A Case Study in Integrated Quality Assurance for
Perfor mance M anagement Systems

Liam Peyton, Bo Zhan, Bernard Stepien

School of Information Technology and Engineering,
University of Ottawa, 800 King Edward Avenue, Ot&a@N, Canada
| peyton@i te. uottawa. ca, bzhan0l3@ite. uottawa. ca,
ber nar d@i t e. uott awa. ca

Abstract. On-line enterprise applications that are usedHmusands of geo-
graphically dispersed users present special clygkefor quality assurance. A
case study of a hospital performance managemetgnsyis used to investigate
the specific issues of architectural complexitynalyic change, and access to
sensitive data in test environments. A quality essce framework is proposed
that integrates with and leverages the performanaeagement system itself.
As well, a data generation tool suitable for thguieements of testing perform-
ance management systems has been built that agslfasitations in similar
commercially available tools.

1 Introduction

Increasingly, large organizations are deploying piex on-line enterprise applica-
tions that are used to run and manage criticalnessi processes [5]. These applica-
tions often run on a network of centralized seniera service oriented architecture
(SOA) [12], and are accessed by thousands of gpbigally dispersed users via
browser-based interfaces. In this case study, xeenime some of the specific re-
quirements and challenges faced in providing aityuaksurance framework for a
performance management and reporting system deaphatya large teaching hospital.
This hospital has thousands of health care worlats maintains a data warehouse
containing hundreds of millions of records relategatient treatment. The perform-
ance management system in the case study usealtgffithe shelf components that
are used in other hospitals, and which are useteé gegularly in deployments for the
biggest companies in the world (e.g. members db€®magazines "Global 2000").

Business performance management (BPM) enablesgamiaation to understand
the status of business processes across busingd3,an context against goals and
trends, in order to improve business operationsB&M is often used to enable spe-
cific management initiatives like balanced scordcdmtal Quality Management, Six
Sigma, and Sarbanes-Oxley. Enterprise performamagagement systems that sup-
port BPM provide services to manage and report ata dollected from across the
organization's business operations into enterpvide- data warehouses and data
marts.

A data warehouse is a subject-oriented, integratesk-variant, non-volatile col-
lection of information that is optimized for moniteg and analysis in support of man-
agement's decision-making processes [7]. Hosplital® been slower to adopt such
technology than private enterprise, but it is nowaative focus area [2]. Typically,
the user interface for accessing the reporting,itoong, and analysis functionality of
the performance management system is a browsed-tipsetal". The "portal” view
can be customized for each user to define theiiqodar business view of enterprise
data and highlight the individual reports and asedythat are most relevant to them.
A hospital performance management system presgeisas challenges for quality
assurance. In our case study we have considezedltbwing:

» Architectural complexity of enterprise performamsanagement

Simplistic testing at the level of the user integaan detect quality issues, but it is

not sufficient to determine root causes given ty&esn's complex architecture.

Moreover, each service in the architecture typjchis detailed logs [10]. To lev-

erage these, though, a mechanism is needed in wrderrelate such a wide vari-

ety of data sources with quality issues experiefgedsers.

« Dynamic change that affects quality

Even though it is assembled from off the shelf comgmts, the quality of such a

system (usefulness, performance, reliability, eis.nffected by the volume and

structure of data, and the specifications of batbr unterface "portals” and the re-
ports viewed in them. Quality assurance must beaged in production the same
as when testing.

» Sensitivity of data (privacy)

Often the data in the production environment islyigensitive and access to it is

strictly regulated by privacy law. To accuratelgess quality in a test environment,

there must be a mechanism to generate "test" batdst not sensitive but still ex-
hibits similar characteristics to the "real" seiusitdata when running reports.
In addressing these issues in our health perforenaranagement case study, we have
prototyped a framework for collecting log filesand data warehouse in order to lev-
erage the facilities of the performance managersgstem itself to monitor, report
and analyze quality. We have also developed attbgenerate "test" non-sensitive
data that will exhibit the same performance charistics as "real" sensitive data.

2 Case Study

The hospital in our case study is one of Canadaggeb teaching hospitals with
10,000 employees and over 1,000 physicians. lipiadlyear, there are over 100,000
emergency visits and 10 million lab tests. The des@aehouse has over 100 million
records, and adds tens of thousands of new reeongk [4].

