users in specifying complex XACML rules, e.g.
for access and resource control. We have
proposed here a simple yet powerful,
implemented notation that allows users to
perform this task by providing him a
representation that is very close to natural
language. Also, due to its high compactness, it
provides a rare overview quality that is an
important factor in reducing errors, thus helping
to ensure the commercial success of the
application.

 Our early experience with several non-technical
users confirms that our goal of empowering non-
technical users with a tool giving them control of
their resources can be met with the proposed
notation. We need to perform a more thorough
evaluation of how well this goal is realized, and
collect more experience in representing a variety
of resource access specifications using the
approach and the editor described in this paper.

While our initial goal was to address the needs of
casual, non-technical users, an additional benefit
of this approach is that even technical users can
easily specify very complex conditions,
something that was stated as important to avoid
in the past in the XACML user community. This
has an important consequence of avoiding the
splitting of complex rules into numerous rules
with narrower targets, which produces large rule
bases that become rapidly unmanageable.

References

[1] XACML, OASIS standard, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml
[2] University of Murcia XACML Policy Editor,
http://xacml.dif.um.es/
[3] XMLPad, open source,
http://www.wmhelp.com/xmlpad3.htm
[4] M. Giordano, G. Polese, G. Scanniello, and G.
Tortora, Visual Modelling of Role-Based Security
Policies in Distributed Multimedia Applications,
Proceedings of the IEEE Sixth International
Symposium on Multimedia Software Engineering,
IEEE Press, 2004.
[5] XACML Profile for Role Based Access Control
(RBAC), 2004, http://docs.oasis-open.org/xacml/cd-
xacml-rbac-profile-01.pdf
[6] J. Boney, Cisco IOS in a nutshell, O’Reilly, 1st
edition, 2001.