For privacy reasons, we are unable to have acodase t'real” data in production.
Instead, we generate "test" but similar data in garable volumes. The data base
schemas are the same. The off the shelf componsats are either the same or are
being considered for introduction into the prodostenvironment. We use a testing
tool, OpenSTA [9], to automate test scripts andutate up to 50 concurrent requests
over extended periods of time running reports tautite the load that must be
handled in production. Our focus has not been stinge the accuracy of the reports,
but rather on testing the quality of service preddy the system in terms of:

e Usefulness - how much of the system is used by twhisers with what

frequency.

» Performance - average response time under différeals of load.

* Reliability - monitoring system status and compdrfarures over time under

normal and extreme load.

3 Quality Assurance Framewor k

Enterprise PM Portal SOA Data Warehouse

< Data Mart >
User g —_—>

1
Developer g _

2
-
QA User g QAReports |2 QA Data
ﬁ - E Content
= ; g Management
TOpegSTA 4L\>Repon Service| | Service Log
est Scripts =) v Authentication Log
- Service Log
OpenSTA Portal Log |~ N
OpenSTA -
Log

Log Loader

Figure 1. Quality Assurance Framework

Figure 1 shows the integration of our quality aseae framework with the SOA of
the performance management system. The OpenSe€At dimulates user actions in
the Enterprise PM Portal. There are log files tiaitain detailed information from
each component of the system. The OpenSTA logdedhe results and execution

time of each user action, the Enterprise PM Pantdl each service in the SOA has a
log of actions performed. In addition, there isadadbase log and a server log for each
physical box that monitors memory usage, file hasditc. The QA Log Loader proc-
esses these files into a QA Data Mart that cansled to report and analyze the results
of any test run. Associated with the QA Data Msud QA Portal (Figure 2) to access
the catalogue of QA reports, along with tools talgpe and monitor what is taking
place, making it very easy to notice a quality ésand investigate the cause of it [8].

— EasBam _foReriOBCrsazsAR0EACF] - s |
g \ T2 Bookmais= | D popups ohey || " Check = N Atolink = Telputorll [sendior 2 @ sewn
ty Assurance of The HPMS

Address [&] httpi//id1a/coanose/cai-bi
Google G~ java
[Em~ Public Folders

rn'ﬁi@l

Average Response Time by Minute S
. Ro ¥ = HTTP Errors By Minute
— Average Resp

10,000
— Number

4,500
4,000
8,000
é 3,500
g : =
£ s000 £ om0
g a
.E E 2s00
£ 4000 T 200
E H
] £ 1500
2
2,000) i
s00
5 1 2z 5 4 5 & 7 8 9 =
al 1 > <l 1
Report Nany ‘ Toral |;I w Total Access By Day
LeEsn — Total Aces
11

ory by user]
ge Time Lag in Campus (Dictation To

&
ts by package and report’] s
Lag in Service (Discharge To + 40
E
B

s by time stamp’]

08333 20081207 ooeiz0y | 20oe1zio
ution historytSurnmary zousa2 1209

Figure 2. Quality Assurance Portal

The result is that members of the QA team can deeper analysis of quality. For
example, in one test run, the OpenSTA log showedvesl than normal response
times, but there were other reports to indicateéfdatabase or the report service was
slow, and yet another report that showed a paaicsgrver were running out of mem-
ory. In this manner, the performance managemesiesyitself becomes a tool for
processing log data and communicating the reséltssb runs. Another advantage of
this approach is that the quality assurance framewoembedded into the perform-
ance management system and can remain there ingtiaa This is important be-
cause quality characteristics can change as dataser volumes increase, or as new
reports or portal configurations are added to jfstesn.

There are a number of challenges with this appréfzabgh. It is dependent on the
existence and accuracy of the logs provided bydifferent components of the sys-
tem. It can also be very challenging to correlateentries to individual user actions
at the interface level. At this time, we are oahalyzing aggregate results of overall
system quality. The approach also requires skilldata warehouse tools. Finally,
there is a performance and behavioral overheadtjineroportional to the amount of
logging that is enabled. Log too much data andjtredity of the system is impacted.

4 Generation of Test Data

To provide an accurate assessment of quality, wlethh@nsure that "test" data used
was similar to "real" data in terms of both voluare actual values so that reports run
in our test environment would have similar proaggsiharacteristics as in production.
For privacy reasons, "real" data could not be dsetesting. As well, data generated
for a data warehouse has a very specialized steuctlled a star schema [7], in which
data is organized into dimensions (Doctor, DiaghoBiate, Prescription Drug, Lab
Test) and quantifiable facts (Prescription Amo@ust, Length of Stay). In particu-
lar, for a performance management system, datar@ports are very much time-
oriented.

In our approach, we first create by hand a seffie®ry small data marts with fab-
ricated but representative facts using the exanesdimensions as the production data
warehouse. Then, we generate a full volume "@sté warehouse by obfuscating the
identity information in the dimensions, and usinglata generation tool to populate
"test" facts from the very small data marts. Foaregle, we built a very small data
mart for antibiotic prescriptions during one weaklanuary 2002 and cloned the data
to fully populate a data warehouse from January2200December 2006 specifying
for each month in that time period what the totainber of prescriptions should be
and the average amount of each prescription. R#tlh@ specific names for drugs,
doctors or diagnoses, "test" hames were generiégedlugl, Doctor2, and Diagno-
sis.

We evaluated some popular test data generatios fbpB, 11]. All of them could
generate large volumes of data, one table at g tisiag random data or predefined
data sets. Some had adequate support for obfugaita.

Unfortunately, none had specific support for linkigeneration of fact table entries
to dimensions in a star schema. Nor did any haeeific support for time based
generation to fill out data on a month by monthidadlost importantly there was no
support for ensuring that generated data matchgbggte targets on a monthly basis,
or match a specified distribution model. As a rgsue have built our own tool that
we have successfully used to generate data foff&eht data marts. It has support
for large volumes of data, obfuscation, star schamth aggregate targets on a time
period basis. The support for aggregate targets time period basis is a bit simplis-
tic, but work is progressing on a general expressitgine that can be used to specify
distributions.

5 Reaults

We evaluated our quality assurance framework inpaoieon with traditional black
box testing (using a tool such as OpenSTA). Theeet&wo aspects to consider in
evaluating a quality assurance framework. One adpdbe capabilities provided in
terms of what aspects of quality assurance candssuned and the quality issues the
framework address. We focus on the scalabilityabdity, usage and privacy of the
performance management system, since those gsdfitiee the biggest impact on
whether or not the system would be successful.cfther aspect is how much effort is

required to implement and maintain the quality essce framework, and how much

effort is needed to notice or investigate qualityuies, as well as who can do it and
how much skill and knowledge do they need. We alsduated tools used in generat-
ing "test" data when sensitive "real" data is natilable in a test environment.

5.1 Quality Assurance Capabilities

The criteria used for evaluating capabilities afuality assurance framework for per-
formance management systems are as follows:
» Support for assessment of non-functional qualltiessscalability, reliability,
usage and privacy of the performance managemetansys
* The ability to analyze detail level informationddta collected.
» Support for aggregations on quality data with dip/down in different di-
mensions such as time, services, etc.
e Support for alerts to automatically notify when alaollected indicated a
quality issue
» The ability to perform quality assurance acrossethire architecture of the
performance management system on a component byor@nt basis.
e The ability to support ongoing quality assuranceth&f performance man-
agement system in production.

The following table shows the summary of the evédumaof black box testing with a
professional tool and the integrated quality assegaframework in doing quality
assurance for the hospital performance managerystens in our case study.

Table 1. Quality Assurance Criteria

Criteria Black Box Testing |Integrated Framework
Ensure Scalability yes yes
non-functional qualities Reliabiity Jes Jes
Usage no yes
Privacy no yes
Detail Results yes yes
IAggregate Results with Drill up/down no yes
Alert system quality exceptions no yes
QA across individual SOA componerjts no yes

Quality assurance in production no yes

Black box testing with OpenSTA can be used to sateuteal user behaviors to the
performance management system and report HTTP de&dlveturned by web servers
with graphs and tables showing detail informatibdata collected. Useful reports are
provided to show scalability and reliability of therformance management system on
the whole system level.

But black box testing does not access the underlginchitecture of the perform-
ance management system; hence qualities of comfmeenvice inside the system
infrastructure can not be tested and deep anabysthe system qualities can not be
done. It can not ensure usage and privacy of thesydue to lacking of related data.
It only provides simple aggregations on data. Th@®eno mechanisms provided to
alert users of system exceptions. Users have t@mdrview reports manually after a
test run is completed. Finally, simple black bostitey is inappropriate for managing
quality assurance of the system in production.

In contrast, the integrated quality assurance freanle is fully integrated into the
performance management system and across the sgsthitecture. It collects and
consolidated logs that track system and componemaor into the data warehouse
and models quality data in multi-dimensional schéaa allow users to drill up/down
through a detailed picture of quality assurancegldifferent dimensions. It supports
the management of non-functional qualities likelauidity, reliability and usage, as
well as the ability to monitor privacy of the parftance management system. As well,
the underlying alert mechanisms of the performanaeagement system can be used
to automatically generate alerts for quality assceaissues. For example, we can use
email function of the system to notice a new repesdy for users, or we can set up
quality metrics and their ranges and make the syst®nitor those metrics against
data and send email for data out of range. Fin#lilg, integrated quality assurance
framework can be used in production to continuowsiitect and monitor quality
assurance data although this feature may needgtamd configuration as to how
much log information is collected.

5.2 Implementation Effort

The criteria for evaluating implementation effossaciated with a quality assurance
framework for performance management systems dialaws:

» Efforts to implement the quality assurance framédwor

« Efforts to maintain the quality assurance framework

» Efforts to notice a quality issue

» Efforts to investigate and determine cause of smels

» Additional efforts to perform quality assurancepioduction

Efforts we used in our experiment to perform gyaissurance for the hospital per-
formance management system are shown in Table 2.

In the black box testing framework, we do not néedbe familiar with the infra-
structure of the performance management systemeasnly target the web pages of
the Enterprise PM Portal. There are efforts neddeshalyze user scenarios and re-
cord user actions as test scripts. The test sonpts saved in OpenSTA project files

and copied between client computers. Test scragotshe replayed by client computers
to create required traffic on the system, and tleports are automatically created
after test runs for analyzing collected data. Taigt was finished in one day.

The integrated QA framework, on the other hand irequiots of effort to collect
log data into the data warehouse. First, we ne¢al@thable log functions for system
components. Second, we needed to analyze logsrgidment a log loader for them.
The ETL process involves running the log loader erecuting database SQL com-
mands or functions, and double checking the ddtaated to ensure the quality of the
data collected. Third, we used a metadata modétiogto model collected data di-
mensionally in the data warehouse and publish adaéd model for reporting. Fi-
nally, the quality assurance reports and portadedeto be designed and created
manually. It took one month to set it up.

Table 2. Effort Comparison.

Criteria Black Box Framewor k
implement 1 person day 1 person month
maintain 1 person day 1 person week
notice an issue [scalability View reports Alert to view reportg
reliability \View reports Alert to view reports
usage Can not be done Alert to view reports
privacy Can not be done Analyze reports
determine causgscalability Inspect distributed logs | Analyze regort
reliability Inspect distributed logs | Analyze report
usage Can not be done Analyze reports
privacy Can not be done Analyze reports
Production Can not be done Built In

In terms of maintenance for the black box testimgmework, changes on web
pages will cause OpenSTA to redo the work of reiogrdnd replying test scripts, but
it is still quite simple and can be done in one.day

For the integrated quality assurance frameworlgifsagint maintenance efforts are
needed when there are changes in the system mftase, for example:

e Changes in applications or services for the perforte management sys-
tem will bring different logs into the quality asance framework. The log
loader has to be compatible with those logs andrtbadata model of the
quality assurance data mart may need to be changed

« Changes on the granularity of logs of a componéltcause configura-
tions on the log loader and related changes betwestadata objects in
the quality assurance data mart.

e Changes on the goal of quality assurance may asiefs reports or modi-
fication on existing reports, or the quality assweportal.

In general, all of this work can be done in one kvdecan be faster if the inte-
grated framework is designed to be compatible different service and component
configurations.

Implementation and maintenance effort is more figamt with the integrated qual-
ity assurance framework, but once in place thereffssociated with assessing quality
assurance is greatly reduced. With the black bstirtg framework, the effort needed
to notice a quality issue is usually high. Firsiere is no alert provided to users for
system exceptions, users need to discover thematian8econd, although a simple
reporting capability is usually bundled into blaotx testing tools, there is typically
no relationship set up between reports and therm iportal to help users easily go
through reports. To find quality issues, users ngedhrough all reports and figure
out the data relation between reports; this isdiff even for quality assurance ex-
perts. As well due to the limitation on the typedatta collected, there is no support
for assessing quality issues such as the usageravady of the system.

Reports in the integrated quality assurance framewoe created based on the
quality assurance data mart model, a star schemdareports content can be custom-
ized to allow users to easily find out data andopsathat they are interested. Users
can drill up and down in dimensions to see theesggjualities in different levels and
drill though different reports to analyze relatedormation. The quality assurance
portal can also be customized by users to orgaeizerts, which help users to focus
on their goals. The integrated quantity assuraramadwork can notice issues on scal-
ability, reliability, usage and privacy of the syt

The black box testing framework cannot perform fuassurance across the per-
formance management system architecture; henamgnitot report what happened
inside the box. To investigate and determine caafes issue, users need manually
inspect system components’ logs distributed in ggstem. Those logs often have
complex structure, complex information and verygaontent, and users have to look
through the content line by line. To do this, tiarel efforts tend to be huge. Without
related data collected, it cannot investigate agtérthine cause of a usage or privacy
issue of the system

The integrated quality assurance framework canoparfquality assurance across
the performance management system architecture.ffaheework can collect data
from logs automatically by the ETL process, so diatine quality assurance data mart
is well structured, cleaned and meaningful. Thedityuassurance portal allows users
to view quality data in a single place and reptetwusers find the relevant data very
quickly. The integrated quality assurance framewgah report issues on scalability,
reliability, and usage of the system. The integtataality assurance framework does
not provide an automatic way to flag privacy viaas, but it does provide usage
analysis reports from audit logs that can be ueetifcover and investigate potential
privacy violations.

In general, while the integrated quality assuranamework requires greater effort
and cost to implement, it does provide significaahefits and requires less cost and
effort to use both in a test environment and irdpiction.

6 Conclusions

The initial results of this case study are prongsirlWe can generate "test" data in
volume to assess the quality of a hospital perfoceamanagement system in a test
environment. Through careful analysis of systeohiaecture and log files coupled
with data engineering of a quality assurance datg,we have been able to create an
integrated quality assurance framework that lewsate performance management
system to provide deep analysis of quality at agregate level which is available
both in the test and production environment. el work we hope to support deep
analysis at a detail level, and provide even majghisticated data generation fea-
tures.

References

1. Advanced Data Generator 1.7.0, Upscene Productibtig;//www.upscene.com/, last
retrieved: 2008/04

2. P. Chountas, V. Kodogiannis, Development of a Clinizata Warehouse. Medical In-
formation Systems: The Digital Hospital (IDEAS-DH)Q pp 18-14, September 2004.
ISBN: 0-7695-2289-0

3. DTM Data Generator 1.15.04, DTM Soft, http://wwwestjt.com, last retrieved: 2008/04

4. AJ. Forster, The Ottawa Hospital Data Warehoudest&les and Opportunities. IT in
Healthcare Series, June 15, 2005

5. Y.F. Jarrar, A. Al-Mudimigh, M. Zairi, "ERP implemtation critical success factors -the
role and impact of business process managemenEE IEbternational Conference on
Management of Innovation and Technology, 2000

6. JJ. Jeng, "Service-Oriented Business Performancenaement for Real-Time
Enterprise”, E-Commerce Technology, 2006.

7. R. Kimball and M. Ross, “The Data Warehouse Toolkite Complete Guide to Dimen-
sional Modeling”, Second Edition, Wiley, 2002.

8. L. Peyton, A. Rajwani, "A Generative Framework foahhged Services", International
Conference on Generative Programming and Compongjiméå, October, 2004.

9. OpenSTA (Open System Testing Architecture), httpuid.opensta.org, last retrieved:
2008/04

10. C. Rankin, The Software Testing Automation framewdBit/ Systems Journal, Software
Testing and Verification, Vol. 41, No.1, 2002

11. TurboData 4.0.6, Canam Software, http://canamsoétwam,last retrieved: 2008/04

12. W3C Working Group, Web Services Architecture, Notd February 2004,
http://www.w3.0rg/TR/ws-arch, last retrieved: 2008/0

